301
|
Hwang H, Vreven T, Whitfield TW, Wiehe K, Weng Z. A machine learning approach for the prediction of protein surface loop flexibility. Proteins 2011; 79:2467-74. [PMID: 21633973 PMCID: PMC3341935 DOI: 10.1002/prot.23070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 03/30/2011] [Accepted: 04/19/2011] [Indexed: 11/11/2022]
Abstract
Proteins often undergo conformational changes when binding to each other. A major fraction of backbone conformational changes involves motion on the protein surface, particularly in loops. Accounting for the motion of protein surface loops represents a challenge for protein-protein docking algorithms. A first step in addressing this challenge is to distinguish protein surface loops that are likely to undergo backbone conformational changes upon protein-protein binding (mobile loops) from those that are not (stationary loops). In this study, we developed a machine learning strategy based on support vector machines (SVMs). Our SVM uses three features of loop residues in the unbound protein structures-Ramachandran angles, crystallographic B-factors, and relative accessible surface area-to distinguish mobile loops from stationary ones. This method yields an average prediction accuracy of 75.3% compared with a random prediction accuracy of 50%, and an average of 0.79 area under the receiver operating characteristic (ROC) curve using cross-validation. Testing the method on an independent dataset, we obtained a prediction accuracy of 70.5%. Finally, we applied the method to 11 complexes that involve members from the Ras superfamily and achieved prediction accuracy of 92.8% for the Ras superfamily proteins and 74.4% for their binding partners.
Collapse
Affiliation(s)
- Howook Hwang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Bioinformatics Program, Boston University, Massachusetts 02215
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Troy W. Whitfield
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Kevin Wiehe
- Bioinformatics Program, Boston University, Massachusetts 02215
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Bioinformatics Program, Boston University, Massachusetts 02215
| |
Collapse
|
302
|
|
303
|
Shi Z, Moult J. Structural and functional impact of cancer-related missense somatic mutations. J Mol Biol 2011; 413:495-512. [PMID: 21763698 DOI: 10.1016/j.jmb.2011.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/13/2011] [Accepted: 06/28/2011] [Indexed: 01/11/2023]
Abstract
A number of large-scale cancer somatic genome sequencing projects are now identifying genetic alterations in cancers. Evaluation of the effects of these mutations is essential for understanding their contribution to tumorigenesis. We have used SNPs3D, a software suite originally developed for analyzing nonsynonymous germ-line variants, to identify single-base mutations with a high impact on protein structure and function. Two machine learning methods are used: one identifying mutations that destabilize protein three-dimensional structure and the other utilizing sequence conservation and detecting all types of effects on in vivo protein function. Incorporation of detailed structure information into the analysis allows detailed interpretation of the functional effects of mutations in specific cases. Data from a set of breast and colorectal tumors were analyzed. In known cancer genes, mutations approaching 100% of mutations are found to impact protein function, supporting the view that these methods are appropriate for identifying driver mutations. Overall, 50-60% of all somatic missense mutations are predicted to have a high impact on structural stability or to more generally affect the function of the corresponding proteins. This value is similar to the fraction of all possible missense mutations that have a high impact and is much higher than the corresponding one for human population single-nucleotide polymorphisms, at about 30%. The majority of mutations in tumor suppressors destabilize protein structure, while mutations in oncogenes operate in more varied ways, including destabilization of less active conformational states. The set of high-impact mutations encompasses the possible drivers.
Collapse
Affiliation(s)
- Zhen Shi
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | | |
Collapse
|
304
|
Liljas A. The ribosome story: An overview of structural studies of protein synthesis on the ribosome. CRYSTALLOGR REV 2011. [DOI: 10.1080/0889311x.2011.587812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
305
|
Identification of H-Ras-specific motif for the activation of invasive signaling program in human breast epithelial cells. Neoplasia 2011; 13:98-107. [PMID: 21403836 DOI: 10.1593/neo.101088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/05/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Increased expression and/or activation of H-Ras are often associated with tumor aggressiveness in breast cancer. Previously, we showed that H-Ras, but not N-Ras, induces MCF10A human breast epithelial cell invasion and migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. In an attempt to determine the sequence requirement directing the divergent phenotype induced by H-Ras and N-Ras with a focus on the induction of human breast cell invasion, we investigated the structural and functional relationships between H-Ras and N-Ras using domain-swap and site-directed mutagenesis approaches. Here, we report that the hypervariable region (HVR), consisting of amino acids 166 to 189 in H-Ras, determines the invasive/migratory signaling program as shown by the exchange of invasive phenotype by swapping HVR sequences between H-Ras and N-Ras. We also demonstrate that the H-Ras-specific additional palmitoylation site at Cys184 is not responsible for the signaling events that distinguish between H-Ras and N-Ras. Importantly, this work identifies the C-terminal HVR, especially the flexible linker domain with two consecutive proline residues Pro173 and Pro174, as a critical domain that contributes to activation of H-Ras and its invasive potential in human breast epithelial cells. The present study sheds light on the structural basis for the Ras isoform-specific invasive program of breast epithelial cells, providing information for the development of agents that specifically target invasion-related H-Ras pathways in human cancer.
Collapse
|
306
|
Jeon J, Nam HJ, Choi YS, Yang JS, Hwang J, Kim S. Molecular evolution of protein conformational changes revealed by a network of evolutionarily coupled residues. Mol Biol Evol 2011; 28:2675-85. [PMID: 21470969 DOI: 10.1093/molbev/msr094] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
An improved understanding of protein conformational changes has broad implications for elucidating the mechanisms of various biological processes and for the design of protein engineering experiments. Understanding rearrangements of residue interactions is a key component in the challenge of describing structural transitions. Evolutionary properties of protein sequences and structures are extensively studied; however, evolution of protein motions, especially with respect to interaction rearrangements, has yet to be explored. Here, we investigated the relationship between sequence evolution and protein conformational changes and discovered that structural transitions are encoded in amino acid sequences as coevolving residue pairs. Furthermore, we found that highly coevolving residues are clustered in the flexible regions of proteins and facilitate structural transitions by forming and disrupting their interactions cooperatively. Our results provide insight into the evolution of protein conformational changes and help to identify residues important for structural transitions.
Collapse
Affiliation(s)
- Jouhyun Jeon
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | |
Collapse
|
307
|
Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, Haviv S, Asara JM, Pandolfi PP, Cantley LC. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 2011; 4:ra13. [PMID: 21386094 DOI: 10.1126/scisignal.2001518] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The guanosine triphosphate (GTP)--loaded form of the guanosine triphosphatase (GTPase) Ras initiates multiple signaling pathways by binding to various effectors, such as the kinase Raf and phosphatidylinositol 3-kinase (PI3K). Ras activity is increased by guanine nucleotide exchange factors that stimulate guanosine diphosphate release and GTP loading and is inhibited by GTPase-activating proteins that stimulate GTP hydrolysis. KRAS is the most frequently mutated RAS gene in cancer. Here, we report that monoubiquitination of lysine-147 in the guanine nucleotide-binding motif of wild-type K-Ras could lead to enhanced GTP loading. Furthermore, ubiquitination increased the binding of the oncogenic Gly12Val mutant of K-Ras to the downstream effectors PI3K and Raf. Thus, monoubiquitination could enhance GTP loading on K-Ras and increase its affinity for specific downstream effectors, providing a previously unidentified mechanism for Ras activation.
Collapse
Affiliation(s)
- Atsuo T Sasaki
- 1Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Kobayashi C, Saito S. Relation between the conformational heterogeneity and reaction cycle of Ras: molecular simulation of Ras. Biophys J 2011; 99:3726-34. [PMID: 21112297 DOI: 10.1016/j.bpj.2010.09.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 12/31/2022] Open
Abstract
Ras functions as a molecular switch by cycling between the active GTP-bound state and the inactive GDP-bound state. It is known experimentally that there is another GTP-bound state called state 1. We investigate the conformational changes and fluctuations arising from the difference in the coordinations between the switch regions and ligands in the GTP- and GDP-bound states using a total of 830 ns of molecular-dynamics simulations. Our results suggest that the large fluctuations among multiple conformations of switch I in state 1 owing to the absence of coordination between Thr-35 and Mg(2+) inhibit the binding of Ras to effectors. Furthermore, we elucidate the conformational heterogeneity in Ras by using principal component analysis, and propose a two-step reaction path from the GDP-bound state to the active GTP-bound state via state 1. This study suggests that state 1 plays an important role in signal transduction as an intermediate state of the nucleotide exchange process, although state 1 itself is an inactive state for signal transduction.
