301
|
Gordon D, Chen R, Chung SH. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Physiol Rev 2013; 93:767-802. [PMID: 23589832 PMCID: PMC3768100 DOI: 10.1152/physrev.00035.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field.
Collapse
Affiliation(s)
- Dan Gordon
- Research School of Biology, The Australian National University, Acton, ACT 0200, Australia.
| | | | | |
Collapse
|
302
|
Abstract
Membrane proteins have essential cellular functions and are therefore of high interest in both academia and industry. Many efforts have been made on producing those targets in yields allowing crystallization experiments aiming for high resolution structures and mechanistic understanding. The first step of production provides a crucial barrier to overcome, but what we now see, is great progress in membrane protein structural determination in a relatively short time. Achievements on recombinant protein production have been essential for this development and the yeast Pichia pastoris is the most commonly used host for eukaryotic membrane proteins. High-resolution structures nicely illustrate the successes in protein production, and this is the measure used by Ramón and Marin in their review "Advances in the production of membrane proteins in Pichia pastoris" from 2011. Here, additional advances on production and crystallization of eukaryotic membrane proteins are described and reflected on.
Collapse
Affiliation(s)
- Kristina Hedfalk
- Department of Chemistry and Molecular Biology; University of Gothenburg; Göteborg, Sweden
| |
Collapse
|
303
|
Abstract
How mechanical forces are sensed remains largely mysterious. The forces that gate prokaryotic and several eukaryotic channels were found to come from the lipid membrane. Our survey of animal cells found that membrane force foci all have cholesterol-gathering proteins and are reinforced with cholesterol. This result is evident in overt force sensors at the tips of stereocilia for vertebrate hearing and the touch receptor of Caenorhabditis elegans and mammalian neurons. For less specialized cells, cadherins sustain the force between neighboring cells and integrins between cells and matrix. These tension bearers also pass through and bind to a cholesterol-enriched platform before anchoring to cytoskeleton through other proteins. Cholesterol, in alliance with sphingomyelin and specialized proteins, enforces a more ordered structure in the bilayer. Such a stiffened platform can suppress mechanical noise, redirect, rescale, and confine force. We speculate that such platforms may be dynamic. The applied force may allow disordered-phase lipids to enter the platform-staging channel opening in the thinner mobile neighborhood. The platform may also contain specialized protein/lipid subdomains enclosing mechanosensitive channels to open with localized tension. Such a dynamic stage can mechanically operate structurally disparate channels or enzymes without having to tie them directly to cadherin, integrin, or other protein tethers.
Collapse
|
304
|
Influence of lipids on protein-mediated transmembrane transport. Chem Phys Lipids 2013; 169:57-71. [PMID: 23473882 DOI: 10.1016/j.chemphyslip.2013.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins are responsible for transporting ions and small molecules across the hydrophobic region of the cell membrane. We are reviewing the evidence for regulation of these transport processes by interactions with the lipids of the membrane. We focus on ion channels, including potassium channels, mechanosensitive and pentameric ligand gated ion channels, and active transporters, including pumps, sodium or proton driven secondary transporters and ABC transporters. For ion channels it has been convincingly shown that specific lipid-protein interactions can directly affect their function. In some cases, a combined approach of molecular and structural biology together with computer simulations has revealed the molecular mechanisms. There are also many transporters whose activity depends on lipids but understanding of the molecular mechanisms is only beginning.
Collapse
|
305
|
|
306
|
Haselwandter CA, Phillips R. Directional interactions and cooperativity between mechanosensitive membrane proteins. EUROPHYSICS LETTERS 2013; 101:68002p1-68002p6. [PMID: 25309021 PMCID: PMC4193682 DOI: 10.1209/0295-5075/101/68002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While modern structural biology has provided us with a rich and diverse picture of membrane proteins, the biological function of membrane proteins is often influenced by the mechanical properties of the surrounding lipid bilayer. Here we explore the relation between the shape of membrane proteins and the cooperative function of membrane proteins induced by membrane-mediated elastic interactions. For the experimental model system of mechanosensitive ion channels we find that the sign and strength of elastic interactions depend on the protein shape, yielding distinct cooperative gating curves for distinct protein orientations. Our approach predicts how directional elastic interactions affect the molecular structure, organization, and biological function of proteins in crowded membranes.
