301
|
Giestas L, Lima JC, Baptista PV. Coupling single base extension to a spectral codification tool for increased throughput screening. J Biotechnol 2011; 154:199-204. [DOI: 10.1016/j.jbiotec.2011.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/09/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
|
302
|
Kusuma L, Dinesh SM, Savitha MR, Krishnamurthy B, Narayanappa D, Ramachandra NB. A Maiden Report on CRELD1 Single-Nucleotide Polymorphism Association in Congenital Heart Disease Patients of Mysore, South India. Genet Test Mol Biomarkers 2011; 15:483-7. [DOI: 10.1089/gtmb.2010.0246] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lingaiah Kusuma
- Genomics Laboratory, Department of Studies in Zoology, University of Mysore, Mysore, Karnataka, India
| | - Sosalagere M. Dinesh
- Genomics Laboratory, Department of Studies in Zoology, University of Mysore, Mysore, Karnataka, India
| | - Mysore R. Savitha
- Department of Pediatrics, Mysore Medical College and Research Institute, Cheluvamba Hospital, Mysore, Karnataka, India
| | - Balasundaram Krishnamurthy
- Department of Pediatrics, Mysore Medical College and Research Institute, Cheluvamba Hospital, Mysore, Karnataka, India
| | | | - Nallur B. Ramachandra
- Genomics Laboratory, Department of Studies in Zoology, University of Mysore, Mysore, Karnataka, India
| |
Collapse
|
303
|
Renaud C, Kuypers J, Englund JA. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J Clin Virol 2011; 52:70-8. [PMID: 21684202 DOI: 10.1016/j.jcv.2011.05.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
Abstract
The emergence of oseltamivir resistance in seasonal and pandemic influenza A/H1N1 has created challenges for diagnosis and clinical management. This review discusses how clinical virology laboratories have handled diagnosis of oseltamivir-resistant H1N1 and what we have learned from clinical studies and case series. Immunocompetent patients infected with oseltamivir-resistant H1N1 have similar outcomes as patients infected with oseltamivir-susceptible H1N1. However, immunocompromised patients infected with oseltamivir-resistant H1N1 experience potentially more risks of complication and transmissibility with few therapeutic options.
Collapse
Affiliation(s)
- Christian Renaud
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
304
|
Novel association analysis between 9 short tandem repeat loci polymorphisms and coronary heart disease based on a cross-validation design. Atherosclerosis 2011; 218:151-5. [PMID: 21703622 DOI: 10.1016/j.atherosclerosis.2011.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/08/2011] [Accepted: 05/20/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate genes associated with coronary heart disease (CHD) screened with a novel cross-validation design. METHODS On the basis of age at the onset of the first episode of CHD, stratified sampling by age (<50 years, 50-59 years, 60-69 years, 70-79 years and >80 years) was performed. Alleles of the nine CODIS STR loci including D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, and D7S820, were determined using the STR Profiler Plus PCR amplification kit. Allele frequencies were compared with a control population. The mean age of patients with and without the alleles was compared. Cross-validation was based on differences in both frequency values and ages instead of adjustment procedure for multiple testing. RESULTS There were statistical differences in frequency values between the CHD group and the control population for three alleles, and also statistical differences in the age at first onset of CHD for two alleles; at least one allele, D21S11-28.2, was statistically different with regards to both frequency values and age. It was confirmed that D21S11-28.2 is truly related with CHD. CONCLUSIONS A single true CHD-related allele could be discriminated from the sampling errors through cross-validation. It appears that CHD-related genes may be located near to loci D21S11.
Collapse
|
305
|
Wilkinson S, Wiener P, Archibald AL, Law A, Schnabel RD, McKay SD, Taylor JF, Ogden R. Evaluation of approaches for identifying population informative markers from high density SNP chips. BMC Genet 2011; 12:45. [PMID: 21569514 PMCID: PMC3118130 DOI: 10.1186/1471-2156-12-45] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/13/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genetic markers can be used to identify and verify the origin of individuals. Motivation for the inference of ancestry ranges from conservation genetics to forensic analysis. High density assays featuring Single Nucleotide Polymorphism (SNP) markers can be exploited to create a reduced panel containing the most informative markers for these purposes. The objectives of this study were to evaluate methods of marker selection and determine the minimum number of markers from the BovineSNP50 BeadChip required to verify the origin of individuals in European cattle breeds. Delta, Wright's FST, Weir & Cockerham's FST and PCA methods for population differentiation were compared. The level of informativeness of each SNP was estimated from the breed specific allele frequencies. Individual assignment analysis was performed using the ranked informative markers. Stringency levels were applied by log-likelihood ratio to assess the confidence of the assignment test. RESULTS A 95% assignment success rate for the 384 individually genotyped animals was achieved with <80, <100, <140 and <200 SNP markers (with increasing stringency threshold levels) across all the examined methods for marker selection. No further gain in power of assignment was achieved by sampling in excess of 200 SNP markers. The marker selection method that required the lowest number of SNP markers to verify the animal's breed origin was Wright's FST (60 to 140 SNPs depending on the chosen degree of confidence). Certain breeds required fewer markers (<100) to achieve 100% assignment success. In contrast, closely related breeds require more markers (~200) to achieve>95% assignment success. The power of assignment success, and therefore the number of SNP markers required, is dependent on the levels of genetic heterogeneity and pool of samples considered. CONCLUSIONS While all SNP selection methods produced marker panels capable of breed identification, the power of assignment varied markedly among analysis methods. Thus, with effective exploration of available high density genetic markers, a diagnostic panel of highly informative markers can be produced.
Collapse
Affiliation(s)
- Samantha Wilkinson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Pamela Wiener
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Andy Law
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Stephanie D McKay
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rob Ogden
- Wildgenes Laboratory, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, Scotland, UK
| |
Collapse
|
306
|
Etlik O, Koksal V, Arican-Baris ST, Baris I. Development and validation of a cost-effective in-house method, tetra-primer ARMS PCR assay, in genotyping of seven clinically important point mutations. Mol Cell Probes 2011; 25:177-81. [PMID: 21530640 DOI: 10.1016/j.mcp.2011.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 11/25/2022]
Abstract
The single nucleotide polymorphism (SNP) genotyping is currently considered as a particularly valuable tool for the diagnosis of different pathologies. For this reason, over the past several years a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. Although a large number of distinct approaches has been reported each laboratory use one of the published methods based on their technical and economical capacity. This article presents an application of an in-house assay, tetra-primer ARMS PCR assay, and its application in SNP genotyping. We have shown that this assay could be more advantageous when compared with PCR-RFLP, real time PCR, and DNA sequencing. We have shown that the assay is successful in genotyping using archived paraffin-embedded tissues, heparinated samples and amniotic fluids with meconium. These low-costed (3$/reaction) assays could be completed within 3-4 h after specimen receipt allowing for a reasonable turn-around time in the laboratory. Since tetra-primer ARMS PCR assay does not require any special equipment, the assay could be set up in most clinical diagnostic laboratories.