Collapse
Affiliation(s)
- Chigusa Kobayashi
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Aichi, Japan
| | | |
Collapse
|
309
|
Heo J. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signal 2011; 14:689-724. [PMID: 20649471 DOI: 10.1089/ars.2009.2984] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
310
|
Itzen A, Goody RS. GTPases involved in vesicular trafficking: Structures and mechanisms. Semin Cell Dev Biol 2011; 22:48-56. [DOI: 10.1016/j.semcdb.2010.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
311
|
Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, Wittinghofer A, Ahmadian MR. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat 2011; 32:33-43. [PMID: 20949621 PMCID: PMC3117284 DOI: 10.1002/humu.21377] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/05/2010] [Indexed: 02/06/2023]
Abstract
The KRAS gene is the most common locus for somatic gain-of-function mutations in human cancer. Germline KRAS mutations were shown recently to be associated with developmental disorders, including Noonan syndrome (NS), cardio-facio-cutaneous syndrome (CFCS), and Costello syndrome (CS). The molecular basis of this broad phenotypic variability has in part remained elusive so far. Here, we comprehensively analyzed the biochemical and structural features of ten germline KRAS mutations using physical and cellular biochemistry. According to their distinct biochemical and structural alterations, the mutants can be grouped into five distinct classes, four of which markedly differ from RAS oncoproteins. Investigated functional alterations comprise the enhancement of intrinsic and guanine nucleotide exchange factor (GEF) catalyzed nucleotide exchange, which is alternatively accompanied by an impaired GTPase-activating protein (GAP) stimulated GTP hydrolysis, an overall loss of functional properties, and a deficiency in effector interaction. In conclusion, our data underscore the important role of RAS in the pathogenesis of the group of related disorders including NS, CFCS, and CS, and provide clues to the high phenotypic variability of patients with germline KRAS mutations.
Collapse
Affiliation(s)
- Lothar Gremer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Max-Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Torsten Merbitz-Zahradnik
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Max-Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Max-Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Ion C. Cirstea
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Alfred Wittinghofer
- Max-Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
312
|
Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol 2010; 8:e1000576. [PMID: 21203588 PMCID: PMC3006384 DOI: 10.1371/journal.pbio.1000576] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/29/2010] [Indexed: 11/25/2022] Open
Abstract
GTPases of the mouse IRG protein family, mediators of resistance against Toxoplasma gondii in the mouse, are inactivated by a polymorphic kinase of the parasite, resulting in enhanced parasite virulence. Virulence of complex pathogens in mammals is generally determined by multiple components of the pathogen interacting with the functional complexity and multiple layering of the mammalian immune system. It is most unusual for the resistance of a mammalian host to be overcome by the defeat of a single defence mechanism. In this study we uncover and analyse just such a case at the molecular level, involving the widespread intracellular protozoan pathogen Toxoplasma gondii and one of its most important natural hosts, the house mouse (Mus musculus). Natural polymorphism in virulence of Eurasian T. gondii strains for mice has been correlated in genetic screens with the expression of polymorphic rhoptry kinases (ROP kinases) secreted into the host cell during infection. We show that the molecular targets of the virulent allelic form of ROP18 kinase are members of a family of cellular GTPases, the interferon-inducible IRG (immunity-related GTPase) proteins, known from earlier work to be essential resistance factors in mice against avirulent strains of T. gondii. Virulent T. gondii strain ROP18 kinase phosphorylates several mouse IRG proteins. We show that the parasite kinase phosphorylates host Irga6 at two threonines in the nucleotide-binding domain, biochemically inactivating the GTPase and inhibiting its accumulation and action at the T. gondii parasitophorous vacuole membrane. Our analysis identifies the conformationally active switch I region of the GTP-binding site as an Achilles' heel of the IRG protein pathogen-resistance mechanism. The polymorphism of ROP18 in natural T. gondii populations indicates the existence of a dynamic, rapidly evolving ecological relationship between parasite virulence factors and host resistance factors. This system should be unusually fruitful for analysis at both ecological and molecular levels since both T. gondii and the mouse are widespread and abundant in the wild and are well-established model species with excellent analytical tools available. Many pathogens manipulate the immune system of their hosts to facilitate infection and ensure transmission to subsequent hosts. The intracellular protozoan Toxoplasma gondii, a relative of the malaria parasite, is able to infect and persist in a remarkable variety of warm-blooded hosts. Indeed roughly a third of the human race carry live Toxoplasma cysts in their brains with no overt effects. Toxoplasma infection is kept at bay in many mammals (but not in humans) by a resistance system based on a family of proteins known as the immunity-related GTPase (IRG) family. IRG proteins accumulate in infected cells on the vacuoles containing the parasite and ultimately destroy them. In this paper, we show that, in the mouse, Toxoplasma can oppose the IRG system by secreting an enzyme called ROP18 into infected cells, which phosphorylates key amino acids on the IRG proteins, rendering them inactive. Not all strains of Toxoplasma can produce an active form of ROP18, but those strains that do are more virulent. We propose that individual hosts control Toxoplasma with differing efficiency, and the variation we see in ROP18 kinase activity produced by different Toxoplasma strains is an evolutionary response to this. Thus, in different mammalian hosts, each strain seeks a balance between an excess of virulence (resulting in premature death of the host) and resistance that is too efficient (resulting in clearance of the parasite and sterile immunity).
Collapse
|
313
|
Weise K, Kapoor S, Denter C, Nikolaus J, Opitz N, Koch S, Triola G, Herrmann A, Waldmann H, Winter R. Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms. J Am Chem Soc 2010; 133:880-7. [PMID: 21141956 DOI: 10.1021/ja107532q] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The K-Ras4B GTPase is a major oncoprotein whose signaling activity depends on its correct localization to negatively charged subcellular membranes and nanoclustering in membrane microdomains. Selective localization and clustering are mediated by the polybasic farnesylated C-terminus of K-Ras4B, but the mechanisms and molecular determinants involved are largely unknown. In a combined chemical biological and biophysical approach we investigated the partitioning of semisynthetic fully functional lipidated K-Ras4B proteins into heterogeneous anionic model membranes and membranes composed of viral lipid extracts. Independent of GDP/GTP-loading, K-Ras4B is preferentially localized in liquid-disordered (l(d)) lipid domains and forms new protein-containing fluid domains that are recruiting multivalent acidic lipids by an effective, electrostatic lipid sorting mechanism. In addition, GDP-GTP exchange and, thereby, Ras activation results in a higher concentration of activated K-Ras4B in the nanoscale signaling platforms. Conversely, palmitoylated and farnesylated N-Ras proteins partition into the l(d) phase and concentrate at the l(d)/l(o) phase boundary of heterogeneous membranes. Next to the lipid anchor system, the results reveal an involvement of the G-domain in the membrane interaction process by determining minor but yet significant structural reorientations of the GDP/GTP-K-Ras4B proteins at lipid interfaces. A molecular mechanism for isoform-specific Ras signaling from separate membrane microdomains is postulated from the results of this study.
