301
|
Kato Y, Maeda T, Suzuki A, Baba Y. Cancer metabolism: New insights into classic characteristics. JAPANESE DENTAL SCIENCE REVIEW 2017; 54:8-21. [PMID: 29628997 PMCID: PMC5884251 DOI: 10.1016/j.jdsr.2017.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Initial studies of cancer metabolism in the early 1920s found that cancer cells were phenotypically characterized by aerobic glycolysis, in that these cells favor glucose uptake and lactate production, even in the presence of oxygen. This property, called the Warburg effect, is considered a hallmark of cancer. The mechanism by which these cells acquire aerobic glycolysis has been uncovered. Acidic extracellular fluid, secreted by cancer cells, induces a malignant phenotype, including invasion and metastasis. Cancer cells survival depends on a critical balance of redox status, which is regulated by amino acid metabolism. Glutamine is extremely important for oxidative phosphorylation and redox regulation. Cells highly dependent on glutamine and that cannot survive with glutamine are called glutamine-addicted cells. Metabolic reprogramming has been observed in cancer stem cells, which have the property of self-renewal and are resistant to chemotherapy and radiotherapy. These findings suggest that studies of cancer metabolism can reveal methods of preventing cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
- Corresponding author. Fax: +81 249328978.
| | - Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| | - Atsuko Suzuki
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| | - Yuh Baba
- Department of General Clinical Medicine, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| |
Collapse
|
302
|
Zhan B, Wen S, Lu J, Shen G, Lin X, Feng J, Huang H. Identification and causes of metabonomic difference between orthotopic and subcutaneous xenograft of pancreatic cancer. Oncotarget 2017; 8:61264-61281. [PMID: 28977862 PMCID: PMC5617422 DOI: 10.18632/oncotarget.18057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal tumors. However, the methodological differences between orthotopic and subcutaneous xenograft (OX and SX) models will cause confusion in understanding its pathological mechanism and clinical relevance. In this study, SX and OX models were established by implanting Panc-1 and BxPC-3 cell strains under skin and on the pancreas of mice, respectively. The tumor tissue and serum samples were collected for1H NMR spectroscopy followed by univariate and multivariate statistical analyses. As results, no obvious metabonomic difference was demonstrated in serum between the two models, however, the model- and cell strain-specific metabonomic differences were observed in tumor tissues. According to the KEGG analysis, ABC transporters, glycerophospholipid metabolism, purine metabolism and central carbon metabolism were identified to be the most significant components involved in metabonomic differences. Considering the methodological discrepancy in SX and OX models, such differences should be contributed to tumor microenvironment. In general, SX are not equivalent to OX models at molecular level. Subcutaneous transplantation displayed its inherent limitations though it offered a simple, inexpensive, reproducible and quantifiable advantage. And orthotopic transplantation may be favorable to simulate PDAC in patients due to its similar pathogenesis to human pancreatic cancer.
Collapse
Affiliation(s)
- Bohan Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Shi Wen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jie Lu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
303
|
Bell RAV, Storey KB. Purification and characterization of skeletal muscle pyruvate kinase from the hibernating ground squirrel, Urocitellus richardsonii: potential regulation by posttranslational modification during torpor. Mol Cell Biochem 2017; 442:47-58. [DOI: 10.1007/s11010-017-3192-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022]
|
304
|
Dong W, Keibler MA, Stephanopoulos G. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis. Metab Eng 2017; 43:113-124. [PMID: 28192215 PMCID: PMC5552450 DOI: 10.1016/j.ymben.2017.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy.
Collapse
Affiliation(s)
- Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark A Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
305
|
Gehrig S, Macpherson JA, Driscoll PC, Symon A, Martin SR, MacRae JI, Kleinjung J, Fraternali F, Anastasiou D. An engineered photoswitchable mammalian pyruvate kinase. FEBS J 2017; 284:2955-2980. [PMID: 28715126 PMCID: PMC5637921 DOI: 10.1111/febs.14175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/24/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023]
Abstract
Changes in allosteric regulation of glycolytic enzymes have been linked to metabolic reprogramming involved in cancer. Remarkably, allosteric mechanisms control enzyme function at significantly shorter time-scales compared to the long-term effects of metabolic reprogramming on cell proliferation. It remains unclear if and how the speed and reversibility afforded by rapid allosteric control of metabolic enzymes is important for cell proliferation. Tools that allow specific, dynamic modulation of enzymatic activities in mammalian cells would help address this question. Towards this goal, we have used molecular dynamics simulations to guide the design of mPKM2 internal light/oxygen/voltage-sensitive domain 2 (LOV2) fusion at position D24 (PiL[D24]), an engineered pyruvate kinase M2 (PKM2) variant that harbours an insertion of the light-sensing LOV2 domain from Avena Sativa within a region implicated in allosteric regulation by fructose 1,6-bisphosphate (FBP). The LOV2 photoreaction is preserved in the PiL[D24] chimera and causes secondary structure changes that are associated with a 30% decrease in the Km of the enzyme for phosphoenolpyruvate resulting in increased pyruvate kinase activity after light exposure. Importantly, this change in activity is reversible upon light withdrawal. Expression of PiL[D24] in cells leads to light-induced increase in labelling of pyruvate from glucose. PiL[D24] therefore could provide a means to modulate cellular glucose metabolism in a remote manner and paves the way for studying the importance of rapid allosteric phenomena in the regulation of metabolism and enzyme control.
Collapse
Affiliation(s)
- Stefanie Gehrig
- Cancer Metabolism LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Paul C. Driscoll
- Metabolomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Alastair Symon
- Instrument Prototyping Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Stephen R. Martin
- Structural Biology Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - James I. MacRae
- Metabolomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Jens Kleinjung
- Computational BiologyThe Francis Crick InstituteLondonUK
| | - Franca Fraternali
- Randall Division of Cell and Molecular BiophysicsKing's CollegeLondonUK
| | | |
Collapse
|
306
|
Hwang SR, Murga-Zamalloa C, Brown N, Basappa J, McDonnell SR, Mendoza-Reinoso V, Basrur V, Wilcox R, Elenitoba-Johnson K, Lim MS. Pyrimidine tract-binding protein 1 mediates pyruvate kinase M2-dependent phosphorylation of signal transducer and activator of transcription 3 and oncogenesis in anaplastic large cell lymphoma. J Transl Med 2017; 97:962-970. [PMID: 28414323 DOI: 10.1038/labinvest.2017.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/12/2017] [Accepted: 03/02/2017] [Indexed: 01/23/2023] Open
Abstract
PKM2 (pyruvate kinase M2), a critical regulator of glycolysis, is phosphorylated by numerous growth factor receptors and oncogenic tyrosine kinases including NPM-ALK which is expressed in a subset of aggressive T-cell non-Hodgkin lymphomas known as anaplastic large cell lymphoma, ALK-positive. Our previous work demonstrated that phosphorylation of Y105-PKM2 by NPM-ALK regulates a major metabolic shift to promote lymphomagenesis. In addition to its role in metabolism, recent studies have shown that PKM2 promotes oncogenesis by phosphorylating nuclear STAT3 (signal transducer and activator of transcription 3) and regulating transcription of genes involved in cell survival and proliferation. We hypothesized that identification of novel PKM2 interactors could provide additional insights into its expanding functional role in cancer. To this end, immunocomplexes of FLAG-tagged PKM2 were isolated from NPM-ALK-positive ALCL (anaplastic large cell lymphoma) cells and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) which led to the identification of polypyrimidine tract-binding protein (PTBP1) as a novel interactor of PKM2. The interaction between PTBP1 and PKM2 was restricted to the nucleus and was dependent on NPM-ALK mediated Y105 phosphorylation of PKM2. Stable shRNA-mediated silencing of PTBP1 resulted in a marked decrease in pY105-PKM2 and pY705-STAT3 which led to decreased ALCL cell proliferation and colony formation. Overall, our data demonstrate that PTBP1 interacts with PKM2 and promotes ALCL oncogenesis by facilitating PKM2-dependent activation of STAT3 within the nucleus.
Collapse
Affiliation(s)
- Steven R Hwang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Johnvesly Basappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Ryan Wilcox
- Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kojo Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
307
|
Tee SS, Park JM, Hurd RE, Brimacombe KR, Boxer MB, Massoud TF, Rutt BK, Spielman DM. PKM2 activation sensitizes cancer cells to growth inhibition by 2-deoxy-D-glucose. Oncotarget 2017; 8:90959-90968. [PMID: 29207616 PMCID: PMC5710897 DOI: 10.18632/oncotarget.19630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Cancer metabolism has emerged as an increasingly attractive target for interfering with tumor growth. Small molecule activators of pyruvate kinase isozyme M2 (PKM2) suppress tumor formation but have an unknown effect on established tumors. We demonstrate that TEPP-46, a PKM2 activator, results in increased glucose consumption, providing the rationale for combining PKM2 activators with the toxic glucose analog, 2-deoxy-D-glucose (2-DG). Combination treatment resulted in reduced viability of a range of cell lines in standard cell culture conditions at concentrations of drugs that had no effect when used alone. This effect was replicated in vivo on established subcutaneous tumors. We further demonstrated the ability to detect acute metabolic differences in combination treatment using hyperpolarized magnetic resonance spectroscopy (MRS). Combination treated tumors displayed a higher pyruvate to lactate 13C-label exchange 2 hr post-treatment. This ability to assess the effect of drugs non-invasively may accelerate the implementation and clinical translation of drugs that target cancer metabolism.
