301
|
Robert A, Miron MJ, Champagne C, Gingras MC, Branton PE, Lavoie JN. Distinct cell death pathways triggered by the adenovirus early region 4 ORF 4 protein. J Cell Biol 2002; 158:519-28. [PMID: 12163473 PMCID: PMC2173819 DOI: 10.1083/jcb.200201106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In transformed cells, induction of apoptosis by adenovirus type 2 (Ad2) early region 4 ORF 4 (E4orf4) correlates with accumulation of E4orf4 in the cell membrane-cytoskeleton fraction. However, E4orf4 is largely expressed in nuclear regions before the onset of apoptosis. To determine the relative contribution of nuclear E4orf4 versus membrane-associated E4orf4 to cell death signaling, we engineered green fluorescent fusion proteins to target E4orf4 to specific cell compartments. The targeting of Ad2 E4orf4 to cell membranes through a CAAX-box or a myristylation consensus signal sufficed to mimic the fast Src-dependent apoptotic program induced by wild-type E4orf4. In marked contrast, the nuclear targeting of E4orf4 abolished the early induction of extranuclear apoptosis. However, nuclear E4orf4 still induced a delayed cell death response independent of Src-like activity and of E4orf4 tyrosine phosphorylation. The zVAD.fmk-inhibitable caspases were dispensable for execution of both cell death programs. Nevertheless, both pathways led to caspase activation in some cell types through the mitochondrial pathway. Finally, our data support a critical role for calpains upstream in the death effector pathway triggered by the Src-mediated cytoplasmic death signal. We conclude that Ad2 E4orf4 induces two distinct cell death responses, whose relative contributions to cell killing may be determined by the genetic background.
Collapse
Affiliation(s)
- Amélie Robert
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CHUQ, Québec G1R 2J6, Canada
| | | | | | | | | | | |
Collapse
|
302
|
Lin DY, Shih HM. Essential role of the 58-kDa microspherule protein in the modulation of Daxx-dependent transcriptional repression as revealed by nucleolar sequestration. J Biol Chem 2002; 277:25446-56. [PMID: 11948183 DOI: 10.1074/jbc.m200633200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Daxx has been reported to mediate the Fas/JNK-dependent signals in the cytoplasm. However, several lines of evidence have suggested that Daxx is located mainly in the nucleus and functions as a transcriptional regulator. Recent studies have further indicated that Daxx-elicited transcriptional repression can be inhibited by the nuclear body-associated promyelocytic leukemia protein and apoptosis signal-regulating kinase 1 by sequestering Daxx to the nuclear bodies and the cytoplasm, respectively. Here, we further investigated the coordinated molecular mechanism by which Daxx function is regulated through protein-protein interaction. Using yeast two-hybrid screens to identify Daxx-interacting protein(s), three independent clones encoding the 58-kDa microspherule protein (MSP58) fragments were identified. Furthermore, we have demonstrated that Daxx interacts in vitro and in vivo with MSP58 via its NH(2)-terminal segment, which is distinct from the binding region of Fas, apoptosis signal-regulating kinase 1, and promyelocytic leukemia protein, suggesting a unique modulatory role of MSP58 on Daxx function. Transient transfection experiments revealed that MSP58 relieves the repressor activity of Daxx in a dose-dependent manner in COS-1 and 293 cells but not in HeLa cells, implicating cell type-specific modulation of Daxx function by MSP58. Moreover, immunofluorescence analysis unequivocally demonstrated that MSP58 overexpression results in a translocation of Daxx to the enlarged nucleoli in COS-1 or 293 cells, whereas Daxx exhibited a diffuse nuclear pattern in HeLa cells. Taken together, these findings delineate a network of regulatory signaling pathways that converges on MSP58/Daxx interaction, causally associating Daxx nucleolus targeting with its transcriptional activation function.