Collapse
Affiliation(s)
- Katrin Weise
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry, TU Dortmund University , Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Buhrman G, Kumar VSS, Cirit M, Haugh JM, Mattos C. Allosteric modulation of Ras-GTP is linked to signal transduction through RAF kinase. J Biol Chem 2010; 286:3323-31. [PMID: 21098031 DOI: 10.1074/jbc.m110.193854] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ras is a key signal transduction protein in the cell. Mutants of Gly(12) and Gln(61) impair GTPase activity and are found prominently in cancers. In wild type Ras-GTP, an allosteric switch promotes disorder to order transition in switch II, placing Gln(61) in the active site. We show that the "on" and "off" conformations of the allosteric switch can also be attained in RasG12V and RasQ61L. Although both mutants have similarly impaired active sites in the on state, RasQ61L stabilizes an anti-catalytic conformation of switch II in the off state of the allosteric switch when bound to Raf. This translates into more potent activation of the MAPK pathway involving Ras, Raf kinase, MEK, and ERK (Ras/Raf/MEK/ERK) in cells transfected with RasQ61L relative to RasG12V. This differential is not observed in the Raf-independent pathway involving Ras, phosphoinositide 3-kinase (PI3K), and Akt (Ras/PI3K/Akt). Using a combination of structural analysis, hydrolysis rates, and experiments in NIH-3T3 cells, we link the allosteric switch to the control of signaling in the Ras/Raf/MEK/ERK pathway, supporting a GTPase-activating protein-independent model for duration of the Ras-Raf complex.
Collapse
Affiliation(s)
- Greg Buhrman
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
315
|
Uejima T, Ihara K, Goh T, Ito E, Sunada M, Ueda T, Nakano A, Wakatsuki S. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5·Vps9 system. J Biol Chem 2010; 285:36689-97. [PMID: 20833725 PMCID: PMC2978598 DOI: 10.1074/jbc.m110.152132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/17/2010] [Indexed: 11/06/2022] Open
Abstract
Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg(2+) and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.
Collapse
Affiliation(s)
- Tamami Uejima
- From the Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kentaro Ihara
- From the Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tatsuaki Goh
- the Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan, and
| | - Emi Ito
- the Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan, and
| | - Mariko Sunada
- the Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan, and
| | - Takashi Ueda
- the Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan, and
| | - Akihiko Nakano
- the Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan, and
- the Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - Soichi Wakatsuki
- From the Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
316
|
Bruning JB, Parent AA, Gil G, Zhao M, Nowak J, Pace MC, Smith CL, Afonine PV, Adams PD, Katzenellenbogen JA, Nettles KW. Coupling of receptor conformation and ligand orientation determine graded activity. Nat Chem Biol 2010; 6:837-43. [PMID: 20924370 PMCID: PMC2974172 DOI: 10.1038/nchembio.451] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 09/01/2010] [Indexed: 01/03/2023]
Abstract
Small molecules stabilize specific protein conformations from a larger ensemble, enabling molecular switches that control diverse cellular functions. We show here that the converse also holds true: the conformational state of the estrogen receptor can direct distinct orientations of the bound ligand. 'Gain-of-allostery' mutations that mimic the effects of ligand in driving protein conformation allowed crystallization of the partial agonist ligand WAY-169916 with both the canonical active and inactive conformations of the estrogen receptor. The intermediate transcriptional activity induced by WAY-169916 is associated with the ligand binding differently to the active and inactive conformations of the receptor. Analyses of a series of chemical derivatives demonstrated that altering the ensemble of ligand binding orientations changes signaling output. The coupling of different ligand binding orientations to distinct active and inactive protein conformations defines a new mechanism for titrating allosteric signaling activity.
Collapse
Affiliation(s)
- John B. Bruning
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Alex A. Parent
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - German Gil
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Min Zhao
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Jason Nowak
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Margaret C. Pace
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Carolyn L. Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Pavel V. Afonine
- Lawrence Berkeley National Laboratory, BLDG 64R0121, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Lawrence Berkeley National Laboratory, BLDG 64R0121, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | - Kendall W. Nettles
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
317
|
Vakiani E, Solit DB. KRAS and BRAF: drug targets and predictive biomarkers. J Pathol 2010; 223:219-29. [PMID: 21125676 DOI: 10.1002/path.2796] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 12/11/2022]
Abstract
Three decades have passed since RAS was first identified as the transformative factor in the Harvey and Kirsten strains of the mouse sarcoma virus. RAS and several of its downstream effectors, including BRAF, have since been shown to be commonly mutated in broad range of human cancers and biological studies have confirmed that RAS pathway activation promotes tumour initiation, progression and metastatic spread in many contexts. With the identification of RAS mutation as a strong predictor of clinical resistance to EGFR-targeted therapies, RAS mutational testing has been incorporated into the routine clinical care of patients with colorectal and lung cancers. This article reviews the current understanding of RAS signalling as it relates to cancer biology, current efforts to develop inhibitors of RAS and its key downstream effectors and the technical challenges of RAS mutational testing in the clinical setting.
Collapse
Affiliation(s)
- Efsevia Vakiani
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
318
|
Klink BU, Scheidig AJ. New insight into the dynamic properties and the active site architecture of H-Ras p21 revealed by X-ray crystallography at very high resolution. BMC STRUCTURAL BIOLOGY 2010; 10:38. [PMID: 20973973 PMCID: PMC2987813 DOI: 10.1186/1472-6807-10-38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/25/2010] [Indexed: 12/01/2022]
Abstract
Background In kinetic crystallography, the usually static method of X-ray diffraction is expanded to allow time-resolved analysis of conformational rearrangements in protein structures. To achieve this, reactions have to be triggered within the protein crystals of interest, and optical spectroscopy can be used to monitor the reaction state. For this approach, a modified form of H-Ras p21 was designed which allows reaction initiation and fluorescence readout of the initiated GTPase reaction within the crystalline state. Rearrangements within the crystallized protein due to the progressing reaction and associated heterogeneity in the protein conformations have to be considered in the subsequent refinement processes. Results X-ray diffraction experiments on H-Ras p21 in different states along the reaction pathway provide detailed information about the kinetics and mechanism of the GTPase reaction. In addition, a very high data quality of up to 1.0 Å resolution allowed distinguishing two discrete subconformations of H-Ras p21, expanding the knowledge about the intrinsic flexibility of Ras-like proteins, which is important for their function. In a complex of H-Ras•GppNHp (guanosine-5'-(β,γ-imido)-triphosphate), a second Mg2+ ion was found to be coordinated to the γ-phosphate group of GppNHp, which positions the hydrolytically active water molecule very close to the attacked γ-phosphorous atom. Conclusion For the structural analysis of very high-resolution data we have used a new 'two-chain-isotropic-refinement' strategy. This refinement provides an alternative and easy to interpret strategy to reflect the conformational variability within crystal structures of biological macromolecules. The presented fluorescent form of H-Ras p21 will be advantageous for fluorescence studies on H-Ras p21 in which the use of fluorescent nucleotides is not feasible.
Collapse
Affiliation(s)
- Björn U Klink
- Department of Biophysics, Division of Structural Biology, Saarland University, Homburg/Saar, Germany
| | | |
Collapse
|
319
|
Lukman S, Grant BJ, Gorfe AA, Grant GH, McCammon JA. The distinct conformational dynamics of K-Ras and H-Ras A59G. PLoS Comput Biol 2010; 6:e1000922. [PMID: 20838576 PMCID: PMC2936511 DOI: 10.1371/journal.pcbi.1000922] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/06/2010] [Indexed: 02/07/2023] Open
Abstract
Ras proteins regulate signaling cascades crucial for cell proliferation and differentiation by switching between GTP- and GDP-bound conformations. Distinct Ras isoforms have unique physiological functions with individual isoforms associated with different cancers and developmental diseases. Given the small structural differences among isoforms and mutants, it is currently unclear how these functional differences and aberrant properties arise. Here we investigate whether the subtle differences among isoforms and mutants are associated with detectable dynamical differences. Extensive molecular dynamics simulations reveal that wild-type K-Ras and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. The crucial switch 1 and switch 2 regions along with loop 3, helix 3, and loop 7 contribute to this enhanced flexibility. Removing the gamma-phosphate of the bound GTP from the structure of A59G led to a spontaneous GTP-to-GDP conformational transition in a 20-ns unbiased simulation. The switch 1 and 2 regions exhibit enhanced flexibility and correlated motion when compared to non-transitioning wild-type H-Ras over a similar timeframe. Correlated motions between loop 3 and helix 5 of wild-type H-Ras are absent in the mutant A59G reflecting the enhanced dynamics of the loop 3 region. Taken together with earlier findings, these results suggest the existence of a lower energetic barrier between GTP and GDP states of the mutant. Molecular dynamics simulations combined with principal component analysis of available Ras crystallographic structures can be used to discriminate ligand- and sequence-based dynamic perturbations with potential functional implications. Furthermore, the identification of specific conformations associated with distinct Ras isoforms and mutants provides useful information for efforts that attempt to selectively interfere with the aberrant functions of these species.
