301
|
Li ZY, Shen QH, Mao ZW, Tan CP. A Rising Interest in the Development of Metal Complexes in Cancer Immunotherapy. Chem Asian J 2022; 17:e202200270. [PMID: 35419865 DOI: 10.1002/asia.202200270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Metal complexes have shown great potential in cancer immunotherapy. This review briefly introduces the basic concepts and strategies of cancer immunotherapy and summarizes the recent discoveries on the immune effects of traditional platinum-based anticancer compounds. In addition, we also outline the latest research progresses on metal complexes for cancer immunotherapy focusing on platinum, ruthenium, iridium, rhenium and copper complexes. Finally, the research perspectives and unsolved problems on the applications of metallo-anticancer agents in cancer immunotherapy are purposed.
Collapse
Affiliation(s)
- Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
302
|
Zheng J, Cui T, Gao Y, Li T. Retrospective analysis of immune-related adverse events of the immune checkpoint inhibitors of PD-1/PD-l1 in the Fujian provincial hospital. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221091540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Introduction: The effectiveness of programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) on tumor has been reported. However, the immune-related adverse events (irAEs) and its clinical management of the immune checkpoint inhibitors (ICIs) have not been fully understood. We aimed to analyze the irAEs and its ICIs targeting the PD-1/PD-L1. Methods: The retrospective analysis was performed on the irAEs of cancer patients treated with anti-PD1/PD-L1 monoclonal antibodies from January 2020 to August 2021 including 240 patients/547 cycles. The following aspects including the categories and the grades of the adverse events (AEs), the time of onset and duration, management plan, and prognosis were evaluated. Results: Among 240 patients, 93 patients (38.75%) experienced irAEs, and 10 patients (4.16%) had AEs that involved multiple organ systems at the same time. There were 83 cases (34.58%) of grade 1–2 AEs and 10 cases (4.17%) of grade three and above AEs. AEs above grade three included five cases of grade three AEs (3 cases of hepatic toxicity, one case of colitis, and one case of skin toxicity), three cases of grade four AEs (pneumonia); and 2 cases of grade five AEs (two deaths due to pneumonia). The complete remission of AEs was achieved in 10 patients by corticosteroid impulse therapy, maintenance therapy, and symptomatic therapy. Among them, six cases continued to use anti-PD1/PD-L1 monoclonal antibodies, two cases stopped, and two patients died from systemic multi-organ failure due to the delayed observation of autoimmune pneumonia. IrAEs occurred at different times and durations in different systems or organs. Conclusion: The safety of PD-1/PD-L1 inhibitors was approved in clinical applications. The prevalence of grade three and above AEs is relatively low. Timely diagnosis and early glucocorticoid therapies are adequate and effective approaches for the management of irAEs.
Collapse
Affiliation(s)
- Jianping Zheng
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Tongjian Cui
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Ting Li
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
303
|
Miguel Cejalvo J, Falato C, Villanueva L, Tolosa P, González X, Pascal M, Canes J, Gavilá J, Manso L, Pascual T, Prat A, Salvador F. Oncolytic Viruses: a new immunotherapeutic approach for breast cancer treatment? Cancer Treat Rev 2022; 106:102392. [DOI: 10.1016/j.ctrv.2022.102392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
|
304
|
Du L, He H, Xiao Z, Xiao H, An Y, Zhong H, Lin M, Meng X, Han S, Shuai X. GSH-Responsive Metal-Organic Framework for Intratumoral Release of NO and IDO Inhibitor to Enhance Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107732. [PMID: 35218310 DOI: 10.1002/smll.202107732] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Immunotherapy brings great benefits for tumor therapy in clinical treatments but encounters the severe challenge of low response rate mainly because of the immunosuppressive tumor microenvironment. Multifunctional nanoplatforms integrating effective drug delivery and medical imaging offer tremendous potential for cancer treatment, which may play a critical role in combinational immunotherapy to overcome the immunosuppressive microenvironment for efficient tumor therapy. Here, a nanodrug (BMS-SNAP-MOF) is prepared using glutathione (GSH)-sensitive metal-organic framework (MOF) to encapsulate an immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) inhibitor BMS-986205, and the nitric oxide (NO) donor s-nitrosothiol groups. The high T1 relaxivity allows magnetic resonance imaging to monitor nanodrug distribution in vivo. After the nanodrug accumulation in tumor tissue via the EPR effect and subsequent internalization into tumor cells, the enriched GSH therein triggers cascade reactions with MOF, which disassembles the nanodrug to rapidly release the IDO-inhibitory BMS-986205 and produces abundant NO. Consequently, the IDO inhibitor and NO synergistically modulate the immunosuppressive tumor microenvironment with increase CD8+ T cells and reduce Treg cells to result in highly effective immunotherapy. In an animal study, treatment using this theranostic nanodrug achieves obvious regressions of both primary and distant 4T1 tumors, highlighting its application potential in advanced tumor immunotherapy.
Collapse
Affiliation(s)
- Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haozhe He
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Department of pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongcheng An
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaochun Meng
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
305
|
Muhsin A, Rangel R, Vien L, Bover L. Monoclonal Antibodies Generation: Updates and Protocols on Hybridoma Technology. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2435:73-93. [PMID: 34993940 DOI: 10.1007/978-1-0716-2014-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Since its inception in 1975, the hybridoma technology revolutionized science and medicine, facilitating discoveries in almost any field from the laboratory to the clinic. Many technological advancements have been developed since then, to create these "magical bullets." Phage and yeast display libraries expressing the variable heavy and light domains of antibodies, single B-cell cloning from immunized animals of different species including humans or in silico approaches, all have rendered a myriad of newly developed antibodies or improved design of existing ones. However, still the majority of these antibodies or their recombinant versions are from hybridoma origin, a preferred methodology that trespass species barriers, due to the preservation of the natural functions of immune cells in producing the humoral response: antigen specific immunoglobulins. Remarkably, this methodology can be reproduced in small laboratories without the need of sophisticate equipment. In this chapter, we will describe the most recent methods utilized by our Monoclonal Antibodies Core Facility at the University of Texas-M.D. Anderson Cancer Center. During the last 10 years, the methods, techniques, and expertise implemented in our core had generated more than 350 antibodies for various applications.
Collapse
Affiliation(s)
- Ahmed Muhsin
- Department of Immunology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA.,Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Roberto Rangel
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
| | - Long Vien
- Department of Immunology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
| | - Laura Bover
- Department of Immunology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA.
| |
Collapse
|
306
|
Oswald E, Bug D, Grote A, Lashuk K, Bouteldja N, Lenhard D, Löhr A, Behnke A, Knauff V, Edinger A, Klingner K, Gaedicke S, Niedermann G, Merhof D, Feuerhake F, Schueler J. Immune cell infiltration pattern in non-small cell lung cancer PDX models is a model immanent feature and correlates with a distinct molecular and phenotypic make-up. J Immunother Cancer 2022; 10:jitc-2021-004412. [PMID: 35483746 PMCID: PMC9052060 DOI: 10.1136/jitc-2021-004412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The field of cancer immunology is rapidly moving towards innovative therapeutic strategies, resulting in the need for robust and predictive preclinical platforms reflecting the immunological response to cancer. Well characterized preclinical models are essential for the development of predictive biomarkers in the oncology as well as the immune-oncology space. In the current study, gold standard preclinical models are being refined and combined with novel image analysis tools to meet those requirements. METHODS A panel of 14 non-small cell lung cancer patient-derived xenograft models (NSCLC PDX) was propagated in humanized NOD/Shi-scid/IL-2Rnull mice. The models were comprehensively characterized for relevant phenotypic and molecular features, including flow cytometry, immunohistochemistry, histology, whole exome sequencing and cytokine secretion. RESULTS Models reflecting hot (>5% tumor-infiltrating lymphocytes/TILs) as opposed to cold tumors (<5% TILs) significantly differed regarding their cytokine profiles, molecular genetic aberrations, stroma content, and programmed cell death ligand-1 status. Treatment experiments including anti cytotoxic T-lymphocyte-associated protein 4, anti-programmed cell death 1 or the combination thereof across all 14 models in the single mouse trial format showed distinctive tumor growth response and spatial immune cell patterns as monitored by computerized analysis of digitized whole-slide images. Image analysis provided for the first time qualitative evaluation of the extent to which PDX models retain the histological features from their original human donors. CONCLUSIONS Deep phenotyping of PDX models in a humanized setting by combinations of computational pathology, immunohistochemistry, flow cytometry and proteomics enables the exhaustive analysis of innovative preclinical models and paves the way towards the development of translational biomarkers for immuno-oncology drugs.