Collapse
Affiliation(s)
- Christoph A Haselwandter
- Department of Physics and Astronomy, University of Southern California - Los Angeles, CA 90089, USA ; Department of Applied Physics, California Institute of Technology - Pasadena, CA 91125, USA
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology - Pasadena, CA 91125, USA
| |
Collapse
|
307
|
Abstract
All cells are influenced by mechanical forces. In the brain, force-generating and load-bearing proteins twist, turn, ratchet, flex, compress, expand and bend to mediate neuronal signalling and plasticity. Although the functions of mechanosensitive proteins have been thoroughly described in classical sensory systems, the effects of endogenous mechanical energy on cellular function in the brain have received less attention, and many working models in neuroscience do not currently integrate principles of cellular mechanics. An understanding of cellular-mechanical concepts is essential to allow the integration of mechanobiology into ongoing studies of brain structure and function.
Collapse
|
308
|
Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Proc Natl Acad Sci U S A 2013; 110:2129-34. [PMID: 23341632 DOI: 10.1073/pnas.1218950110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TRAAK (TWIK-related arachidonic acid-stimulated K(+) channel, K2P4.1) K(+) ion channels are expressed predominantly in the nervous system to control cellular resting membrane potential and are regulated by mechanical and chemical properties of the lipid membrane. TRAAK channels are twofold symmetric, which precludes a direct extension of gating mechanisms that close canonical fourfold symmetric K(+) channels. We present the crystal structure of human TRAAK in complex with antibody antigen-binding fragments (Fabs) at 2.75-Å resolution. In contrast to a previous structure, this structure reveals a domain-swapped chain connectivity enabled by the helical cap that exchanges two opposing outer helices 180° around the channel. An unrelated conformational change of an inner helix seals a side opening to the membrane bilayer and is associated with structural changes around the K(+)-selectivity filter that may have implications for mechanosensitivity and gating of TRAAK channels.
Collapse
|
309
|
González W, Zúñiga L, Cid LP, Arévalo B, Niemeyer MI, Sepúlveda FV. An extracellular ion pathway plays a central role in the cooperative gating of a K(2P) K+ channel by extracellular pH. J Biol Chem 2013; 288:5984-91. [PMID: 23319597 DOI: 10.1074/jbc.m112.445528] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton-gated TASK-3 K(+) channel belongs to the K(2P) family of proteins that underlie the K(+) leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H(+)]. Use of recently solved K(2P) structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating. Tunnel-like side portals define an extracellular ion pathway to the selectivity filter. We use a combination of molecular modeling and functional assays to show that pH-sensing histidine residues and K(+) ions mutually interact electrostatically in the confines of the extracellular ion pathway. K(+) ions modulate the pK(a) of sensing histidine side chains whose charge states in turn determine the open/closed transition of the channel pore. Cooperativity, and therefore steep dependence of TASK-3 K(+) channel activity on extracellular pH, is dependent on an effect of the permeant ion on the channel pH(o) sensors.
Collapse
Affiliation(s)
- Wendy González
- Centro de Estudios Científicos (CECs), 5110466 Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
310
|
Mant A, Williams S, Roncoroni L, Lowry E, Johnson D, O'Kelly I. N-glycosylation-dependent control of functional expression of background potassium channels K2P3.1 and K2P9.1. J Biol Chem 2012; 288:3251-64. [PMID: 23250752 DOI: 10.1074/jbc.m112.405167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two-pore domain potassium (K(2P)) channels play fundamental roles in cellular processes by enabling a constitutive leak of potassium from cells in which they are expressed, thus influencing cellular membrane potential and activity. Hence, regulation of these channels is of critical importance to cellular function. A key regulatory mechanism of K(2P) channels is the control of their cell surface expression. Membrane protein delivery to and retrieval from the cell surface is controlled by their passage through the secretory and endocytic pathways, and post-translational modifications regulate their progression through these pathways. All but one of the K(2P) channels possess consensus N-linked glycosylation sites, and here we demonstrate that the conserved putative N-glycosylation site in K(2P)3.1 and K(2P)9.1 is a glycan acceptor site. Patch clamp analysis revealed that disruption of channel glycosylation reduced K(2P)3.1 current, and flow cytometry was instrumental in attributing this to a decreased number of channels on the cell surface. Similar findings were observed when cells were cultured in reduced glucose concentrations. Disruption of N-linked glycosylation has less of an effect on K(2P)9.1, with a small reduction in number of channels on the surface observed, but no functional implications detected. Because nonglycosylated channels appear to pass through the secretory pathway in a manner comparable with glycosylated channels, the evidence presented here suggests that the decreased number of nonglycosylated K(2P)3.1 channels on the cell surface may be due to their decreased stability.