Collapse
Affiliation(s)
- Suryani Lukman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Barry J. Grant
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Guy H. Grant
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
320
|
Lee Y, Bang WY, Kim S, Lazar P, Kim CW, Bahk JD, Lee KW. Molecular modeling study for interaction between Bacillus subtilis Obg and Nucleotides. PLoS One 2010; 5:e12597. [PMID: 20830302 PMCID: PMC2935376 DOI: 10.1371/journal.pone.0012597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022] Open
Abstract
The bacterial Obg proteins (Spo0B-associated GTP-binding protein) belong to the subfamily of P-loop GTPase proteins that contain two equally and highly conserved domains, a C-terminal GTP binding domain and an N-terminal glycine-rich domain which is referred as the “Obg fold” and now it is considered as one of the new targets for antibacterial drug. When the Obg protein is associated with GTP, it becomes activated, because conformation of Obg fold changes due to the structural changes of GTPase switch elements in GTP binding site. In order to investigate the effects and structural changes in GTP bound to Obg and GTPase switch elements for activation, four different molecular dynamics (MD) simulations were performed with/without the three different nucleotides (GTP, GDP, and GDP + Pi) using the Bacillus subtilis Obg (BsObg) structure. The protein structures generated from the four different systems were compared using their representative structures. The pattern of Cα-Cα distance plot and angle between the two Obg fold domains of simulated apo form and each system (GTP, GDP, and GDP+Pi) were significantly different in the GTP-bound system from the others. The switch 2 element was significantly changed in GTP-bound system. Also root-mean-square fluctuation (RMSF) analysis revealed that the flexibility of the switch 2 element region was much higher than the others. This was caused by the characteristic binding mode of the nucleotides. When GTP was bound to Obg, its γ-phosphate oxygen was found to interact with the key residue (D212) of the switch 2 element, on the contrary there was no such interaction found in other systems. Based on the results, we were able to predict the possible binding conformation of the activated form of Obg with L13, which is essential for the assembly with ribosome.
Collapse
Affiliation(s)
- Yuno Lee
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Woo Young Bang
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Swine Science and Technology Center, Jinju National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Songmi Kim
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Prettina Lazar
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Jinju National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- * E-mail:
| |
Collapse
|
321
|
Tago K, Funakoshi-Tago M, Sakinawa M, Mizuno N, Itoh H. KappaB-Ras is a nuclear-cytoplasmic small GTPase that inhibits NF-kappaB activation through the suppression of transcriptional activation of p65/RelA. J Biol Chem 2010; 285:30622-33. [PMID: 20639196 DOI: 10.1074/jbc.m110.117028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-κB is an important transcription factor involved in various biological responses, including inflammation, cell differentiation, and tumorigenesis. κB-Ras was identified as an IκB-interacting small GTPase and is reported to disturb cytokine-induced NF-κB activation. In this study, we established that κB-Ras is a novel type of nuclear-cytoplasmic small GTPase that mainly binds to GTP, and its localization seemed to be regulated by its GTP/GDP-binding state. Unexpectedly, the GDP-binding form of the κB-Ras mutant exhibited a more potent inhibitory effect on NF-κB activation, and this inhibitory effect seemed to be due to suppression of the transactivation of a p65/RelA NF-κB subunit. κB-Ras suppressed phosphorylation at serine 276 on the p65/RelA subunit, resulting in decreased interaction between p65/RelA and the transcriptional coactivator p300. Interestingly, the GDP-bound κB-Ras mutant exhibited higher interactive affinity with p65/RelA and inhibited the phosphorylation of p65/RelA more potently than wild-type κB-Ras. Taken together, these findings suggest that the GDP-bound form of κB-Ras in cytoplasm suppresses NF-κB activation by inhibiting its transcriptional activation.
Collapse
Affiliation(s)
- Kenji Tago
- Laboratory of Signal Transduction, Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
322
|
Janakiraman M, Vakiani E, Zeng Z, Pratilas CA, Taylor BS, Chitale D, Halilovic E, Wilson M, Huberman K, Ricarte Filho JC, Persaud Y, Levine DA, Fagin JA, Jhanwar SC, Mariadason JM, Lash A, Ladanyi M, Saltz LB, Heguy A, Paty PB, Solit DB. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res 2010; 70:5901-11. [PMID: 20570890 PMCID: PMC2943514 DOI: 10.1158/0008-5472.can-10-0192] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mutations in RAS proteins occur widely in human cancer. Prompted by the confirmation of KRAS mutation as a predictive biomarker of response to epidermal growth factor receptor (EGFR)-targeted therapies, limited clinical testing for RAS pathway mutations has recently been adopted. We performed a multiplatform genomic analysis to characterize, in a nonbiased manner, the biological, biochemical, and prognostic significance of Ras pathway alterations in colorectal tumors and other solid tumor malignancies. Mutations in exon 4 of KRAS were found to occur commonly and to predict for a more favorable clinical outcome in patients with colorectal cancer. Exon 4 KRAS mutations, all of which were identified at amino acid residues K117 and A146, were associated with lower levels of GTP-bound RAS in isogenic models. These same mutations were also often accompanied by conversion to homozygosity and increased gene copy number, in human tumors and tumor cell lines. Models harboring exon 4 KRAS mutations exhibited mitogen-activated protein/extracellular signal-regulated kinase kinase dependence and resistance to EGFR-targeted agents. Our findings suggest that RAS mutation is not a binary variable in tumors, and that the diversity in mutant alleles and variability in gene copy number may also contribute to the heterogeneity of clinical outcomes observed in cancer patients. These results also provide a rationale for broader KRAS testing beyond the most common hotspot alleles in exons 2 and 3.
Collapse
Affiliation(s)
- Manickam Janakiraman
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Expression, purification, and characterization of soluble K-Ras4B for structural analysis. Protein Expr Purif 2010; 73:125-31. [PMID: 20566322 DOI: 10.1016/j.pep.2010.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 11/23/2022]
Abstract
A p21 GTPase K-Ras4B plays an important role in human cancer and represents an excellent target for cancer therapeutics. Currently, there are no drugs directly targeting K-Ras4B. In part, this is due to the lack of structural information describing unique features of K-Ras4B. Here we describe a methodology allowing production of soluble, well-folded K-Ras4B for structural analysis. The key points in K-Ras4B preparation are low temperature expression and extraction of K-Ras4B from the insoluble fraction using a nucleotide loading procedure in the presence of Mg(2+) and citrate, a low affinity chelator. Additionally, a significant amount of K-Ras4B could be extracted from the soluble fraction. We show that recombinant K-Ras4B is monomeric in solution. Excellent NMR signal dispersion suggests that the protein is well-folded and is amenable to solution structure determination. In addition, using phospholipid bilayer nanodiscs we show that recombinant K-Ras4B interacts with lipids and that this interaction is mediated by the C-terminal hypervariable region.