Collapse
Affiliation(s)
- Sui Seng Tee
- Department of Radiology, Stanford University, Stanford, CA, USA.,Current/Present address: Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jae Mo Park
- Department of Radiology, Stanford University, Stanford, CA, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph E Hurd
- Applied Sciences Laboratory, GE Healthcare, Menlo Park, CA, USA
| | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA.,NIH Chemical Genomics Center, Bethesda, MD, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Tarik F Massoud
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Brian K Rutt
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
308
|
Fumarola C, Cretella D, La Monica S, Bonelli MA, Alfieri R, Caffarra C, Quaini F, Madeddu D, Falco A, Cavazzoni A, Digiacomo G, Mazzaschi G, Vivo V, Barocelli E, Tiseo M, Petronini PG, Ardizzoni A. Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism. Oncotarget 2017; 8:91841-91859. [PMID: 29190880 PMCID: PMC5696146 DOI: 10.18632/oncotarget.19279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/18/2017] [Indexed: 12/26/2022] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signaling is a complex pathway which controls several processes, including cell proliferation, survival, migration, and metabolism. FGFR1 signaling is frequently deregulated via amplification/over-expression in NSCLC of squamous histotype (SQCLC), however its inhibition has not been successfully translated in clinical setting. We determined whether targeting downstream signaling implicated in FGFR1 effects on glucose metabolism potentiates the anti-tumor activity of FGFR1 inhibition in SQCLC. In FGFR1 amplified/over-expressing SQCLC cell lines, FGF2-mediated stimulation of FGFR1 under serum-deprivation activated both MAPK and AKT/mTOR pathways and increased glucose uptake, glycolysis, and lactate production, through AKT/mTOR-dependent HIF-1α accumulation and up-regulation of GLUT-1 glucose transporter. These effects were hindered by PD173074 and NVP-BGJ398, selective FGFR inhibitors, as well as by dovitinib, a multi-kinase inhibitor. Glucose metabolism was hampered by the FGFR inhibitors also under hypoxic conditions, with consequent inhibition of cell proliferation and viability. In presence of serum, glucose metabolism was impaired only in cell models in which FGFR1 inhibition was associated with AKT/mTOR down-regulation. When the activation of the AKT/mTOR pathway persisted despite FGFR1 down-regulation, the efficacy of NVP-BGJ398 could be significantly improved by the combination with NVP-BEZ235 or other inhibitors of this signaling cascade, both in vitro and in xenotransplanted nude mice. Collectively our results indicate that inhibition of FGFR1 signaling impacts on cancer cell growth also by affecting glucose energy metabolism. In addition, this study strongly suggests that the therapeutic efficacy of FGFR1 targeting molecules in SQCLC may be implemented by combined treatments tackling on glucose metabolism.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara A Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cristina Caffarra
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Vivo
- Food and Drug Department, University of Parma, Parma, Italy
| | | | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Andrea Ardizzoni
- Division of Medical Oncology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
309
|
Jin L, Chun J, Pan C, Alesi GN, Li D, Magliocca KR, Kang Y, Chen ZG, Shin DM, Khuri FR, Fan J, Kang S. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene 2017; 36:3797-3806. [PMID: 28218905 PMCID: PMC5501759 DOI: 10.1038/onc.2017.6] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
Metastases remain the major cause of death from cancer. Recent molecular advances have highlighted the importance of metabolic alterations in cancer cells, including the Warburg effect that describes an increased glycolysis in cancer cells. However, how this altered metabolism contributes to tumour metastasis remains elusive. Here, we report that phosphorylation-induced activation of lactate dehydrogenase A (LDHA), an enzyme that catalyses the interconversion of pyruvate and lactate, promotes cancer cell invasion, anoikis resistance and tumour metastasis. We demonstrate that LDHA is phosphorylated at tyrosine 10 by upstream kinases, HER2 and Src. Targeting HER2 or Src attenuated LDH activity as well as invasive potential in head and neck cancer and breast cancer cells. Inhibition of LDH activity by small hairpin ribonucleic acid or expression of phospho-deficient LDHA Y10F sensitized the cancer cells to anoikis induction and resulted in attenuated cell invasion and elevated reactive oxygen species, whereas such phenotypes were reversed by its product lactate or antioxidant N-acetylcysteine, suggesting that Y10 phosphorylation-mediated LDHA activity promotes cancer cell invasion and anoikis resistance through redox homeostasis. In addition, LDHA knockdown or LDHA Y10F rescue expression in human cancer cells resulted in decreased tumour metastasis in xenograft mice. Furthermore, LDHA phosphorylation at Y10 positively correlated with progression of metastatic breast cancer in clinical patient tumour samples. Our findings demonstrate that LDHA phosphorylation and activation provide pro-invasive, anti-anoikis and pro-metastatic advantages to cancer cells, suggesting that Y10 phosphorylation of LDHA may represent a promising therapeutic target and a prognostic marker for metastatic human cancers.
Collapse
Affiliation(s)
- L Jin
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Chun
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - C Pan
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - GN Alesi
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - D Li
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - KR Magliocca
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Y Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - ZG Chen
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - DM Shin
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - FR Khuri
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Fan
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - S Kang
- Winship Cancer Institute, Department of Hematology/Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
310
|
Abstract
Genetic tools help to dissect the relationship between aerobic glycolysis and anabolic metabolism in the retinas of mice.
Collapse
Affiliation(s)
- James B Hurley
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Ophthalmology, University of Washington, Seattle, United States
| |
Collapse
|
311
|
Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 2017; 36:5771-5792. [PMID: 28604751 DOI: 10.1038/onc.2017.189] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.
Collapse
|
312
|
Chinchore Y, Begaj T, Wu D, Drokhlyansky E, Cepko CL. Glycolytic reliance promotes anabolism in photoreceptors. eLife 2017; 6. [PMID: 28598329 PMCID: PMC5499945 DOI: 10.7554/elife.25946] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
Vertebrate photoreceptors are among the most metabolically active cells, exhibiting a high rate of ATP consumption. This is coupled with a high anabolic demand, necessitated by the diurnal turnover of a specialized membrane-rich organelle, the outer segment, which is the primary site of phototransduction. How photoreceptors balance their catabolic and anabolic demands is poorly understood. Here, we show that rod photoreceptors in mice rely on glycolysis for their outer segment biogenesis. Genetic perturbations targeting allostery or key regulatory nodes in the glycolytic pathway impacted the size of the outer segments. Fibroblast growth factor signaling was found to regulate glycolysis, with antagonism of this pathway resulting in anabolic deficits. These data demonstrate the cell autonomous role of the glycolytic pathway in outer segment maintenance and provide evidence that aerobic glycolysis is part of a metabolic program that supports the biosynthetic needs of a normal neuronal cell type. DOI:http://dx.doi.org/10.7554/eLife.25946.001 Living cells need building materials and energy to grow and carry out their activities. Most cells in the body use sugars like glucose for these purposes. In a process known as glycolysis, cells break down glucose into molecules that are eventually converted to carbon dioxide and water to form the chemical ATP – the cellular currency for energy. Developing cells that have not yet fully specialized, and rapidly dividing cells, like cancer cells, consume large amounts of glucose via aerobic glycolysis (also known as the Warburg effect) as they require high levels of energy and building materials. As cells become more specialized and divide less often, they have a reduced need for building blocks, and adjust their consumption and breakdown of glucose accordingly. One exception is the photoreceptor cells, found in the light-sensitive part of our eyes. Although these specialized cells do not divide, they still need a lot of energy and building blocks to constantly renew their light-sensing and processing structures, and to capture and convert the information from the environment into signals. Previous research has shown that the eye also uses the Warburg effect. However, until now, it was not known whether the photoreceptors or other cells in the eye carry out this form of glycolysis. Using genetic tools, Chinchore et al. analysed how the photoreceptor cells in mice used glucose. The experiments demonstrated that the photoreceptors do indeed carry out the Warburg effect. Chinchore et al. further discovered that the Warburg effect is regulated by the same key enzymes and signalling molecules that cancer cells use. This indicates that specialized cells like photoreceptors might choose to retain certain metabolic features of their precursor cells, if they need to. These findings provide new insight into how photoreceptors use glucose. The next step will be to understand how aerobic glycolysis is regulated in healthy eyes as well as in eyes that are affected by degenerating diseases, which may ultimately lead to new ways of treating blindness. DOI:http://dx.doi.org/10.7554/eLife.25946.002
Collapse
Affiliation(s)
- Yashodhan Chinchore
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States
| | - Tedi Begaj
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States
| | - David Wu
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States
| | - Eugene Drokhlyansky
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
313
|
Antolak A, Bodzoń-Kułakowska A, Cetnarska E, Pietruszka M, Marszałek-Grabska M, Kotlińska J, Suder P. Proteomic Data in Morphine Addiction Versus Real Protein Activity: Metabolic Enzymes. J Cell Biochem 2017; 118:4323-4330. [PMID: 28430368 DOI: 10.1002/jcb.26085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/20/2017] [Indexed: 01/01/2023]
Abstract
Drug dependence is an escalating problem worldwide and many efforts are being made to understand the molecular basis of addiction. The morphine model is widely used in these investigations. To date, at least 29 studies exploring the influence of morphine on mammals' proteomes have been published. Among various proteins indicated as up- or down-regulated, the expression changes of enzymes engaged in energy metabolism pathways have often been confirmed. To verify whether proteomics-indicated alterations in enzyme levels reflect changes in their activity, four enzymes: PK, MDH, Complex I, and Complex V were investigated in morphine addiction and abstinence models. After analyses of the rat brain mitochondria fraction in the model of morphine dependence, we found that one of the investigated enzymes (pyruvate kinase) showed statistically significant differences observed between morphine, control, and abstinence groups. J. Cell. Biochem. 118: 4323-4330, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Antolak
- Faculty of Materials Science and Technology, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Cracow, Poland
| | - Anna Bodzoń-Kułakowska
- Faculty of Materials Science and Technology, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Cracow, Poland
| | - Ewa Cetnarska
- Faculty of Materials Science and Technology, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Cracow, Poland
| | - Monika Pietruszka
- Faculty of Materials Science and Technology, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Cracow, Poland
| | - Marta Marszałek-Grabska
- Faculty of Pharmacy, Departament of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Jolanta Kotlińska
- Faculty of Materials Science and Technology, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Cracow, Poland
| | - Piotr Suder
- Faculty of Materials Science and Technology, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Cracow, Poland
| |
Collapse
|
314
|
Tech K, Tikunov AP, Farooq H, Morrissy AS, Meidinger J, Fish T, Green SC, Liu H, Li Y, Mungall AJ, Moore RA, Ma Y, Jones SJM, Marra MA, Vander Heiden MG, Taylor MD, Macdonald JM, Gershon TR. Pyruvate Kinase Inhibits Proliferation during Postnatal Cerebellar Neurogenesis and Suppresses Medulloblastoma Formation. Cancer Res 2017; 77:3217-3230. [PMID: 28515149 DOI: 10.1158/0008-5472.can-16-3304] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/20/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Abstract
Aerobic glycolysis supports proliferation through unresolved mechanisms. We have previously shown that aerobic glycolysis is required for the regulated proliferation of cerebellar granule neuron progenitors (CGNP) and for the growth of CGNP-derived medulloblastoma. Blocking the initiation of glycolysis via deletion of hexokinase-2 (Hk2) disrupts CGNP proliferation and restricts medulloblastoma growth. Here, we assessed whether disrupting pyruvate kinase-M (Pkm), an enzyme that acts in the terminal steps of glycolysis, would alter CGNP metabolism, proliferation, and tumorigenesis. We observed a dichotomous pattern of PKM expression, in which postmitotic neurons throughout the brain expressed the constitutively active PKM1 isoform, while neural progenitors and medulloblastomas exclusively expressed the less active PKM2. Isoform-specific Pkm2 deletion in CGNPs blocked all Pkm expression. Pkm2-deleted CGNPs showed reduced lactate production and increased SHH-driven proliferation. 13C-flux analysis showed that Pkm2 deletion reduced the flow of glucose carbons into lactate and glutamate without markedly increasing glucose-to-ribose flux. Pkm2 deletion accelerated tumor formation in medulloblastoma-prone ND2:SmoA1 mice, indicating the disrupting PKM releases CGNPs from a tumor-suppressive effect. These findings show that distal and proximal disruptions of glycolysis have opposite effects on proliferation, and that efforts to block the oncogenic effect of aerobic glycolysis must target reactions upstream of PKM. Cancer Res; 77(12); 3217-30. ©2017 AACR.