Collapse
Affiliation(s)
- Eva Oswald
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Daniel Bug
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Anne Grote
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Kanstantsin Lashuk
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Nassim Bouteldja
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Dorothee Lenhard
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anne Löhr
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anke Behnke
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Volker Knauff
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anna Edinger
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Kerstin Klingner
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Simone Gaedicke
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Dorit Merhof
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | | | - Julia Schueler
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| |
Collapse
|
307
|
Guo B, Zang Y. BIPSE: A biomarker-based phase I/II design for immunotherapy trials with progression-free survival endpoint. Stat Med 2022; 41:1205-1224. [PMID: 34821409 PMCID: PMC9335906 DOI: 10.1002/sim.9265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
A Bayesian biomarker-based phase I/II design (BIPSE) is presented for immunotherapy trials with a progression-free survival (PFS) endpoint. The objective is to identify the subgroup-specific optimal dose, defined as the dose with the best risk-benefit tradeoff in each biomarker subgroup. We jointly model the immune response, toxicity outcome, and PFS with information borrowing across subgroups. A plateau model is used to describe the marginal distribution of the immune response. Conditional on the immune response, we model toxicity using probit regression and model PFS using the mixture cure rate model. During the trial, based on the accumulating data, we continuously update model estimates and adaptively randomize patients to doses with high desirability within each subgroup. Simulation studies show that the BIPSE design has desirable operating characteristics in selecting the subgroup-specific optimal doses and allocating patients to those optimal doses, and outperforms conventional designs.
Collapse
Affiliation(s)
- Beibei Guo
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yong Zang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
308
|
Zhang Y, Guo B, Cao S, Zhang C, Zang Y. SCI: A Bayesian adaptive phase I/II dose-finding design accounting for semi-competing risks outcomes for immunotherapy trials. Pharm Stat 2022; 21:960-973. [PMID: 35332674 PMCID: PMC9481656 DOI: 10.1002/pst.2209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022]
Abstract
An immunotherapy trial often uses the phase I/II design to identify the optimal biological dose, which monitors the efficacy and toxicity outcomes simultaneously in a single trial. The progression‐free survival rate is often used as the efficacy outcome in phase I/II immunotherapy trials. As a result, patients developing disease progression in phase I/II immunotherapy trials are generally seriously ill and are often treated off the trial for ethical consideration. Consequently, the happening of disease progression will terminate the toxicity event but not vice versa, so the issue of the semi‐competing risks arises. Moreover, this issue can become more intractable with the late‐onset outcomes, which happens when a relatively long follow‐up time is required to ascertain progression‐free survival. This paper proposes a novel Bayesian adaptive phase I/II design accounting for semi‐competing risks outcomes for immunotherapy trials, referred to as the dose‐finding design accounting for semi‐competing risks outcomes for immunotherapy trials (SCI) design. To tackle the issue of the semi‐competing risks in the presence of late‐onset outcomes, we re‐construct the likelihood function based on each patient's actual follow‐up time and develop a data augmentation method to efficiently draw posterior samples from a series of Beta‐binomial distributions. We propose a concise curve‐free dose‐finding algorithm to adaptively identify the optimal biological dose using accumulated data without making any parametric dose–response assumptions. Numerical studies show that the proposed SCI design yields good operating characteristics in dose selection, patient allocation, and trial duration.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Statistics and Programming, Jiangsu Hengrui Pharmaceuticals Co. Ltd., Shanghai, China.,Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
| | - Beibei Guo
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA.,Center of Computational Biology and Bioinformatics, Indiana University, Indianapolis, Indiana, USA
| | - Chi Zhang
- Center of Computational Biology and Bioinformatics, Indiana University, Indianapolis, Indiana, USA.,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
| | - Yong Zang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA.,Center of Computational Biology and Bioinformatics, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
309
|
Maiorano S, Gulden-Sala W, Gerber B, Ghilardi G. Anti-PD-L1 monoclonal antibody for the management of chronic disseminated intravascular coagulation secondary to a urothelial carcinoma: a case report. J Med Case Rep 2022; 16:113. [PMID: 35307010 PMCID: PMC8935767 DOI: 10.1186/s13256-022-03338-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2022] [Indexed: 01/23/2023] Open
Abstract
Background Thrombocytopenia is often considered a risk factor for bleeding, but conversely may be associated with an increased thrombotic risk in several clinical situations. Here we present a patient with arterial thrombosis and chronic disseminated intravascular coagulation caused by metastatic urothelial carcinoma. As the treatment for a disseminated intravascular coagulation caused by a neoplasia is the treatment of the underlying disease itself, our case highlights a new therapeutic approach—immunotherapy—in a patient prone to hematological complications due to conventional chemotherapy. Clinical case A 74-year-old Caucasian male patient with a history of urothelial carcinoma of the bladder and moderate thrombocytopenia had multiple arterial thrombotic events despite antiplatelet therapy and anticoagulation. A diagnosis of chronic disseminated intravascular coagulation in the setting of a metastatic bladder urothelial carcinoma was made. The patient was treated with an anti-PD-L1 monoclonal antibody, and achieved a rapid response with subsequent reversal of the disseminated intravascular coagulation. Conclusion Unexplained arterial or venous thrombosis despite adequate thromboprophylaxis should be investigated, especially in the setting of thrombocytopenia. Chronic disseminated intravascular coagulation is a possible, life-threatening reason for this clinical picture, and should prompt rapid identification of the underlying disease. To the best of our knowledge, this is the second case of chronic disseminated intravascular coagulation due to neoplastic disease treated with immunotherapy.
Collapse
|
310
|
Mishra KP, Singh M, Saraswat D, Ganju L, Varshney R. Dysfunctional State of T Cells or Exhaustion During Chronic Viral Infections and COVID-19: A Review. Viral Immunol 2022; 35:284-290. [PMID: 35325564 DOI: 10.1089/vim.2022.0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continuously affecting the lives of millions of people. The virus is spread through the respiratory route to an uninfected person, causing mild-to-moderate respiratory disease-like symptoms that sometimes progress to severe form and can be fatal. When the host is infected with the virus, both innate and adaptive immunity comes into play. The effector T cells act as the master player of adaptive immune response in eradicating the virus from the system. But during cancer and chronic viral infections, the fate of an effector T cell is altered, and the T cell may enters a state of exhaustion, which is marked by loss of effector function, depleted proliferative capacity and cytotoxic effect accomplished by an increased expression of numerous inhibitory receptors such as programmed cell death protein 1 (PD-1), lymphocyte-activation protein 3 (LAG-3), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on their surface. Various other transcriptional and epigenetic changes take place inside the T cell when it enters into an exhausted state. Latest studies point toward the induction of an abnormal immune response such as lymphopenia, cytokine storm, and T cell exhaustion during SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. This review sheds light on the dysfunctional state of T cells during chronic viral infection and COVID-19. Understanding the cause and the effect of T cell exhaustion observed during COVID-19 may help resolve new therapeutic potentials for treating chronic infections and other diseases.
Collapse
Affiliation(s)
- K P Mishra
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Mrinalini Singh
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Deepika Saraswat
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Lilly Ganju
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Rajeev Varshney
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
311
|
Wang Y, Jiang G. Advances in the Novel Nanotechnology for the Targeted Tumor Therapy by the Transdermal Drug Delivery. Anticancer Agents Med Chem 2022; 22:2708-2714. [PMID: 35319394 DOI: 10.2174/1871520622666220321093000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Despite modern medicine advances greatly, cancer remains a serious challenge to world health for which effective methods of treatment have hardly been developed yet. However, throughout the recent years, the rapid-developing nanotechnology has provided a new outlook of cancer therapy by transdermal drug delivery. By disrupting the stratum corneum, drugs are delivered through the skin and navigated to the tumor site by drug delivery systems such as nanogels, microneedles, etc. The superiorities include the improvement of drug pharmacokinetics as well as reduced side effects. This paper reviews the reported novel development of transdermal drug delivery systems for targeted cancer therapy. Advanced techniques for penetrating the skin will be discussed as well.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Chi-na
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Chi-na
| |
Collapse
|
312
|
Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. Int J Mol Sci 2022; 23:ijms23063154. [PMID: 35328572 PMCID: PMC8955360 DOI: 10.3390/ijms23063154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a rapidly emerging modality that engineers T cells to redirect tumor-specific cytotoxicity. CAR T cells have been well characterized for their efficacy against B cell malignancies, and rigorously studied in other types of tumors. Preclinical evaluation of CAR T cell function, including direct tumor killing, cytokine production, and memory responses, is crucial to the development and optimization of CAR T cell therapies. Such comprehensive examinations are usually performed in different types of models. Model establishment should focus on key challenges in the clinical setting and the capability to generate reliable data to indicate CAR T cell therapeutic potency in the clinic. Further, modeling the interaction between CAR T cells and tumor microenvironment provides additional insight for the future endeavors to enhance efficacy, especially against solid tumors. This review will summarize both in vitro and in vivo models for CAR T cell functional evaluation, including how they have evolved with the needs of CAR T cell research, the information they can provide for preclinical assessment of CAR T cell products, and recent technology advances to test CAR T cells in more clinically relevant models.