Collapse
Affiliation(s)
- Alexandra Mant
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | | | | | | | | | | |
Collapse
|
311
|
Zhang X, Xia M, Li Y, Liu H, Jiang X, Ren W, Wu J, DeCaen P, Yu F, Huang S, He J, Clapham DE, Yan N, Gong H. Analysis of the selectivity filter of the voltage-gated sodium channel Na(v)Rh. Cell Res 2012; 23:409-22. [PMID: 23247626 DOI: 10.1038/cr.2012.173] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
NaChBac is a bacterial voltage-gated sodium (Nav) channel that shows sequence similarity to voltage-gated calcium channels. To understand the ion-permeation mechanism of Nav channels, we combined molecular dynamics simulation, structural biology and electrophysiological approaches to investigate the recently determined structure of NavRh, a marine bacterial NaChBac ortholog. Two Na(+) binding sites are identified in the selectivity filter (SF) in our simulations: The extracellular Na(+) ion first approaches site 1 constituted by the side groups of Ser181 and Glu183, and then spontaneously arrives at the energetically more favorable site 2 formed by the carbonyl oxygens of Leu179 and Thr178. In contrast, Ca(2+) ions are prone to being trapped by Glu183 at site 1, which then blocks the entrance of both Na(+) and Ca(2+) to the vestibule of the SF. In addition, Na(+) permeates through the selective filter in an asymmetrical manner, a feature that resembles that of the mammalian Nav orthologs. The study reported here provides insights into the mechanism of ion selectivity on Na(+) over Ca(2+) in mammalian Nav channels.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Abstract
P2X receptors are nonselective cation channels gated by extracellular ATP. They represent new therapeutic targets, and they form channels with a unique trimeric architecture. In 2009, the first crystal structure of a P2X receptor was reported, in which the receptor was in an ATP-free, closed channel state. However, our view recently changed when a second crystal structure was reported, in which a P2X receptor was bound to ATP and resolved in an open channel conformation. This remarkable structure not only confirms many key experimental data, including the recent mechanisms of ATP binding and ion permeation, but also reveals unanticipated mechanisms. Certainly, this new information will accelerate our understanding of P2X receptor function and pharmacology at the atomic level.
Collapse
|
313
|
Bagal SK, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC, Sidders B, Skerratt SE, Stevens EB, Storer RI, Swain NA. Ion Channels as Therapeutic Targets: A Drug Discovery Perspective. J Med Chem 2012; 56:593-624. [DOI: 10.1021/jm3011433] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharan K. Bagal
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park,
Great Abington, Cambridge, CB21 6GS, U.K
| | - Alan D. Brown
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park,
Great Abington, Cambridge, CB21 6GS, U.K
| | - Peter J. Cox
- Pfizer Neusentis, The
Portway Building, Granta Park, Great Abington, Cambridge, CB21
6GS, U.K
| | - Kiyoyuki Omoto
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park,
Great Abington, Cambridge, CB21 6GS, U.K
| | - Robert M. Owen
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park,
Great Abington, Cambridge, CB21 6GS, U.K
| | - David C. Pryde
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park,
Great Abington, Cambridge, CB21 6GS, U.K
| | - Benjamin Sidders
- Pfizer Neusentis, The
Portway Building, Granta Park, Great Abington, Cambridge, CB21
6GS, U.K
| | - Sarah E. Skerratt
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park,
Great Abington, Cambridge, CB21 6GS, U.K
| | - Edward B. Stevens
- Pfizer Neusentis, The
Portway Building, Granta Park, Great Abington, Cambridge, CB21
6GS, U.K
| | - R. Ian Storer
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park,
Great Abington, Cambridge, CB21 6GS, U.K
| | - Nigel A. Swain
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park,
Great Abington, Cambridge, CB21 6GS, U.K
| |
Collapse
|
314
|
Single Mechanosensitive and Ca2+-Sensitive Channel Currents Recorded from Mouse and Human Embryonic Stem Cells. J Membr Biol 2012. [DOI: 10.1007/s00232-012-9523-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
315
|
Plant LD, Zuniga L, Araki D, Marks JD, Goldstein SAN. SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci Signal 2012; 5:ra84. [PMID: 23169818 DOI: 10.1126/scisignal.2003431] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The standing outward K(+) current (IKso) governs the response of cerebellar granule neurons to natural and medicinal stimuli including volatile anesthetics. We showed that SUMOylation silenced half of IKso at the surface of cerebellar granule neurons because the underlying channels were heterodimeric assemblies of K2P1, a subunit subject to SUMOylation, and the TASK (two-P domain, acid-sensitive K(+)) channel subunits K2P3 or K2P9. The heterodimeric channels comprised the acid-sensitive portion of IKso and mediated its response to halothane. We anticipate that SUMOylation also influences sensation and homeostatic mechanisms in mammals through TASK channels formed with K2P1.