Collapse
Affiliation(s)
- Katherine Tech
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina.,Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Andrey P Tikunov
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Hamza Farooq
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - A Sorana Morrissy
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jessica Meidinger
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Taylor Fish
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Sarah C Green
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Hedi Liu
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Yisu Li
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Richard A Moore
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yussanne Ma
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jeffrey M Macdonald
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Timothy R Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
315
|
Tang Y, Wang XW, Liu ZH, Sun YM, Tang YX, Zhou DH. Chaperone-mediated autophagy substrate proteins in cancer. Oncotarget 2017; 8:51970-51985. [PMID: 28881704 PMCID: PMC5584305 DOI: 10.18632/oncotarget.17583] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/07/2017] [Indexed: 01/10/2023] Open
Abstract
All intracellular proteins undergo continuous synthesis and degradation. Chaperone-mediated autophagy (CMA) is necessary to maintain cellular homeostasis through turnover of cytosolic proteins (substrate proteins). This degradation involves a series of substrate proteins including both cancer promoters and suppressors. Since activating or inhibiting CMA pathway to treat cancer is still debated, targeting to the CMA substrate proteins provides a novel direction. We summarize the cancer-associated substrate proteins which are degraded by CMA. Consequently, CMA substrate proteins catalyze the glycolysis which contributes to the Warburg effect in cancer cells. The fact that the degradation of substrate proteins based on the CMA can be altered by posttranslational modifications such as phosphorylation or acetylation. In conclusion, targeting to CMA substrate proteins develops into a new anticancer therapeutic approach.
Collapse
Affiliation(s)
- Ying Tang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiong-Wen Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhan-Hua Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yun-Ming Sun
- Department of Gynecology and Obstetrics, Maternal and Child Health Hospital of Zhoushan, Zhoushan 316000, China
| | - Yu-Xin Tang
- Department of Gynecology and Obstetrics, Maternal and Child Health Hospital of Zhoushan, Zhoushan 316000, China
| | - Dai-Han Zhou
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
316
|
Cao Y, Wang RH. Associations among Metabolism, Circadian Rhythm and Age-Associated Diseases. Aging Dis 2017; 8:314-333. [PMID: 28580187 PMCID: PMC5440111 DOI: 10.14336/ad.2016.1101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating epidemiological studies have implicated a strong link between age associated metabolic diseases and cancer, though direct and irrefutable evidence is missing. In this review, we discuss the connection between Warburg effects and tumorigenesis, as well as adaptive responses to environment such as circadian rhythms on molecular pathways involved in metabolism. We also review the central role of the sirtuin family of proteins in physiological modulation of cellular processes and age-associated metabolic diseases. We also provide a macroscopic view of how the circadian rhythm affects metabolism and may be involved in cell metabolism reprogramming and cancer pathogenesis. The aberrations in metabolism and the circadian system may lead to age-associated diseases directly or through intermediates. These intermediates may be either mutated or reprogrammed, thus becoming responsible for chromatin modification and oncogene transcription. Integration of circadian rhythm and metabolic reprogramming in the holistic understanding of metabolic diseases and cancer may provide additional insights into human diseases.
Collapse
Affiliation(s)
- Yiwei Cao
- Faculty of Health Science, University of Macau, Macau, China
| | - Rui-Hong Wang
- Faculty of Health Science, University of Macau, Macau, China
| |
Collapse
|
317
|
Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu IH, Lockhart S, Coppey LJ, Pfenninger A, Liew CW, Qiang G, Burkart AM, Hastings S, Pober D, Cahill C, Niewczas MA, Israelsen WJ, Tinsley L, Stillman IE, Amenta PS, Feener EP, Vander Heiden MG, Stanton RC, King GL. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med 2017; 23:753-762. [PMID: 28436957 DOI: 10.1038/nm.4328] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (ł50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function.
Collapse
Affiliation(s)
- Weier Qi
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hillary A Keenan
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Atsushi Ishikado
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aimo Kannt
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | - Mark A Yorek
- Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guifen Qiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, China
| | - Alison M Burkart
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Hastings
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David Pober
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Cahill
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Monika A Niewczas
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - William J Israelsen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liane Tinsley
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac E Stillman
- Beth Israel Deaconess Medical Center, Division of Anatomic Pathology, Boston, Massachusetts, USA
| | - Peter S Amenta
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward P Feener
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - George L King
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
318
|
Song L, Zhang W, Chang Z, Pan Y, Zong H, Fan Q, Wang L. miR-4417 Targets Tripartite Motif-Containing 35 (TRIM35) and Regulates Pyruvate Kinase Muscle 2 (PKM2) Phosphorylation to Promote Proliferation and Suppress Apoptosis in Hepatocellular Carcinoma Cells. Med Sci Monit 2017; 23:1741-1750. [PMID: 28394882 PMCID: PMC5398329 DOI: 10.12659/msm.900296] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/24/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of small non-coding RNAs that are strongly involved in various types of carcinogenesis, including hepatocellular carcinoma (HCC). This study aimed to clarify whether miR-4417 promotes HCC growth by targeting TRIM35 and regulating PKM2 phosphorylation. MATERIAL AND METHODS Online software, including TargetScan and miRanda, was used to predict the potential target of miR-4417. Real-Time PCR (qRT-PCR) and Western blot assays were performed to detect the expression levels of mRNA and protein, respectively. Cell proliferation was measured by MTT assay and apoptosis in A549 cells was examined by flow cytometry. RESULTS Bioinformatics reveal that TRIM35 mRNA contains 1 conserved target site of miR-4417. High level of miR-4417 and low levels of TRIM35 mRNA and protein were observed in HCC cells compared with a normal liver cell line. Biological function analysis showed that miR-4417 inhibitor inhibits cell proliferation and promotes apoptosis in HCC cells. Furthermore, we verified that TRIM35 is a functional target of miR-4417 by use of luciferase reporter assay, and TRIM35 overexpressing showed an elevation of proliferation and a reduction of apoptosis in HCC cells. We subsequently investigated whether miR-4417 and TRIM35 regulate HCC cell proliferation and apoptosis through PKM2 Y105 phosphorylation, and the results supported our speculation that miR-4417 targets TRIM35 and regulates the Y105 phosphorylation of PKM2 to promote hepatocarcinogenesis. CONCLUSIONS Our findings indicate that miR-4417 may function as an oncogene in HCC and is a potential alternative therapeutic target for this deadly disease.