Collapse
|
324
|
Zurita A, Zhang Y, Pedersen L, Darden T, Birnbaumer L. Obligatory role in GTP hydrolysis for the amide carbonyl oxygen of the Mg(2+)-coordinating Thr of regulatory GTPases. Proc Natl Acad Sci U S A 2010; 107:9596-601. [PMID: 20457940 PMCID: PMC2906845 DOI: 10.1073/pnas.1004803107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When G-protein alpha subunits binds GTP and Mg(2+), they transition from their inactive to their active conformation. This transition is accompanied by completion of the coordination shell of Mg(2+) with electrons from six oxygens: two water molecules, the ss and gamma phosphoryls of GTP, a helix-alpha1 Ser, and a switch I domain (SWI) Thr, and the repositioning of SWI and SWII domains. SWII binds and regulates effector enzymes and facilitates GTP hydrolysis by repositioning the gamma-carbonyl of a Gln. Mutating the Ser generates regulatory GTPases that cannot lock Mg(2+) into its place and are locked in their inactive state with dominant negative properties. Curiously, mutating the Thr appears to reduce GTP hydrolysis. The reason for this difference is not known because it is also not known why removal of the Thr should affect the overall GTPase cycle differently than removal of the Ser. Working with recombinant Gsalpha, we report that mutating its SWI-Thr to either Ala, Glu, Gln, or Asp results not only in diminished GTPase activity but also in spontaneous activation of the SWII domain. Upon close examination of existing alpha subunit crystals, we noted the oxygen of the backbone carbonyl of SWI-Thr and of the gamma-carbonyl of SWII Gln to be roughly equidistant from the oxygen of the hydrolytic H(2)O. Our observations indicate that the Gln and Thr carbonyls play equihierarchical roles in the GTPase process and provide the mechanism that explains why mutating the Thr mimics mutating the Gln and not that of the Ser.
Collapse
Affiliation(s)
- Adolfo Zurita
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Building 101, Room F180, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Yinghao Zhang
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Building 101, Room F180, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Lee Pedersen
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Building 101, Room F180, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Tom Darden
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Building 101, Room F180, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Building 101, Room F180, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709
| |
Collapse
|
325
|
Nassar N, Singh K, Garcia-Diaz M. Structure of the dominant negative S17N mutant of Ras. Biochemistry 2010; 49:1970-4. [PMID: 20131908 DOI: 10.1021/bi9020742] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of the dominant negative mutant of Ras has been crucial in elucidating the cellular signaling of Ras in response to the activation of various membrane-bound receptors. Although several point mutants of Ras exhibit a dominant negative effect, the asparagine to serine mutation at position 17 (S17N) remains the most popular and the most effective at inhibiting the activation of endogenous Ras. It is now widely accepted that the dominant negative effect is due to the ability of the mutant to sequester upstream activators and its inability to activate downstream effectors. Here, we present the crystal structure of RasS17N in the GDP-bound form. In the three molecules that populate the asymmetric unit, the Mg(2+) ion that normally coordinates the beta-phosphate is absent because of steric hindrance from the Asn17 side chain. Instead, a Ca(2+) ion is coordinating the alpha-phosphate. Also absent from one molecule is electron density for Phe28, a conserved residue that normally stabilizes the nucleotide's guanine base. Except for Phe28, the nucleotide makes conserved interactions with Ras. Combined, the inability of Phe28 to stabilize the guanine base and the absence of a Mg(2+) ion to neutralize the negative charges on the phosphates explain the weaker affinity of GDP for Ras. Our data suggest that the absence of the Mg(2+) should also dramatically affect GTP binding to Ras and the proper positioning of Thr35 necessary for the activation of switch 1 and the binding to downstream effectors, a prerequisite for the triggering of signaling pathways.
Collapse
Affiliation(s)
- Nicolas Nassar
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA.
| | | | | |
Collapse
|
326
|
Filchtinski D, Sharabi O, Rüppel A, Vetter IR, Herrmann C, Shifman JM. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf. J Mol Biol 2010; 399:422-35. [PMID: 20361980 DOI: 10.1016/j.jmb.2010.03.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
Abstract
Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch.
Collapse
Affiliation(s)
- Daniel Filchtinski
- Physikalische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität-Bochum, Universitätstr. 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
327
|
Bono F, Cook AG, Grünwald M, Ebert J, Conti E. Nuclear import mechanism of the EJC component Mago-Y14 revealed by structural studies of importin 13. Mol Cell 2010; 37:211-22. [PMID: 20122403 DOI: 10.1016/j.molcel.2010.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/02/2009] [Accepted: 01/06/2010] [Indexed: 11/28/2022]
Abstract
Mago and Y14 are core components of the exon junction complex (EJC), an assembly central to nonsense-mediated mRNA decay in humans and mRNA localization in flies. The Mago-Y14 heterodimer shuttles between the nucleus, where it is loaded onto specific mRNAs, and the cytoplasm, where it functions in translational regulation. The heterodimer is imported back into the nucleus by Importin 13 (Imp13), a member of the karyopherin-beta family of transport factors. We have elucidated the structural basis of the Mago-Y14 nuclear import cycle. The 3.35 A structure of the Drosophila Imp13-Mago-Y14 complex shows that Imp13 forms a ring-like molecule, reminiscent of Crm1, and encircles the Mago-Y14 cargo with a conserved interaction surface. The 2.8 A structure of human Imp13 bound to RanGTP reveals how Mago-Y14 is released in the nucleus by a steric hindrance mechanism. Comparison of the two structures suggests how this unusual karyopherin might function in bidirectional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Fulvia Bono
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
328
|
Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Proc Natl Acad Sci U S A 2010; 107:4931-6. [PMID: 20194776 DOI: 10.1073/pnas.0912226107] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ras and its effector Raf are key mediators of the Ras/Raf/MEK/ERK signal transduction pathway. Mutants of residue Q61 impair the GTPase activity of Ras and are found prominently in human cancers. Yet the mechanism through which Q61 contributes to catalysis has been elusive. It is thought to position the catalytic water molecule for nucleophilic attack on the gamma-phosphate of GTP. However, we previously solved the structure of Ras from crystals with symmetry of the space group R32 in which switch II is disordered and found that the catalytic water molecule is present. Here we present a structure of wild-type Ras with calcium acetate from the crystallization mother liquor bound at a site remote from the active site and likely near the membrane. This results in a shift in helix 3/loop 7 and a network of H-bonding interactions that propagates across the molecule, culminating in the ordering of switch II and placement of Q61 in the active site in a previously unobserved conformation. This structure suggests a direct catalytic role for Q61 where it interacts with a water molecule that bridges one of the gamma-phosphate oxygen atoms to the hydroxyl group of Y32 to stabilize the transition state of the hydrolysis reaction. We propose that Raf together with the binding of Ca(2+) and a negatively charged group mimicked in our structure by the acetate molecule induces the ordering of switch I and switch II to complete the active site of Ras.
Collapse
|
329
|
Haberl F, Lanig H, Clark T. Induction of the tetracycline repressor: characterization by molecular-dynamics simulations. Proteins 2010; 77:857-66. [PMID: 19626707 DOI: 10.1002/prot.22505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Extensive molecular-dynamics simulations show that the distance between the centers of gravity of the two equivalent helices 3 in the DNA-binding heads of the dimer of the tetracycline-repressor protein (TetR) can be used as a reliable diagnostic of induction. This is not, however, true for X-ray structures, but only for molecular-dynamics simulations. This is suggested to be because TetR is inherently flexible along the coordinate of the allosteric change (as is always likely to be the case for allosteric proteins), so that crystal-packing forces can determine the conformation of the protein. However, the time scale of the allosteric rearrangement in the absence of DNA-complexation is found to be of the order of tens of nanoseconds, so that rearrangements can be observed reproducibly in 100 ns simulations. Metastable (pre-equilibrium) conformations of TetR have been observed for up to 60 ns. The likely equilibrium processes and key features of the TetR system are discussed.
Collapse
Affiliation(s)
- Florian Haberl
- Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr 25, D-91052 Erlangen, Germany
| | | | | |
Collapse
|
330
|
Thomas C, Berken A. Structure and Function of ROPs and their GEFs. INTEGRATED G PROTEINS SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03524-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
331
|
Arbeloa A, Garnett J, Lillington J, Bulgin RR, Berger CN, Lea SM, Matthews S, Frankel G. EspM2 is a RhoA guanine nucleotide exchange factor. Cell Microbiol 2009; 12:654-64. [PMID: 20039879 PMCID: PMC2871174 DOI: 10.1111/j.1462-5822.2009.01423.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide-free RhoA. Nuclear Magnetic Resonance Spectroscopy revealed that EspM2 has a similar fold to SifA and the guanine nucleotide exchange factor (GEF) effector SopE. EspM2 induced nucleotide exchange in RhoA but not in Rac1 or H-Ras, while SifA induced nucleotide exchange in none of them. Mutating W70 of the WxxxE motif or L118 and I127 residues, which surround the catalytic loop, affected the stability of EspM2. Substitution of Q124, located within the catalytic loop of EspM2, with alanine, greatly attenuated the RhoA GEF activity in vitro and the ability of EspM2 to induce stress fibres upon ectopic expression. These results suggest that binding of SifA to RhoA does not trigger nucleotide exchange while EspM2 is a unique Rho GTPase GEF.