Collapse
|
313
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
314
|
Zou H, Yang F, Yin Z. iTTCA-MFF: identifying tumor T cell antigens based on multiple feature fusion. Immunogenetics 2022; 74:447-454. [PMID: 35246701 DOI: 10.1007/s00251-022-01258-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
Cancer is a terrible disease, recent studies reported that tumor T cell antigens (TTCAs) may play a promising role in cancer treatment. Since experimental methods are still expensive and time-consuming, it is highly desirable to develop automatic computational methods to identify tumor T cell antigens from the huge amount of natural and synthetic peptides. Hence, in this study, a novel computational model called iTTCA-MFF was proposed to identify TTCAs. In order to describe the sequence effectively, the physicochemical (PC) properties of amino acid and residue pairwise energy content matrix (RECM) were firstly employed to encode peptide sequences. Then, two different approaches including covariance and Pearson's correlation coefficient (PCC) were used to collect discriminative information from PC and RECM matrixes. Next, an effective feature selection approach called the least absolute shrinkage and selection operator (LAASO) was adopted to select the optimal features. These selected optimal features were fed into support vector machine (SVM) for identifying TTCAs. We performed experiments on two different datasets, experimental results indicated that the proposed method is promising and may play a complementary role to the existing methods for identifying TTCAs. The datasets and codes can be available at https://figshare.com/articles/online_resource/iTTCA-MFF/17636120 .
Collapse
Affiliation(s)
- Hongliang Zou
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330003, China.
| | - Fan Yang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330003, China
| | - Zhijian Yin
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330003, China
| |
Collapse
|
315
|
Liu Y, Geng Y, Yue B, Lo PC, Huang J, Jin H. Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 12:832942. [PMID: 35111169 PMCID: PMC8801935 DOI: 10.3389/fimmu.2021.832942] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
316
|
Ogasawara M, Yamasaki-Yashiki S, Hamada M, Yamaguchi-Miyamoto T, Kawasuji T, Honda H, Yanagibashi T, Ikutani M, Watanabe Y, Fujimoto R, Matsunaga T, Nakajima N, Nagai Y, Takatsu K. Betulin Attenuates TGF-β1- and PGE 2-Mediated Inhibition of NK Cell Activity to Suppress Tumor Progression and Metastasis in Mice. Biol Pharm Bull 2022; 45:339-353. [PMID: 35228400 DOI: 10.1248/bpb.b21-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor (TGF)-β1 and prostaglandin E2 (PGE2) are humoral factors critically involved in the induction of immunosuppression in the microenvironment of various types of tumors, including melanoma. In this study, we identified a natural compound that attenuated TGF-β1- and PGE2-induced immunosuppression and examined its effect on B16 melanoma growth in mice. By screening 502 natural compounds for attenuating activity against TGF-β1- or PGE2-induced suppression of cytolysis in poly(I:C)-stimulated murine splenocytes, we found that betulin was the most potent compound. Betulin also reduced TGF-β1- and PGE2-induced downregulation of perforin and granzyme B mRNA expression and cell surface expression of NKG2D and CD69 in natural killer (NK) cells. Cell depletion and coculture experiments showed that NK cells, dendritic cells, B cells, and T cells were necessary for the attenuating effects of betulin. Structure-activity relationship analysis revealed that two hydroxyl groups at positions C3 and C28 of betulin, their cis-configuration, and methyl group at C30 played crucial roles in its attenuating activity. In a subcutaneous implantation model of B16 melanoma in mice, intratumor administration of betulin and LY2157299, a TGF-β1 type I receptor kinase inhibitor, significantly retarded the growth of B16 melanoma. Notably, betulin increased significantly the number of CD69 positive NK cells in tumor sites at early stages of post-tumor cell injection. Our data suggest that betulin inhibits the growth of B16 melanoma by enhancing NK cell activity through attenuating the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Masaru Ogasawara
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | | | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | | | - Toru Kawasuji
- Toyama Prefectural Institute for Pharmaceutical Research
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama.,Graduate School of Integrated Sciences for Life, Hiroshima University.,Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Ryota Fujimoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | | | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama.,Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| |
Collapse
|
317
|
Ouyang Z, Gao Y, Yang R, Shen M, Shi X. Genetic Engineering of Dendritic Cells Using Partially Zwitterionic Dendrimer-Entrapped Gold Nanoparticles Boosts Efficient Tumor Immunotherapy. Biomacromolecules 2022; 23:1326-1336. [PMID: 35235306 DOI: 10.1021/acs.biomac.1c01571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Effective processing and cross-priming of tumor neoantigen by dendritic cells (DCs) to T cells for spontaneous immune response generation to effectively kill cancer cells remain challenging in cancer immunotherapy. Here, we report a general approach to genetically engineer DCs through silencing their YTHDF1 protein (an important reader protein responsible for RNA m6A methylation) expression via a dendrimeric non-viral vector to boost effective tumor immunotherapy. Poly(amidoamine) dendrimers of generation 5 were partially decorated with mannose and 1,3-propanesultone and then entrapped with gold (Au) nanoparticles. The created dendrimer nanoplatform has an Au core size of 1.8 nm; possesses desired stability, good cytocompatibility, and excellent YTHDF1 siRNA compression ability; and enables targeted gene silencing of DCs overexpressing mannose receptors to upregulate the expression of CD80 and CD86, markers of DCs maturation, potentially leading to tumor antigen cross-presentation. With these properties owned, the combination of YTHDF1 silencing of DCs with programmed cell death-ligand 1 antibody can boost the best immunotherapy of a xenografted melanoma tumor model through the created antitumor immune responses. Findings in this study demonstrate a general approach of genetic engineering of DCs via a dendrimeric non-viral vector to effectively boost antitumor immunotherapy.
Collapse
Affiliation(s)
- Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| |
Collapse
|
318
|
Abstract
With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.
Collapse
|
319
|
Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114107. [PMID: 34995678 DOI: 10.1016/j.addr.2021.114107] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms.
Collapse
|
320
|
Wang T, Xu H. Multi-faced roles of reactive oxygen species in anti-tumor T cell immune responses and combination immunotherapy. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
T cells play a central role in anti-tumor immunity, and reactive oxygen species (ROS) lie at the crossroad on the anti-tumor T cell responses. To activate efficient T cell immunity, a moderate level of ROS is needed, however, excessive ROS would cause toxicity to the T cells, because the improper level leads to the formation and maintenance of an immunosuppressive tumor microenvironment. Up to date, strategies that modulate ROS, either increasing or decreasing, have been widely investigated. Some of them are utilized in anti-tumor therapies, showing inevitable impacts on the anti-tumor T cell immunity with both obverse and reverse sides. Herein, the impacts of ROS-increasing and ROS-decreasing treatments on the T cell responses in the tumor microenvironment are reviewed and discussed. At the same time, outcomes of combination immunotherapies are introduced to put forward inspirations to unleash the potential of immunotherapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Haiyan Xu
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
321
|
Navarro-Ocón A, Blaya-Cánovas JL, López-Tejada A, Blancas I, Sánchez-Martín RM, Garrido MJ, Griñán-Lisón C, Calahorra J, Cara FE, Ruiz-Cabello F, Marchal JA, Aptsiauri N, Granados-Principal S. Nanomedicine as a Promising Tool to Overcome Immune Escape in Breast Cancer. Pharmaceutics 2022; 14:505. [PMID: 35335881 PMCID: PMC8950730 DOI: 10.3390/pharmaceutics14030505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common type of malignancy and leading cause of cancer death among women worldwide. Despite the current revolutionary advances in the field of cancer immunotherapy, clinical response in breast cancer is frequently below expectations, in part due to various mechanisms of cancer immune escape that produce tumor variants that are resistant to treatment. Thus, a further understanding of the molecular events underlying immune evasion in breast cancer may guarantee a significant improvement in the clinical success of immunotherapy. Furthermore, nanomedicine provides a promising opportunity to enhance the efficacy of cancer immunotherapy by improving the delivery, retention and release of immunostimulatory agents in targeted cells and tumor tissues. Hence, it can be used to overcome tumor immune escape and increase tumor rejection in numerous malignancies, including breast cancer. In this review, we summarize the current status and emerging trends in nanomedicine-based strategies targeting cancer immune evasion and modulating the immunosuppressive tumor microenvironment, including the inhibition of immunosuppressive cells in the tumor area, the activation of dendritic cells and the stimulation of the specific antitumor T-cell response.
Collapse
Affiliation(s)
- Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología, Hospital Universitario “San Cecilio”, 18016 Granada, Spain
| | - Rosario M. Sánchez-Martín
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - María J. Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, Navarra Institute for Health Research (IdisNA), University of Navarra, 31080 Pamplona, Spain;
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Francisco Ruiz-Cabello
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Natalia Aptsiauri
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
322
|
Wang T, Cai S, Cheng Y, Zhang W, Wang M, Sun H, Guo B, Li Z, Xiao Y, Jiang S. Discovery of Small-Molecule Inhibitors of the PD-1/PD-L1 Axis That Promote PD-L1 Internalization and Degradation. J Med Chem 2022; 65:3879-3893. [PMID: 35188766 DOI: 10.1021/acs.jmedchem.1c01682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several monoclonal antibodies targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway have been used successfully in anticancer immunotherapy. Inherent limitations of antibody-based therapies remain, however, and alternative small-molecule inhibitors that can block the PD-1/PD-L1 axis are urgent needed. Herein, we report the discovery of compound 17 as a bifunctional inhibitor of PD-1/PD-L1 interactions. 17 inhibits PD-1/PD-L1 interactions and promotes dimerization, internalization, and degradation of PD-L1. 17 promotes cell-surface PD-L1 internalized into the cytosol and induces the degradation of PD-L1 in tumor cells through a lysosome-dependent pathway. Furthermore, 17 suppresses tumor growth in vivo by activating antitumor immunity. These results demonstrate that 17 targets the PD-1/PD-L1 axis and induces PD-L1 degradation.
