301
|
Csiszar A. Anti-inflammatory effects of resveratrol: possible role in prevention of age-related cardiovascular disease. Ann N Y Acad Sci 2011; 1215:117-22. [PMID: 21261649 DOI: 10.1111/j.1749-6632.2010.05848.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases are the most common cause of death among the elderly in the Western world. Resveratrol (3,5,4'-trihydroxystilbene) is a plant-derived polyphenol that was shown to exert diverse anti-aging activity mimicking some of the molecular and functional effects of caloric restriction. This mini-review focuses on the molecular and cellular mechanisms activated by resveratrol in the vascular system, and explores the links between its anti-oxidative and anti-inflammatory effects, which could be exploited for the prevention or amelioration of vascular aging in the elderly.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Physiology, Oklahoma City, USA.
| |
Collapse
|
302
|
Caveolae: a regulatory platform for nutritional modulation of inflammatory diseases. J Nutr Biochem 2011; 22:807-11. [PMID: 21292468 DOI: 10.1016/j.jnutbio.2010.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/13/2010] [Accepted: 09/30/2010] [Indexed: 12/18/2022]
Abstract
Dietary intervention strategies have proven to be an effective means of decreasing several risk factors associated with the development of atherosclerosis. Endothelial cell dysfunction influences vascular inflammation and is involved in promoting the earliest stages of lesion formation. Caveolae are lipid raft microdomains abundant within the plasma membrane of endothelial cells and are responsible for modulating receptor-mediated signal transduction, thus influencing endothelial activation. Caveolae have been implicated in the regulation of enzymes associated with several key signaling pathways capable of determining intracellular redox status. Diet and plasma-derived nutrients may modulate an inflammatory outcome by interacting with and altering caveolae-associated cellular signaling. For example, omega-3 fatty acids and several polyphenolics have been shown to improve endothelial cell function by decreasing the formation of ROS and increasing NO bioavailability, events associated with altered caveolae composition. Thus, nutritional modulation of caveolae-mediated signaling events may provide an opportunity to ameliorate inflammatory signaling pathways capable of promoting the formation of vascular diseases, including atherosclerosis.
Collapse
|
303
|
Olmos Y, Brosens JJ, Lam EWF. Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resist Updat 2011; 14:35-44. [DOI: 10.1016/j.drup.2010.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022]
|
304
|
Gao RY, Mukhopadhyay P, Mohanraj R, Wang H, Horváth B, Yin S, Pacher P. Resveratrol attenuates azidothymidine-induced cardiotoxicity by decreasing mitochondrial reactive oxygen species generation in human cardiomyocytes. Mol Med Rep 2011; 4:151-155. [PMID: 21461578 PMCID: PMC3075855 DOI: 10.3892/mmr.2010.390] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/18/2010] [Indexed: 12/16/2022] Open
Abstract
Nucleotide reverse transcriptase inhibitors, such as zidovudine (azidothymidine, AZT) and stavudine, represent a class of approved antiretroviral agents for highly active antiretroviral therapy, which prolongs the life expectancy of patients infected with human-immunodeficiency virus. Unfortunately, the use of these drugs is associated with known toxicities in the liver, skeletal muscle, heart and other organs, which may involve increased reactive oxygen species (ROS) generation, among other mechanisms. Resveratrol is a polyphenolic plant-derived antioxidant abundantly found in certain grapes, roots, berries, peanuts and red wine. This study, using primary human cardiomyocytes, evaluated the effects of AZT and pre-treatment with resveratrol on mitochondrial ROS generation and the cell death pathways. AZT induced concentration-dependent cell death, involving both caspase-3 and -7 and poly(ADP-ribose) polymerase activation, coupled with increased mitochondrial ROS generation in human cardiomyocytes. These effects of AZT on mitochondrial ROS generation and cell death may be attenuated by resveratrol pre-treatment. The results demonstrate that mitochondrial ROS generation plays a pivotal role in the cardiotoxicity of AZT in human cardiomyocytes, and resveratrol may provide a potential strategy to attenuate these pathological alterations, which are associated with widely used antiretroviral therapy.
Collapse
Affiliation(s)
- Rachel Yue Gao
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
305
|
Nunn AV, Guy GW, Brodie JS, Bell JD. Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle. Nutr Metab (Lond) 2010; 7:87. [PMID: 21143891 PMCID: PMC3009972 DOI: 10.1186/1743-7075-7-87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023] Open
Abstract
Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments.