Collapse
Affiliation(s)
- Ozdal Etlik
- BURC Molecular Diagnostic Laboratories, Merter İş Merkezi, Istanbul, Turkey
| | | | | | | |
Collapse
|
307
|
Gillet JP, Gottesman MM. Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Curr Pharm Biotechnol 2011; 12:686-92. [PMID: 21118086 PMCID: PMC3188423 DOI: 10.2174/138920111795163931] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 01/12/2023]
Abstract
ATP-Binding Cassette (ABC) transporters are important mediators of multidrug resistance (MDR) in patients with cancer. Although their role in MDR has been extensively studied in vitro, their value in predicting response to chemotherapy has yet to be fully determined. Establishing a molecular diagnostic assay dedicated to the quantitation of ABC transporter genes is therefore critical to investigate their involvement in clinical MDR. In this article, we provide an overview of the methodologies that have been applied to analyze the mRNA expression levels of ABC transporters, by describing the technology, its pros and cons, and the experimental protocols that have been followed. We also discuss recent studies performed in our laboratory that assess the ability of the currently available high-throughput gene expression profiling platforms to discriminate between highly homologous genes. This work led to the conclusion that high-throughput TaqMan-based qRT-PCR platforms provide standardized clinical assays for the molecular detection of ABC transporters and other families of highly homologous MDR-linked genes encoding, for example, the uptake transporters (solute carriers-SLCs) and the phase I and II metabolism enzymes.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| |
Collapse
|
308
|
Wu Z, Wang H, Guo M, Tang LJ, Yu RQ, Jiang JH. Terminal Protection of Small Molecule-Linked DNA: A Versatile Biosensor Platform for Protein Binding and Gene Typing Assay. Anal Chem 2011; 83:3104-11. [DOI: 10.1021/ac1033769] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhan Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hongqi Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Min Guo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
309
|
Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population. Mol Biol Rep 2011; 39:17-23. [DOI: 10.1007/s11033-011-0705-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/25/2010] [Indexed: 01/09/2023]
|
310
|
Clinical relevance of multiple single-nucleotide polymorphisms in Pneumocystis jirovecii Pneumonia: development of a multiplex PCR-single-base-extension methodology. J Clin Microbiol 2011; 49:1810-5. [PMID: 21389160 DOI: 10.1128/jcm.02303-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis jirovecii pneumonia (PcP) is a major cause of respiratory illness in patients with AIDS. The identification of multiple single-nucleotide polymorphisms (SNPs) at three distinct P. jirovecii loci encoding dihydrofolate reductase (DHFR), mitochondrial large-subunit rRNA (mtLSU rRNA), and superoxide dismutase (SOD) was achieved using multiplex-PCR (MPCR) followed by direct sequencing and two single-base extension (SBE) techniques. Four SNPs (DHFR312, mt85, SOD215, and SOD110), correlated previously with parameters of disease, were amplified and genotyped simultaneously. The concordance of results between the standard sequencing technique (direct sequencing) and SBE analysis was 96.9% for the acrylamide gel electrophoresis and 98.4% for the capillary electrophoresis. The cross-genetic analysis established several statistical associations among the SNPs studied: mt85C-SOD110T, SOD110T-SOD215C, and SOD110C-SOD215T. These results were confirmed by cluster analysis. Data showed that among the isolates with low to moderate parasite burden, the highest percentages of DHFR312C, mt85C, SOD110T, and SOD215C were detected, whereas for high parasite burden cases the highest frequencies were observed among isolates with DHFR312T, mt85T, SOD110C, and SOD215T. The polymorphisms studied were shown to be suitable genetic targets potentially correlated with PcP clinical data that can be used as predictors of outcome in further studies to help clinical decision-making in the management of PcP. The MPCR/SBE protocol described for the first time in the present study was shown to be a rapid, highly accurate method for genotyping P. jirovecii SNPs encoded by different loci that could be used for epidemiological studies and as an additional procedure for the prognostic classification and diagnosis of PcP.
Collapse
|
311
|
Yang SY, Son S, Jang S, Kim H, Jeon G, Kim WJ, Kim JK. DNA-functionalized nanochannels for SNP detection. NANO LETTERS 2011; 11:1032-5. [PMID: 21323380 DOI: 10.1021/nl200357y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We have developed ultrahigh density array of functionalized nanochannels by using a block copolymer having end di-COOH group. This approach provides a facile route for direct functionalization of wall surface of the nanochannels and immobilization site for molecular recognition agents (MRAs). By using overhanging single-stranded DNA as MRAs, the DNA-functionalized nanochannels showed high resolution to detect a single-base mismatch as well as to discriminate single-mismatched sequence at various locations by hybridization preference with MRAs.
Collapse
Affiliation(s)
- Seung Yun Yang
- National Creative Research Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology , Kyungbuk 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
312
|
Zhang H, DeConinck AJ, Slimmer SC, Doyle PS, Lewis JA, Nuzzo RG. Genotyping by alkaline dehybridization using graphically encoded particles. Chemistry 2011; 17:2867-73. [PMID: 21305624 PMCID: PMC4117403 DOI: 10.1002/chem.201002848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Indexed: 11/07/2022]
Abstract
This work describes a nonenzymatic, isothermal genotyping method based on the kinetic differences exhibited in the dehybridization of perfectly matched (PM) and single-base mismatched (MM) DNA duplexes in an alkaline solution. Multifunctional encoded hydrogel particles incorporating allele-specific oligonucleotide (ASO) probes in two distinct regions were fabricated by using microfluidic-based stop-flow lithography. Each particle contained two distinct ASO probe sequences differing at a single base position, and thus each particle was capable of simultaneously probing two distinct target alleles. Fluorescently labeled target alleles were annealed to both probe regions of a particle, and the rate of duplex dehybridization was monitored by using fluorescence microscopy. Duplex dehybridization was achieved through an alkaline stimulus using either a pH step function or a temporal pH gradient. When a single target probe sequence was used, the rate of mismatch duplex dehybridization could be discriminated from the rate of perfect match duplex dehybridization. In a more demanding application in which two distinct probe sequences were used, we found that the rate profiles provided a means to discriminate probe dehybridizations from both of the two mismatched duplexes as well as to distinguish at high certainty the dehybridization of the two perfectly matched duplexes. These results demonstrate an ability of alkaline dehybridization to correctly discriminate the rank hierarchy of thermodynamic stability among four sets of perfect match and single-base mismatch duplexes. We further demonstrate that these rate profiles are strongly temperature dependent and illustrate how the sensitivity can be compensated beneficially by the use of an actuating gradient pH field.