Collapse
Affiliation(s)
- Leigh D Plant
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
316
|
Robertson JWF, Kasianowicz JJ, Banerjee S. Analytical Approaches for Studying Transporters, Channels and Porins. Chem Rev 2012; 112:6227-49. [DOI: 10.1021/cr300317z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph W. F. Robertson
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - John J. Kasianowicz
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Soojay Banerjee
- National
Institute of Neurological
Disorders and Stroke, Bethesda, Maryland 20824, United States
| |
Collapse
|
317
|
Liu S, Bian X, Lockless SW. Preferential binding of K+ ions in the selectivity filter at equilibrium explains high selectivity of K+ channels. ACTA ACUST UNITED AC 2012; 140:671-9. [PMID: 23148260 PMCID: PMC3514730 DOI: 10.1085/jgp.201210855] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
K+ channels exhibit strong selectivity for K+ ions over Na+ ions based on electrophysiology experiments that measure ions competing for passage through the channel. During this conduction process, multiple ions interact within the region of the channel called the selectivity filter. Ion selectivity may arise from an equilibrium preference for K+ ions within the selectivity filter or from a kinetic mechanism whereby Na+ ions are precluded from entering the selectivity filter. Here, we measure the equilibrium affinity and selectivity of K+ and Na+ ions binding to two different K+ channels, KcsA and MthK, using isothermal titration calorimetry. Both channels exhibit a large preference for K+ over Na+ ions at equilibrium, in line with electrophysiology recordings of reversal potentials and Ba2+ block experiments used to measure the selectivity of the external-most ion-binding sites. These results suggest that the high selectivity observed during ion conduction can originate from a strong equilibrium preference for K+ ions in the selectivity filter, and that K+ selectivity is an intrinsic property of the filter. We hypothesize that the equilibrium preference for K+ ions originates in part through the optimal spacing between sites to accommodate multiple K+ ions within the selectivity filter.
Collapse
Affiliation(s)
- Shian Liu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
318
|
Vitol EA, Novosad V, Rozhkova EA. Multifunctional ferromagnetic disks for modulating cell function. IEEE TRANSACTIONS ON MAGNETICS 2012; 48:3269-3274. [PMID: 23766544 PMCID: PMC3678572 DOI: 10.1109/tmag.2012.2198209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging.
Collapse
Affiliation(s)
- Elina A Vitol
- Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA ; The Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | | |
Collapse
|
319
|
Marchesi A, Mazzolini M, Torre V. A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions. J Physiol 2012; 590:5075-90. [PMID: 22869010 DOI: 10.1113/jphysiol.2012.238352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels and K+ channels have a significant sequence identity and are thought to share a similar 3D structure. K+ channels can accommodate simultaneously two or three permeating ions inside their pore and therefore are referred to as multi-ion channels. Also CNGA1 channels are multi-ion channels, as they exhibit an anomalous mole fraction effect (AMFE) in the presence of mixtures of 110 mM Li+ and Cs+ on the cytoplasmic side of the membrane. Several observations have identified the ring of Glu363 in the outer vestibule of the pore as one of the binding sites within the pore of CNGA1 channels. In the present work we identify a second binding site in the selectivity filter of CNGA1 channels controlling AMFE. Here, we show also that Cs+ ions at the intracellular side of the membrane block the entry of Na+ ions. This blockage is almost completely removed at high hyperpolarized voltages as expected if the Cs+ blocking site is located within the transmembrane electric field. Indeed, mutagenesis experiments show that the block is relieved when Thr359 and Thr360 at the intracellular entrance of the selectivity filter are replaced with an alanine. In T359A mutant channels AMFE in the presence of intracellular mixtures of Li+ and Cs+ is still present but is abolished in T360A mutant channels. These results suggest that the ring of Thr360 at the intracellular entrance of the selectivity filter forms another ion binding site in the CNGA1 channel. The two binding sites composed of the rings of Glu363 and Thr360 are not independent; in fact they mediate a powerful coupling between permeation and gating, a specific aspect of CNG channels.