Collapse
Affiliation(s)
- Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi Cai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wanheng Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minmin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Binghua Guo
- Syntron Company, Ltd., Yanchen 224500, China
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
323
|
Takada K, Kashiwagi S, Asano Y, Goto W, Morisaki T, Shibutani M, Tanaka H, Hirakawa K, Ohira M. Differences in tumor-infiltrating lymphocyte density and prognostic factors for breast cancer by patient age. World J Surg Oncol 2022; 20:38. [PMID: 35177074 PMCID: PMC8851811 DOI: 10.1186/s12957-022-02513-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lymphocytes that surround cancer participate in tumor-related immune responses and are called tumor-infiltrating lymphocytes (TILs). Several recent reports suggest TILs index the tumor microenvironment and predict the therapeutic effect of chemotherapy. However, only few studies have studied the relationship between age and TILs. Aging reduces host immunity, and we predict that it may also affect TILs. Thus, we hypothesized that older breast cancer (BC) patients may have low TIL density than younger BC patients. Here, we retrospectively analyzed the differences in TILs by age and the therapeutic effects of preoperative chemotherapy (POC) in BC patients who were aged either less than 45 years or more than 60 years. Methods We retrospectively examined the data of 356 breast cancer patients who underwent POC, including 75 patients aged ≤ 45 years and 116 patients aged > 60 years. Using pre-treatment needle biopsy specimens, TIL density was compared for each age group by Student’s t-test. After analyzing different factors that affect TIL density, prognostic factors were also examined. Results Older patients with triple-negative BC had significantly lower TIL density than younger patients, while in human epidermal growth factor receptor 2 (HER2)-enriched BC, TIL density was significantly higher in the younger age group than that in the older age group. In addition, younger patients with HER2-rich breast cancer showed significantly higher complete pathological response rates than older patients with HER2-rich BC. In addition, significant differences in overall survival were observed among these patients with triple-negative BC. Conclusions Our study suggests that younger BC patients possess significantly higher TIL density than older patients. These differences may influence the therapeutic efficacy in highly immunogenic subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02513-5.
Collapse
Affiliation(s)
- Koji Takada
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinichiro Kashiwagi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Yuka Asano
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Wataru Goto
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tamami Morisaki
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masatsune Shibutani
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kosei Hirakawa
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaichi Ohira
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
324
|
Wang Y, Zheng K, Xiong H, Huang Y, Chen X, Zhou Y, Qin W, Su J, Chen R, Qiu H, Yuan X, Wang Y, Zou Y. PARP Inhibitor Upregulates PD-L1 Expression and Provides a New Combination Therapy in Pancreatic Cancer. Front Immunol 2022; 12:762989. [PMID: 34975854 PMCID: PMC8718453 DOI: 10.3389/fimmu.2021.762989] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent improvements in treatment modalities, pancreatic cancer remains a highly lethal tumor with mortality rate increasing every year. Poly (ADP-ribose) polymerase (PARP) inhibitors are now used in pancreatic cancer as a breakthrough in targeted therapy. This study focused on whether PARP inhibitors (PARPis) can affect programmed death ligand-1 (PD-L1) expression in pancreatic cancer and whether immune checkpoint inhibitors of PD-L1/programmed death 1 (PD-1) can enhance the anti-tumor effects of PARPis. Here we found that PARPi, pamiparib, up-regulated PD-L1 expression on the surface of pancreatic cancer cells in vitro and in vivo. Mechanistically, pamiparib induced PD-L1 expression via JAK2/STAT3 pathway, at least partially, in pancreatic cancer. Importantly, pamiparib attenuated tumor growth; while co-administration of pamiparib with PD-L1 blockers significantly improved the therapeutic efficacy in vivo compared with monotherapy. Combination therapy resulted in an altered tumor immune microenvironment with a significant increase in windiness of CD8+ T cells, suggesting a potential role of CD8+ T cells in the combination therapy. Together, this study provides evidence for the clinical application of PARPis with anti-PD-L1/PD-1 drugs in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuqiong Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfang Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
325
|
Yi L, Jin X, Wang J, Yan Z, Cheng X, Wen T, Yang B, Wang X, Che N, Liu Z, Zhang H. CD137 Agonists Targeting CD137-Mediated Negative Regulation Show Enhanced Antitumor Efficacy in Lung Cancer. Front Immunol 2022; 13:771809. [PMID: 35197968 PMCID: PMC8859117 DOI: 10.3389/fimmu.2022.771809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Negative immune regulation plays a notable role in tumor immunity. This study aimed to confirm that CD137 mediates negative immunoregulation as well as agonist activity in tumor immunity. Soluble CD137 (sCD137), a prominent splice variant of membrane-bound CD137 (mCD137), was identified, and its concentration in the blood of lung cancer patients was increased. The baseline concentration of sCD137 in the blood was negatively correlated with the efficacy of neoadjuvant immunochemotherapy in a pilot study. The percentage of CD137+ regulatory T cells (Tregs) in the blood of lung cancer patients was also increased, and further enriched at the tumor site; Foxp3, CTLA-4, IL-10, IL-35-Ebi3, sCD137 and costimulatory molecules expression were also higher, indicating increased immunosuppressive activity. A high percentage of CD137+ Tregs in the tumor was associated with worse OS outcomes among patients with high CD137+CD8+ T cell infiltration levels. Notably, targeting CD137+ Tregs using an engineered CD137 agonist with wild-type mouse IgG2a Fc clearly decreased the total Treg numbers and eliminated the tumor in the CT26 model and prolonged the survival rate of a Lewis lung carcinoma (LLC) model. These results indicated it may be possible to empower CD137 agonist with ability to abolish CD137-mediated negative regulation to enhance its antitumor efficacy.
Collapse
Affiliation(s)
- Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xin Jin
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xu Cheng
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Wen
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhidong Liu
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongtao Zhang, ; Zhidong Liu,
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongtao Zhang, ; Zhidong Liu,
| |
Collapse
|
326
|
Qian Y, Li Y, Chen K, Liu N, Hong X, Wu D, Xu Z, Zhou L, Xu L, Jia R, Ge YZ. Pan-Cancer Transcriptomic Analysis Identifies PLK1 Crucial for the Tumorigenesis of Clear Cell Renal Cell Carcinoma. J Inflamm Res 2022; 15:1099-1116. [PMID: 35210814 PMCID: PMC8859474 DOI: 10.2147/jir.s347732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ke Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ning Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xi Hong
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Ruipeng Jia; Yu-Zheng Ge, Department of Urology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China, Tel +86-15850675660, Email ;
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
327
|
Immunogenic hydrogel toolkit disturbing residual tumor “seeds” and pre-metastatic “soil” for inhibition of postoperative tumor recurrence and metastasis. Acta Pharm Sin B 2022; 12:3383-3397. [PMID: 35967277 PMCID: PMC9366231 DOI: 10.1016/j.apsb.2022.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor recurrence and metastasis is the leading cause of mortality for postoperative breast cancer patients. However, chemotherapy intervention after surgery is often unsatisfactory, because residual microtumors are difficult to target and require frequent administration. Here, an all-in-one and once-for-all drug depot based on in situ-formed hydrogel was applied to fit the irregular surgical trauma, and enable direct contact with residual tumors and sustained drug release. Our immunological analysis after resection of orthotopic breast tumor revealed that postsurgical activation of CXCR4–CXCL12 signal exacerbated the immunosuppression and correlated with adaptive upregulation of PD-L1 in recurrent tumors. Thus, a multifunctional hydrogel toolkit was developed integrating strategies of CXCR4 inhibition, immunogenicity activation and PD-L1 blockade. Our results showed that the hydrogel toolkit not only exerted local effect on inhibiting residual tumor cell “seeds” but also resulted in abscopal effect on disturbing pre-metastatic “soil”. Furthermore, vaccine-like effect and durable antitumor memory were generated, which resisted a secondary tumor rechallenge in 100% cured mice. Strikingly, one single dose of such modality was able to eradicate recurrent tumors, completely prevent pulmonary metastasis and minimize off-target toxicity, thus providing an effective option for postoperative intervention.