Collapse
Affiliation(s)
- Ana Arbeloa
- Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Ford B, Boykevisch S, Zhao C, Kunzelmann S, Bar-Sagi D, Herrmann C, Nassar N. Characterization of a Ras mutant with identical GDP- and GTP-bound structures . Biochemistry 2009; 48:11449-57. [PMID: 19883123 DOI: 10.1021/bi901479b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously characterized the G60A mutant of Ras and showed that the switch regions of the GTP-bound but not the GDP-bound form of this mutant adopt an "open conformation" similar to that seen in nucleotide-free Ras. Here, we mutate Lys147 of the conserved (145)SAK(147) motif in the G60A background and characterize the resulting double mutant (DM). We show that RasDM is the first structure of a Ras protein with identical GDP- and GTP-bound structures. Both structures adopt the open conformation of the active form of RasG60A. The increase in the accessible surface area of the nucleotide is consistent with a 4-fold increase in its dissociation rate. Stopped-flow experiments show no major difference in the two-step kinetics of association of GDP or GTP with the wild type, G60A, or RasDM. Addition of Sos fails to accelerate nucleotide exchange. Overexpression of the G60A or double mutant of Ras in COS-1 cells fails to activate Erk and shows a strong dominant negative effect. Our data suggest that flexibility at position 60 is required for proper Sos-catalyzed nucleotide exchange and that structural information is somehow shared among the switch regions and the different nucleotide binding motifs.
Collapse
Affiliation(s)
- Bradley Ford
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA
| | | | | | | | | | | | | |
Collapse
|
333
|
Saravanan SE, Karthi R, Sathish K, Kokila K, Sabarinathan R, Sekar K. MLDB: macromolecule ligand database. J Appl Crystallogr 2009. [DOI: 10.1107/s0021889809048626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MLDB (macromolecule ligand database) is a knowledgebase containing ligands co-crystallized with the three-dimensional structures available in the Protein Data Bank. The proposed knowledgebase serves as an open resource for the analysis and visualization of all ligands and their interactions with macromolecular structures. MLDB can be used to search ligands, and their interactions can be visualized both in text and graphical formats. MLDB will be updated at regular intervals (weekly) with automated Perl scripts. The knowledgebase is intended to serve the scientific community working in the areas of molecular and structural biology. It is available free to users around the clock and can be accessed at http://dicsoft2.physics.iisc.ernet.in/mldb/.
Collapse
|
334
|
Hibino K, Shibata T, Yanagida T, Sako Y. A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition. Biophys J 2009; 97:1277-87. [PMID: 19720015 DOI: 10.1016/j.bpj.2009.05.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/22/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022] Open
Abstract
The dysregulation of Ras-RAF signaling is associated with many types of human cancer. However, the kinetic and dynamic features of the mutual molecular recognition of Ras and RAF remain unknown. Here, we developed a technique for imaging single-pair fluorescence resonance energy transfer in living cells, and coupled this technique to single-molecule kinetic analysis to investigate how C-RAF (a subtype of RAF) molecules distinguish the active form of Ras (RasGTP) from the inactive form (RasGDP). Functional fragments of C-RAF containing the Ras-binding domains did not detect the switch in Ras activity in living cells as efficiently as did C-RAF. Single-molecule analysis showed that RasGDP associates with closed-conformation C-RAF, whereas the association of C-RAF with RasGTP immediately triggers the open RAF conformation, which induces an effective interaction between C-RAF and RasGTP. Spontaneous conformational changes from closed C-RAF to the open form rarely occur in quiescent cells. The conformational change in C-RAF is so important to Ras-RAF molecular recognition that C-RAF mutants lacking the conformational change cannot distinguish between RasGDP and RasGTP. The manipulation of the conformation of an effector molecule is a newly identified function of RasGTP.
Collapse
Affiliation(s)
- Kayo Hibino
- Cellular Informatics Laboratory, RIKEN, Wako, Japan
| | | | | | | |
Collapse
|
335
|
Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Biochem Biophys Res Commun 2009; 390:608-12. [PMID: 19819222 DOI: 10.1016/j.bbrc.2009.10.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 11/23/2022]
Abstract
Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.
Collapse
|
336
|
Computation of conformational coupling in allosteric proteins. PLoS Comput Biol 2009; 5:e1000484. [PMID: 19714199 PMCID: PMC2720451 DOI: 10.1371/journal.pcbi.1000484] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022] Open
Abstract
In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.
Collapse
|
337
|
Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc Natl Acad Sci U S A 2009; 106:14849-54. [PMID: 19706470 DOI: 10.1073/pnas.0907522106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Get3 ATPase directs the delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER). TA-proteins are characterized by having a single transmembrane helix (TM) at their extreme C terminus and include many essential proteins, such as SNAREs, apoptosis factors, and protein translocation components. These proteins cannot follow the SRP-dependent co-translational pathway that typifies most integral membrane proteins; instead, post-translationally, these proteins are recognized and bound by Get3 then delivered to the ER in the ATP dependent Get pathway. To elucidate a molecular mechanism for TA protein binding by Get3 we have determined three crystal structures in apo and ADP forms from Saccharomyces cerevisae (ScGet3-apo) and Aspergillus fumigatus (AfGet3-apo and AfGet3-ADP). Using structural information, we generated mutants to confirm important interfaces and essential residues. These results point to a model of how Get3 couples ATP hydrolysis to the binding and release of TA-proteins.
Collapse
|
338
|
Du X, Sprang SR. Transition state structures and the roles of catalytic residues in GAP-facilitated GTPase of Ras as elucidated by (18)O kinetic isotope effects. Biochemistry 2009; 48:4538-47. [PMID: 19610677 DOI: 10.1021/bi802359b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ras-catalyzed guanosine 5' triphosphate (GTP) hydrolysis proceeds through a loose transition state as suggested in our previous study of (18)O kinetic isotope effects (KIE) [ Du , X. et al. ( 2004 ) Proc. Natl. Acad. Sci. U.S.A. 101 , 8858 - 8863 ]. To probe the mechanisms of GTPase activation protein (GAP)-facilitated GTP hydrolysis reactions, we measured the (18)O KIEs in GTP hydrolysis catalyzed by Ras in the presence of GAP(334) or NF1(333), the catalytic fragment of p120GAP or NF1. The KIEs in the leaving group oxygens (the beta nonbridge and the beta-gamma bridge oxygens) reveal that chemistry is rate-limiting in GAP(334)-facilitated GTP hydrolysis but only partially rate-limiting in the NF1(333)-facilitated GTP hydrolysis reaction. The KIEs in the gamma nonbridge oxygens and the leaving group oxygens reveal that the GAP(334) or NF1(333)-facilitated GTP hydrolysis reaction proceeds through a loose transition state that is similar in nature to the transition state of the GTP hydrolysis catalyzed by Ras alone. However, the KIEs in the pro-S beta, pro-R beta, and beta-gamma oxygens suggest that charge increase on the beta-gamma bridge oxygen is more prominent in the transition states of GAP(334)- and NF1(333)-facilitated reactions than that catalyzed by the intrinsic GTPase activity of Ras. The charge distribution on the two beta nonbridge oxygens is also very asymmetric. The catalytic roles of active site residues were inferred from the effect of mutations on the reaction rate and KIEs. Our results suggest that the arginine finger of GAP and amide protons in the P-loop of Ras stabilize the negative charge on the beta-gamma bridge oxygen and the pro-S beta nonbridge oxygen of a loose transition state, whereas Lys-16 of Ras and Mg(2+) are only involved in substrate binding.