Collapse
Affiliation(s)
- Lijie Song
- Corresponding Authors: Lijie Song, e-mail: , Liuxing Wang, e-mail:
| | | | | | | | | | | | | |
Collapse
|
319
|
Zhang B, Liu JY. Serine phosphorylation of the cotton cytosolic pyruvate kinase GhPK6 decreases its stability and activity. FEBS Open Bio 2017; 7:358-366. [PMID: 28286731 DOI: 10.1002/2f2211-5463.12179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/06/2016] [Accepted: 12/08/2016] [Indexed: 05/28/2023] Open
Abstract
Pyruvate kinase (PK, EC 2.7.1.40) is an important glycolytic enzyme involved in multiple physiological and developmental processes. In this study, we demonstrated that cotton cytosolic pyruvate kinase 6 (GhPK6) was phosphorylated at serines 215 and 402. Phosphorylation of GhPK6 at serine 215 inhibited its enzyme activity, whereas phosphorylation at both serine sites could promote its degradation. The phosphorylation-mediated ubiquitination of GhPK6 was gradually attenuated during the cotton fiber elongation process, which sufficiently explained the increase in the protein/mRNA ratios. These results collectively provided experimental evidence that cotton fiber elongation might be regulated at the post-translational level.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology Center for Plant Biology School of Life Sciences Tsinghua University Beijing China; Tsinghua-Peking Center for Life Science Tsinghua University Beijing China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology Center for Plant Biology School of Life Sciences Tsinghua University Beijing China
| |
Collapse
|
320
|
Li D, Wei X, Ma M, Jia H, Zhang Y, Kang W, Wang T, Shi X. FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells. Oncol Lett 2017; 13:2607-2614. [PMID: 28454440 PMCID: PMC5403336 DOI: 10.3892/ol.2017.5761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/23/2016] [Indexed: 11/23/2022] Open
Abstract
Pyruvate kinase isoenzyme M2 (PKM2) has previously been identified as a tumor biomarker and potential therapeutic target for the treatment of cancer. In the present study, FFJ-3, a structurally modified version of mollugin, an extract of the Traditional Chinese herbal medicine Rubia tinctorum (madder) was used in order to determine the anticancer activity of the compound and investigate the potential mechanisms underlying this effect in human cancer cells. The results of the present study revealed that FFJ-3 inhibited the survival of HepG2 human hepatoma cells, MCF-7 human breast cancer cells and A549 human lung adenocarcinoma cells using the MTT assay. In addition, FFJ-3 arrested cell cycle progression at G2/M and G1 in HepG2 and A549 cells, respectively. Further analyses demonstrated that FFJ-3 attenuated the expression of PKM2 protein via the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) signaling pathway. Furthermore, treatment of all three cell types with FFJ-3 significantly increased apoptosis and decreased the mitochondrial membrane potential compared with the untreated control group. In addition, FFJ-3 treatment increased the ratio of B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X and activated the caspase-3 cascade. In conclusion, the inhibition of the PI3K/Akt signaling pathway and activation of the caspase-3 cascade by FFJ-3 were primarily responsible for the inhibition of cell proliferation and induction of apoptosis in MCF-7, HepG2 and A549 cells. The results of the present study suggest a potential therapeutic role for FFJ-3 in the treatment of human cancer.
Collapse
Affiliation(s)
- Dengyun Li
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaoli Wei
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Mingming Ma
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Huina Jia
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yu Zhang
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wenyi Kang
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tianxiao Wang
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaoyan Shi
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
321
|
Santacatterina F, Sánchez-Aragó M, Catalán-García M, Garrabou G, de Arenas CN, Grau JM, Cardellach F, Cuezva JM. Pyruvate kinase M2 and the mitochondrial ATPase Inhibitory Factor 1 provide novel biomarkers of dermatomyositis: a metabolic link to oncogenesis. J Transl Med 2017; 15:29. [PMID: 28183315 PMCID: PMC5301421 DOI: 10.1186/s12967-017-1136-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metabolic alterations play a role in the development of inflammatory myopathies (IMs). Herein, we have investigated through a multiplex assay whether proteins of energy metabolism could provide biomarkers of IMs. METHODS A cohort of thirty-two muscle biopsies and forty plasma samples comprising polymyositis (PM), dermatomyositis (DM) and sporadic inclusion body myositis (sIBM) and control donors was interrogated with monoclonal antibodies against proteins of energy metabolism using reverse phase protein microarrays (RPPA). RESULTS When compared to controls the expression of the proteins is not significantly affected in the muscle of PM patients. However, the expression of β-actin is significantly increased in DM and sIBM in consistence with muscle and fiber regeneration. Concurrently, the expression of some proteins involved in glucose metabolism displayed a significant reduction in muscle of sIBM suggesting a repression of glycolytic metabolism in these patients. In contrasts to these findings, the expression of the glycolytic pyruvate kinase isoform M2 (PKM2) and of the mitochondrial ATPase Inhibitor Factor 1 (IF1) and Hsp60 were significantly augmented in DM when compared to other IMs in accordance with a metabolic shift prone to cancer development. PKM2 alone or in combination with other biomarkers allowed the discrimination of control and IMs with very high (>95%) sensitivity and specificity. Unfortunately, plasma levels of PKM2 were not significantly altered in DM patients to recommend its use as a non-invasive biomarker of the disease. CONCLUSIONS Expression of proteins of energy metabolism in muscle enabled discrimination of patients with IMs. RPPA identified the glycolysis promoting PKM2 and IF1 proteins as specific biomarkers of dermatomyositis, providing a biochemical link of this IM with oncogenesis.
Collapse
Affiliation(s)
- Fulvio Santacatterina
- Departamento de Biología Molecular, Centro de Biología Molecular Severo, Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo, Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Marc Catalán-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona, Barcelona, Spain
| | - Glòria Garrabou
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona, Barcelona, Spain
| | - Cristina Nuñez de Arenas
- Departamento de Biología Molecular, Centro de Biología Molecular Severo, Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Josep M. Grau
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona, Barcelona, Spain
| | - Francesc Cardellach
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona, Barcelona, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo, Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| |
Collapse
|
322
|
Talesa VN, Ferri I, Bellezza G, Love HD, Sidoni A, Antognelli C. Glyoxalase 2 Is Involved in Human Prostate Cancer Progression as Part of a Mechanism Driven By PTEN/PI3K/AKT/mTOR Signaling With Involvement of PKM2 and ERα. Prostate 2017; 77:196-210. [PMID: 27696457 DOI: 10.1002/pros.23261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glyoxalase 2 (Glo2), together with glyoxalase 1 (Glo1), forms the main scavenging system of methylglyoxal, a potent pro-apoptotic agent mainly generated by glycolysis. An increased rate of glycolysis is a well known signature of cancer cells. As a survival strategy, Glo1 is overexpressed in many human malignant cells, including prostate cancer (PCa), where it plays a crucial role in progression. No information is available on the role of Glo2 in the same ambit. PCa is the most common malignancy affecting men in the western world. Progression to a lethal hormone-refractory PCa represents the major concern in this pathology. Therefore, a deeper understanding of the molecular mechanisms underlying PCa invasiveness and metastasis is urgently needed in order to develop novel therapeutic targets for this incurable state of the malignancy. METHODS Glo2 and Glo1 expression was examined in clinical samples of PCa by immunohistochemistry and in different PCa cell models by western blotting and quantitative real-time polymerase chain reaction. Gene silencing/overexpression and scavenging/inhibitory agents were used for functional analyses. RESULTS We demonstrated that Glo2, together with Glo1, represents a novel mechanism in PCa progression as part of a pathway driven by PTEN/PI3K/AKT/mTOR signaling with involvement of PKM2 and ERα. Importantly, Glo1/Glo2 silencing did not alter the behavior of benign cells. CONCLUSIONS Targeting glyoxalases metabolic pathway may represent a strategy to selectively inhibit advanced PCa. Prostate 77:196-210, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincenzo N Talesa
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Harold D Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angelo Sidoni
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Antognelli
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
323
|
Zhang B, Liu JY. Serine phosphorylation of the cotton cytosolic pyruvate kinase GhPK6 decreases its stability and activity. FEBS Open Bio 2017; 7:358-366. [PMID: 28286731 PMCID: PMC5337898 DOI: 10.1002/2211-5463.12179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/06/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022] Open
Abstract
Pyruvate kinase (PK, EC 2.7.1.40) is an important glycolytic enzyme involved in multiple physiological and developmental processes. In this study, we demonstrated that cotton cytosolic pyruvate kinase 6 (GhPK6) was phosphorylated at serines 215 and 402. Phosphorylation of GhPK6 at serine 215 inhibited its enzyme activity, whereas phosphorylation at both serine sites could promote its degradation. The phosphorylation-mediated ubiquitination of GhPK6 was gradually attenuated during the cotton fiber elongation process, which sufficiently explained the increase in the protein/mRNA ratios. These results collectively provided experimental evidence that cotton fiber elongation might be regulated at the post-translational level.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology Center for Plant Biology School of Life Sciences Tsinghua University Beijing China; Tsinghua-Peking Center for Life Science Tsinghua University Beijing China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology Center for Plant Biology School of Life Sciences Tsinghua University Beijing China
| |
Collapse
|
324
|
Xiangyun Y, Xiaomin N, linping G, Yunhua X, Ziming L, Yongfeng Y, Zhiwei C, Shun L. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 2017; 8:6984-6993. [PMID: 28036303 PMCID: PMC5351684 DOI: 10.18632/oncotarget.14346] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor cells trends to express high level of pyruvate kinase M2 (PKM2). The inhibition of PKM2 activity is needed for antioxidant response by diverting glucose flux into the pentose phosphate pathway and thus generating sufficient reducing potential. Here we report that PKM2 is succinylated at lysine 498 (K498) and succinylation increases its activity. SIRT5 binds to, desuccinylates and inhibits PKM2 activity. Increased level of reactive oxygen species (ROS) decreases both the succinylation and activity of PKM2 by increasing its binding to SIRT5. Substitution of endogenous PKM2 with a succinylation mimetic mutant K498E decreases cellular NADPH production and inhibits cell proliferation and tumor growth. Moreover, inhibition of SIRT5 suppresses tumor cell proliferation through desuccinylation of PKM2 K498. These results reveal a new mechanism of PKM2 modification, a new function of SIRT5 in response to oxidative stress which stimulates cell proliferation and tumor growth, and also a potential target for clinical cancer research.