Collapse
Affiliation(s)
- Huaibin Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL,61801 (U.S.A.), Phone: 1-217-244-0809, Fax: 1-217-244-2278,
| | - Adam J. DeConinck
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801 (U.S.A.)
| | - Scott C. Slimmer
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801 (U.S.A.)
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139 (U.S.A.)
| | - Jennifer A. Lewis
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801 (U.S.A.)
| | - Ralph G. Nuzzo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL,61801 (U.S.A.), Phone: 1-217-244-0809, Fax: 1-217-244-2278,
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801 (U.S.A.)
| |
Collapse
|
313
|
Wang HQ, Liu WY, Wu Z, Tang LJ, Xu XM, Yu RQ, Jiang JH. Homogeneous Label-Free Genotyping of Single Nucleotide Polymorphism Using Ligation-Mediated Strand Displacement Amplification with DNAzyme-Based Chemiluminescence Detection. Anal Chem 2011; 83:1883-9. [DOI: 10.1021/ac200138v] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Qi Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei-Yu Liu
- Department of Medical Genetics, School of Basic Medical Sciences, South Medical University, Guangzhou, 510515, P. R. China
| | - Zhan Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiang-Min Xu
- Department of Medical Genetics, School of Basic Medical Sciences, South Medical University, Guangzhou, 510515, P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
314
|
Zhang H, Wang M, Gao Q, Qi H, Zhang C. Fluorescent detection of single nucleotide polymorphism utilizing a hairpin DNA containing a nucleotide base analog pyrrolo-deoxycytidine as a fluorescent probe. Talanta 2011; 84:771-6. [PMID: 21482281 DOI: 10.1016/j.talanta.2011.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/27/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022]
Abstract
A novel fluorescent method for the detection of single nucleotide polymorphism (SNP) was developed using a hairpin DNA containing nucleotide base analog pyrrolo-deoxycytidine (P-dC) as a fluorescent probe. This fluorescent probe was designed by incorporating a fluorescent P-dC into a stem of the hairpin DNA, whose sequence of the loop moiety complemented the target single strand DNA (ss-DNA). In the absence of the target ss-DNA, the fluorescent probe stays a closed configuration in which the P-dC is located in the double strand stem of the fluorescent probe, such that there is weak fluorescence, attributed to a more efficient stacking and collisional quenching of neighboring bases. In the presence of target ss-DNA, upon hybridizing the ss-DNA to the loop moiety, a stem-loop of the fluorescent probe is opened and the P-dC is located in the ss-DNA, thus resulting in strong fluorescence. The effective discrimination of the SNP, including single base mismatch ss-DNA (A, T, G) and double mismatch DNA (C, C), against perfect complementary ss-DNA was achieved by increased fluorescence intensity, and verified by thermal denaturation and circular dichroism spectroscopy. Relative fluorescence intensity had a linear relationship with the concentration of perfect complementary ss-DNA and ranged from 50 nM to 3.0 μM. The linear regression equation was F/F(0)=2.73 C (μM)+1.14 (R=0.9961) and the detection limit of perfect complementary ss-DNA was 16 nM (S/N=3). This study demonstrates that a hairpin DNA containing nucleotide base analog P-dC is a promising fluorescent probe for the effective discrimination of SNP and for highly sensitive detection of perfect complementary DNA.
Collapse
Affiliation(s)
- Hongge Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Chang an South Road 199, Xi'an 710062, Shaanxi Province, PR China
| | | | | | | | | |
Collapse
|
315
|
Østergaard ME, Kumar P, Baral B, Guenther DC, Anderson BA, Ytreberg FM, Deobald L, Paszczynski AJ, Sharma PK, Hrdlicka PJ. C5-functionalized DNA, LNA, and α-L-LNA: positional control of polarity-sensitive fluorophores leads to improved SNP-typing. Chemistry 2011; 17:3157-65. [PMID: 21328492 DOI: 10.1002/chem.201002109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/16/2010] [Indexed: 12/17/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are important markers in disease genetics and pharmacogenomic studies. Oligodeoxyribonucleotides (ONs) modified with 5-[3-(1-pyrenecarboxamido)propynyl]-2'-deoxyuridine monomer X enable detection of SNPs at non-stringent conditions due to differential fluorescence emission of matched versus mismatched nucleic acid duplexes. Herein, the thermal denaturation and optical spectroscopic characteristics of monomer X are compared to the corresponding locked nucleic acid (LNA) and α-L-LNA monomers Y and Z. ONs modified with monomers Y or Z result in a) larger increases in fluorescence intensity upon hybridization to complementary DNA, b) formation of more brightly fluorescent duplexes due to markedly larger fluorescence emission quantum yields (Φ(F)=0.44-0.80) and pyrene extinction coefficients, and c) improved optical discrimination of SNPs in DNA targets. Optical spectroscopy studies suggest that the nucleobase moieties of monomers X-Z adopt anti and syn conformations upon hybridization with matched and mismatched targets, respectively. The polarity-sensitive 1-pyrenecarboxamido fluorophore is, thereby, either positioned in the polar major groove or in the hydrophobic duplex core close to quenching nucleobases. Calculations suggest that the bicyclic skeletons of LNA and α-L-LNA monomers Y and Z influence the glycosidic torsional angle profile leading to altered positional control and photophysical properties of the C5-fluorophore.
Collapse
Affiliation(s)
- Michael E Østergaard
- Department of Chemistry, University of Idaho, P.O. Box 442343, Moscow, ID 83844-2343, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Zu Y, Ting AL, Gao Z. Visualizing low-level point mutations: enzyme-like selectivity offered by nanoparticle probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:306-310. [PMID: 21294256 DOI: 10.1002/smll.201001774] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Yanbing Zu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669.