Collapse
Affiliation(s)
- Arin Marchesi
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy
| | | | | |
Collapse
|
320
|
Kisselbach J, Schweizer PA, Gerstberger R, Becker R, Katus HA, Thomas D. Enhancement of K2P2.1 (TREK1) background currents expressed in Xenopus oocytes by voltage-gated K+ channel β subunits. Life Sci 2012; 91:377-383. [DOI: 10.1016/j.lfs.2012.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/17/2012] [Accepted: 08/02/2012] [Indexed: 11/26/2022]
|
321
|
Rapedius M, Schmidt MR, Sharma C, Stansfeld PJ, Sansom MSP, Baukrowitz T, Tucker SJ. State-independent intracellular access of quaternary ammonium blockers to the pore of TREK-1. Channels (Austin) 2012; 6:473-8. [PMID: 22991046 PMCID: PMC3536734 DOI: 10.4161/chan.22153] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously reported that TREK-1 gating by internal pH and pressure occurs close to or within the selectivity filter. These conclusions were based upon kinetic measurements of high-affinity block by quaternary ammonium (QA) ions that appeared to exhibit state-independent accessibility to their binding site within the pore. Intriguingly, recent crystal structures of two related K2P potassium channels were also both found to be open at the helix bundle crossing. However, this did not exclude the possibility of gating at the bundle crossing and it was suggested that side-fenestrations within these structures might allow state-independent access of QA ions to their binding site. In this addendum to our original study we demonstrate that even hydrophobic QA ions do not access the TREK-1 pore via these fenestrations. Furthermore, by using a chemically reactive QA ion immobilized within the pore via covalent cysteine modification we provide additional evidence that the QA binding site remains accessible to the cytoplasm in the closed state. These results support models of K2P channel gating which occur close to or within the selectivity filter and do not involve closure at the helix bundle crossing.
Collapse
Affiliation(s)
- Markus Rapedius
- Physiological Institute, Christian-Albrechts University, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
322
|
Sandoz G, Levitz J, Kramer RH, Isacoff EY. Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling. Neuron 2012; 74:1005-14. [PMID: 22726831 DOI: 10.1016/j.neuron.2012.04.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2012] [Indexed: 11/30/2022]
Abstract
Selective ligands are lacking for many neuronal signaling proteins. Photoswitched tethered ligands (PTLs) have enabled fast and reversible control of specific proteins containing a PTL anchoring site and have been used to remote control overexpressed proteins. We report here a scheme for optical remote control of native proteins using a "photoswitchable conditional subunit" (PCS), which contains the PTL anchoring site as well as a mutation that prevents it from reaching the plasma membrane. In cells lacking native subunits for the protein, the PCS remains nonfunctional internally. However, in cells expressing native subunits, the native subunit and PCS coassemble, traffic to the plasma membrane, and place the native protein under optical control provided by the coassembled PCS. We apply this approach to the TREK1 potassium channel, which lacks selective, reversible blockers. We find that TREK1, typically considered to be a leak channel, contributes to the hippocampal GABA(B) response.
Collapse
Affiliation(s)
- Guillaume Sandoz
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, 271 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
323
|
Lee S, Goodchild SJ, Ahern CA. Molecular and functional determinants of local anesthetic inhibition of NaChBac. Channels (Austin) 2012; 6:403-6. [PMID: 22992485 DOI: 10.4161/chan.21807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In our recent publication, we describe the local anesthetic (LA) inhibition of the prokaryotic voltage gated sodium channel NaChBac. Despite the numerous functional and putative structural differences with the mammalian sodium channels, the data show that LA compounds effectively and reversibly inhibit NaChBac channels in a concentration range similar to resting blockade on eukaryotic Navs. In addition to current reduction, LA application accelerated channel inactivation kinetics of NaChBac which could be accounted for in a simple state-model whereby local anesthetics increase the probability of entering the inactivated state. We have further explored what state (or states) local anesthetic blockade of NaChBac could pertain to eukaryotic sodium channels, and what molecular similarities exist between these disparate channel families. Here we show that the rate of recovery from inactivation remains unaffected in the presence of local anesthetics. Further, we show that two sites that support use-dependent inhibition in eukaryotic channels, do not affect block to the same extent when mutated in NaChBac channels. The data indicate that the molecular determinants and the inherent mechanisms for LA block are likely to be divergent between bacterial and eukaryotic Navs, but future experiments will help define possible similarities.
Collapse
Affiliation(s)
- Sora Lee
- Department of Anesthesiology, University of British Columbia, Vancouver, BC, CA
| | | | | |
Collapse
|
324
|
The TASK1 channel inhibitor A293 shows efficacy in a mouse model of multiple sclerosis. Exp Neurol 2012; 238:149-55. [PMID: 22960185 DOI: 10.1016/j.expneurol.2012.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/14/2012] [Accepted: 08/21/2012] [Indexed: 01/26/2023]
Abstract
The two-pore domain potassium channel TASK1 (KCNK3) has recently emerged as an important modulator in autoimmune CNS inflammation. Previously, it was shown that T lymphocytes obtained from TASK1(-/-) mice display impaired T cell effector functions and that TASK1(-/-) mice show a significantly reduced disease severity in myelin oligodendrocyte glycoprotein (MOG(35-55)) peptide induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We here evaluate a potent and specific TASK1 channel inhibitor, A293, which caused a dose-dependent reduction of T cell effector functions (cytokine production and proliferation). This effect was abolished in CD4(+) T cells from TASK1(-/-) mice but not in cells from TASK3(-/-) mice. In electrophysiological measurements, A293 application induced a significant reduction of the outward current of wildtype T lymphocytes, while there was no effect in TASK1(-/-) cells. Preventive and therapeutic application of A293 significantly ameliorated the EAE disease course in wildtype mice while it had no significant effect in TASK1(-/-) mice and was still partly effective in TASK3(-/-) mice. In summary, our findings support the concept of TASK1 as an attractive drug target for autoimmune disorders.