Collapse
Affiliation(s)
- Ye Xiangyun
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Niu Xiaomin
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Gu linping
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Xu Yunhua
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Li Ziming
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yu Yongfeng
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Chen Zhiwei
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Lu Shun
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| |
Collapse
|
325
|
Kremer JC, Prudner BC, Lange SES, Bean GR, Schultze MB, Brashears CB, Radyk MD, Redlich N, Tzeng SC, Kami K, Shelton L, Li A, Morgan Z, Bomalaski JS, Tsukamoto T, McConathy J, Michel LS, Held JM, Van Tine BA. Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. Cell Rep 2017; 18:991-1004. [PMID: 28122247 PMCID: PMC5840045 DOI: 10.1016/j.celrep.2016.12.077] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Targeting defects in metabolism is an underutilized strategy for the treatment of cancer. Arginine auxotrophy resulting from the silencing of argininosuccinate synthetase 1 (ASS1) is a common metabolic alteration reported in a broad range of aggressive cancers. To assess the metabolic effects that arise from acute and chronic arginine starvation in ASS1-deficient cell lines, we performed metabolite profiling. We found that pharmacologically induced arginine depletion causes increased serine biosynthesis, glutamine anaplerosis, oxidative phosphorylation, and decreased aerobic glycolysis, effectively inhibiting the Warburg effect. The reduction of glycolysis in cells otherwise dependent on aerobic glycolysis is correlated with reduced PKM2 expression and phosphorylation and upregulation of PHGDH. Concurrent arginine deprivation and glutaminase inhibition was found to be synthetic lethal across a spectrum of ASS1-deficient tumor cell lines and is sufficient to cause in vivo tumor regression in mice. These results identify two synthetic lethal therapeutic strategies exploiting metabolic vulnerabilities of ASS1-negative cancers.
Collapse
Affiliation(s)
- Jeff Charles Kremer
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bethany Cheree Prudner
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Elaine Stubbs Lange
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory Richard Bean
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Bailey Schultze
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Caitlyn Brook Brashears
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan DeAnna Radyk
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Redlich
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin-Cheng Tzeng
- Division of Molecular Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenjiro Kami
- Human Metabolome Technologies, 246-2 Mizukami Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Laura Shelton
- Human Metabolome Technologies America, Boston, MA 02134, USA
| | - Aixiao Li
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zack Morgan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Takashi Tsukamoto
- Department of Neurology and Johns Hopkins Drug Discovery Program, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jon McConathy
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, University of Alabama, Birmingham, AL 35249, USA
| | - Loren Scott Michel
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Matthew Held
- Division of Molecular Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Andrew Van Tine
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
326
|
Gu Z, Xia J, Xu H, Frech I, Tricot G, Zhan F. NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase. J Hematol Oncol 2017; 10:17. [PMID: 28086949 PMCID: PMC5237262 DOI: 10.1186/s13045-017-0392-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aerobic glycolysis, a hallmark of cancer, is characterized by increased metabolism of glucose and production of lactate in normaxia. Recently, pyruvate kinase M2 (PKM2) has been identified as a key player for regulating aerobic glycolysis and promoting tumor cell proliferation and survival. METHODS Tandem affinity purification followed up by mass spectrometry (TAP-MS) and co-immunoprecipitation (Co-IP) were used to study the interaction between NIMA (never in mitosis gene A)-related kinase 2 (NEK2) and heterogeneous nuclear ribonucleoproteins (hnRNP) A1/2. RNA immunoprecipitation (RIP) was performed to identify NEK2 binding to PKM pre-mRNA sequence. Chromatin-immunoprecipitation (ChIP)-PCR was performed to analyze a transcriptional regulation of NEK2 by c-Myc. Western blot and real-time PCR were executed to analyze the regulation of PKM2 by NEK2. RESULTS NEK2 regulates the alternative splicing of PKM immature RNA in multiple myeloma cells by interacting with hnRNPA1/2. RIP shows that NEK2 binds to the intronic sequence flanking exon 9 of PKM pre-mRNA. Knockdown of NEK2 decreases the ratio of PKM2/PKM1 and also other aerobic glycolysis genes including GLUT4, HK2, ENO1, LDHA, and MCT4. Myeloma patients with high expression of NEK2 and PKM2 have lower event-free survival and overall survival. Our data indicate that NEK2 is transcriptionally regulated by c-Myc in myeloma cells. Ectopic expression of NEK2 partially rescues growth inhibition and cell death induced by silenced c-Myc. CONCLUSIONS Our studies demonstrate that NEK2 promotes aerobic glycolysis through regulating splicing of PKM and increasing the PKM2/PKM1 ratio in myeloma cells which contributes to its oncogenic activity.
Collapse
Affiliation(s)
- Zhimin Gu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Jiliang Xia
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
- Institute of Cancer Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Xu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Ivana Frech
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Guido Tricot
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Fenghuang Zhan
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA.
| |
Collapse
|
327
|
Low glucose stress decreases cellular NADH and mitochondrial ATP in colonic epithelial cancer cells: Influence of mitochondrial substrates. Chem Biol Interact 2017; 264:16-24. [PMID: 28087461 DOI: 10.1016/j.cbi.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
In this study, we investigated how colonic epithelial cells maintained pyridine nucleotide (NADH/NAD+) redox homeostasis upon acute metabolic variation imposed by glucose deprivation or supplementation with mitochondrial substrates, succinate and malate/glutamate (M/G). Our results showed that low glucose caused cellular NADH/NAD+ redox imbalance that diminished lactate dehydrogenase (LDH) activity and resulted in lower lactate contents. The concurrent activation of malic enzyme (ME) suggested a role for malate in preserving cellular pyruvate that remained unchanged at low glucose. Mitochondrial substrates restored cellular NADH/NAD+ redox homeostasis at low glucose in association with specific compartmental catabolism of mitochondrial substrates. As compared with normal glucose, M/G and low glucose promoted glycolytic ATP production but inhibited mitochondrial-derived ATP generation in association with decreased glucose availability for mitochondrial respiration. At normal glucose, succinate and M/G enhanced mitochondrial respiratory activity, but had minimal impact on mitochondrial-derived ATP production. Collectively, these results are consistent with low glucose-induced NADH/NAD+ redox imbalance in association with decreased aerobic glycolysis that is reversed by supplementation with M/G but not succinate.
Collapse
|
328
|
Galardo MN, Gorga A, Merlo JP, Regueira M, Pellizzari EH, Cigorraga SB, Riera MF, Meroni SB. Participation of HIFs in the regulation of Sertoli cell lactate production. Biochimie 2017; 132:9-18. [PMID: 27750035 DOI: 10.1016/j.biochi.2016.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
Hypoxia Inducible Factors (HIFs) are master regulators of glycolytic metabolism. HIFs consist of a constitutive HIFbeta (HIFβ) subunit and a HIFalpha (HIFα) subunit, whose half-life depends on prolyl-hydroxylases activity. Inhibition of prolyl-hydroxylases by hypoxia or transition metals, or augmentation of HIFα subunit levels by hormonal stimuli lead to a higher HIF transcriptional activity. On the other hand, it is well known that lactate produced by Sertoli cells is delivered to and used by germ cells as an energy substrate. The aim of this work was to investigate whether HIFs participate in the regulation of lactate production in rat Sertoli cells and whether they are involved in the FSH mechanism of action. In order to reach a higher HIF transcriptional activity, Sertoli cells were treated with CoCl2. We observed that a higher HIF transcriptional activity leads to an augmentation of: lactate production, glucose uptake and LDH activity. Besides, an increase in Glut1, Pkm2 and Ldha mRNA levels was observed. These findings suggested that HIFs may participate in the modulation of Sertoli cell nutritional function. As FSH regulates lactate production, we evaluated whether HIFs were involved in FSH action. Sertoli cells were stimulated with FSH in the absence or presence of LW6, a drug which promotes HIFα subunit degradation. On the one hand, we observed that FSH increases HIF1α protein, Hif1α and Hif2α mRNA levels and, on the other hand, that LW6 inhibits FSH-stimulated lactate production, glucose uptake, Glut1, Pkm2 and Ldha expression. It is proposed that HIFs are key components of the intricate pathways utilized by FSH to regulate the provision of lactate for germ cells. Considering that FSH is the master endocrine regulator of Sertoli cells, it is not surprising that this hormone may employ several regulatory mechanisms to fulfill the nourishing functions of this cell type.
Collapse
Affiliation(s)
- María Noel Galardo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Agostina Gorga
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Joaquín Pedro Merlo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Regueira
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Eliana Herminia Pellizzari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Selva Beatriz Cigorraga
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Fernanda Riera
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
329
|
The HK2 Dependent "Warburg Effect" and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate. Molecules 2016; 21:molecules21121730. [PMID: 27983708 PMCID: PMC6273842 DOI: 10.3390/molecules21121730] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/30/2022] Open
Abstract
This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the "Warburg" and "Crabtree" effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the "Warburg effect" and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the "Warburg effect", and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP). This small alkylating compound targets both the "Warburg effect", i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as "multiple myeloma". Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development.
Collapse
|
330
|
Wu H, Wang Y, Wu C, Yang P, Li H, Li Z. Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9356-9367. [PMID: 27960279 DOI: 10.1021/acs.jafc.6b04549] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Resveratrol (Res), a natural phytoalexin found in a variety of plants, has significant antitumor activity. Pyruvate kinase M2 (PKM2) has abnormally high expression in various tumor cells, and it has been implicated in the survival of tumors. However, whether and how Res inhibits PKM2 expression is poorly understood. In the present study, we found that treatment with Res inhibited cell proliferation and induced cell apoptosis. The IC50 values of Res against DLD1, HeLa, and MCF-7 cells were 75 ± 4.54, 50 ± 3.65, and 50 ± 3.32 μM, respectively. To elucidate mechanisms underlying its antitumor activities, serial experiments were performed. Results showed that reduction of PKM2 expression in tumor cells by Res treatment increased the expression of ER stress and mitochondrial fission proteins but reduced cell viability and the levels of fusion proteins. These phenomena were reversed by artificial overexpression of PKM2. Quantitative analyses showed that the expression of microRNA-326 (miR-326) was increased upon Res treatment. Treatment with the miR-326 mimic reduced PKM2 expression, promoting recovery from ER stress and mitochondrial fission. Overall, these results demonstrate that miR-326/PKM2-mediated ER stress and mitochondrial dysfunction participate in apoptosis induced by Res. These results provide novel insight into the molecular mechanisms by which Res suppresses tumors and further support for the use of Res as an antitumor drug.