| | | | | |
Collapse
|
317
|
Wittwer J, Rubio-Aliaga I, Hoeft B, Bendik I, Weber P, Daniel H. Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives. Mol Nutr Food Res 2011; 55:341-58. [DOI: 10.1002/mnfr.201000512] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/08/2022]
|
318
|
Magee DA, Berkowicz EW, Sikora KM, Sweeney T, Kenny DA, Kelly AK, Evans RD, Wickham BW, Bradley DG, Spillane C, MacHugh DE. High concordance of bovine single nucleotide polymorphism genotypes generated using two independent genotyping strategies. Anim Biotechnol 2011; 21:257-62. [PMID: 20967645 DOI: 10.1080/10495398.2010.509680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Single nucleotide polymorphisms (SNPs) represent the most common form of DNA sequence variation in mammalian livestock genomes. While the past decade has witnessed major advances in SNP genotyping technologies, genotyping errors caused, in part, by the biochemistry underlying the genotyping platform used, can occur. These errors can distort project results and conclusions and can result in incorrect decisions in animal management and breeding programs; hence, SNP genotype calls must be accurate and reliable. In this study, 263 Bos spp. samples were genotyped commercially for a total of 16 SNPs. Of the total possible 4,208 SNP genotypes, 4,179 SNP genotypes were generated, yielding a genotype call rate of 99.31% (standard deviation ± 0.93%). Between 110 and 263 samples were subsequently re-genotyped by us for all 16 markers using a custom-designed SNP genotyping platform, and of the possible 3,819 genotypes a total of 3,768 genotypes were generated (98.70% genotype call rate, SD ± 1.89%). A total of 3,744 duplicate genotypes were generated for both genotyping platforms, and comparison of the genotype calls for both methods revealed 3,741 concordant SNP genotype call rates (99.92% SNP genotype concordance rate). These data indicate that both genotyping methods used can provide livestock geneticists with reliable, reproducible SNP genotypic data for in-depth statistical analysis.
Collapse
Affiliation(s)
- D A Magee
- UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Chen CK, Shiang YC, Huang CC, Chang HT. Using self-assembled aptamers and fibrinogen-conjugated gold nanoparticles to detect DNA based on controlled thrombin activity. Biosens Bioelectron 2011; 26:3464-8. [PMID: 21324664 DOI: 10.1016/j.bios.2011.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/11/2011] [Accepted: 01/18/2011] [Indexed: 02/03/2023]
Abstract
We have developed a colorimetric probe, based on the aggregation of gold nanoparticles (Au NPs), for the detection of DNA and for the analysis of single-nucleotide polymorphism (SNP); this probe functions through the modulation of the activity of thrombin (Thr) in the presence of bivalent thrombin-binding aptamers (TBAs). The bivalent TBAs were formed from TBA(27') (comprising a 27-base sequence providing TBA(27) functionality, a T(5) linker, and an 11-base sequence for hybridization) and TBA(15') (comprising a 15-base sequence providing TBA(15) functionality, a T(5) linker, and a 12-base sequence for hybridization) through their hybridization with perfectly matched DNA (DNA(pm)). The bivalent TBAs interacted specifically with thrombin, suppressing its activity toward fibrinogen-modified Au NPs (Fib-Au NPs). The potency of the inhibitory effect of TBA(15')-TBA(27')/DNA(pm) toward thrombin - and, thus, the degree of aggregation of the Fib-Au NPs - was highly dependent on the concentration of DNA(pm). Under the optimal conditions (50 pM thrombin, 2 nM TBA(15'), 2 nM TBA(27'), and 38 pM Fib-Au NPs), the linear relationship of the response of the probe toward DNA(pm) extended from 0.1 to 2 nM, with a correlation coefficient of 0.97. The limit of detection (LOD) for DNA(pm) was 20 pM, based on a signal-to-noise ratio of 3. We also applied a corresponding TBA(15″)-TBA(27″)/Thr/Fib-Au NP probe to the detection of the SNP of the Arg249Ser unit in the TP53 gene, with an LOD of 32 pM. Relative to conventional molecular beacon-based and crosslinking aggregation-based Au NP probes, our new approach offers higher sensitivity and higher selectivity toward DNA.
Collapse
Affiliation(s)
- Chuan-Kuo Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
320
|
He Y, Zeng K, Gurung AS, Baloda M, Xu H, Zhang X, Liu G. Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. Anal Chem 2011; 82:7169-77. [PMID: 20681563 DOI: 10.1021/ac101275s] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a simple, fast, and sensitive approach for visual detection of single-nucleotide polymorphism (SNP) based on hairpin oligonucleotide-functionalized gold nanoparticle (HO-Au-NP) and lateral flow strip biosensor (LFSB). The results presented here expand on prior work ( Mao , X. , Xu , H. , Zeng , Q. , Zeng , L. , and Liu , G. Chem. Commun. 2009 , 3065-3067 .) by providing new approach to prepare HO-Au-NP conjugates with a deoxyadenosine triphosphate (dATP) blocker, which shortens the preparation time of the conjugates from 50 to 8 h and lowers the detection limit 500 times. A hairpin oligonucleotide modified with a thiol at the 5'-end and a biotin at the 3'-end was conjugated with Au-NP through a self-assembling process. Following a blocking step with dATP, the hairpin structure of HO and dATP embed the biotin groups, and make the biotin groups in close proximity to the Au-NP surface, leading to the biotins being "inactive". The strategy of detecting SNP depends on the unique molecular recognition properties of HO to the perfect-matched DNA and single-base-mismatched DNA to generate different quantities of "active" biotin groups on the Au-NP surface. After hybridization reactions, the Au-NPs associated with the activated biotins are captured on the test zone of LFSB via the specific reaction between the activated biotin and preimmobilized streptavidin. Accumulation of Au-NPs produces the characteristic red bands, enabling visual detection of SNP. The preparations of HO-Au-NP conjugates with dATP and the parameters of assay were optimized systematically, and the abilities of detecting SNP were examined in details. The current approach is capable of discriminating as low as 10 pM of perfect-matched DNA and single-base-mismatched DNA within 25 min without instrumentation. Moreover, the approach provides a lower background and higher selectivity compared to the current molecular beacon-based SNP detection. The protocol should facilitate the simple, fast, and cost-effective screening of important SNPs and could readily find wide applications in molecular diagnosis laboratories and in point-of-care testing (field testing).
Collapse
Affiliation(s)
- Yuqing He
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, China
| | | | | | | | | | | | | |
Collapse
|
321
|
Bichenkova EV, Lang Z, Yu X, Rogert C, Douglas KT. DNA-mounted self-assembly: New approaches for genomic analysis and SNP detection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:1-23. [PMID: 21111076 DOI: 10.1016/j.bbagrm.2010.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/07/2010] [Accepted: 11/12/2010] [Indexed: 11/25/2022]
|
322
|
Meyer K, Ueland PM. Use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for multiplex genotyping. Adv Clin Chem 2011; 53:1-29. [PMID: 21404912 DOI: 10.1016/b978-0-12-385855-9.00001-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After completion of the human genome project, the focus of geneticists has shifted to elucidation of gene function and genetic diversity to understand the mechanisms of complex diseases or variation of patient response in drug treatment. In the past decade, many different genotyping techniques have been described for the detection of single-nucleotide polymorphisms (SNPs) and other common polymorphic variants. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is among the most powerful and widely used genotyping technologies. The method offers great flexibility in assay design and enables highly accurate genotyping at high sample throughput. Different strategies for allele discrimination and quantification have been combined with MALDI (hybridization, ligation, cleavage, and primer extension). Approaches based on primer extension have become the most popular applications. This combination enables rapid and reliable multiplexing of SNPs and other common variants, and makes MALDI-TOF-MS well suited for large-scale studies in fine-mapping and verification of genome-wide scans. In contrast to standard genotyping, more demanding approaches have enabled genotyping of DNA pools, molecular haplotyping or the detection of free circulating DNA for prenatal or cancer diagnostics. In addition, MALDI can also be used in novel applications as DNA methylation analysis, expression profiling, and resequencing. This review gives an introduction to multiplex genotyping by MALDI-MS and will focus on the latest developments of this technology.