Collapse
Affiliation(s)
- Ding-Yen Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11456, Taiwan, Republic of China
| | | |
Collapse
|
303
|
Rafiee P, Shi Y, Kong X, Pritchard KA, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Su J, Baker JE. Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: role in cardioprotection. Circulation 2002; 106:239-45. [PMID: 12105165 DOI: 10.1161/01.cir.0000022018.68965.6d] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many infants who undergo heart surgery have a congenital cyanotic defect in which the heart is chronically perfused with hypoxic blood. However, the signaling pathways by which infant hearts adapt to chronic hypoxia and resist subsequent surgical ischemia is unknown. METHODS AND RESULTS We determined the activation and translocation of protein kinase C (PKC) isoforms and mitogen activated protein kinases (MAP kinases) in 15 infants with cyanotic (SaO2<85%) or acyanotic (SaO2>95%) heart defects undergoing surgical repair and in 80 rabbits raised from birth in a hypoxic (SaO2<85%) or normoxic (SaO2>95%) environment. Tissues from infant human and rabbit hearts were processed for Western and in vitro kinase analysis. In human infants with cyanotic heart defects, PKCepsilon, p38 MAP kinase, and JUN kinase but not p42/44 MAP kinase were activated and translocated from the cytosolic to the particulate fraction compared with acyanotic heart defects. In rabbit infants there was a parallel response for PKCepsilon, p38 MAP kinase, and JUN kinase similar to humans. In infant rabbit hearts inhibition of PKCepsilon with chelerythrine, p38 MAP kinase, with SB203580 and JUN kinase with curcumin abolished the cardioprotective effects of chronic hypoxia but had no effects on normoxic hearts. CONCLUSIONS Infant human and rabbit hearts adapt to chronic hypoxia through activation of PKCepsilon, p38 MAP kinase, and JUN kinase signal transduction pathways. These pathways may be responsible for cardioprotection in the chronically hypoxic infant rabbit heart.
Collapse
Affiliation(s)
- Parvaneh Rafiee
- Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Merendino AM, Paul C, Vignola AM, Costa MA, Melis M, Chiappara G, Izzo V, Bousquet J, Arrigo AP. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress-mediated apoptosis: possible implication in asthma. Cell Stress Chaperones 2002; 7:269-80. [PMID: 12482203 PMCID: PMC514827 DOI: 10.1379/1466-1268(2002)007<0269:hspphb>2.0.co;2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inflammation of the human bronchial epithelium, as observed in asthmatics, is characterized by the selective death of the columnar epithelial cells, which desquamate from the basal cells. Tissue repair initiates from basal cells that resist inflammation. Here, we have evaluated the extent of apoptosis as well as the Hsp27 level of expression in epithelial cells from bronchial biopsy samples taken from normal and asthmatic subjects. Hsp27 is a chaperone whose expression protects against oxidative stress. We report that in asthmatic subjects the basal epithelium cells express a high level of Hsp27 but no apoptotic morphology. In contrast, apoptotic columnar cells are devoid of Hsp27 expression. Moreover, we observed a decreased resistance to hydrogen peroxide-induced apoptosis in human bronchial epithelial 16-HBE cells when they were genetically modified to express reduced levels of Hsp27.
Collapse
Affiliation(s)
- Anna M Merendino
- Instituto di Medicina Generale e Pneumologia, Università di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Stacchiotti A, Rezzani R, Angoscini P, Rodella L, Bianchi R. Small heat shock proteins expression in rat kidneys treated with cyclosporine A alone and combined with melatonin. THE HISTOCHEMICAL JOURNAL 2002; 34:305-12. [PMID: 12769262 DOI: 10.1023/a:1023378525471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small heat shock proteins (sHSPs) are cytoskeletal chaperones constitutively expressed in the normal kidney but enhanced with beneficial roles during adverse stimuli. Cyclosporine A is an immunosuppressive drug with major adverse side effect such as severe nephrotoxicity. Among possible mechanisms of cyclosporine A-induced renal damage, oxidative stress and cytoskeletal damage have been suggested. Melatonin has been successfully used as antioxidant against many renal diseases. This in vivo study was performed to shed light on the protective effect of melatonin against cyclosporine A-induced renal alterations. We treated rats with cyclosporine A alone, or combined with melatonin, and with melatonin alone (as controls) for 40 days and analysed the renal abundance and distribution of two sHSPs, HSP25 and alpha B-crystallin. These data were correlated with the histopathological effects of the treatments. Cyclosporine A induced insoluble isoforms that moved to soluble fractions after melatonin coadministration as in controls. After cyclosporine A treatment, an intense signal for sHSPs was found within the glomeruli, nucleus and cytoplasm of cortical tubules, collecting ducts and vascular wall. After melatonin supply, the staining was faint, limited to the cytoplasm of cortical tubules, similar to controls. Both fibrosis and tubular alterations significantly decreased after melatonin coadministration. In conclusion, HSP25 and alpha B-crystallin are overexpressed in the rat kidney treated with cyclosporine A but are similar to controls after combined melatonin. This could be a consequence of the cytoprotective effect of melatonin in this nephrotoxic model so that a beneficial sHSPs response is unnecessary.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