Collapse
|
325
|
SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics 2012; 192:905-28. [PMID: 22887816 PMCID: PMC3522166 DOI: 10.1534/genetics.112.143271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. In Caenorhabditis elegans, major sperm protein triggers meiotic resumption through a mechanism involving somatic Gαs–adenylate cyclase signaling and soma-to-germline gap-junctional communication. Using genetic mosaic analysis, we show that the major effector of Gαs–adenylate cyclase signaling, protein kinase A (PKA), is required in gonadal sheath cells for oocyte meiotic maturation and dispensable in the germ line. This result rules out a model in which cyclic nucleotides must transit through sheath-oocyte gap junctions to activate PKA in the germ line, as proposed in vertebrate systems. We conducted a genetic screen to identify regulators of oocyte meiotic maturation functioning downstream of Gαs–adenylate cyclase–PKA signaling. We molecularly identified 10 regulatory loci, which include essential and nonessential factors. sacy-1, which encodes a highly conserved DEAD-box helicase, is an essential germline factor that negatively regulates meiotic maturation. SACY-1 is a multifunctional protein that establishes a mechanistic link connecting the somatic control of meiotic maturation to germline sex determination and gamete maintenance. Modulatory factors include multiple subunits of a CoREST-like complex and the TWK-1 two-pore potassium channel. These factors are not absolutely required for meiotic maturation or its negative regulation in the absence of sperm, but function cumulatively to enable somatic control of meiotic maturation. This work provides insights into the genetic control of meiotic maturation signaling in C. elegans, and the conserved factors identified here might inform analysis in other systems through either homology or analogy.
Collapse
|
326
|
Prole DL, Taylor CW. Identification and analysis of cation channel homologues in human pathogenic fungi. PLoS One 2012; 7:e42404. [PMID: 22876320 PMCID: PMC3410928 DOI: 10.1371/journal.pone.0042404] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/05/2012] [Indexed: 01/08/2023] Open
Abstract
Fungi are major causes of human, animal and plant disease. Human fungal infections can be fatal, but there are limited options for therapy, and resistance to commonly used anti-fungal drugs is widespread. The genomes of many fungi have recently been sequenced, allowing identification of proteins that may become targets for novel therapies. We examined the genomes of human fungal pathogens for genes encoding homologues of cation channels, which are prominent drug targets. Many of the fungal genomes examined contain genes encoding homologues of potassium (K+), calcium (Ca2+) and transient receptor potential (Trp) channels, but not sodium (Na+) channels or ligand-gated channels. Some fungal genomes contain multiple genes encoding homologues of K+ and Trp channel subunits, and genes encoding novel homologues of voltage-gated Kv channel subunits are found in Cryptococcus spp. Only a single gene encoding a homologue of a plasma membrane Ca2+ channel was identified in the genome of each pathogenic fungus examined. These homologues are similar to the Cch1 Ca2+ channel of Saccharomyces cerevisiae. The genomes of Aspergillus spp. and Cryptococcus spp., but not those of S. cerevisiae or the other pathogenic fungi examined, also encode homologues of the mitochondrial Ca2+ uniporter (MCU). In contrast to humans, which express many K+, Ca2+ and Trp channels, the genomes of pathogenic fungi encode only very small numbers of K+, Ca2+ and Trp channel homologues. Furthermore, the sequences of fungal K+, Ca2+, Trp and MCU channels differ from those of human channels in regions that suggest differences in regulation and susceptibility to drugs.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | |
Collapse
|
327
|
Iscla I, Blount P. Sensing and responding to membrane tension: the bacterial MscL channel as a model system. Biophys J 2012; 103:169-74. [PMID: 22853893 DOI: 10.1016/j.bpj.2012.06.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022] Open
Abstract