Collapse
Affiliation(s)
- Haili Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University , Taiyuan 030006, China
| | - Yingying Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University , Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University , Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University , Taiyuan 030006, China
| | - Hanqing Li
- School of Life Science, Shanxi University , Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University , Taiyuan 030006, China
- Institutes of Biomedical Sciences, Shanxi University , Taiyuan 030006, China
| |
Collapse
|
331
|
Caron D, Byrne DP, Thebault P, Soulet D, Landry CR, Eyers PA, Elowe S. Mitotic phosphotyrosine network analysis reveals that tyrosine phosphorylation regulates Polo-like kinase 1 (PLK1). Sci Signal 2016; 9:rs14. [PMID: 27965426 DOI: 10.1126/scisignal.aah3525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tyrosine phosphorylation is closely associated with cell proliferation. During the cell cycle, serine and threonine phosphorylation plays the leading role, and such phosphorylation events are most dynamic during the mitotic phase of the cell cycle. However, mitotic phosphotyrosine is not well characterized. Although a few functionally-relevant mitotic phosphotyrosine sites have been characterized, evidence suggests that this modification may be more prevalent than previously appreciated. Here, we examined tyrosine phosphorylation in mitotic human cells including those on spindle-associated proteins.? Database mining confirmed ~2000 mitotic phosphotyrosine sites, and network analysis revealed a number of subnetworks that were enriched in tyrosine-phosphorylated proteins, including components of the kinetochore or spindle and SRC family kinases. We identified Polo-like kinase 1 (PLK1), a major signaling hub in the spindle subnetwork, as phosphorylated at the conserved Tyr217 in the kinase domain. Substitution of Tyr217 with a phosphomimetic residue eliminated PLK1 activity in vitro and in cells. Further analysis showed that Tyr217 phosphorylation reduced the phosphorylation of Thr210 in the activation loop, a phosphorylation event necessary for PLK1 activity. Our data indicate that mitotic tyrosine phosphorylation regulated a key serine/threonine kinase hub in mitotic cells and suggested that spatially separating tyrosine phosphorylation events can reveal previously unrecognized regulatory events and complexes associated with specific structures of the cell cycle.
Collapse
Affiliation(s)
- Danielle Caron
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Philippe Thebault
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Denis Soulet
- Department of Psychiatry et Neurosciences, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, Department of Biology, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, Quebec G1V 0A6, Canada
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada.
| |
Collapse
|
332
|
Qin L, Tian Y, Yu Z, Shi D, Wang J, Zhang C, Peng R, Chen X, Liu C, Chen Y, Huang W, Deng W. Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth. Oncotarget 2016; 7:1395-407. [PMID: 26593251 PMCID: PMC4811468 DOI: 10.18632/oncotarget.6366] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/15/2015] [Indexed: 01/09/2023] Open
Abstract
Pyruvate dehydrogenase kinase-1 (PDK1), a key metabolic enzyme involved in aerobic glycolysis, is highly expressed in many solid tumors. Small molecule compound DAP (2,2-dichloroacetophenone) is a potent inhibitor of PDK1. Whether targeting PDK1 with DAP can inhibit acute myeloid leukemia (AML) and how it works remains unknown. In this study, we evaluated the effect of inhibition of PDK1 with DAP on cell growth, apoptosis and survival in AML cells and identified the underlying mechanisms. We found that treatment with DAP significantly inhibited cell proliferation, increased apoptosis induction and suppressed autophagy in AML cells in vitro, and inhibited tumor growth in an AML mouse model in vivo. We also showed that inhibition of PDK1 with DAP increased the cleavage of pro-apoptotic proteins (PARP and Caspase 3) and decreased the expression of the anti-apoptotic proteins (BCL-xL and BCL-2) and autophagy regulators (ULK1, Beclin-1 and Atg). In addition, we found that DAP inhibited the PI3K/Akt signaling pathway. Furthermore, we demonstrated that PDK1 interacted with ULK1, BCL-xL and E3 ligase CBL-b in AML cells, and DPA treatment could inhibit the interactions. Collectively, our results indicated that targeting PDK1 with DAP inhibited AML cell growth via multiple signaling pathways and suggest that targeting PDK1 may be a promising therapeutic strategy for AMLs.
Collapse
Affiliation(s)
- Lijun Qin
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Tian
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhenlong Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jingshu Wang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ruoyu Peng
- Guangdong Provincial No. 2 People's Hospital, Guangzhou, China
| | - Xuezhen Chen
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Congcong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yiming Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| |
Collapse
|
333
|
Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep 2016; 17:1721-1730. [PMID: 27856534 PMCID: PMC5283597 DOI: 10.15252/embr.201643300] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
A major metabolic aberration associated with cancer is a change in glucose metabolism. Isoform selection of the glycolytic enzyme pyruvate kinase has been implicated in the metabolic phenotype of cancer cells, and specific pyruvate kinase isoforms have been suggested to support divergent energetic and biosynthetic requirements of cells in tumors and normal tissues. PKM2 isoform expression has been closely linked to embryogenesis, tissue repair, and cancer. In contrast, forced expression of the PKM1 isoform has been associated with reduced tumor cell proliferation. Here, we discuss the role that PKM2 plays in cells and provide a historical perspective for how the study of PKM2 has contributed to understanding cancer metabolism. We also review recent studies that raise important questions with regard to the role of PKM2 in both normal and cancer cell metabolism.
Collapse
Affiliation(s)
- Talya L Dayton
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
334
|
Hohnholt MC, Blumrich EM, Waagepetersen HS, Dringen R. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23. Neurochem Int 2016; 102:13-21. [PMID: 27894844 DOI: 10.1016/j.neuint.2016.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 11/28/2022]
Abstract
Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA) cycle, we incubated primary rat astrocyte cultures with [U-13C]glucose in the absence or the presence of 100 μM T23 for 2 h and analyzed the 13C metabolite pattern. These incubation conditions did not compromise cell viability and confirmed that the presence of T23 doubled glycolytic lactate production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of 13C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly demonstrate that, in addition to glycolysis, also the mitochondrial TCA cycle is strongly accelerated after exposure of astrocytes to T23, suggesting that a protein tyrosine kinase may be involved in the regulation of the TCA cycle in astrocytes.
Collapse
Affiliation(s)
- Michaela C Hohnholt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| |
Collapse
|
335
|
The Warburg Effect Mediator Pyruvate Kinase M2 Expression and Regulation in the Retina. Sci Rep 2016; 6:37727. [PMID: 27883057 PMCID: PMC5121888 DOI: 10.1038/srep37727] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 01/06/2023] Open
Abstract
The tumor form of pyruvate kinase M2 (PKM2) undergoes tyrosine phosphorylation and gives rise to the Warburg effect. The Warburg effect defines a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose, even in the presence of oxygen. Retinal photoreceptors are highly metabolic and their energy consumption is equivalent to that of a multiplying tumor cell. In the present study, we found that PKM2 is the predominant isoform in both rod- and cone-dominant retina, and that it undergoes a light-dependent tyrosine phosphorylation. We also discovered that PKM2 phosphorylation is signaled through photobleaching of rhodopsin. Our findings suggest that phosphoinositide 3-kinase activation promotes PKM2 phosphorylation. Light and tyrosine phosphorylation appear to regulate PKM2 to provide a metabolic advantage to photoreceptor cells, thereby promoting cell survival.
Collapse
|
336
|
Wu H, Yang P, Hu W, Wang Y, Lu Y, Zhang L, Fan Y, Xiao H, Li Z. Overexpression of PKM2 promotes mitochondrial fusion through attenuated p53 stability. Oncotarget 2016; 7:78069-78082. [PMID: 27801666 PMCID: PMC5363644 DOI: 10.18632/oncotarget.12942] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/16/2016] [Indexed: 01/28/2023] Open
Abstract
M2-type pyruvate kinase (PKM2) contributes to the Warburg effect. However, it remains unknown as to whether PKM2 has an inhibitory effect on mitochondrial function. We report in this work that PKM2 overexpression inhibits the expression of Drp1 and results in the mitochondrial fusion. The ATP production was found to be decreased, the mtDNA copy number elevated and the expression level of electron transport chain (ETC) complex I, III, V depressed in PKM2 overexpressed cells. PKM2 overexpression showed a decreased p53 protein level and a shorter p53 half-life. In contrast, PKM2 knockdown resulted in increased p53 expression and prolonged half-life of p53. PKM2 could directly bind with both p53 and MDM2 and promote MDM2-mediated p53 ubiquitination. The dimeric PKM2 significantly suppressed p53 expression compared with the other PKM2 mutants. The reverse relationship between PKM2 and Drp1 was further confirmed in a large number of clinical samples. Taken together, the present results highlight a new mechanism that link PKM2 to mitochondrial function, based on p53-Drp1 axis down regulation, revealing a novel therapeutic target in patients with abnormal mitochondria.