Collapse
Affiliation(s)
- Alistair V Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 OHS, UK.
| | | | | | | |
Collapse
|
306
|
Xia N, Daiber A, Habermeier A, Closs EI, Thum T, Spanier G, Lu Q, Oelze M, Torzewski M, Lackner KJ, Münzel T, Förstermann U, Li H. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther 2010; 335:149-54. [PMID: 20610621 DOI: 10.1124/jpet.110.168724] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A crucial cause of the decreased bioactivity of nitric oxide (NO) in cardiovascular diseases is the uncoupling of the endothelial NO synthase (eNOS) caused by the oxidative stress-mediated deficiency of the NOS cofactor tetrahydrobiopterin (BH(4)). The reversal of eNOS uncoupling might represent a novel therapeutic approach. The treatment of apolipoprotein E knockout (ApoE-KO) mice with resveratrol resulted in the up-regulation of superoxide dismutase (SOD) isoforms (SOD1-SOD3), glutathione peroxidase 1 (GPx1), and catalase and the down-regulation of NADPH oxidases NOX2 and NOX4 in the hearts of ApoE-KO mice. This was associated with reductions in superoxide, 3-nitrotyrosine, and malondialdehyde levels. In parallel, the cardiac expression of GTP cyclohydrolase 1 (GCH1), the rate-limiting enzyme in BH(4) biosynthesis, was enhanced by resveratrol. This enhancement was accompanied by an elevation in BH(4) levels. Superoxide production from ApoE-KO mice hearts was reduced by the NOS inhibitor L-N(G)-nitro-arginine methyl ester, indicating eNOS uncoupling in this pathological model. Resveratrol treatment resulted in a reversal of eNOS uncoupling. Treatment of human endothelial cells with resveratrol led to an up-regulation of SOD1, SOD2, SOD3, GPx1, catalase, and GCH1. Some of these effects were preventable with sirtinol, an inhibitor of the protein deacetylase sirtuin 1. In summary, resveratrol decreased superoxide production and enhanced the inactivation of reactive oxygen species. The resulting reduction in BH(4) oxidation, together with the enhanced biosynthesis of BH(4) by GCH1, probably was responsible for the reversal of eNOS uncoupling. This novel mechanism (reversal of eNOS uncoupling) might contribute to the protective effects of resveratrol.
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Abstract
The polyphenolic natural product resveratrol (RV), best known for its occurrence in grape skin and red wine, is considered a candidate drug for prevention and treatment of cardiovascular diseases. This review aims to summarize the molecular effects of RV on endothelial cells, which line the inner walls of blood vessels and play a key role in the development of those diseases. We describe how RV enhances endothelial nitric oxide production, improves endothelial redox balance and inhibits endothelial activation in response to pro-inflammatory and metabolic insults. Furthermore, we summarize effects of RV on endothelial senescence, apoptosis, endothelin-1 release, and endothelial progenitor cell function. As many of RV's actions seem to be mediated by SIRT₁, different mechanistic possibilities how RV may lead to SIRT₁ activation are discussed.