Collapse
|
328
|
Liu J, Peng X, Yang S, Li X, Huang M, Wei S, Zhang S, He G, Zheng H, Fan Q, Yang L, Li H. Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies. Cell Commun Signal 2022; 20:14. [PMID: 35090497 PMCID: PMC8796536 DOI: 10.1186/s12964-021-00816-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is the ligand for programmed death protein-1 (PD-1), is associated with immunosuppression. Signaling via PD-1/PD-L1 will transmits negative regulatory signals to T cells, inducing T-cell inhibition, reducing CD8+ T-cell proliferation, or promoting T-cell apoptosis, which effectively reduces the immune response and leads to large-scale tumor growth. Accordingly, many antibody preparations targeting PD-1 or PD-L1 have been designed to block the binding of these two proteins and restore T-cell proliferation and cytotoxicity of T cells. However, these drugs are ineffective in clinical practice. Recently, numerous of studies have shown that, in addition to the surface of tumor cells, PD-L1 is also found on the surface of extracellular vesicles secreted by these cells. Extracellular vesicle PD-L1 can also interact with PD-1 on the surface of T cells, leading to immunosuppression, and has been proposed as a potential mechanism underlying PD-1/PD-L1-targeted drug resistance. Therefore, it is important to explore the production, regulation and tumor immunosuppression of PD-L1 on the surface of tumor cells and extracellular vesicles, as well as the potential clinical application of extracellular vesicle PD-L1 as tumor biomarkers and therapeutic targets. Video Abstract
Collapse
|
329
|
Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment. iScience 2022; 25:103639. [PMID: 35024580 PMCID: PMC8724970 DOI: 10.1016/j.isci.2021.103639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Tumor immunotherapy has been convincingly demonstrated as a feasible approach for treating cancers. Although promising, the immunosuppressive tumor microenvironment (TME) has been recognized as a major obstacle in tumor immunotherapy. It is highly desirable to release an immunosuppressive "brake" for improving cancer immunotherapy. Among tumor-infiltrated immune cells, tumor-associated macrophages (TAMs) play an important role in the growth, invasion, and metastasis of tumors. The polarization of TAMs (M2) into the M1 type can alleviate the immunosuppression of the TME and enhance the effect of immunotherapy. Inspired by this, we constructed a therapeutic exosomal vaccine from antigen-stimulated M1-type macrophages (M1OVA-Exos). M1OVA-Exos are capable of polarizing TAMs into M1 type through downregulation of the Wnt signaling pathway. Mediating the TME further activates the immune response and inhibits tumor growth and metastasis via the exosomal vaccine. Our study provides a new strategy for the polarization of TAMs, which augments cancer vaccine therapy efficacy.
Collapse
|
330
|
Li M, Kaili D, Shi L. Biomarkers for response to immune checkpoint inhibitors in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:19-37. [PMID: 35116101 PMCID: PMC8790411 DOI: 10.4251/wjgo.v14.i1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers account for a large proportion of cancer deaths worldwide and pose a major public health challenge. Immunotherapy is considered to be one of the prominent and successful approaches in cancer treatment in recent years. Among them, immune checkpoint inhibitor (ICI) therapy, has received widespread attention, and many clinical findings support the feasibility of ICIs, with sustained responses and significantly prolonged lifespan observed in a wide range of tumors. However, patients treated with ICIs have not fully benefited, and therefore, the identification and development of biomarkers for predicting ICI treatment response have received further attention and exploration. From tumor genome to molecular interactions in the tumor microenvironment, and further expanding to circulating biomarkers and patient characteristics, the exploration of biomarkers is evolving with high-throughput sequencing as well as bioinformatics. More large-scale prospective and specific studies are needed to explore biomarkers in GI cancers. In this review, we summarize the known biomarkers used in ICI therapy for GI tumors. In addition, some ICI biomarkers applied to other tumors are included to provide insights and further validation for GI tumors. Moreover, we present single-cell analysis and machine learning approaches that have emerged in recent years. Although there are no clear applications yet, it can be expected that these techniques will play an important role in the application of biomarker prediction.
Collapse
Affiliation(s)
- Meng Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Denis Kaili
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
331
|
Wang M, Li Y, Wang M, Liu K, Hoover AR, Li M, Towner RA, Mukherjee P, Zhou F, Qu J, Chen WR. Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer. Acta Biomater 2022; 138:453-462. [PMID: 34757232 PMCID: PMC10960566 DOI: 10.1016/j.actbio.2021.10.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is the most lethal malignancy due to its high metastatic ability and poor drug permeability. Here, a synergized interventional photothermal-immunotherapy strategy was developed with imaging guidance and temperature monitoring by magnetic resonance imaging (MRI) technique, for the local treatment of metastatic PC. A tumor microenvironment (TME)-responsive nanoplatform was fabricated via coating of DSPE-PEG and indocyanine green (ICG) onto imiquimod (IMQ) loaded amorphous iron oxide nanoparticles (IONs). This unique nanoplatform, IMQ@IONs/ICG, served as a contrast agent for MRI, a drug delivery vehicle for IMQ and ICG, and a catalyst for TME modulation. The biodegradable IMQ@IONs/ICG was also non-toxic, and improved the penetration of the loaded drugs in PC to maximize thermal ablation of the tumor and minimize damage to the surrounding healthy tissue. For the treatment of aggressive, metastatic Panc02-H7 pancreatic tumors in mice, ION-assisted MRI was employed to guide the administration of interventional photothermal therapy (IPTT) and monitor the temperature distribution in target tumor and surrounding tissue during treatment. The local IPTT treatment induced in situ immunogenic cell death (ICD), and, in combination with released IMQ, triggered a strong antitumor immunity, leading to decreased metastases and increased CD8+ in spleen and tumors. With precise local treatment and monitoring, treated primary tumors were completely eradicated, mesentery metastases were dramatically reduced, and the survival time was significantly prolonged, without damage to normal tissue and systemic autoimmunity. Overall, this synergistic strategy represents a promising approach to treat PC with significant potential for clinical applications. STATEMENT OF SIGNIFICANCE: Pancreatic cancer (PC) is one of the most lethal malignancies because it is non-permeable to drugs and highly metastatic. In this study, we designed a tumor microenvironment-responsive amorphous iron oxide nanoplatform (ION) to co-deliver photothermal agent (ICG) and toll-like-receptor-7 agonist (IMQ). This biodegradable nanoplatform IMQ@IONs/ICG improved the penetration of the loaded drugs in pancreatic tumor. With MR imaging guidance and temperature monitoring, the precise interventional photothermal therapy on mouse Panc02-H7 orthotopic tumors releases tumor antigens to initiate tumor-special immune responses, amplified by the released IMQ. Our results demonstrate that IMQ@IONs/ICG overcomes the obstacle of drug delivery to pancreatic tumors, and when combined with photothermal therapy, induces a systemic antitumor immunity to control metastatic tumors.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yong Li
- Interventional Therapy Department, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Miao Wang
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ashley R Hoover
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Min Li
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Wei R Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
332
|
Li A, Goodyear S, Fuss C, Mitri Z. Exceptional Response to Pembrolizumab and Trastuzumab in a Heavily Pretreated Patient With HER2-Positive TMB-H and MSI-H Metastatic Breast Cancer. JCO Precis Oncol 2022; 5:904-909. [PMID: 34994619 DOI: 10.1200/po.20.00361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Allen Li
- Department of Hematology Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Shaun Goodyear
- Department of Hematology Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Cristina Fuss
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR
| | - Zahi Mitri
- Department of Hematology Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| |
Collapse
|
333
|
Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. NANO CONVERGENCE 2022; 9:2. [PMID: 34997888 PMCID: PMC8742799 DOI: 10.1186/s40580-021-00293-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Cancer has been a serious threat to human health. Among drug delivery carriers, protein nanoparticles are unique because of their mild and environmentally friendly preparation methods. They also inherit desired characteristics from natural proteins, such as biocompatibility and biodegradability. Therefore, they have solved some problems inherent to inorganic nanocarriers such as poor biocompatibility. Also, the surface groups and cavity of protein nanoparticles allow for easy surface modification and drug loading. Besides, protein nanoparticles can be combined with inorganic nanoparticles or contrast agents to form multifunctional theranostic platforms. This review introduces representative protein nanoparticles applicable in cancer theranostics, including virus-like particles, albumin nanoparticles, silk protein nanoparticles, and ferritin nanoparticles. It also describes the common methods for preparing them. It then critically analyzes the use of a variety of protein nanoparticles in improved cancer imaging and therapy.