Collapse
Affiliation(s)
- Haili Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Wanglai Hu
- Department of Immunology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yingying Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yangxu Lu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lichao Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongsheng Fan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hong Xiao
- The first hospital of Shanxi Medical University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
337
|
ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Mol Med 2016; 48:e269. [PMID: 27811934 PMCID: PMC5133371 DOI: 10.1038/emm.2016.119] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Evidence indicates that hypoxia and oxidative stress can control metabolic reprogramming of cancer cells and other cells in tumor microenvironments and that the reprogrammed metabolic pathways in cancer tissue can also alter the redox balance. Thus, important steps toward developing novel cancer therapy approaches would be to identify and modulate critical biochemical nodes that are deregulated in cancer metabolism and determine if the therapeutic efficiency can be influenced by changes in redox homeostasis in cancer tissues. In this review, we will explore the molecular mechanisms responsible for the metabolic reprogramming of tumor microenvironments, the functional modulation of which may disrupt the effects of or may be disrupted by redox homeostasis modulating cancer therapy.
Collapse
|
338
|
Miao Y, Lu M, Yan Q, Li S, Feng Y. Inhibition of Proliferation, Migration, and Invasion by Knockdown of Pyruvate Kinase-M2 (PKM2) in Ovarian Cancer SKOV3 and OVCAR3 Cells. Oncol Res 2016; 24:463-475. [PMID: 28281967 PMCID: PMC7838663 DOI: 10.3727/096504016x14685034103671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pyruvate kinase (PK) is a key enzyme in the process of glycolysis, catalyzing phosphoenolpyruvate (PEP) into pyruvate. Currently, PK isozyme type M2 (PKM2), one subtype of PK, has been proposed as a new tumor marker with high expression in various tumor tissues. Here we aimed to explore the effects of siRNA-PKM2 on ovarian carcinoma (OC) cell lines SKOV3 and OVCAR3, in which PKM2 was notably expressed. PKM2 gene interference lentivirus vectors were built by miRNA transfection assay. siRNA-PKM2-transfected SKOV3 and OVCAR3 cells were evaluated for cell proliferation, cell cycle distribution, cell apoptosis, cell migration, and invasion in this study. In addition, the expression levels of several tumor-related genes were measured using real-time PCR and Western blot. Results showed that siRNA-PKM2 markedly inhibited cell proliferation, induced apoptosis, and caused cell cycle arrest at the G0/G1 phase. Cell migration and invasion were significantly suppressed by siRNA-PKM2. Furthermore, the tumor-related genes caspase 7, Bad, and E-cadherin were upregulated, while MMP2, HIF1α, VEGF, and MMP9 were depressed by siRNA-PKM2. The function of siRNA-PKM2 on the biological behavior of OC cells indicated that PKM2 may also be a target for treatment of OC.
Collapse
Affiliation(s)
- Yi Miao
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, P.R. China
| | - Meng Lu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, P.R. China
| | - Qin Yan
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, P.R. China
| | - Shuangdi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, P.R. China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, P.R. China
| |
Collapse
|
339
|
de Wit RH, Mujić-Delić A, van Senten JR, Fraile-Ramos A, Siderius M, Smit MJ. Human cytomegalovirus encoded chemokine receptor US28 activates the HIF-1α/PKM2 axis in glioblastoma cells. Oncotarget 2016; 7:67966-67985. [PMID: 27602585 PMCID: PMC5356532 DOI: 10.18632/oncotarget.11817] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 promotes tumorigenesis through activation of various proliferative and angiogenic signaling pathways. Upon infection, US28 displays constitutive activity and signals in a G protein-dependent manner, hijacking the host's cellular machinery. In tumor cells, the hypoxia inducible factor-1α/pyruvate kinase M2 (HIF-1α/PKM2) axis plays an important role by supporting proliferation, angiogenesis and reprogramming of energy metabolism. In this study we show that US28 signaling results in activation of the HIF-1α/PKM2 feedforward loop in fibroblasts and glioblastoma cells. The constitutive activity of US28 increases HIF-1 protein stability through a Gαq-, CaMKII- and Akt/mTOR-dependent mechanism. Furthermore, we found that VEGF and lactate secretion are increased and HIF-1 target genes, glucose transporter type 1 (GLUT1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), involved in glucose metabolism, are upregulated in US28 expressing cells. In addition, PKM2 is phosphorylated and found to be in a tumor-associated dimeric state upon US28 expression. Also in HCMV-infected cells HIF-1 activity is enhanced, which in part is US28-dependent. Finally, increased proliferation of cells expressing US28 is abolished upon inhibition of the HIF-1α/PKM2 cascade. These data highlight the importance of HIF-1α and PKM2 in US28-induced proliferation, angiogenesis and metabolic reprogramming.
Collapse
Affiliation(s)
- Raymond H. de Wit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Azra Mujić-Delić
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Jeffrey R. van Senten
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Alberto Fraile-Ramos
- Division of Cell Biology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Martine J. Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
340
|
Novoa-Herran S, Umaña-Perez A, Canals F, Sanchez-Gomez M. Serum depletion induces changes in protein expression in the trophoblast-derived cell line HTR-8/SVneo. Cell Mol Biol Lett 2016; 21:22. [PMID: 28536624 PMCID: PMC5415790 DOI: 10.1186/s11658-016-0018-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/05/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. METHODS The viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test (n = 3, significance level 0.10, D > 0.642) and/or ANOVA (n = 3, p < 0.05). RESULTS The results showed that low serum doses or serum depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells. CONCLUSIONS This comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that serum depletion induces specific changes in protein expression concordant with main cell metabolic adaptations and EMT, resembling the progression to a malignant phenotype.
Collapse
Affiliation(s)
- Susana Novoa-Herran
- Departamento de Química, Grupo de Investigación en Hormonas (Hormone Research Laboratory), Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Cra 30 45-03 Ed 451 Of 464, AA 111321 Bogotá, Colombia
| | - Adriana Umaña-Perez
- Departamento de Química, Grupo de Investigación en Hormonas (Hormone Research Laboratory), Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Cra 30 45-03 Ed 451 Of 464, AA 111321 Bogotá, Colombia
| | - Francesc Canals
- Laboratory of Proteomics, Vall d'Hebron Institute of Oncology (VHIO), Centre Cellex, C Natzaret 115-117, 08035 Barcelona, Spain
| | - Myriam Sanchez-Gomez
- Departamento de Química, Grupo de Investigación en Hormonas (Hormone Research Laboratory), Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Cra 30 45-03 Ed 451 Of 464, AA 111321 Bogotá, Colombia
| |
Collapse
|
341
|
Bravo-Adame ME, Vera-Estrella R, Barkla BJ, Martínez-Campos C, Flores-Alcantar A, Ocelotl-Oviedo JP, Pedraza-Alva G, Rosenstein Y. An alternative mode of CD43 signal transduction activates pro-survival pathways of T lymphocytes. Immunology 2016; 150:87-99. [PMID: 27606486 DOI: 10.1111/imm.12670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 08/20/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
CD43 is one of the most abundant co-stimulatory molecules on a T-cell surface; it transduces activation signals through its cytoplasmic domain, contributing to modulation of the outcome of T-cell responses. The aim of this study was to uncover new signalling pathways regulated by this sialomucin. Analysis of changes in protein abundance allowed us to identify pyruvate kinase isozyme M2 (PKM2), an enzyme of the glycolytic pathway, as an element potentially participating in the signalling cascade resulting from the engagement of CD43 and the T-cell receptor (TCR). We found that the glycolytic activity of this enzyme was not significantly increased in response to TCR+CD43 co-stimulation, but that PKM2 was tyrosine phosphorylated, suggesting that it was performing moonlight functions. We report that phosphorylation of both Y105 of PKM2 and of Y705 of signal transducer and activator of transcription 3 was induced in response to TCR+CD43 co-stimulation, resulting in activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway. ERK5 and the cAMP response element binding protein (CREB) were activated, and c-Myc and nuclear factor-κB (p65) nuclear localization, as well as Bad phosphorylation, were augmented. Consistent with this, expression of human CD43 in a murine T-cell hybridoma favoured cell survival. Altogether, our data highlight novel signalling pathways for the CD43 molecule in T lymphocytes, and underscore a role for CD43 in promoting cell survival through non-glycolytic functions of metabolic enzymes.
Collapse
Affiliation(s)
- Maria Elena Bravo-Adame
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.,Posgrado en Ciencias Bioquímicas, UNAM, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Cecilia Martínez-Campos
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.,Posgrado en Ciencias Bioquímicas, UNAM, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Angel Flores-Alcantar
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jose Pablo Ocelotl-Oviedo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gustavo Pedraza-Alva
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
342
|
Prolyl hydroxylase domain enzymes and their role in cell signaling and cancer metabolism. Int J Biochem Cell Biol 2016; 80:71-80. [PMID: 27702652 DOI: 10.1016/j.biocel.2016.09.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
The prolyl hydroxylase domain (PHD) enzymes regulate the stability of the hypoxia-inducible factor (HIF) in response to oxygen availability. During oxygen limitation, the inhibition of PHD permits the stabilization of HIF, allowing the cellular adaptation to hypoxia. This adaptation is especially important for solid tumors, which are often exposed to a hypoxic environment. However, and despite their original role as the oxygen sensors of the cell, PHD are currently known to display HIF-independent and hydroxylase-independent functions in the control of different cellular pathways, including mTOR pathway, NF-kB pathway, apoptosis and cellular metabolism. In this review, we summarize the recent advances in the regulation and functions of PHD in cancer signaling and cell metabolism.