Collapse
|
323
|
Duprey JLHA, Zhao ZY, Bassani DM, Manchester J, Vyle JS, Tucker JHR. Detection of DNA base variation and cytosine methylation at a single nucleotide site using a highly sensitive fluorescent probe. Chem Commun (Camb) 2011; 47:6629-31. [DOI: 10.1039/c1cc11205h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
324
|
Lim JE, Hong KW, Jin HS, Kim YS, Park HK, Oh B. Type 2 diabetes genetic association database manually curated for the study design and odds ratio. BMC Med Inform Decis Mak 2010; 10:76. [PMID: 21190593 PMCID: PMC3022779 DOI: 10.1186/1472-6947-10-76] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/30/2010] [Indexed: 11/15/2022] Open
Abstract
Background The prevalence of type 2 diabetes has reached epidemic proportions worldwide, and the incidence of life-threatening complications of diabetes through continued exposure of tissues to high glucose levels is increasing. Advances in genotyping technology have increased the scale and accuracy of the genotype data so that an association genetic study has expanded enormously. Consequently, it is difficult to search the published association data efficiently, and several databases on the association results have been constructed, but these databases have their limitations to researchers: some providing only genome-wide association data, some not focused on the association but more on the integrative data, and some are not user-friendly. In this study, a user-friend database of type 2 diabetes genetic association of manually curated information was constructed. Description The list of publications used in this study was collected from the HuGE Navigator, which is an online database of published genome epidemiology literature. Because type 2 diabetes genetic association database (T2DGADB) aims to provide specialized information on the genetic risk factors involved in the development of type 2 diabetes, 701 of the 1,771 publications in the type 2 Diabetes case-control study for the development of the disease were extracted. Conclusions In the database, the association results were grouped as either positive or negative. The gene and SNP names were replaced with gene symbols and rsSNP numbers, the association p-values were determined manually, and the results are displayed by graphs and tables. In addition, the study design in publications, such as the population type and size are described. This database can be used for research purposes, such as an association and functional study of type 2 diabetes related genes, and as a primary genetic resource to construct a diabetes risk test in the preparation of personalized medicine in the future.
Collapse
Affiliation(s)
- Ji Eun Lim
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
325
|
|
326
|
Use of genomic profiling to assess risk for cardiovascular disease and identify individualized prevention strategies—A targeted evidence-based review. Genet Med 2010; 12:772-84. [DOI: 10.1097/gim.0b013e3181f8728d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
327
|
Kong RM, Zhang XB, Zhang LL, Huang Y, Lu DQ, Tan W, Shen GL, Yu RQ. Molecular Beacon-Based Junction Probes for Efficient Detection of Nucleic Acids via a True Target-Triggered Enzymatic Recycling Amplification. Anal Chem 2010; 83:14-7. [DOI: 10.1021/ac1025072] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rong-Mei Kong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Liang-Liang Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yan Huang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Dan-Qing Lu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Weihong Tan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Guo-Li Shen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Ru-Qin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China, and Department of Chemistry and Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
328
|
Østergaard ME, Maity J, Babu BR, Wengel J, Hrdlicka PJ. Novel insights into the use of Glowing LNA as nucleic acid detection probes--influence of labeling density and nucleobases. Bioorg Med Chem Lett 2010; 20:7265-8. [PMID: 21071224 DOI: 10.1016/j.bmcl.2010.10.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
Appropriately designed 2'-N-(pyren-1-yl)carbonyl-2'-amino-LNA (locked nucleic acid) display large increases in fluorescence intensity and remarkably high quantum yields upon hybridization with nucleic acid targets. Thermal denaturation and fluorescence spectroscopy studies on ONs modified with known thymine monomer X and novel 5-methylcytosine monomer Y provide new insights into the design principles and mechanism of these Glowing LNA nucleic acid detection probes.
Collapse
|
329
|
Wong SHY, Happy C, Blinka D, Gock S, Jentzen JM, Donald Hon J, Coleman H, Jortani SA, Lucire Y, Morris-Kukoski CL, Neuman MG, Orsulak PJ, Sander T, Wagner MA, Wynn JR, Wu AHB, Yeo KTJ. From personalized medicine to personalized justice: the promises of translational pharmacogenomics in the justice system. Pharmacogenomics 2010; 11:731-7. [PMID: 20504247 DOI: 10.2217/pgs.10.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
330
|
Wright MH, Tung CW, Zhao K, Reynolds A, McCouch SR, Bustamante CD. ALCHEMY: a reliable method for automated SNP genotype calling for small batch sizes and highly homozygous populations. Bioinformatics 2010; 26:2952-60. [PMID: 20926420 PMCID: PMC2982150 DOI: 10.1093/bioinformatics/btq533] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Motivation: The development of new high-throughput genotyping products requires a significant investment in testing and training samples to evaluate and optimize the product before it can be used reliably on new samples. One reason for this is current methods for automated calling of genotypes are based on clustering approaches which require a large number of samples to be analyzed simultaneously, or an extensive training dataset to seed clusters. In systems where inbred samples are of primary interest, current clustering approaches perform poorly due to the inability to clearly identify a heterozygote cluster. Results: As part of the development of two custom single nucleotide polymorphism genotyping products for Oryza sativa (domestic rice), we have developed a new genotype calling algorithm called ‘ALCHEMY’ based on statistical modeling of the raw intensity data rather than modelless clustering. A novel feature of the model is the ability to estimate and incorporate inbreeding information on a per sample basis allowing accurate genotyping of both inbred and heterozygous samples even when analyzed simultaneously. Since clustering is not used explicitly, ALCHEMY performs well on small sample sizes with accuracy exceeding 99% with as few as 18 samples. Availability: ALCHEMY is available for both commercial and academic use free of charge and distributed under the GNU General Public License at http://alchemy.sourceforge.net/ Contact:mhw6@cornell.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mark H Wright
- Department of Biological Statistics and Computational Biology, 102 Weill Hall, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
331
|
Turner SD, Dudek SM, Ritchie MD. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData Min 2010; 3:5. [PMID: 20875103 PMCID: PMC2955681 DOI: 10.1186/1756-0381-3-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/27/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. METHODS Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. RESULTS We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. CONCLUSIONS We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait.