306
|
|
307
|
Tan S, Seow TK, Liang RCMY, Koh S, Lee CPC, Chung MCM, Hooi SC. Proteome analysis of butyrate-treated human colon cancer cells (HT-29). Int J Cancer 2002; 98:523-31. [PMID: 11920611 DOI: 10.1002/ijc.10236] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Butyrate, a 4-carbon fatty acid, has been shown to cause growth arrest and apoptosis of cancer cells in vitro and in vivo. The signaling pathways leading to changes in cell growth are unclear. We used a functional proteomics approach to delineate the pathways and mediators involved in butyrate action in HT-29 cells at 24 hr posttreatment. Using 2-dimensional gel electrophoresis, we showed that butyrate treatment resulted in alterations in the proteome of HT-29 cells. MALDI-TOF mass spectrometry was used to identify butyrate-regulated spots. First, our results revealed that the expression of various components of the ubiquitin-proteasome system was altered with butyrate treatment. This suggests that, in addition to the regulation of gene expression through the histone deacetylase pathway, proteolysis could be a means by which butyrate may regulate the expression of key proteins in the control of cell cycle, apoptosis and differentiation. Second, we found that both proapoptotic proteins (capase-4 and cathepsin D) and antiapoptotic proteins (hsp27, antioxidant protein-2 and pyruvate dehydrogenase E1) were simultaneously upregulated in butyrate-treated cells. Western blotting was carried out to confirm butyrate regulation of the spots. Both cathepsin D and hsp27 showed a time-dependent increase in expression with butyrate treatment in HT-29 cells. However, in HCT-116 cells, which were 5-fold more sensitive to butyrate-induced apoptosis, the upregulation of cathepsin D with time was not accompanied by a similar increase in hsp27 levels. Thus, the simultaneous upregulation of both proapoptotic and antiapoptotic proteins in HT-29 cells may account for their relative resistance to butyrate-induced apoptosis.
Collapse
Affiliation(s)
- Sandra Tan
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
Actin and small heat shock proteins (sHsps) are ubiquitous and multifaceted proteins that exist in 2 reversible forms, monomers and multimers, ie, the microfilament of the cytoskeleton and oligomers of the sHsps, generally, supposed to be in a spherical and hollow form. Two situations are described in the literature, where the properties of actin are modulated by sHsps; the actin polymerization is inhibited in vitro by some sHsps acting as capping proteins, and the actin cytoskeleton is protected by some sHsps against the disruption induced by various stressful conditions. We propose that a direct actin-sHsp interaction occurs to inhibit actin polymerization and to participate in the in vivo regulation of actin filament dynamics. Protection of the actin cytoskeleton would result from an F-actin-sHsp interaction in which microfilaments would be coated by small oligomers of phosphorylated sHsps. Both proteins share common structural motives suggesting direct binding sites, but they remain to be demonstrated. Some sHsps would behave with the actin cytoskeleton as actin-binding proteins capable of either capping a microfilament when present as a nonphosphorylated monomer or stabilizing and protecting the microfilament when organized in small, phosphorylated oligomers.
Collapse
Affiliation(s)
- Nicole Mounier
- Laboratoire du Stress Oxydant, Chaperons et Apoptose, Centre de Génétique Moléculaire et Cellulaire (UMR-CNRS 5534), Université Claude Bernard Lyon1, Villeurbanne, France.
| | | |
Collapse
|
309
|
Florin L, Schäfer F, Sotlar K, Streeck RE, Sapp M. Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology 2002; 295:97-107. [PMID: 12033769 DOI: 10.1006/viro.2002.1360] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear domains (ND) 10 are associated with proteins implicated in transcriptional regulation, growth suppression, and apoptosis. We now show that the minor capsid protein L2 of human papillomavirus (HPV) type 33 induces a reorganization of ND10-associated proteins. Whereas the promyelocytic leukemia protein, the major structural component of ND10, was unaffected by L2, Sp100 was released from ND10 upon L2 expression. The total cellular amount of Sp100, but not of Sp100 mRNA, decreased significantly, suggesting degradation of Sp100. Proteasome inhibitors induced the dispersal of Sp100 and inhibited the nuclear translocation of L2. In contrast to Sp100, Daxx was recruited to ND10 by L2 expression. Coimmunoprecipitation demonstrated interaction of the two proteins. L2-induced reorganization of ND10 was observed both in cell culture and in natural HPV lesions. The differential change in protein composition observed provides further evidence to suggest that the ND10-associated proteins are an important interface of viral life cycle and host cell.