Collapse
|
343
|
Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src–Akt–LKB1–AMPKα pathway. Biochem J 2016; 473:3013-30. [DOI: 10.1042/bcj20160613] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
Cluster of differentiation 44 (CD44) is a transmembrane glycoprotein that has been identified as a cancer stem cell marker in various cancer cells. Although many studies have focused on CD44 as a cancer stem cell marker, its effect on cancer cell metabolism remains unclear. To investigate the role of CD44 on cancer cell metabolism, we established CD44 knock-down cells via retroviral delivery of shRNA against CD44 in human breast cancer cells. Silencing of CD44 decreased the glycolytic phenotype of cancer cells, affecting glucose uptake, ATP production, and lactate production. We also found that ablation of the CD44-induced lactate dehydrogenase (LDH) isoenzyme results in a shift to LDH1 due to LDHA down-regulation and LDHB up-regulation, implying the importance of LDH isoenzyme modulation on cancer metabolism. The expression of glycolysis-related proteins including hypoxia inducible factor-1α (HIF-1α) and LDHA was decreased by CD44 silencing. These effects were due to the up-regulation of liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK)α activity by reduction in c-Src and Akt activity in CD44 knock-down cells. Finally, induction of LKB1/AMPKα activity blocked the expression of HIF-1α and its target gene, LDHA. Inversely, LDHB expression was repressed by HIF-1α. Collectively, these results indicate that the CD44 silencing-induced metabolic shift is mediated by the regulation of c-Src/Akt/LKB1/AMPKα/HIF-1α signaling in human breast cancer cells.
Collapse
|
344
|
Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 2016; 40:1-20. [PMID: 27678246 DOI: 10.1007/s13402-016-0297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, Box 113, New York, NY, 10065, USA.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
345
|
Ahmad F, Dixit D, Joshi SD, Sen E. G9a inhibition induced PKM2 regulates autophagic responses. Int J Biochem Cell Biol 2016; 78:87-95. [PMID: 27417236 DOI: 10.1016/j.biocel.2016.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Epigenetic regulation by histone methyltransferase G9a is known to control autophagic responses. As the link between autophagy and metabolic homeostasis is widely accepted, we investigated whether G9a affects metabolic circuitries to affect autophagic response in glioma cells. Both pharmacological inhibition and siRNA mediated knockdown of G9a increased autophagy marker LC3B in glioma cells. G9a inhibitor BIX-01294 (BIX) induced Akt-dependent increase in HIF-1α expression and activity. Inhibition of Akt-HIF-1α axis reversed BIX-mediated (i) increase in LC3B expression and (ii) decrease in Yes-associated protein 1 (YAP1) phosphorylation. YAP1 over-expression abrogated BIX induced increase in LC3B expression. Interestingly, BIX induced increase in metabolic modelers TIGAR (TP53-induced glycolysis and apoptosis regulator) and PKM2 (Pyruvate kinase M2) were crucial for BIX-mediated changes, as transfection with TIGAR mutant or PKM2 siRNA reversed BIX-mediated alterations in pYAP1 and LC3B expression. Coherent with the in vitro observation, BIX had no significant effect on the tumor burden in heterotypic xenograft glioma mouse model. Elevated LC3B and PKM2 in BIX-treated xenograft tissue was accompanied by decreased YAP1 levels. Taken together, our findings suggest that Akt-HIF-1α axis driven PKM2-YAP1 cross talk activates autophagic responses in glioma cells upon G9a inhibition.
Collapse
Affiliation(s)
- Fahim Ahmad
- National Brain Research Centre, Manesar, Haryana, India
| | - Deobrat Dixit
- National Brain Research Centre, Manesar, Haryana, India
| | | | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana, India.
| |
Collapse
|
346
|
Liang F, Li Q, Li X, Li Z, Gong Z, Deng H, Xiang B, Zhou M, Li X, Li G, Zeng Z, Xiong W. TSC22D2 interacts with PKM2 and inhibits cell growth in colorectal cancer. Int J Oncol 2016; 49:1046-56. [PMID: 27573352 DOI: 10.3892/ijo.2016.3599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/16/2016] [Indexed: 11/06/2022] Open
Abstract
We previously identified TSC22D2 (transforming growth factor β-stimulated clone 22 domain family, member 2) as a novel cancer-associated gene in a rare multi-cancer family. However, its role in tumor development remains completely unknown. In this study, we found that TSC22D2 was significantly downregulated in colorectal cancer (CRC) and that TSC22D2 overexpression inhibited cell growth. Using a co-immunoprecipitation (co-IP) assay combined with mass spectrometry analysis to identify TSC22D2-interacting proteins, we demonstrated that TSC22D2 interacts with pyruvate kinase isoform M2 (PKM2). These findings were confirmed by the results of immunoprecipitation and immunofluorescence assays. Moreover, overexpression of TSC22D2 reduced the level of nuclear PKM2 and suppressed cyclin D1 expression. Collectively, our study reveals a growth suppressor function of TSC22D2 that is at least partially dependent on the TSC22D2-PKM2-cyclinD1 regulatory axis. In addition, our data provide important clues that might contribute to future studies evaluating the role of TSC22D2.
Collapse
Affiliation(s)
- Fang Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Qiao Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zheng Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
347
|
Wang CW, Purkayastha A, Jones KT, Thaker SK, Banerjee U. In vivo genetic dissection of tumor growth and the Warburg effect. eLife 2016; 5. [PMID: 27585295 PMCID: PMC5030086 DOI: 10.7554/elife.18126] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
A well-characterized metabolic landmark for aggressive cancers is the reprogramming from oxidative phosphorylation to aerobic glycolysis, referred to as the Warburg effect. Models mimicking this process are often incomplete due to genetic complexities of tumors and cell lines containing unmapped collaborating mutations. In order to establish a system where individual components of oncogenic signals and metabolic pathways can be readily elucidated, we induced a glycolytic tumor in the Drosophila wing imaginal disc by activating the oncogene PDGF/VEGF-receptor (Pvr). This causes activation of multiple oncogenic pathways including Ras, PI3K/Akt, Raf/ERK, Src and JNK. Together this network of genes stabilizes Hifα (Sima) that in turn, transcriptionally up-regulates many genes encoding glycolytic enzymes. Collectively, this network of genes also causes inhibition of pyruvate dehydrogenase (PDH) activity resulting in diminished ox-phos levels. The high ROS produced during this process functions as a feedback signal to consolidate this metabolic reprogramming.
Collapse
Affiliation(s)
- Cheng-Wei Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Arunima Purkayastha
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Kevin T Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Shivani K Thaker
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
348
|
Molavian HR, Kohandel M, Sivaloganathan S. High Concentrations of H2O2 Make Aerobic Glycolysis Energetically More Favorable for Cellular Respiration. Front Physiol 2016; 7:362. [PMID: 27601999 PMCID: PMC4993762 DOI: 10.3389/fphys.2016.00362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023] Open
Abstract
Since the original observation of the Warburg Effect in cancer cells, over 8 decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2) above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP) in response to the production of reactive oxygen species (ROS) H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources). This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production) to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.
Collapse
Affiliation(s)
- Hamid R Molavian
- Department of Applied Mathematics, University of Waterloo Waterloo, ON, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo Waterloo, ON, Canada
| | | |
Collapse
|
349
|
Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. Metabolic requirements for cancer cell proliferation. Cancer Metab 2016; 4:16. [PMID: 27540483 PMCID: PMC4989334 DOI: 10.1186/s40170-016-0156-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/14/2016] [Indexed: 12/02/2022] Open
Abstract
Background The study of cancer metabolism has been largely dedicated to exploring the hypothesis that oncogenic transformation rewires cellular metabolism to sustain elevated rates of growth and division. Intense examination of tumors and cancer cell lines has confirmed that many cancer-associated metabolic phenotypes allow robust growth and survival; however, little attention has been given to explicitly identifying the biochemical requirements for cell proliferation in a rigorous manner in the context of cancer metabolism. Results Using a well-studied hybridoma line as a model, we comprehensively and quantitatively enumerate the metabolic requirements for generating new biomass in mammalian cells; this indicated a large biosynthetic requirement for ATP, NADPH, NAD+, acetyl-CoA, and amino acids. Extension of this approach to serine/glycine and glutamine metabolic pathways suggested lower limits on serine and glycine catabolism to supply one-carbon unit synthesis and significant availability of glutamine-derived carbon for biosynthesis resulting from nitrogen demands alone, respectively. We integrated our biomass composition results into a flux balance analysis model, placing upper bounds on mitochondrial NADH oxidation to simulate metformin treatment; these simulations reproduced several empirically observed metabolic phenotypes, including increased reductive isocitrate dehydrogenase flux. Conclusions Our analysis clarifies the differential needs for central carbon metabolism precursors, glutamine-derived nitrogen, and cofactors such as ATP, NADPH, and NAD+, while also providing justification for various extracellular nutrient uptake behaviors observed in tumors. Collectively, these results demonstrate how stoichiometric considerations alone can successfully predict empirically observed phenotypes and provide insight into biochemical dynamics that underlie responses to metabolic perturbations. Electronic supplementary material The online version of this article (doi:10.1186/s40170-016-0156-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark A Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Thomas M Wasylenko
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ; Current Address: Late Stage Process Development, Sanofi Genzyme, 31 New York Ave, Framingham, Massachusetts 01701 USA
| | - Joanne K Kelleher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Othon Iliopoulos
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA ; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
350
|
Liu VM, Vander Heiden MG. The Role of Pyruvate Kinase M2 in Cancer Metabolism. Brain Pathol 2016; 25:781-3. [PMID: 26526946 DOI: 10.1111/bpa.12311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
The M2 isoform of pyruvate kinase is expressed preferentially in cancer cells over other pyruvate kinase isoforms. PKM2 is unique in its ability to be regulated allosterically by nutrients and growth signaling pathways, allowing cells to adapt their metabolic program to match physiological needs in different environments. Here, we discuss the role of pyruvate kinase M2 in glioma and in cancer metabolism.
Collapse
Affiliation(s)
- Vivian M Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Harvard-MIT Health Sciences and Technology Division, Harvard Medical School, Boston, MA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|