Collapse
Affiliation(s)
- Yao Miao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5251, USA.
| |
Collapse
|
334
|
In vitro characterization of a small molecule PD-1 inhibitor that targets the PD-l/PD-L1 interaction. Sci Rep 2022; 12:303. [PMID: 34996924 PMCID: PMC8741796 DOI: 10.1038/s41598-021-03590-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Targeting the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis with monoclonal antibodies (mAbs) represents a crucial breakthrough in anticancer therapy, but mAbs are limited by their poor oral bioavailability, adverse events in multiple organ systems, and primary, adaptive, and acquired resistance, amongst other issues. More recently, the advent of small molecule inhibitors that target the PD-1/PD-L1 axis have shown promising cellular inhibitory activity and the potential to counteract the disadvantages of mAbs. In this study, structure-based virtual screening identified small molecule inhibitors that effectively inhibited the PD-1/PD-L1 interaction. Six of those small molecule inhibitors were applied to cell-based experiments targeting PD-1: CH-1, CH-2, CH-3, CH-4, CH-5, and CH-6. Of all 6, CH-4 displayed the lowest cytotoxicity and strongest inhibitory activity towards the PD-1/PD-L1 interaction. The experiments revealed that CH-4 inhibited the interaction of soluble form PD-L1 (sPD-L1) with PD-1 surface protein expressed by KG-1 cells. Investigations into CH-4 analogs revealed that CH-4.7 effectively blocked the PD-1/sPD-L1 interaction, but sustained the secretion of interleukin-2 and interferon-γ by Jurkat cells. Our experiments revealed a novel small molecule inhibitor that blocks the interaction of PD-1/sPD-L1 and potentially offers an alternative PD-1 target for immune checkpoint therapy.
Collapse
|
335
|
Ni Q, Xu F, Wang Y, Li Y, Qing G, Zhang Y, Zhong J, Li J, Liang XJ. Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. J Control Release 2022; 342:210-227. [PMID: 34998916 DOI: 10.1016/j.jconrel.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
The past decade has witnessed a great progress in cancer immunotherapy with the sequential approvals of therapeutic cancer vaccine, immune checkpoint inhibitor and chimeric antigen receptor (CAR) T cell therapy. However, some hurdles still remain to the wide implementation of cancer immunotherapy, including low immune response, complex tumor heterogeneity, off-target immunotoxicity, poor solid tumor infiltration, and immune evasion-induced treatment tolerance. Owing to changeable physicochemical properties in response to endogenous or exogenous stimuli, nanomaterials hold the remarkable potential in incorporation of multiple agents, efficient biological barrier penetration, precise immunomodulator delivery, and controllable content release for boosting cancer immunotherapy. Herein, we review the recent advances in nanomaterials with changeable physicochemical property (NCPP) to develop cancer vaccine, remold tumor microenvironment and evoke direct T cell activation. Besides, we provide our outlook on this emerging field at the intersection of NCPP design and cancer immunotherapy.
Collapse
Affiliation(s)
- Qiankun Ni
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Fengfei Xu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Guangchao Qing
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhong
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
336
|
Liu XH, Qi LW, Alolga RN, Liu Q. Implication of the hepatokine, fibrinogen-like protein 1 in liver diseases, metabolic disorders and cancer: The need to harness its full potential. Int J Biol Sci 2022; 18:292-300. [PMID: 34975333 PMCID: PMC8692158 DOI: 10.7150/ijbs.66834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/24/2021] [Indexed: 12/17/2022] Open
Abstract
Fibrinogen-like protein 1 (FGL1) is a novel hepatokine that forms part of the fibrinogen superfamily. It is predominantly expressed in the liver under normal physiological conditions. When the liver is injured by external factors, such as chemical drugs and radiation, FGL1 acts as a protective factor to promote the growth of regenerated cells. However, elevated hepatic FGL1 under high fat conditions can cause lipid accumulation and inflammation, which in turn trigger the development of non-alcoholic fatty liver disease, diabetes, and obesity. FGL1 is also involved in the regulation of insulin resistance in adipose tissues and skeletal muscles as a means of communication between the liver and other tissues. In addition, the abnormally changed FGL1 levels in the plasma of cancer patients make it a potential predictor of cancer incidence in clinical practice. FGL1 was recently identified as a major functional ligand of the immune inhibitory receptor, lymphocyte-activation gene 3 (LAG3), thus making it a promising target for cancer immunotherapy except for the classical programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis. Despite the potential of FGL1 as a new cancer biomarker and therapeutic target, there are few related studies and much of what has been reported are superficial and lack depth and particularity. Therefore, elucidating the role and underlying mechanisms of FGL1 could be crucial for the development of promising diagnostic and therapeutic strategies for related diseases. Here, we provide a comprehensive review of the cellular mechanisms and clinical prospects of FGL1 in the prevention and treatment of liver diseases, metabolic disorders and cancer, and proffer suggestions for future studies.
Collapse
Affiliation(s)
- Xi-Hua Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
337
|
Zaib S, Saleem MA, Khan I. CRISPR-Cas9 Genome Engineering: Trends in Medicine and Health. Mini Rev Med Chem 2022; 22:410-421. [PMID: 34517795 DOI: 10.2174/1389557521666210913112030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 01/14/2021] [Indexed: 11/22/2022]
Abstract
The ability to engineer biological systems and organisms holds enormous potential for applications across basic science, medicine, and biotechnology. Over the past few decades, the development of CRISPR (clustered regularly interspaced short palindromic repeat) has revolutionized the whole genetic engineering process utilizing the principles of Watson-Crick base pairing. CRISPRCas9 technology offers the simplest, fastest, most versatile, reliable, and precise method of genetic manipulation, thus enabling geneticists and medical researchers to edit parts of the genome by removing, adding, or altering sections of the DNA sequence. The current review focuses on the applications of CRISPR-Cas9 in the field of medical research. Compared with other gene-editing technologies, CRISPR/Cas9 demonstrates numerous advantages for the treatment of various medical conditions, including cancer, hepatitis B, cardiovascular diseases, or even high cholesterol. Given its promising performance, CRISPR/Cas9 gene-editing technology will surely help in the therapy of several disorders while addressing the issues pertaining to the minimization of the off-target effects of gene editing and incomplete matches between sgRNA and genomic DNA by Cas9.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590, Pakistan
| | - Mushtaq A Saleem
- Ghazi National Institute of Engineering & Sciences -GNIES, Dera Ghazi Khan-32200, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
338
|
Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol 2022; 19:37-50. [PMID: 34580473 DOI: 10.1038/s41571-021-00552-7] [Citation(s) in RCA: 474] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
The discovery and clinical implementation of immune-checkpoint inhibitors (ICIs) targeting CTLA4, PD-1 and PD-L1 has revolutionized the treatment of cancer, as recognized by the 2018 Nobel Prize for Medicine and Physiology. This groundbreaking new approach has improved the outcomes of patients with various forms of advanced-stage cancer; however, the majority of patients receiving these therapies, even in combination, do not derive clinical benefit. Further development of agents targeting additional immune checkpoints, co-stimulatory receptors and/or co-inhibitory receptors that control T cell function is therefore critical. In this Review, we discuss the translational potential and clinical development of agents targeting both co-stimulatory and co-inhibitory T cell receptors. Specifically, we describe their mechanisms of action, and provide an overview of ongoing clinical trials involving novel ICIs including those targeting LAG3, TIM3, TIGIT and BTLA as well as agonists of the co-stimulatory receptors GITR, OX40, 41BB and ICOS. We also discuss several additional approaches, such as harnessing T cell metabolism, in particular via adenosine signalling, inhibition of IDO1, and targeting changes in glucose and fatty acid metabolism. We conclude that further efforts are needed to optimize the timing of combination ICI approaches and, most importantly, to individualize immunotherapy based on both patient-specific and tumour-specific characteristics.
Collapse
|
339
|
Hanssens H, Meeus F, De Veirman K, Breckpot K, Devoogdt N. The antigen-binding moiety in the driver's seat of CARs. Med Res Rev 2022; 42:306-342. [PMID: 34028069 PMCID: PMC9292017 DOI: 10.1002/med.21818] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Immuno-oncology has been at the forefront of cancer treatment in recent decades. In particular immune checkpoint and chimeric antigen receptor (CAR)-T cell therapy have achieved spectacular results. Over the years, CAR-T cell development has followed a steady evolutionary path, focusing on increasing T cell potency and sustainability, which has given rise to different CAR generations. However, there was less focus on the mode of interaction between the CAR-T cell and the cancer cell; more specifically on the targeting moiety used in the CAR and its specific properties. Recently, the importance of optimizing this domain has been recognized and the possibilities have been exploited. Over the last 10 years-in addition to the classical scFv-based CARs-single domain CARs, natural receptor-ligand CARs, universal CARs and CARs targeting more than one antigen have emerged. In addition, the specific parameters of the targeting domain and their influence on T cell activation are being examined. In this review, we concisely present the history of CAR-T cell therapy, and then expand on various developments in the CAR ectodomain. We discuss different formats, each with their own advantages and disadvantages, as well as the developments in affinity tuning, avidity effects, epitope location, and influence of the extracellular spacer.