Collapse
Affiliation(s)
- Stephen D Turner
- Center for Human Genetics Research, Departments of Molecular Physiology & Biophysics and Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Scott M Dudek
- Center for Human Genetics Research, Departments of Molecular Physiology & Biophysics and Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Marylyn D Ritchie
- Center for Human Genetics Research, Departments of Molecular Physiology & Biophysics and Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
332
|
Rofaiel S, Muo EN, Mousa SA. Pharmacogenetics in breast cancer: steps toward personalized medicine in breast cancer management. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2010; 3:129-43. [PMID: 23226048 PMCID: PMC3513214 DOI: 10.2147/pgpm.s10789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Indexed: 01/22/2023]
Abstract
There is wide individual variability in the pharmacokinetics, pharmacodynamics, and tolerance to anticancer drugs within the same ethnic group and even greater variability among different ethnicities. Pharmacogenomics (PG) has the potential to provide personalized therapy based on individual genetic variability in an effort to maximize efficacy and reduce adverse effects. The benefits of PG include improved therapeutic index, improved dose regimen, and selection of optimal types of drug for an individual or set of individuals. Advanced or metastatic breast cancer is typically treated with single or multiple combinations of chemotherapy regimens including anthracyclines, taxanes, antimetabolites, alkylating agents, platinum drugs, vinca alkaloids, and others. In this review, the PG of breast cancer therapeutics, including tamoxifen, which is the most widely used therapeutic for the treatment of hormone-dependent breast cancer, is reviewed. The pharmacological activity of tamoxifen depends on its conversion by cytochrome P450 2D6 (CYP2D6) to its abundant active metabolite, endoxifen. Patients with reduced CYP2D6 activity, as a result of either their genotype or induction by the coadministration of other drugs that inhibit CYP2D6 function, produce little endoxifen and hence derive limited therapeutic benefit from tamoxifen; the same can be said about the different classes of therapeutics in breast cancer. PG studies of breast cancer therapeutics should provide patients with breast cancer with optimal and personalized therapy.
Collapse
Affiliation(s)
- Sarah Rofaiel
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | | | |
Collapse
|
333
|
Østergaard ME, Cheguru P, Papasani MR, Hill RA, Hrdlicka PJ. Glowing Locked Nucleic Acids: Brightly Fluorescent Probes for Detection of Nucleic Acids in Cells. J Am Chem Soc 2010; 132:14221-8. [DOI: 10.1021/ja1057295] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michael E. Østergaard
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| | - Pallavi Cheguru
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| | - Madhusudhan R. Papasani
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| | - Rodney A. Hill
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| | - Patrick J. Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| |
Collapse
|
334
|
Zhang Z, Zeng D, Ma H, Feng G, Hu J, He L, Li C, Fan C. A DNA-Origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1854-1858. [PMID: 20715076 DOI: 10.1002/smll.201000908] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Zhao Zhang
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Hou H, Qing Z, Jia S, Zhang X, Hu S, Hu J. Influence of brain-derived neurotrophic factor (Val66Met) genetic polymorphism on the ages of onset for heroin abuse in males. Brain Res 2010; 1353:245-8. [DOI: 10.1016/j.brainres.2010.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 11/24/2022]
|
336
|
Javed R. Current research status, databases and application of single nucleotide polymorphism. Pak J Biol Sci 2010; 13:657-663. [PMID: 21717869 DOI: 10.3923/pjbs.2010.657.663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Single Nucleotide Polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. SNPs are genetic markers which are bi-allelic in nature and grow at a very fast rate. Current genomic databases contain information on several million SNPs. More than 6 million SNPs have been identified and the information is publicly available through the efforts of the SNP Consortium and others data bases. The NCBI plays a major role in facillating the identification and cataloging of SNPs through creation and maintenance of the public SNP database (dbSNP) by the biomedical community worldwide and stimulate many areas of biological research including the identification of the genetic components of disease. In this review article, we are compiling the existing SNP databases, research status and their application.
Collapse
Affiliation(s)
- R Javed
- DNA Sequencing Lab, National Bureau of Animal Genetic Resources, Karnal-132001, Haryana, India
| |
Collapse
|
337
|
Mirsaidov UM, Wang D, Timp W, Timp G. Molecular diagnostics for personal medicine using a nanopore. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:367-81. [PMID: 20564464 PMCID: PMC5523111 DOI: 10.1002/wnan.86] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Semiconductor nanotechnology has created the ultimate analytical tool: a nanopore with single molecule sensitivity. This tool offers the intriguing possibility of high-throughput, low cost sequencing of DNA with the absolute minimum of material and preprocessing. The exquisite single molecule sensitivity obviates the need for costly and error-prone procedures like polymerase chain reaction amplification. Instead, nanopore sequencing relies on the electric signal that develops when a DNA molecule translocates through a pore in a membrane. If each base pair has a characteristic electrical signature, then ostensibly a pore could be used to analyze the sequence by reporting all of the signatures in a single read without resorting to multiple DNA copies. The potential for a long read length combined with high translocation velocity should make resequencing inexpensive and allow for haplotyping and methylation profiling in a chromosome.
Collapse
Affiliation(s)
- Utkur M Mirsaidov
- Stinson-Remick Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
338
|
Esteves F, Gaspar J, Marques T, Leite R, Antunes F, Mansinho K, Matos O. Identification of relevant single-nucleotide polymorphisms in Pneumocystis jirovecii: relationship with clinical data. Clin Microbiol Infect 2010; 16:878-84. [DOI: 10.1111/j.1469-0691.2009.03030.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
339
|
|
340
|
Population turnover in a Microcystis bloom results in predominantly nontoxigenic variants late in the season. Appl Environ Microbiol 2010; 76:5207-13. [PMID: 20543038 DOI: 10.1128/aem.00001-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface samples of the 2007 Microcystis bloom occurring in Copco Reservoir on the Klamath River in Northern California were analyzed genetically by sequencing clone libraries made with amplicons at three loci: the internal transcribed spacer of the rRNA operon (ITS), cpcBA, and mcyA. Samples were taken between June and October, during which time two cell count peaks occurred, in mid-July and early September. The ITS and cpcBA loci could be classified into four or five allele groups, which provided a convenient means for describing the Microcystis population and its changes over time. Each group was numerically dominated by a single, highly represented sequence. Other members of each group varied by changes at 1 to 3 nucleotide positions, while groups were separated by up to 30 nucleotide differences. As deduced by a partial sampling of the clone libraries, there were marked population turnovers during the season, indicated by changes in allele composition at both the ITS and cpcBA loci. Different ITS and cpcBA genotypes appeared to be dominant at the two population peaks. Toxicity (amount of microcystin per cell) and toxigenic potential (mcyB copy number) were lower during the second peak, and the mcyB copy number fell further as the bloom declined.