Collapse
Affiliation(s)
- Christoph A Schmitt
- Wolfson Institute for Biomedical Research, University College London, United Kingdom
| | | | | |
Collapse
|
308
|
Valsecchi F, Koopman WJ, Manjeri GR, Rodenburg RJ, Smeitink JA, Willems PH. Complex I disorders: Causes, mechanisms, and development of treatment strategies at the cellular level. ACTA ACUST UNITED AC 2010; 16:175-82. [DOI: 10.1002/ddrr.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
309
|
Biala A, Tauriainen E, Siltanen A, Shi J, Merasto S, Louhelainen M, Martonen E, Finckenberg P, Muller DN, Mervaala E. Resveratrol induces mitochondrial biogenesis and ameliorates Ang II-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes. Blood Press 2010; 19:196-205. [PMID: 20429690 DOI: 10.3109/08037051.2010.481808] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is compelling evidence to indicate an important role for increased local renin-angiotensin system activity in the pathogenesis of cardiac hypertrophy and heart failure. Resveratrol is a natural polyphenol that activates SIRT1, a novel cardioprotective and longevity factor having NAD(+)-dependent histone deacetylase activity. We tested the hypothesis whether resveratrol could prevent from angiotensin II (Ang II)-induced cardiovascular damage. Four-week-old double transgenic rats harboring human renin and human angiotensinogen genes (dTGR) were treated for 4 weeks either with SIRT1 activator resveratrol or SIRT1 inhibitor nicotinamide. Untreated dTGR and their normotensive Sprague-Dawley control rats (SD) received vehicle. Untreated dTGR developed severe hypertension as well as cardiac hypertrophy, and showed pronounced cardiovascular mortality compared with normotensive SD rats. Resveratrol slightly but significantly decreased blood pressure, ameliorated cardiac hypertrophy and prevented completely Ang II-induced mortality, whereas nicotinamide increased blood pressure without significantly influencing cardiac hypertrophy or survival. Resveratrol decreased cardiac ANP mRNA expression and induced cardiac mRNA expressions of mitochondrial biogenesis markers peroxisome proliferator-activated receptor-gamma coactivator (PGC-1alpha), mitochondrial transcription factor (Tfam), nuclear respiratory factor 1 (NRF-1) and cytochrome c oxidase subunit 4 (cox4). Resveratrol dose-dependently increased SIRT1 activity in vitro. Our findings suggest that the beneficial effects of SIRT1 activator resveratrol on Ang II-induced cardiac remodeling are mediated by blood pressure-dependent pathways and are linked to increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Agnieszka Biala
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Ungvari Z, Sonntag WE, Csiszar A. Mitochondria and aging in the vascular system. J Mol Med (Berl) 2010; 88:1021-7. [PMID: 20714704 DOI: 10.1007/s00109-010-0667-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/13/2010] [Accepted: 08/04/2010] [Indexed: 12/12/2022]
Abstract
This review focuses on mitochondrial abnormalities that occur in the vasculature during aging and explores the link between mitochondrial oxidative stress, chronic low-grade vascular inflammation, increased rate of endothelial apoptosis, and development of vascular diseases in the elderly. Therapeutic strategies targeting the mitochondria for prevention of age-associated vascular dysfunction and disease in old age are considered here based on emerging knowledge of the vasoprotective effects of caloric restriction, caloric restriction mimetics, the GH/IGF-1 axis, and mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
311
|
Ungvari Z, Gautam T, Koncz P, Henthorn JC, Pinto JT, Ballabh P, Yan H, Mitschelen M, Farley J, Sonntag WE, Csiszar A. Vasoprotective effects of life span-extending peripubertal GH replacement in Lewis dwarf rats. J Gerontol A Biol Sci Med Sci 2010; 65:1145-56. [PMID: 20713653 DOI: 10.1093/gerona/glq147] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In humans, growth hormone deficiency (GHD) and low circulating levels of insulin-like growth factor 1 (IGF-1) significantly increase the risk for cerebrovascular disease. Genetic growth hormone (GH)/IGF-1 deficiency in Lewis dwarf rats significantly increases the incidence of late-life strokes, similar to the effects of GHD in elderly humans. Peripubertal treatment of Lewis dwarf rats with GH delays the occurrence of late-life stroke, which results in a significant extension of life span. The present study was designed to characterize the vascular effects of life span-extending peripubertal GH replacement in Lewis dwarf rats. Here, we report, based on measurements of dihydroethidium fluorescence, tissue isoprostane, GSH, and ascorbate content, that peripubertal GH/IGF-1 deficiency in Lewis dwarf rats increases vascular oxidative stress, which is prevented by GH replacement. Peripubertal GHD did not alter superoxide dismutase or catalase activities