Mechanosensors are important for many life functions, including the senses of touch, balance, and proprioception; cardiovascular regulation; kidney function; and osmoregulation. Many channels from an assortment of families are now candidates for eukaryotic mechanosensors and proprioception, as well as cardiovascular regulation, kidney function, and osmoregulation. Bacteria also possess two families of mechanosensitive channels, termed MscL and MscS, that function as osmotic emergency release valves. Of the two channels, MscL is the most conserved, most streamlined in structure, and largest in conductance at 3.6 nS with a pore diameter in excess of 30 Å; hence, the structural changes required for gating are exaggerated and perhaps more easily defined. Because of these properties, as well as its tractable nature, MscL represents a excellent model for studying how a channel can sense and respond to biophysical changes of a lipid bilayer. Many of the properties of the MscL channel, such as the sensitivity to amphipaths, a helix that runs along the membrane surface and is connected to the pore via a glycine, a twisting and turning of the transmembrane domains upon gating, and the dynamic changes in membrane interactions, may be common to other candidate mechanosensors. Here we review many of these properties and discuss their structural and functional implications.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas. USA
| | | |
Collapse
|
328
|
Sukharev S, Sachs F. Molecular force transduction by ion channels: diversity and unifying principles. J Cell Sci 2012; 125:3075-83. [PMID: 22797911 DOI: 10.1242/jcs.092353] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells perceive force through a variety of molecular sensors, of which the mechanosensitive ion channels are the most efficient and act the fastest. These channels apparently evolved to prevent osmotic lysis of the cell as a result of metabolite accumulation and/or external changes in osmolarity. From this simple beginning, nature developed specific mechanosensitive enzymes that allow us to hear, maintain balance, feel touch and regulate many systemic variables, such as blood pressure. For a channel to be mechanosensitive it needs to respond to mechanical stresses by changing its shape between the closed and open states. In that way, forces within the lipid bilayer or within a protein link can do work on the channel and stabilize its state. Ion channels have the highest turnover rates of all enzymes, and they can act as both sensors and effectors, providing the necessary fluxes to relieve osmotic pressure, shift the membrane potential or initiate chemical signaling. In this Commentary, we focus on the common mechanisms by which mechanical forces and the local environment can regulate membrane protein structure, and more specifically, mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
329
|
Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1003-16. [DOI: 10.1007/s00210-012-0780-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 12/27/2022]
|
330
|
Abstract
Piezo ion channels have been found to be essential for mechanical responses in cells. These channels were first shown to exist in Neuro2A cells, and the gene was identified by siRNAs that diminished the mechanical response. Piezo channels are approximately 2500 amino acids long, have between 24-32 transmembrane regions, and appear to assemble into tetramers and require no other proteins for activity. They have a reversal potential around 0 mV and show voltage dependent inactivation. The channel is constitutively active in liposomes, indicating that no cytoskeletal elements are required. Heterologous expression of the Piezo protein can create mechanical sensitivity in otherwise insensitive cells. Piezo1 currents in outside-out patches were blocked by the extracellular MSC inhibitor peptide GsMTx4. Both enantiomeric forms of GsMTx4 inhibited channel activity in a manner similar to endogenous mechanical channels. Piezo1 can adopt a tonic (non-inactivating) form with repeated stimulation. The transition to the non-inactivating form generally occurs in large groups of channels, indicating that the channels exist in domains, and once the domain is compromised, the members simultaneously adopt new properties. Piezo proteins are associated with physiological responses in cells, such as the reaction to noxious stimulus of Drosophila larvae. Recent work measuring cell crowding, shows that Piezo1 is essential for the removal of extra cells without apoptosis. Piezo1 mutations have also been linked to the pathological response of red blood cells in a genetic disease called Xerocytosis. These finding suggest that Piezo1 is a key player in cells' responses to mechanical stimuli.