Collapse
|
341
|
Lowe AJ, Huh YS, Strickland AD, Erickson D, Batt CA. Multiplex Single Nucleotide Polymorphism Genotyping Utilizing Ligase Detection Reaction Coupled Surface Enhanced Raman Spectroscopy. Anal Chem 2010; 82:5810-4. [DOI: 10.1021/ac100921b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam J. Lowe
- Graduate Field of Microbiology, Sibley School of Mechanical and Aerospace Engineering and Department of Food Science, Cornell University, Ithaca, New York 14853, and Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - Yun Suk Huh
- Graduate Field of Microbiology, Sibley School of Mechanical and Aerospace Engineering and Department of Food Science, Cornell University, Ithaca, New York 14853, and Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - Aaron D. Strickland
- Graduate Field of Microbiology, Sibley School of Mechanical and Aerospace Engineering and Department of Food Science, Cornell University, Ithaca, New York 14853, and Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - David Erickson
- Graduate Field of Microbiology, Sibley School of Mechanical and Aerospace Engineering and Department of Food Science, Cornell University, Ithaca, New York 14853, and Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - Carl A. Batt
- Graduate Field of Microbiology, Sibley School of Mechanical and Aerospace Engineering and Department of Food Science, Cornell University, Ithaca, New York 14853, and Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| |
Collapse
|
342
|
Østergaard ME, Guenther DC, Kumar P, Baral B, Deobald L, Paszczynski AJ, Sharma PK, Hrdlicka PJ. Pyrene-functionalized triazole-linked 2'-deoxyuridines-probes for discrimination of single nucleotide polymorphisms (SNPs). Chem Commun (Camb) 2010; 46:4929-31. [PMID: 20526503 DOI: 10.1039/c0cc01133a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oligonucleotides modified with pyrene-functionalized triazole-linked 2'-deoxyuridines display remarkable hybridization-induced increases in fluorescence emission and enable efficient fluorescent discrimination of SNPs via G-specific quenching.
Collapse
|
343
|
Yang S, Xu L, Wu HM. Rapid multiplexed genotyping for hereditary thrombophilia by SELDI-TOF mass spectrometry. ACTA ACUST UNITED AC 2010; 19:54-61. [PMID: 20186013 DOI: 10.1097/pdm.0b013e3181a814bf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Approximately 50% of patients with venous thromboembolism also present with hereditary predisposition. The most common genetic factors are single nucleotide polymorphisms (SNPs) of factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T. Genotyping these SNPs helps clinicians to correctly diagnose the disease and properly manage patients. In this study, we report a novel method using surface-enhanced laser desorption and ionization time of flight mass spectrometry to rapidly genotype, in a multiplex fashion, 3 SNPs that predispose patients to thrombosis. First, patient DNA samples were subjected to polymerase chain reaction to amplify and extend the DNA products with masses corresponding to specific genotypes. Polymerase chain reaction products were then applied to Q10 anionic protein chips, undergoing on-chip sample enrichment and clean-up. Finally, the genotypes of the SNPs were determined by surface-enhanced laser desorption and ionization time of flight mass spectrometry. This method offers a rapid turnaround time of less than 5 hours from sample collection to result reporting. The analytical accuracy of each SNP genotyping result has been confirmed by DNA sequencing. In addition, the genotype results produced by this method were validated by comparing them with results obtained by the approved method in the clinical reference laboratory. This novel method is fast, accurate, and reproducible, and thus provides an excellent platform to promote personalized medicine in the management of clotting disorders.
Collapse
Affiliation(s)
- Shangbin Yang
- Department of Pathology, Center for Personalized Health Care, College of Medicine, Ohio State University, 410 West 10th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
344
|
|
345
|
Duan X, Liu L, Feng F, Wang S. Cationic conjugated polymers for optical detection of DNA methylation, lesions, and single nucleotide polymorphisms. Acc Chem Res 2010; 43:260-70. [PMID: 19954139 DOI: 10.1021/ar9001813] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Simple, rapid, and sensitive technologies to detect nucleic acid modifications have important applications in genetic analysis, clinical diagnosis, and molecular biology. Because genetic modifications such as single nucleotide polymorphisms (SNP), DNA methylation, and other lesions can serve as hallmarks of human disease, interest in such methods has increased in recent years. This Account describes a new strategy for the optical detection of these DNA targets using cationic conjugated polymers (CCPs). Because of their unique signal amplification properties, researchers have extensively investigated conjugated polymers as optical transducers in highly sensitive biosensors. Recently, we have shown that cationic polyfluorene can detect SNPs within the DNA of clinical samples. When we incorporated deoxyguanosine triphosphate (dGTP-Fl) into the DNA chain at an SNP site where the target/probe pair is complementary, we observed higher fluorescence resonance energy transfer (FRET) efficiency between cationic polyfluorene and fluorescein label on the dGTP. By monitoring the change in emission intensity of cationic polyfluorene or fluorescein, we identified the homozygous or heterozygous SNP. The high sensitivity of this assay results from the 10-fold enhancement of fluorescein emission intensity by the FRET from polyfluorene. This method can detect allele frequencies (the proportion of all copies of a gene that is made up of a particular gene variant) as low as 2%. Using this novel method, we clearly discriminated among the SNP genotypes of 76 individuals of Chinese ancestry. Improving on this initial system, we designed a method for multicolor and one-tube SNP genotyping assays based on cationic polyfluorene using fluorescein-labeled deoxyuridine triphosphate (dUTP-Fl) and Cy3-labeled deoxycytidine triphosphate (dCTP-Cy3) in extension reactions. We also developed a one-step method for direct detection of SNP genotypes from genomic DNA by combining allele-specific PCR with CCPs. In 2008, we developed a new method for DNA methylation detection based on single base extension reaction and CCPs. Treatment of DNA with bisulfite followed by PCR amplification converts unmethylated DNA into a C/T polymorphism, which allows us to characterize the methylation status of the target DNA. Furthermore, we used CCPs to detect DNA lesions caused by ultraviolet light irradiation for the first time. By monitoring the color change of cationic polythiophene before and after DNA cleavage, we also detected oxidative damage to DNA by hydroxyl radical. These CCP-based new assays avoid primer labeling, cumbersome workups, and sophisticated instruments, leading to simpler procedures and improved sensitivity. We expect that these features could lead to major advances in human disease diagnostics and genomic study in the near future.