in the aorta nor the expression of Cu-Zn-SOD, Mn-SOD, and catalase in the cerebral arteries of dwarf rats. In contrast, cerebrovascular expression of glutathione peroxidase 1 was significantly decreased in dwarf vessels, and this effect was reversed by GH treatment. Peripubertal GHD significantly decreases expression of the Nrf2 target genes NQO1 and GCLC in the cerebral arteries, whereas it does not affect expression and activity of endothelial nitric oxide synthase and vascular expression of IGF-1, IGF-binding proteins, and inflammatory markers (tumor necrosis factor alpha, interluekin-6, interluekin-1β, inducible nitric oxide synthase, intercellular adhesion molecule 1, and monocyte chemotactic protein-1). In conclusion, peripubertal GH/IGF-1 deficiency confers pro-oxidative cellular effects, which likely promote an adverse functional and structural phenotype in the vasculature, and results in accelerated vascular impairments later in life.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Ota H, Eto M, Kano MR, Kahyo T, Setou M, Ogawa S, Iijima K, Akishita M, Ouchi Y. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol 2010; 30:2205-11. [PMID: 20705918 DOI: 10.1161/atvbaha.110.210500] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) have pleiotropic vascular protective effects besides cholesterol lowering. Recently, experimental and clinical studies have indicated that senescence of endothelial cells is involved in endothelial dysfunction and atherogenesis. Therefore, the present study was performed to determine whether statins would reduce endothelial senescence and to clarify the molecular mechanisms underlying the antisenescent property of statins. METHODS AND RESULTS Senescent human umbilical vein endothelial cells were induced by hydrogen peroxide (H(2)O(2)), as judged by senescence-associated β-galactosidase assay and cell morphological appearance. Atorvastatin, pravastatin, and pitavastatin inhibited the oxidative stress induced-endothelial senescence. These statins phosphorylated Akt at Ser473 and subsequently led to increased expression of endothelial nitric oxide synthase (eNOS), SIRT1, and catalase. Treatment with LY294002 or Akt short interfering RNA decreased the eNOS activation, SIRT1 expression, and antisenescent property of atorvastatin. Moreover, in streptozotocin-diabetic mice, administration of pitavastatin increased eNOS, SIRT1, and catalase expression and decreased endothelial senescence, but levels remained unaltered in Sirt1 knockout mice. CONCLUSIONS Our results indicate that treatment with statins inhibits endothelial senescence and that enhancement of SIRT1 plays a critical role in prevention of endothelial senescence through the Akt pathway, a direct target of statins.
Collapse
Affiliation(s)
- Hidetaka Ota
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
313
|
A polyphenol extract modifies quantity but not quality of liver fatty acid content in high-fat-high-sucrose diet-fed rats: possible implication of the sirtuin pathway. Br J Nutr 2010; 104:1760-70. [PMID: 20673376 DOI: 10.1017/s0007114510002850] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-fat or high-fat-high-sucrose diets are known to induce non-alcoholic fatty liver disease and this is emerging as one of the most common liver diseases worldwide. Some polyphenols have been reported to decrease rat hepatic lipid accumulation, in particular those extracted from red grapes such as resveratrol. The present study was designed to determine whether a polyphenol extract (PPE), from red grapes, modulates liver fatty acid composition and desaturase activity indexes in rats fed a high-fat-high-sucrose (HFHS) diet, and to explore whether sirtuin-1 deacetylase activation was implicated in the effect of the PPE against liver steatosis. The effect of this PPE on mitochondriogenesis and mitochondrial activity was also explored. The PPE decreased liver TAG content in HFHS+PPE diet-fed rats in comparison with HFHS diet-fed rats. The PPE had no effect on liver fatty acid composition, desaturase activity indexes and stearoyl-CoA desaturase 1 (SCD1) gene expression. Sirtuin-1 deacetylase protein expression was significantly increased with the PPE; AMP kinase protein expression was higher with the PPE in comparison with the HFHS rats, but no modification of phosphorylated AMP kinase was observed. Protein expression of phospho-acetyl-CoA carboxylase was decreased in HFHS rats and returned to basal values with the PPE. Finally, the PPE modulated PPARγ coactivator-1α (PGC-1α) but did not modify mitochondriogenesis and mitochondrial activity. In conclusion, the PPE partially prevented the accumulation of TAG in the liver by regulating acetyl-CoA carboxylase phosphorylation, a key enzyme in lipid metabolism, probably via sirtuin-1 deacetylase activation. However, the PPE had no effect on the qualitative composition of liver fatty acids.