Collapse
Affiliation(s)
- Heleen Hanssens
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Laboratory of Hematology and ImmunologyVrije Universiteit BrusselBrusselsBelgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Fien Meeus
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Kim De Veirman
- Laboratory of Hematology and ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
340
|
Hu J, Albadawi H, Zhang Z, Salomao MA, Gunduz S, Rehman S, D'Amone L, Mayer JL, Omenetto F, Oklu R. Silk Embolic Material for Catheter-Directed Endovascular Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106865. [PMID: 34695275 PMCID: PMC8758542 DOI: 10.1002/adma.202106865] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Indexed: 05/06/2023]
Abstract
Embolization is a catheter-based minimally invasive procedure that deliberately occludes diseased blood vessels for treatment purposes. A novel silk-based embolic material (SEM) that is developed and optimized to provide tandem integration of both embolization and the delivery of therapeutics is reported. Natural silk is processed into fibroin proteins of varying lengths and is combined with charged nanoclay particles to allow visibility and injectability using clinical catheters as small as 600 μm in diameter at lengths >100 cm. SEMs loaded with fluorochrome labeled bovine albumin and Nivolumab, which is among the most used immunotherapy drugs worldwide, demonstrate a sustained release profile in vitro over 28 days. In a porcine renal survival model, SEMs with labeled albumin and Nivolumab successfully embolize porcine arteries without recanalization and lead to the delivery of both albumin and Nivolumab into the interstitial space of the renal cortex. Mechanistically, it is shown that tissue delivery is most optimal when the internal elastic membrane of the embolized artery is disrupted. SEM is a potential next-generation multifunctional embolic agent that can achieve embolization and deliver a wide range of therapeutics to treat vascular diseases including tumors.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Zefu Zhang
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Marcela A Salomao
- Division of Anatomic Pathology and Laboratory Medicine, Department of Pathology, Mayo Clinic, 5777 East Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Seyda Gunduz
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Suliman Rehman
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Luciana D'Amone
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Joseph L Mayer
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Fiorenzo Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
- Laboratory for Living Devices, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Physics, Tufts University, Medford, MA, 02155, USA
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ, 85259, USA
| |
Collapse
|
341
|
Yang X. Mechanism and Clinical Application of PD-1/PD-L1 Inhibitors in Immunotherapy. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tumor immunotherapy is currently a hot research topic in the field of oncology, and is an efficacious mode of tumor treatment. Programmed cell death receptor PD-1 (PD-1) is an important immunosuppressive molecule, which is mainly expressed in activated T and B cells. PD-1/PD-L1 inhibitors can block the binding of PD-1 to PD-L1, block the negative regulatory signals, and restore the activity of T cells, thus enhancing the immune response.
Collapse
|
342
|
Molecular characterization of hypoxanthine guanine phosphoribosyltransferase mutant T cells in human blood: The concept of surrogate selection for immunologically relevant cells. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108414. [PMID: 35690417 PMCID: PMC9188651 DOI: 10.1016/j.mrrev.2022.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Somatic cell gene mutations arise in vivo due to replication errors during DNA synthesis occurring spontaneously during normal DNA synthesis or as a result of replication on a DNA template damaged by endogenous or exogenous mutagens. In principle, changes in the frequencies of mutant cells in vivo in humans reflect changes in exposures to exogenous or endogenous DNA damaging insults, other factors being equal. It is becoming increasingly evident however, that somatic mutations in humans have a far greater range of interpretations. For example, mutations in lymphocytes provide invaluable probes for in vivo cellular and molecular processes, providing identification of clonal amplifications of these cells in autoimmune and infectious diseases, transplantation recipients, paroxysmal nocturnal hemoglobinuria (PNH), and cancer. The assay for mutations of the X-chromosomal hypoxanthine guanine phosphoribosyltransferase (HPRT) gene has gained popular acceptance for this purpose since viable mutant cells can be recovered for molecular and other analyses. Although the major application of the HPRT T cell assay remains human population monitoring, the enrichment of activated T cells in the mutant fraction in individuals with ongoing immunological processes has demonstrated the utility of surrogate selection, a method that uses somatic mutation as a surrogate marker for the in vivo T cell proliferation that underlies immunological processes to investigate clinical disorders with immunological features. Studies encompassing a wide range of clinical conditions are reviewed. Despite the historical importance of the HPRT mutation system in validating surrogate selection, there are now additional mutational and other methods for identifying immunologically active T cells. These methods are reviewed and provide insights for strategies to extend surrogate selection in future studies.
Collapse
|
343
|
Tsai CY, Chi HC, Wu RC, Weng CH, Tai TS, Lin CY, Chen TD, Wang YH, Chou LF, Hsu SH, Lin PH, Pang ST, Yang HY. Combination Biomarker of Immune Checkpoints Predict Prognosis of Urothelial Carcinoma. Biomedicines 2021; 10:8. [PMID: 35052695 PMCID: PMC8772792 DOI: 10.3390/biomedicines10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
In contrast to Western counties, the incidence of urothelial carcinoma (UC) remains mar-edly elevated in Taiwan. Regulatory T cells (Tregs) play a crucial role in limiting immune responses within the tumor microenvironment. To elucidate the relationship between immune checkpoints in the tumor immune microenvironment and UC progression, we utilize the Gene Expression Omnibus (GEO) to analyze a microarray obtained from 308 patients with UC. We observed that the expression level of CD276 or TIM-3 was positively correlated with late-stage UC and poor prognosis. Patients with simultaneously high CD276 and TIM-3 expression in tumors have significantly reduced both univariate and multivariate survival, indicating that mRNA levels of these immune checkpoints could be independent prognostic biomarkers for UC overall survival and recurrence. Our cohort study showed rare CD8+ cytotoxic T-cells and Tregs infiltration during early-stage UC-known as cold tumors. Approximately 30% of late-stage tumors exhibited highly infiltrated cytotoxic T cells with high PD-1 and FOXP3 expression, which implied that cytotoxic T cells were inhibited in the advanced UC microenvironment. Collectively, our findings provide a better prognosis prediction by combined immune checkpoint biomarkers and a basis for early-stage UC standard treatment to convert cold tumors into hot tumors, followed by immune checkpoint therapy.
Collapse
Affiliation(s)
- Chung-Ying Tsai
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (R.-C.W.); (T.-D.C.)
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Cheng-Hao Weng
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Tzong-Shyuan Tai
- Advanced Immunology Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Chan-Yu Lin
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Tai-Di Chen
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (R.-C.W.); (T.-D.C.)
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Shen-Hsing Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Po-Hung Lin
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-H.L.); (S.-T.P.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - See-Tong Pang
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-H.L.); (S.-T.P.)
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hung-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
- Advanced Immunology Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
344
|
Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol 2021; 57:101581. [PMID: 34922817 DOI: 10.1016/j.smim.2021.101581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapy is a promising strategy in cancer treatment. Antibodies can directly inhibit tumor growth, induce complement-dependent cytotoxicity and induce Fc receptor-mediated elimination of tumor cells by macrophages and natural killer cells. Until now, however, neutrophils have been largely overlooked as potential effector cells, even though they are the most abundant type of immune cells in the circulation. Neutrophils display heterogeneity, especially in the context of cancer. Therefore, their role in cancer is debated. Nevertheless, neutrophils possess natural anti-tumor properties and appropriate stimulation, i.e. specific targeting via antibody therapy, induces potent tumor cell killing, especially via targeting of the immunoglobulin A Fc receptor (FcαRI, CD89). In this review we address the mechanisms of tumor cell killing by neutrophils and the role of neutrophils in induction of anti-tumor immunity. Moreover, possibilities for therapeutic targeting are discussed.
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Celine A N Sewnath
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
345
|
Li Z, Sun G, Sun G, Cheng Y, Wu L, Wang Q, Lv C, Zhou Y, Xia Y, Tang W. Various Uses of PD1/PD-L1 Inhibitor in Oncology: Opportunities and Challenges. Front Oncol 2021; 11:771335. [PMID: 34869005 PMCID: PMC8635629 DOI: 10.3389/fonc.2021.771335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The occurrence and development of cancer are closely related to the immune escape of tumor cells and immune tolerance. Unlike previous surgical, chemotherapy, radiotherapy and targeted therapy, tumor immunotherapy is a therapeutic strategy that uses various means to stimulate and enhance the immune function of the body, and ultimately achieves the goal of controlling tumor cells.With the in-depth understanding of tumor immune escape mechanism and tumor microenvironment, and the in-depth study of tumor immunotherapy, immune checkpoint inhibitors represented by Programmed Death 1/Programmed cell Death-Ligand 1(PD-1/PD-L1) inhibitors are becoming increasingly significant in cancer medication treatment. employ a variety of ways to avoid detection by the immune system, a single strategy is not more effective in overcoming tumor immune evasion and metastasis. Combining different immune agents or other drugs can effectively address situations where immunotherapy is not efficacious, thereby increasing the chances of success and alternative access to alternative immunotherapy. Immune combination therapies for cancer have become a hot topic in cancer treatment today. In this paper, several combination therapeutic modalities of PD1/PD-L1 inhibitors are systematically reviewed. Finally, an analysis and outlook are provided in the context of the recent advances in combination therapy with PD1/PD-L1 inhibitors and the pressing issues in this field.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yichan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
346
|
Anghileri E, Patanè M, Di Ianni N, Sambruni I, Maffezzini M, Milani M, Maddaloni L, Pollo B, Eoli M, Pellegatta S. Deciphering the Labyrinthine System of the Immune Microenvironment in Recurrent Glioblastoma: Recent Original Advances and Lessons from Clinical Immunotherapeutic Approaches. Cancers (Basel) 2021; 13:6156. [PMID: 34944776 PMCID: PMC8699787 DOI: 10.3390/cancers13246156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
The interpretation of the presence and function of immune infiltration in glioblastoma (GBM) is still debated. Over the years, GBM has been considered a cold tumor that is less infiltrated by effector cells and characterized by a high proportion of immunosuppressive innate immune cells, including GBM-associated microglia/macrophages (GAMs). In this context, the failure of checkpoint inhibitors, particularly in recurrent GBM (rGBM), caused us to look beyond the clinical results and consider the point of view of immune cells. The tumor microenvironment in rGBM can be particularly hostile, even when exposed to standard immunomodulatory therapies, and tumor-infiltrating lymphocytes (TILs), when present, are either dysfunctional or terminally exhausted. However, after checkpoint blockade therapy, it was possible to observe specific recruitment of adaptive immune cells and an efficient systemic immune response. In this review article, we attempt to address current knowledge regarding the tumor and immune microenvironment in rGBM. Furthermore, immunosuppression induced by GAMs and TIL dysfunction was revisited to account for genetic defects that can determine resistance to therapies and manipulate the immune microenvironment upon recurrence. Accordingly, we reevaluated the microenvironment of some of our rGBM patients treated with dendritic cell immunotherapy, with the goal of identifying predictive immune indicators of better treatment response.