Collapse
Affiliation(s)
- Xinlin Du
- Department of Biochemistry, University of Texas, Southwestern Medical Center, 6001 Forest Park, Room ND10.300, Dallas, Texas 75390-9050, USA
| | | |
Collapse
|
339
|
Köster S, Wehner M, Herrmann C, Kühlbrandt W, Yildiz O. Structure and function of the FeoB G-domain from Methanococcus jannaschii. J Mol Biol 2009; 392:405-19. [PMID: 19615379 DOI: 10.1016/j.jmb.2009.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 01/09/2023]
Abstract
FeoB in bacteria and archaea is involved in the uptake of ferrous iron (Fe(2+)), an important cofactor in biological electron transfer and catalysis. Unlike any other known prokaryotic membrane protein, FeoB contains a GTP-binding domain at its N-terminus. We determined high-resolution X-ray structures of the FeoB G-domain from Methanococcus jannaschii with and without bound GDP or Mg(2+)-GppNHp. The G-domain forms the same dimer in all three structures, with the nucleotide-binding pockets at the dimer interface, as in the ATP-binding domain of ABC transporters. The G-domain follows the typical fold of nucleotide-binding proteins, with a beta-strand inserted in switch I that becomes partially disordered upon GTP binding. Switch II does not contact the nucleotide directly and does not change its conformation in response to the bound nucleotide. Release of the nucleotide causes a rearrangement of loop L6, which we identified as the G5 region of FeoB. Together with the C-terminal helix, this loop may transmit the information about the nucleotide-bound state from the G-domain to the transmembrane region of FeoB.
Collapse
Affiliation(s)
- Stefan Köster
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
340
|
Kim MS, Song J, Park C. Determining protein stability in cell lysates by pulse proteolysis and Western blotting. Protein Sci 2009; 18:1051-9. [PMID: 19388050 PMCID: PMC2771307 DOI: 10.1002/pro.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/11/2022]
Abstract
Proteins require proper conformational energetics to fold and to function correctly. Despite the importance of having information on conformational energetics, the investigation of thermodynamic stability has been limited to proteins, which can be easily expressed and purified. Many biologically important proteins are not suitable for conventional biophysical investigation because of the difficulty of expression and purification. As an effort to overcome this limitation, we have developed a method to determine the thermodynamic stability of low abundant proteins in cell lysates. Previously, it was demonstrated that protein stability can be determined quantitatively by measuring the fraction of folded proteins with a pulse of proteolysis (Pulse proteolysis). Here, we show that thermodynamic stability of low abundant proteins can be determined reliably in cell lysates by combining pulse proteolysis with quantitative Western blotting (Pulse and Western). To demonstrate the reliability of this method, we determined the thermodynamic stability of recombinant human H-ras added to lysates of E. coli and human Jurkat T cells. Comparison with the thermodynamic stability determined with pure H-ras revealed that Pulse and Western is a reliable way to monitor protein stability in cell lysates and the stability of H-ras is not affected by other proteins present in cell lysates. This method allows the investigation of conformational energetics of proteins in cell lysates without cloning, purification, or labeling.
Collapse
Affiliation(s)
| | | | - Chiwook Park
- Department of Medicinal Chemistry and Molecular Pharmacology and Bindley Bioscience Center, Purdue University575 Stadium Mall Drive, West Lafayette, Indiana 47907
| |
Collapse
|
341
|
Bunney TD, Opaleye O, Roe SM, Vatter P, Baxendale RW, Walliser C, Everett KL, Josephs MB, Christow C, Rodrigues-Lima F, Gierschik P, Pearl LH, Katan M. Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2. Mol Cell 2009; 34:223-33. [PMID: 19394299 DOI: 10.1016/j.molcel.2009.02.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/28/2009] [Accepted: 02/20/2009] [Indexed: 10/20/2022]
Abstract
Rho family GTPases are important cellular switches and control a number of physiological functions. Understanding the molecular basis of interaction of these GTPases with their effectors is crucial in understanding their functions in the cell. Here we present the crystal structure of the complex of Rac2 bound to the split pleckstrin homology (spPH) domain of phospholipase C-gamma(2) (PLCgamma(2)). Based on this structure, we illustrate distinct requirements for PLCgamma(2) activation by Rac and EGF and generate Rac effector mutants that specifically block activation of PLCgamma(2), but not the related PLCbeta(2) isoform. Furthermore, in addition to the complex, we report the crystal structures of free spPH and Rac2 bound to GDP and GTPgammaS. These structures illustrate a mechanism of conformational switches that accompany formation of signaling active complexes and highlight the role of effector binding as a common feature of Rac and Cdc42 interactions with a variety of effectors.
Collapse
Affiliation(s)
- Tom D Bunney
- Section of Cell and Molecular Biology , The Institute of Cancer Research, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Kim DJ, Jang JY, Yoon HJ, Suh SW. Crystal structure of YlqF, a circularly permuted GTPase: implications for its GTPase activation in 50 S ribosomal subunit assembly. Proteins 2009; 72:1363-70. [PMID: 18536017 DOI: 10.1002/prot.22112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Do Jin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
343
|
Abstract
The development of cancer reflects the complex interactions and properties of many proteins functioning as part of large biochemical networks within the cancer cell. Although traditional experimental models have provided us with wonderful insights on the behavior of individual proteins within a cancer cell, they have been deficient in simultaneously keeping track of many proteins and their interactions in large networks. Computational models have emerged as a powerful tool for investigating biochemical networks due to their ability to meaningfully assimilate numerous network properties. Using the well-studied Ras oncogene as an example, we discuss the use of models to investigate pathologic Ras signaling and describe how these models could play a role in the development of new cancer drugs and the design of individualized treatment regimens.
Collapse
Affiliation(s)
- Edward C Stites
- Medical Scientist Training Program and Beirne B. Carter Center for Immunology Research, Department of Microbiology, University of Virginia, Charlottesville, Virginia 29908, USA
| | | |
Collapse
|
344
|
Güldenhaupt J, Adigüzel Y, Kuhlmann J, Waldmann H, Kötting C, Gerwert K. Secondary structure of lipidated Ras bound to a lipid bilayer. FEBS J 2009; 275:5910-8. [PMID: 19021766 DOI: 10.1111/j.1742-4658.2008.06720.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ras proteins are small guanine nucleotide binding proteins that regulate many cellular processes, including growth control. They undergo distinct post-translational lipid modifications that are required for appropriate targeting to membranes. This, in turn, is critical for Ras biological function. However, most in vitro studies have been conducted on nonlipidated truncated forms of Ras proteins. Here, for the first time, attenuated total reflectance-FTIR studies of lipid-modified membrane-bound N-Ras are performed, and compared with nonlipidated truncated Ras in solution. For these studies, lipidated N-Ras was prepared by linking a farnesylated and hexadecylated N-Ras lipopeptide to a truncated N-Ras protein (residues 1-181). It was then bound to a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer tethered on an attenuated total reflectance crystal. The structurally sensitive amide I absorbance band in the IR was detected and analysed to determine the secondary structure of the protein. The NMR three-dimensional structure of truncated Ras was used to calibrate the contributions of the different secondary structural elements to the amide I absorbance band of truncated Ras. Using this novel approach, the correct decomposition was selected from several possible solutions. The same parameter set was then used for the membrane-bound lipidated Ras, and provided a reliable decomposition for the membrane-bound form in comparison with truncated Ras. This comparison indicates that the secondary structure of membrane-bound Ras is similar to that determined for the nonlipidated truncated Ras protein for the highly conserved G-domain. This result validates the multitude of investigations of truncated Ras without anchor in vitro. The novel attenuated total reflectance approach opens the way for detailed studies of the interaction network of the membrane-bound Ras protein.