Collapse
Affiliation(s)
- Luise Florin
- Institute for Medical Microbiology and Hygiene, University of Mainz, Mainz, 55101, Germany
| | | | | | | | | |
Collapse
|
310
|
Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002; 66:64-93; table of contents. [PMID: 11875128 PMCID: PMC120782 DOI: 10.1128/mmbr.66.1.64-93.2002] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse alpha-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called alpha-crystallin domain; and (iv) molecular chaperone activity. Since alpha-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, alpha-Hsps. Alpha-crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, alpha-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of alpha-Hsps with an emphasis on the microbial members of this chaperone family.
Collapse
Affiliation(s)
- Franz Narberhaus
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| |
Collapse
|
311
|
Goshe MB, Veenstra TD, Panisko EA, Conrads TP, Angell NH, Smith RD. Phosphoprotein isotope-coded affinity tags: application to the enrichment and identification of low-abundance phosphoproteins. Anal Chem 2002; 74:607-16. [PMID: 11838682 DOI: 10.1021/ac015528g] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of a phosphoprotein isotope-coded affinity tag (PhIAT), which employs differential isotopic labeling and biotinylation, has been shown capable of enriching and identifying mixtures of low-abundance phosphopeptides. A denatured solution of beta-casein was labeled using the PhIAT method, and after proteolytic digestion, the labeled peptides were isolated using immobilized avidin. The recovered peptides were separated by capillary reversed-phase liquid chromatography and identified by tandem mass spectrometry. PhIAT-labeled peptides corresponding to known O-phosphorylated peptides from beta-casein were identified along with the phosphorylated peptides from alphas1-casein and alphas2-casein, known low-level (<5%) contaminants of commercially available beta-casein. All of the casein-phosphorylated residues identified by the present PhIAT approach correspond to previously documented sites of phosphorylation. The results illustrate the efficacy of the PhIAT-labeling strategy to not only enrich mixtures for phosphopeptides but also, more importantly, permit the detection and identification of low-level phosphopeptides. In addition, the differences in the phosphorylation state could be determined between phosphopeptides in comparative samples by stoichiometric conversion using the light and heavy isotopic versions of the PhIAT reagents. Overall, our results exemplify the application of the PhIAT approach and demonstrate its utility for proteome-wide phosphoprotein identification and quantitation.
Collapse
Affiliation(s)
- Michael B Goshe
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | |
Collapse
|
312
|
Gingras MC, Champagne C, Roy M, Lavoie JN. Cytoplasmic death signal triggered by SRC-mediated phosphorylation of the adenovirus E4orf4 protein. Mol Cell Biol 2002; 22:41-56. [PMID: 11739721 PMCID: PMC134208 DOI: 10.1128/mcb.22.1.41-56.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In transformed cells, the adenovirus E4orf4 death factor works in part by inducing a Src-mediated cytoplasmic apoptotic signal leading to caspase-independent membrane blebbing and cell death. Here we show that Src-family kinases modulate E4orf4 phosphorylation on tyrosine residues. Mutation of tyrosines 26, 42, and 59 to phenylalanines inhibited Src-induced phosphorylation of E4orf4 in vivo and in vitro but had no effect on the molecular association of E4orf4 with Src. However, in contrast to wild-type E4orf4, the nonphosphorylatable E4orf4 mutant was unable to modulate Src-dependent phosphorylation and was deficient in recruiting a subset of tyrosine-phosphorylated proteins. Indeed, the Src substrates cortactin and p62dok were found to associate with wild-type E4orf4 but not with the nonphosphorylatable E4orf4. Importantly, the nonphosphorylatable mutant E4orf4 was preferentially distributed in the cell nucleus, was unable to induce membrane blebbing, and had a highly impaired killing activity. Conversely, an activated form of E4orf4 was obtained by mutation of tyrosine 42 to glutamic acid. This pseudophosphorylated mutant E4orf4 was enriched in the cytoplasm and plasma membrane, showed increased binding to phosphotyrosine-containing proteins, and induced a dramatic blebbing phenotype associated with increased cell death. Altogether, our findings strongly suggest that Src-mediated phosphorylation of adenovirus type 2 E4orf4 is critical to promoting its cytoplasmic and membrane localization and is required for the transduction of E4orf4-Src-dependent induction of membrane blebbing. We propose that E4orf4 acts in part by uncoupling Src-dependent signals to drive the formation of a signaling complex that triggers a cytoplasmic death signal.