Collapse
Affiliation(s)
- Xinrui Duan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fude Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
346
|
Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant JP, Sourdille P, Balfourier F, Le Paslier MC, Chauveau A, Cakir M, Gandon B, Feuillet C. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:196-210. [PMID: 20078842 DOI: 10.1111/j.1467-7652.2009.00477.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In wheat, the deployment of marker-assisted selection has long been hampered by the lack of markers compatible with high-throughput cost-effective genotyping techniques. Recently, insertion site-based polymorphism (ISBP) markers have appeared as very powerful new tools for genomics and genetic studies in hexaploid wheat. To demonstrate their possible use in wheat breeding programmes, we assessed their potential to meet the five main requirements for utilization in MAS: flexible and high-throughput detection methods, low quantity and quality of DNA required, low cost per assay, tight link to target loci and high level of polymorphism in breeding material. Toward this aim, we developed a programme, IsbpFinder, for the automated design of ISBP markers and adapted three detection methods (melting curve analysis, SNaPshot Multiplex System and Illumina BeadArray technology) for high throughput and flexible detection of ISBP or ISBP-derived SNP markers. We demonstrate that the high level of polymorphism of the ISBPs combined with cost-effective genotyping methods can be used to efficiently saturate genetic maps, discriminate between elite cultivars, and design tightly linked diagnostic markers for virtually all target loci in the wheat genome. All together, our results suggest that ISBP markers have the potential to lead to a breakthrough in wheat marker-assisted selection.
Collapse
Affiliation(s)
- Etienne Paux
- INRA UBP UMR 1095, Genetics, Diversity & Ecophysiology of Cereals, Clermont Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Allen AR, Taylor M, McKeown B, Curry AI, Lavery JF, Mitchell A, Hartshorne D, Fries R, Skuce RA. Compilation of a panel of informative single nucleotide polymorphisms for bovine identification in the Northern Irish cattle population. BMC Genet 2010; 11:5. [PMID: 20100323 PMCID: PMC2826282 DOI: 10.1186/1471-2156-11-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 01/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animal identification is pivotal in governmental agricultural policy, enabling the management of subsidy payments, movement of livestock, test scheduling and control of disease. Advances in bovine genomics have made it possible to utilise inherent genetic variability to uniquely identify individual animals by DNA profiling, much as has been achieved with humans over the past 20 years. A DNA profiling test based on bi-allelic single nucleotide polymorphism (SNP) markers would offer considerable advantages over current short tandem repeat (STR) based industry standard tests, in that it would be easier to analyse and interpret. In this study, a panel of 51 genome-wide SNPs were genotyped across panels of semen DNA from 6 common breeds for the purposes of ascertaining allelic frequency. For SNPs on the same chromosome, the extent of linkage disequilbrium was determined from genotype data by Expectation Maximization (EM) algorithm. Minimum probabilities of unique identification were determined for each breed panel. The usefulness of this SNP panel was ascertained by comparison to the current bovine STR Stockmarks II assay. A statistically representative random sampling of bovine animals from across Northern Ireland was assembled for the purposes of determining the population allele frequency for these STR loci and subsequently, the minimal probability of unique identification they conferred in sampled bovine animals from Northern Ireland. RESULTS 6 SNPs exhibiting a minor allele frequency of less than 0.2 in more than 3 of the breed panels were excluded. 2 Further SNPs were found to reside in coding areas of the cattle genome and were excluded from the final panel. The remaining 43 SNPs exhibited genotype frequencies which were in Hardy Weinberg Equilibrium. SNPs on the same chromosome were observed to have no significant linkage disequilibrium/allelic association. Minimal probabilities of uniquely identifying individual animals from each of the breeds were obtained and were observed to be superior to those conferred by the industry standard STR assay. CONCLUSIONS The 43 SNPs characterised herein may constitute a starting point for the development of a SNP based DNA identification test for European cattle.
Collapse
Affiliation(s)
- Adrian R Allen
- Agri-Food and Biosciences Institute, Stoney Road, Belfast, Northern Ireland, BT4 3SD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Identification and mapping of induced chromosomal deletions using sequence polymorphisms. Biotechniques 2010; 48:53-60. [PMID: 20078428 DOI: 10.2144/000113348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
One of the many advantages of Drosophila melanogaster as a model organism is the relative ease with which gene deletions can be generated by imprecise excision of transposon insertions. Here, we describe a simple, fast, and efficient method of screening for single-gene excision events that is not biased by prior assumptions of the mutant phenotype. DNA sequence polymorphisms were used as co-dominant electrophoretic markers to identify candidate deletions in a single generation, and to delimit the breakpoints to within 0.5-1 kb, thereby rapidly identifying deficiencies that affect only the gene of interest. In addition, we used polymorphism profiling to map existing deficiencies. The method can also be applied to map the extent of deletions generated by x-rays and to identify targeted mutations generated by engineered zinc-finger nucleases in Drosophila and other polymorphic model organisms (e.g., zebrafish, mouse, Caenorhabditis elegans).
Collapse
|
349
|
Yang S, Xu L, Wu HM. Rapid genotyping of single nucleotide polymorphisms influencing warfarin drug response by surface-enhanced laser desorption and ionization time-of-flight (SELDI-TOF) mass spectrometry. J Mol Diagn 2010; 12:162-8. [PMID: 20075209 DOI: 10.2353/jmoldx.2010.090084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy.
Collapse
Affiliation(s)
- Shangbin Yang
- Department of Pathology, Ohio State University College of Medicine, 165 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, USA
| | | | | |
Collapse
|
350
|
Gineikiene E, Stoskus M, Griskevicius L. Recent advances in quantitative chimerism analysis. Expert Rev Mol Diagn 2010; 9:817-32. [PMID: 19895227 DOI: 10.1586/erm.09.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative chimerism analysis is a diagnostic tool used to monitor engraftment kinetics after allogeneic stem cell transplantation. It reflects the proportion of recipient and donor genotypes and is based on the identification of genetic markers characteristic to a given transplant pair. Currently, PCR amplification of short tandem repeats and single-nucleotide polymorphism-specific quantitative real-time PCR are the most widely used techniques for this purpose. In this review, we will address advances as well as technology-specific imperfections, of both techniques that have emerged over the recent years. We will discuss new principles that may simplify assay design, and improve its robustness and reliability. A better chimerism assay could then guide clinical interventions and may, eventually, improve the outcome of allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Egle Gineikiene
- Department of Molecular and Regenerative Medicine, Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Clinics, Santariskiu 2, LT-08661, Vilnius, Lithuania.
| | | | | |
Collapse
|