Collapse
|
345
|
Sudhamsu J, Lee GI, Klessig DF, Crane BR. The structure of YqeH. An AtNOS1/AtNOA1 ortholog that couples GTP hydrolysis to molecular recognition. J Biol Chem 2008; 283:32968-76. [PMID: 18801747 PMCID: PMC2583316 DOI: 10.1074/jbc.m804837200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/08/2008] [Indexed: 01/10/2023] Open
Abstract
AtNOS1/AtNOA1 was identified as a nitric oxide-generating enzyme in plants, but that function has recently been questioned. To resolve issues surrounding AtNOA1 activity, we report the biochemical properties and a 2.36 A resolution crystal structure of a bacterial AtNOA1 ortholog (YqeH). Geobacillus YqeH fused to a putative AtNOA1 leader peptide complements growth and morphological defects of Atnoa1 mutant plants. YqeH does not synthesize nitric oxide from L-arginine but rather hydrolyzes GTP. The YqeH structure reveals a circularly permuted GTPase domain and an unusual C-terminal beta-domain. A small N-terminal domain, disordered in the structure, binds zinc. Structural homology among the C-terminal domain, the RNA-binding regulator TRAP, and the hypoxia factor pVHL define a recognition module for peptides and nucleic acids. TRAP residues important for RNA binding are conserved by the YqeH C-terminal domain, whose positioning is coupled to GTP hydrolysis. YqeH and AtNOA1 probably act as G-proteins that regulate nucleic acid recognition and not as nitric-oxide synthases.
Collapse
Affiliation(s)
- Jawahar Sudhamsu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
346
|
Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A. Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Biol Chem 2008; 389:1163-71. [PMID: 18713003 DOI: 10.1515/bc.2008.132] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Down-regulation of Ras signalling is mediated by specific GTPase-activating proteins (GAPs), which stimulate the very slow GTPase reaction of Ras by 10(5)-fold. The basic features of the GAP activity involve the stabilisation of both switch regions of Ras in the transition state, and the insertion of an arginine finger. In the case of oncogenic Ras mutations, the features of the active site are disturbed. To understand these features in more detail, we have investigated the effects of oncogenic mutations of Ras and compared the GAP-stimulated GTPase reaction with the ability to form GAP-mediated aluminium or beryllium fluoride complexes. In general we find a correlation between the size of the amino acid at position 12, the GTPase activity and ability to form aluminium fluoride complexes. While Gly12 is very sensitive to even the smallest possible structural change, Gly13 is much less sensitive to steric hindrance, but is sensitive to charge. Oncogenic mutants of Ras defective in the GTPase activity can however form ground-state GppNHp complexes with GAP, which can be mimicked by beryllium fluoride binding. We show that beryllium fluoride complexes are less sensitive to structural changes and report on a state close to but different from the ground state of the GAP-stimulated GTPase reaction.
Collapse
Affiliation(s)
- Lothar Gremer
- Abteilung Strukturelle Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
347
|
M-Ras evolved independently of R-Ras and its neural function is conserved between mammalian and ascidian, which lacks classical Ras. Gene 2008; 429:49-58. [PMID: 18977283 DOI: 10.1016/j.gene.2008.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/26/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
The Ras family small GTPases play a variety of essential roles in eukaryotes. Among them, classical Ras (H-Ras, K-Ras, and N-Ras) and its orthologues are conserved from yeast to human. In ascidians, which phylogenetically exist between invertebrates and vertebrates, the fibroblast growth factor (FGF)-Ras-MAP kinase signaling is required for the induction of neural system, notochord, and mesenchyme. Analyses of DNA databases revealed that no gene encoding classical Ras is present in the ascidians, Ciona intestinalis and Halocynthia roretzi, despite the presence of classical Ras-orthologous genes in nematode, fly, amphioxus, and fish. By contrast, both the ascidians contain single genes orthologous to Mras, Rras, Ral, Rap1, and Rap2. A single Mras orthologue exists from nematode to mammalian. Thus, Mras evolved in metazoans independently of other Ras family genes such as Rras. Whole-mount in situ hybridization showed that C. intestinalis Mras orthologue (Ci-Mras) was expressed in the neural complex of the ascidian juveniles after metamorphosis. Knockdown of Ci-Mras with morpholino antisense oligonucleotides in the embryos and larvae resulted in undeveloped tails and neuronal pigment cells, abrogation of the notochord marker brachyury expression, and perturbation of the neural marker Otx expression, as has been shown in the experiments of the FGF-Ras-MAP kinase signaling inhibition. Mammalian Ras and M-Ras mediate nerve growth factor-induced neuronal differentiation in rat PC12 cells by activating the ERK/MAP kinase pathway transiently and sustainedly, respectively. Activated Ci-M-Ras bound to target proteins of mammalian M-Ras and Ras. Exogenous expression of an activated Ci-M-Ras in PC12 cells caused ERK activation and induced neuritogenesis via the ERK pathway as do mammalian M-Ras and Ras. These results suggest that the ascidian M-Ras orthologue compensates for lacked classical Ras and plays essential roles in neurogenesis in the ascidian.
Collapse
|
348
|
Brett CL, Plemel RL, Lobingier BT, Lobinger BT, Vignali M, Fields S, Merz AJ. Efficient termination of vacuolar Rab GTPase signaling requires coordinated action by a GAP and a protein kinase. J Cell Biol 2008; 182:1141-51. [PMID: 18809726 PMCID: PMC2542475 DOI: 10.1083/jcb.200801001] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 08/19/2008] [Indexed: 11/22/2022] Open
Abstract
Rab guanosine triphosphatases (GTPases) are pivotal regulators of membrane identity and dynamics, but the in vivo pathways that control Rab signaling are poorly defined. Here, we show that the GTPase-activating protein Gyp7 inactivates the yeast vacuole Rab Ypt7 in vivo. To efficiently terminate Ypt7 signaling, Gyp7 requires downstream assistance from an inhibitory casein kinase I, Yck3. Yck3 mediates phosphorylation of at least two Ypt7 signaling targets: a tether, the Vps-C/homotypic fusion and vacuole protein sorting (HOPS) subunit Vps41, and a SNARE, Vam3. Phosphorylation of both substrates is opposed by Ypt7-guanosine triphosphate (GTP). We further demonstrate that Ypt7 binds not one but two Vps-C/HOPS subunits: Vps39, a putative Ypt7 nucleotide exchange factor, and Vps41. Gyp7-stimulated GTP hydrolysis on Ypt7 therefore appears to trigger both passive termination of Ypt7 signaling and active kinase-mediated inhibition of Ypt7's downstream targets. We propose that signal propagation through the Ypt7 pathway is controlled by integrated feedback and feed-forward loops. In this model, Yck3 enforces a requirement for the activated Rab in docking and fusion.
Collapse
Affiliation(s)
- Christopher L Brett
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
349
|
Thomsen ND, Berger JM. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol 2008; 69:1071-90. [PMID: 18647240 PMCID: PMC2538554 DOI: 10.1111/j.1365-2958.2008.06364.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many fundamental cellular processes depend on enzymes that utilize chemical energy to catalyse unfavourable reactions. Certain classes of ATPases provide a particularly vivid example of the process of energy conversion, employing cycles of nucleotide turnover to move and/or rearrange biological polymers such as proteins and nucleic acids. Four well-characterized classes of ATP-dependent protein/nucleic acid translocases and remodelling factors are found in all three domains of life (bacteria, archaea and eukarya): additional strand catalytic 'E' (ASCE) P-loop NTPases, GHL proteins, actin-fold enzymes and chaperonins. These unrelated protein superfamilies have each evolved the ability to couple ATP binding and hydrolysis to the generation of motion and force along or within their substrates. The past several years have witnessed the emergence of a wealth of structural data that help explain how such molecular engines link nucleotide turnover to conformational change. In this review, we highlight several recent advances to illustrate some of the mechanisms by which each family of ATP-dependent motors facilitates the rearrangement and movement of proteins, protein complexes and nucleic acids.
Collapse
Affiliation(s)
- Nathan D. Thomsen
- Quantitative Biology Institute and Dept. of Molecular and Cell Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA 94720
| | - James M. Berger
- Quantitative Biology Institute and Dept. of Molecular and Cell Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA 94720
| |
Collapse
|
350
|
Soundararajan M, Turnbull A, Fedorov O, Johansson C, Doyle DA. RhoB can adopt a Mg2+ free conformation prior to GEF binding. Proteins 2008; 72:498-505. [PMID: 18393397 DOI: 10.1002/prot.22017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meera Soundararajan
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Headington OX3 7DQ, United Kingdom
| | | | | | | | | |
Collapse
|