Collapse
Affiliation(s)
- Marie-Claude Gingras
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CHUQ, Québec, G1R 2J6, Canada
| | | | | | | |
Collapse
|
313
|
Affiliation(s)
- Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
314
|
Abstract
Apoptosis, a cell death programme mediated by the caspase family of cysteine proteases, is essential for appropriate removal of excess cells in many developmental and physiological settings. It would, however, be very dangerous for the organism to depend on a single protease family for clearance of unwanted and potentially dangerous cells. Indeed, the exclusive role of caspases in the execution of programmed cell death (PCD) has been challenged recently, and the understanding of the molecular control of alternative death pathways is emerging. Here, I review recently discovered triggers and molecular regulators of caspase-independent cell death programmes and discuss their potential as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Marja Jäättelä
- Apoptosis Laboratory, Institute of Cancer Biology, Danish Cancer Society, Strandhoulevarden 49, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
315
|
Lin RJ, Sternsdorf T, Tini M, Evans RM. Transcriptional regulation in acute promyelocytic leukemia. Oncogene 2001; 20:7204-15. [PMID: 11704848 DOI: 10.1038/sj.onc.1204853] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been 10 years since the seminal discovery that a mutant form of a retinoid acid receptor (RARalpha) is associated with acute promyelocytic leukemia (APL). This finding, coupled with the remarkable success of retinoic acid (RA), the natural ligand of RARalpha, in the treatment of APL, has made APL a unique model system in the study of oncogenic conversion of transcription factors in hematological malignancies. Indeed, subsequent basic and clinical studies showed that chromosomal translocation involving the RARalpha gene is the cytogenetic hallmark of APL and that these mutant forms of RARs are the oncogenes in APL that interfere with the proliferation and differentiation pathways controlled by both RAR and their fusion partners. However, it was not until recently that the role of aberrant transcriptional regulation in the pathogenesis of APL was revealed. In this review, we summarize the biochemical and biological mechanisms of transcriptional regulation by mutant RARs and their corresponding wild-type fusion partner PML and PLZF. These studies have been instrumental in our understanding of the process of leukemogenesis in general and have laid the scientific foundation for the novel concept of transcription therapy in the treatment of human cancer.
Collapse
MESH Headings
- Cell Differentiation/genetics
- Cell Division/genetics
- Cell Nucleus Structures/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Leukemic
- Gene Silencing
- Humans
- Kruppel-Like Transcription Factors
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Macromolecular Substances
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Organelles/metabolism
- Promyelocytic Leukemia Protein
- Promyelocytic Leukemia Zinc Finger Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Translocation, Genetic
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- R J Lin
- Howard Hughes Medical Institute, Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, CA 92037, USA
| | | | | | | |
Collapse
|
316
|
Ko YG, Kang YS, Park H, Seol W, Kim J, Kim T, Park HS, Choi EJ, Kim S. Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J Biol Chem 2001; 276:39103-39106. [PMID: 11495919 DOI: 10.1074/jbc.m105928200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although Daxx (death-associated protein) was first reported to mediate the apoptotic signal from Fas to JNK in the cytoplasm, other data suggested that Daxx is mainly located in the nucleus as a transcriptional regulator. Here, we demonstrated that cellular localization of Daxx could be determined by the relative concentration of a proapoptotic kinase, apoptosis signal-regulating kinase 1 (ASK1) by using immunofluorescence and transcriptional reporter assay. ASK1 sequestered Daxx in the cytoplasm and inhibited the repressive activity of Daxx in transcription. In addition, Daxx was bound to the activated Fas only in the presence of ASK1, accelerating the Fas-mediated apoptosis. These results suggest that Daxx requires ASK1 for its cytoplasmic localization and Fas-mediated signaling. Taken together, we could conclude that ASK1 controls the dual function of Daxx as a transcriptional repressor in the nucleus and as a proapoptotic signal mediator in the cytoplasm.