Collapse
Affiliation(s)
- Elena Anghileri
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Monica Patanè
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.P.); (B.P.)
| | - Natalia Di Ianni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Irene Sambruni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Martina Maffezzini
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Micaela Milani
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Luisa Maddaloni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.P.); (B.P.)
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Serena Pellegatta
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| |
Collapse
|
347
|
Moore EM, Maestas DR, Cherry CC, Garcia JA, Comeau HY, Davenport Huyer L, Kelly SH, Peña AN, Blosser RL, Rosson GD, Elisseeff JH. Biomaterials direct functional B cell response in a material-specific manner. SCIENCE ADVANCES 2021; 7:eabj5830. [PMID: 34851674 PMCID: PMC8635437 DOI: 10.1126/sciadv.abj5830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/13/2021] [Indexed: 05/13/2023]
Abstract
B cells are an adaptive immune target of biomaterials development in vaccine research but, despite their role in wound healing, have not been extensively studied in regenerative medicine. To probe the role of B cells in biomaterial scaffold response, we evaluated the B cell response to biomaterial materials implanted in a muscle wound using a biological extracellular matrix (ECM), as a reference for a naturally derived material, and synthetic polyester polycaprolactone (PCL), as a reference for a synthetic material. In the local muscle tissue, small numbers of B cells are present in response to tissue injury and biomaterial implantation. The ECM materials induced mature B cells in lymph nodes and antigen presentation in the spleen. The synthetic PCL implants resulted in prolonged B cell presence in the wound and induced an antigen-presenting phenotype. In summary, the adaptive B cell immune response to biomaterial induces local, regional, and systemic immunological changes.
Collapse
Affiliation(s)
- Erika M. Moore
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David R. Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chris C. Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan A. Garcia
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah Y. Comeau
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Locke Davenport Huyer
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean H. Kelly
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis N. Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L. Blosser
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gedge D. Rosson
- Division of Plastic Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
348
|
Association between Body Mass Index and Immune-Related Adverse Events (irAEs) among Advanced-Stage Cancer Patients Receiving Immune Checkpoint Inhibitors: A Pan-Cancer Analysis. Cancers (Basel) 2021; 13:cancers13236109. [PMID: 34885219 PMCID: PMC8657283 DOI: 10.3390/cancers13236109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Currently, clinical studies exploring the impact of high body fat on toxicities after receiving immune checkpoint inhibitors (ICIs) among cancer patients are limited. Here, we analyze data from a health care system serving the mid-Atlantic geographic region to assess how body fat can affect the development of toxicities of ICIs. In our study, body mass index (BMI) was used as the measure of body fat, and the results suggested that cancer patients with a high BMI were more likely to have toxicities after receiving ICIs. Our study suggests that symptom management should be incorporated in the cancer care continuum of patients who receive ICIs, especially those with high BMI. In clinical settings, oncologists should inform cancer patients receiving ICIs with high BMI that their risk of post-treatment toxicities can be higher compared to their counterparts with lower BMI. Abstract Evidence regarding the association between body mass index (BMI) and immune-related adverse events (irAEs) among cancer patients receiving immune checkpoint inhibitors (ICIs) is limited. Here, we use cross-sectional hospital-based data to explore their relationship. Pre-treatment BMI was treated as an ordinal variable (<25, 25 to ≤30, ≥30 kg/m2). The outcome of interest was irAEs after ICI initiation. A multivariable logistic regression model estimated the adjusted odds ratio (aOR) and 95% confidence interval (CI) of BMI. A total of 684 patients with stage III or IV cancer were included in the study (lung: 269, melanoma: 204, other: 211). The mean age at the first dose of ICI was 64.1 years (SD = 13.5), 394 patients (57.6%) were male, and over one-third (N = 260, 38.0%) were non-White. Overall, 52.9% of patients had BMI ≥ 25 kg/m2 (25 to ≤30: 217, ≥30: 145) and 288 (42.1%) had irAEs after ICI treatment. Patients with higher BMI tended to have a higher rate of irAEs (<25: 35.7%, 25 to ≤30: 47.0%, ≥30: 49.0%). The multivariable logistic regression yielded consistent results (BMI ≥ 30 vs. BMI < 25: aOR = 1.47, 95% CI = 0.96–2.23; 25 ≤ BMI < 30 vs. BMI < 25: aOR = 1.46, 95% CI = 1.02–2.11, p-trend = 0.04). In conclusion, among patients with advanced cancer receiving ICIs, the rate of irAEs appears to be higher among those with higher BMI.
Collapse
|
349
|
Liu B, Li QM, Shang ZZ, Zha XQ, Pan LH, Luo JP. Anti-gastric cancer activity of cultivated Dendrobium huoshanense stem polysaccharide in tumor-bearing mice: Effects of molecular weight and O-acetyl group. Int J Biol Macromol 2021; 192:590-599. [PMID: 34648801 DOI: 10.1016/j.ijbiomac.2021.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023]
Abstract
The present study aimed at assuring whether homogeneous cultivated Dendrobium huoshanense stem polysaccharide (cDHPS) could inhibit gastric cancer in vivo, and whether its anti-gastric cancer activity could be affected by its molecular weight and O-acetyl group. Three different fractions (cDHPS-I, cDHPS-II and cDHPS-III) with decreased molecular weights and one fraction (cDHPS-IV) without O-acetyl group were prepared from cDHPS. Their structures were identified systematically. The backbone of cDHPS-I-III was the same as that of cDHPS, while their relative molecular weights displayed a decreasing order as follows: cDHPS > cDHPS-I > cDHPS-II > cDHPS-III. The backbone of cDHPS-IV was similar to those of cDHPS and cDHPS-I-III, but with the absence of O-acetyl groups. Animal experiments exhibited that cDHPS and cDHPS-I-IV could significantly inhibit tumor growth, induce tumor cell apoptosis, suppress tumor angiogenesis and enhance T cell immune response of murine forestomach carcinoma (MFC) tumor-bearing mice. Moreover, all the above effects of cDHPS and cDHPS-I-IV on MFC tumor-bearing mice exhibited a decreasing order as follows: cDHPS > cDHPS-I > cDHPS-II > cDHPS-III > cDHPS-IV. The results suggest that cDHPS could inhibit gastric cancer in vivo, and its anti-gastric cancer activity was closely linked with its molecular weight and O-acetyl group.
Collapse
Affiliation(s)
- Bing Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhen-Zi Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
350
|
Ukidve A, Cu K, Kumbhojkar N, Lahann J, Mitragotri S. Overcoming biological barriers to improve solid tumor immunotherapy. Drug Deliv Transl Res 2021; 11:2276-2301. [PMID: 33611770 DOI: 10.1007/s13346-021-00923-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has been at the forefront of therapeutic interventions for many different tumor types over the last decade. While the discovery of immunotherapeutics continues to occur at an accelerated rate, their translation is often hindered by a lack of strategies to deliver them specifically into solid tumors. Accordingly, significant scientific efforts have been dedicated to understanding the underlying mechanisms that govern their delivery into tumors and the subsequent immune modulation. In this review, we aim to summarize the efforts focused on overcoming tumor-associated biological barriers and enhancing the potency of immunotherapy. We summarize the current understanding of biological barriers that limit the entry of intravascularly administered immunotherapies into the tumors, in vitro techniques developed to investigate the underlying transport processes, and delivery strategies developed to overcome the barriers. Overall, we aim to provide the reader with a framework that guides the rational development of technologies for improved solid tumor immunotherapy.
Collapse
Affiliation(s)
- Anvay Ukidve
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Katharina Cu
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Ninad Kumbhojkar
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Joerg Lahann
- Department of Chemical Engineering, Department of Material Science & Engineering, Department of Macromolecular Science & Engineering, Department of Biomedical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samir Mitragotri
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|