Collapse
|
331
|
Martinac B. Mechanosensitive ion channels: an evolutionary and scientific tour de force in mechanobiology. Channels (Austin) 2012; 6:211-3. [PMID: 22940794 PMCID: PMC3508899 DOI: 10.4161/chan.22047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Boris Martinac
- Molecular Cardiology and Biophysics Division; Victor Chang Cardiac Research Institute; Darlinghurst, NSW Australia
| |
Collapse
|
332
|
Bagriantsev SN, Clark KA, Minor DL. Metabolic and thermal stimuli control K(2P)2.1 (TREK-1) through modular sensory and gating domains. EMBO J 2012; 31:3297-308. [PMID: 22728824 PMCID: PMC3411076 DOI: 10.1038/emboj.2012.171] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/25/2012] [Indexed: 01/01/2023] Open
Abstract
The two-pore domain potassium channel K2P2.1 (TREK-1) responds to extracellular and intracellular stimuli, including pH and temperature. This study elucidates how the intracellular sensor element relays metabolic and thermal stimuli to the extracellular C-type gating element. K2P2.1 (TREK-1) is a polymodal two-pore domain leak potassium channel that responds to external pH, GPCR-mediated phosphorylation signals, and temperature through the action of distinct sensors within the channel. How the various intracellular and extracellular sensory elements control channel function remains unresolved. Here, we show that the K2P2.1 (TREK-1) intracellular C-terminal tail (Ct), a major sensory element of the channel, perceives metabolic and thermal commands and relays them to the extracellular C-type gate through transmembrane helix M4 and pore helix 1. By decoupling Ct from the pore-forming core, we further demonstrate that Ct is the primary heat-sensing element of the channel, whereas, in contrast, the pore domain lacks robust temperature sensitivity. Together, our findings outline a mechanism for signal transduction within K2P2.1 (TREK-1) in which there is a clear crosstalk between the C-type gate and intracellular Ct domain. In addition, our findings support the general notion of the existence of modular temperature-sensing domains in temperature-sensitive ion channels. This marked distinction between gating and sensory elements suggests a general design principle that may underlie the function of a variety of temperature-sensitive channels.
Collapse
|
333
|
Wang W, van Veen HW. Basic residues R260 and K357 affect the conformational dynamics of the major facilitator superfamily multidrug transporter LmrP. PLoS One 2012; 7:e38715. [PMID: 22761697 PMCID: PMC3380022 DOI: 10.1371/journal.pone.0038715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H(+)(Na(+)) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by components of the proton-motive force, the mutations also influence the energetics of transport.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Hendrik W. van Veen
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
334
|
Nilius B, Honoré E. Sensing pressure with ion channels. Trends Neurosci 2012; 35:477-86. [PMID: 22622029 DOI: 10.1016/j.tins.2012.04.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Abstract
Opening of stretch-activated ion channels (SACs) is the earliest event occurring in mechanosensory transduction. The molecular identity of mammalian SACs has long remained a mystery. Only very recently, Piezo1 and Piezo2 have been shown to be essential components of distinct SACs and moreover, purified Piezo1 forms cationic channels when reconstituted into artificial bilayers. In line with these findings, dPiezo was demonstrated to act in the Drosophila mechanical nociception pathway. Finally, the 3D structure of the two-pore domain potassium channel (K(2P)), TRAAK [weakly inward rectifying K⁺ channel (TWIK)-related arachidonic acid stimulated K⁺ channel], has recently been solved, providing valuable information about pharmacology, selectivity and gating mechanisms of stretch-activated K⁺ channels (SAKs). These recent findings allow a better understanding of the molecular basis of molecular and cellular mechanotransduction.
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cell and Molecular Medicine, Katholieke Universiteit-KU Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49-Bus 802, B-3000 Leuven, Belgium
| | | |
Collapse
|
335
|
Plant LD. A Role for K2P Channels in the Operation of Somatosensory Nociceptors. Front Mol Neurosci 2012; 5:21. [PMID: 22403526 PMCID: PMC3293133 DOI: 10.3389/fnmol.2012.00021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/09/2012] [Indexed: 12/20/2022] Open
Abstract
The ability to sense mechanical, thermal, and chemical stimuli is critical to normal physiology and the perception of pain. Contact with noxious stimuli triggers a complex series of events that initiate innate protective mechanisms designed to minimize or avoid injury. Extreme temperatures, mechanical stress, and chemical irritants are detected by specific ion channels and receptors clustered on the terminals of nociceptive sensory nerve fibers and transduced into electrical information. Propagation of these signals, from distant sites in the body to the spinal cord and the higher processing centers of the brain, is also orchestrated by distinct groups of ion channels. Since their identification in 1995, evidence has emerged to support roles for K2P channels at each step along this pathway, as receptors for physiological and noxious stimuli, and as determinants of nociceptor excitability and conductivity. In addition, the many subtypes of K2P channels expressed in somatosensory neurons are also implicated in mediating the effects of volatile, general anesthetics on the central and peripheral nervous systems. Here, I offer a critical review of the existing data supporting these attributes of K2P channel function and discuss how diverse regulatory mechanisms that control the activity of K2P channels act to govern the operation of nociceptors.
Collapse
Affiliation(s)
- Leigh D Plant
- Department of Biochemistry, Brandeis University Waltham, MA, USA
| |
Collapse
|
336
|
Affiliation(s)
- Hanne Poulsen
- Centre for Membrane Pumps in Cells and Disease-Pumpkin, Danish National Research Foundation, and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus C, Denmark.
| | | |
Collapse
|