Collapse
Affiliation(s)
- Y G Ko
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Charette SJ, Lambert H, Landry J. A kinase-independent function of Ask1 in caspase-independent cell death. J Biol Chem 2001; 276:36071-4. [PMID: 11493600 DOI: 10.1074/jbc.c100340200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ask1 (apoptosis signal-regulating kinase 1) is activated as a consequence of cell exposure to a variety of stresses and can then initiate apoptosis. A known pathway of apoptosis downstream of Ask1 involves the activation of the stress-activated protein kinases, the release of cytochrome c from mitochondria, the activation of caspases, and the fragmentation of nuclei. Here, we characterized a novel mechanism of Ask1-mediated cell killing that is triggered by the interaction with Daxx. Co-transfection of Ask1 and Daxx induced a caspase-independent cell-death process characterized at the morphological level by distinctive crumpled nuclei easily distinguishable from the condensed and fragmented nuclei seen during classical caspase-dependent apoptosis. The kinase activity of Ask1 was not involved in this process, because mutants lacking kinase activity were as efficient as wild type Ask1 in mediating Daxx-induced cell death. Ask1N, a deletant that lacks the C-terminal half including the kinase domain of Ask1, was constitutively active in producing crumpled nuclei. In contrast, Ask1DeltaN, the reciprocal deletant that possesses constitutive kinase activity, produced fragmented nuclei typical of caspase-dependent death processes. We conclude that in addition to a caspase-dependent pro-apoptotic function that depends on its kinase activity, Ask1 possesses a caspase-independent killing function that is independent on its kinase activity and is activable by interaction with Daxx. In the physiological situation, such an activity is induced as a consequence of the translocation of Daxx from the nucleus to the cytoplasm, a condition that occurs following activation of the death receptor Fas.
Collapse
Affiliation(s)
- S J Charette
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec G1R 2J6, Canada
| | | | | |
Collapse
|
318
|
Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 2001; 286:433-42. [PMID: 11511077 DOI: 10.1006/bbrc.2001.5427] [Citation(s) in RCA: 556] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The highly conserved heat shock proteins (HSPs) accumulate in cells exposed to heat and a variety of other stressful stimuli. HSPs, which function mainly as molecular chaperones, allow cells to adapt to gradual changes in their environment and to survive in otherwise lethal conditions. The events of cell stress and cell death are linked and HSPs induced in response to stress appear to function at key regulatory points in the control of apoptosis. HSPs include antiapoptotic and proapoptotic proteins that interact with a variety of cellular proteins. Their expression level can determine the fate of the cell in response to a death stimulus, and apoptosis-inhibitory HSPs, in particular HSP27 and HSP70, may participate in carcinogenesis. This review summarizes apoptosis-regulatory function of HSPs.
Collapse
Affiliation(s)
- C Garrido
- INSERM U-517, Faculty of Medicine and Pharmacy, 7, Boulevard Jeanne d'Arc, Dijon, 21033, France.
| | | | | | | |
Collapse
|
319
|
Leist M, Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2:589-98. [PMID: 11483992 DOI: 10.1038/35085008] [Citation(s) in RCA: 1113] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A single family of proteases, the caspases, has long been considered the pivotal executioner of all programmed cell death. However, recent findings of evolutionarily conserved, caspase-independent controlled death mechanisms have opened new perspectives on the biology of cell demise, with particular implications for neurobiology, cancer research and immunological processes.
Collapse
Affiliation(s)
- M Leist
- H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen-Valby, Denmark.
| | | |
Collapse
|
320
|
Beere HM. Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752668 DOI: 10.1126/stke.2001.93.re1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cellular damage can engage two fundamental cellular responses: apoptosis, a precisely regulated form of cell death; and the heat shock protein (Hsp), or stress response, which functions to protect cells and to mediate an accelerated recovery following damage. The coordinated balance between these two opposing pathways governs the ultimate fate of the cell--whether it lives or dies. The self-destruction of a cell is mediated by one of many signaling pathways culminating in the activation of the caspase proteases. The Hsps regulate the activity of multiple intracellular signaling intermediates, many of which are intimately involved in the execution of the apoptotic signaling pathways. This review addresses whether the antiapoptotic activities of several Hsps, including Hsp70, Hsp90, and Hsp27, can be attributed to their collective ability to regulate the activities, expression, or both of apoptotic signaling molecules. In summary, the functional interface between the ancient heat shock or stress protein response and the highly conserved biochemical pathways leading to the activation of apoptosis governs the susceptibility of a cell to damaging stimuli.
Collapse
Affiliation(s)
- H M Beere
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
321
|
Beere HM. Stressed to Death: Regulation of Apoptotic Signaling Pathways by the Heat Shock Proteins. Sci Signal 2001. [DOI: 10.1126/scisignal.932001re1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
322
|
Charette SJ, Landry J. The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann N Y Acad Sci 2001; 926:126-31. [PMID: 11193028 DOI: 10.1111/j.1749-6632.2000.tb05606.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heat shock protein HSP27 protects cells against a wide variety of toxic treatments and blocks apoptosis induced by exposures to anticancer drugs and activation of the death receptor Fas. The molecular mechanisms of protection are unknown but appear to be regulated by phosphorylation of HSP27. Two apoptotic pathways can be activated downstream of Fas. The Fas-adaptor FADD mediates a caspase-dependent pathway. Fas also activates a caspase-independent pathway which correlates with Fas-induced translocation of Daxx from the nucleus to the cytoplasm and involves the interaction of Daxx with Fas and Ask1. We found that phosphorylated dimers of HSP27 interact with Daxx, preventing its interaction with Ask1 and Fas and blocking Daxx-mediated apoptosis. Expression of HSP27 also prevents the translocation of Daxx from the nucleus to the cytoplasm which is induced upon expression of Ask1 or stimulation of Fas. The observations reveal a new level of regulation of the Fas pathway. Whereas the FADD axis can be modulated by expression of FLIP, a natural inhibitor of FADD, our results show that HSP27 can accomplish a similar function for the Daxx axis.
Collapse
Affiliation(s)
- S J Charette
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec, Canada G1R 2J6
| | | |
Collapse
|
323
|
Abstract
A yeast two-hybrid system was used to analyze interactions among the protein subunits of human nuclear RNase P themselves and with other interacting partners encoded in a HeLa cell cDNA library. Subunits hpop1, Rpp21, Rpp29, Rpp30, Rpp38, and Rpp40 are involved in extensive, but weak, protein-protein interactions in the holoenzyme complex. Rpp14, Rpp20, and Rpp30 were found to have strong interactions with proteins encoded in the cDNA library. The small heat shock protein 27, which interacts with Rpp20 in the two-hybrid assay, binds to Rpp20 during affinity chromatography and can be found to be associated with, and enhances the activity of, highly purified RNase P. RNase P activity in HeLa cell nuclei also increases under the stress of heat shock.
Collapse
|
324
|
Jiang T, Altman S. Protein-protein interactions with subunits of human nuclear RNase P. Proc Natl Acad Sci U S A 2001; 98:920-5. [PMID: 11158571 PMCID: PMC14685 DOI: 10.1073/pnas.98.3.920] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A yeast two-hybrid system was used to analyze interactions among the protein subunits of human nuclear RNase P themselves and with other interacting partners encoded in a HeLa cell cDNA library. Subunits hpop1, Rpp21, Rpp29, Rpp30, Rpp38, and Rpp40 are involved in extensive, but weak, protein-protein interactions in the holoenzyme complex. Rpp14, Rpp20, and Rpp30 were found to have strong interactions with proteins encoded in the cDNA library. The small heat shock protein 27, which interacts with Rpp20 in the two-hybrid assay, binds to Rpp20 during affinity chromatography and can be found to be associated with, and enhances the activity of, highly purified RNase P. RNase P activity in HeLa cell nuclei also increases under the stress of heat shock.
Collapse
Affiliation(s)
- T Jiang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
325
|
Abstract
The p53 tumour suppressor protein is regulated by ubiquitin-mediated proteasomal degradation. In normal cells p53 is constitutively ubiquitylated by the Mdm2 ubiquitin ligase. When the p53 response is activated by stress signals p53 levels rise due to inhibition of this degradative pathway. Here we show that p53 is modified by the small ubiquitin-like protein SUMO-1 at a single site, K386, in the C-terminus of the protein. Modification in vitro requires only SUMO-1, the SUMO-1 activating enzyme and ubc9. SUMO-1 and ubiquitin modification do not compete for the same lysine acceptor sites in p53. Overexpression of SUMO-1 activates the transcriptional activity of wild-type p53, but not K386R p53 where the SUMO-1 acceptor site has been mutated. The SUMO-1 modification pathway therefore acts as a potential regulator of the p53 response and may represent a novel target for the development of therapeutically useful modulators of the p53 response.
Collapse
|