Collapse
|
314
|
|
315
|
|
316
|
Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 2010; 65:1028-41. [PMID: 20576649 DOI: 10.1093/gerona/glq113] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review focuses on molecular, cellular, and functional changes that occur in the vasculature during aging; explores the links between mitochondrial oxidative stress, inflammation, and development of vascular disease in the elderly patients; and provides a landscape of molecular mechanisms involved in cellular oxidative stress resistance, which could be targeted for the prevention or amelioration of unsuccessful vascular aging. Practical interventions for prevention of age-associated vascular dysfunction and disease in old age are considered here based on emerging knowledge of the effects of anti-inflammatory treatments, regular exercise, dietary interventions, and caloric restriction mimetics.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
317
|
Camins A, Sureda FX, Junyent F, Verdaguer E, Folch J, Pelegri C, Vilaplana J, Beas-Zarate C, Pallàs M. Sirtuin activators: designing molecules to extend life span. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:740-9. [PMID: 20601277 DOI: 10.1016/j.bbagrm.2010.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/31/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
Abstract
Resveratrol (RESV) exerts important pharmacological effects on human health: in addition to its beneficial effects on type 2 diabetes and cardiovascular diseases, it also modulates neuronal energy homeostasis and shows antiaging properties. Although it clearly has free radical scavenger properties, the mechanisms involved in these beneficial effects are not fully understood. In this regard, one area of major interest concerns the effects of RESV on the activity of sirtuin 1 (SIRT1), an NAD(+)-dependent histone deacetylase that has been implicated in aging. Indeed, the role of SIRT1 is currently the subject of intense research due to the antiaging properties of RESV, which increases life span in various organisms ranging from yeast to rodents. In addition, when RESV is administered in experimental animal models of neurological disorders, it has similar beneficial effects to caloric restriction. SIRT1 activation could thus constitute a potential strategic target in neurodegenerative diseases and in disorders involving disturbances in glucose homeostasis, as well as in dyslipidaemias or cardiovascular diseases. Therefore, small SIRT1 activators such as SRT501, SRT2104, and SRT2379, which are currently undergoing clinical trials, could be potential drugs for the treatment of type 2 diabetes, obesity, and metabolic syndrome, among other disorders. This review summarises current knowledge about the biological functions of SIRT1 in aging and aging-associated diseases and discusses its potential as a pharmacological target.
Collapse
Affiliation(s)
- Antoni Camins
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Abstract
The endothelium is vital to the proper functioning in the heart, in particular due to its production of nitric oxide (NO) which regulates vascular tone. Damage to the endothelium contributes to the development of atherosclerosis, and hence to possible myocardial infarction and subsequent heart failure. Like most cells, endothelial cells contain mitochondria, despite their having relatively little dependence on oxidative phosphorylation for ATP production. However, endothelial mitochondria are centrally involved in maintaining the fine regulatory balance between mitochondrial calcium concentration, reactive oxygen species (ROS) production, and NO. This raises the question of whether damage to endothelial mitochondria would have repercussions in terms of the development of heart disease. In fact, increasingly nuanced techniques enabling restricted transgenic expression of antioxidant proteins in mice has demonstrated that mitochondrial ROS do contribute to endothelial damage. New pharmaceutical approaches designed to target protective molecules such as ROS scavengers to the mitochondria promise to be effective in preventing heart disease. As well as protecting cardiomyocytes, these drugs may have the added benefit of preventing damage to the endothelial mitochondria. However, much remains to be done in understanding the contribution that mitochondria make to endothelial function.
Collapse
Affiliation(s)
- Sean Michael Davidson
- Department of Medicine, The Hatter Cardiovascular Institute, University College London Hospital, London WC1E 6HX, UK.
| |
Collapse
|
319
|
Abstract
Shear stress imposed by blood flow is crucial for maintaining vascular homeostasis. We examined the role of shear stress in regulating SIRT1, an NAD(+)-dependent deacetylase, and its functional relevance in vitro and in vivo. The application of laminar flow increased SIRT1 level and activity, mitochondrial biogenesis, and expression of SIRT1-regulated genes in cultured endothelial cells (ECs). When the effects of different flow patterns were compared in vitro, SIRT1 level was significantly higher in ECs exposed to physiologically relevant pulsatile flow than pathophysiologically relevant oscillatory flow. These results are in concert with the finding that SIRT1 level was higher in the mouse thoracic aorta exposed to atheroprotective flow than in the aortic arch under atheroprone flow. Because laminar shear stress activates AMP-activated protein kinase (AMPK), with subsequent phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser-633 and Ser-1177, we studied the interplay of AMPK and SIRT1 on eNOS. Laminar flow increased SIRT1-eNOS association and eNOS deacetylation. By using the AMPK inhibitor and eNOS Ser-633 and -1177 mutants, we demonstrated that AMPK phosphorylation of eNOS is needed to prime SIRT1-induced deacetylation of eNOS to enhance NO production. To verify this finding in vivo, we compared the acetylation status of eNOS in thoracic aortas from AMPKalpha2(-/-) mice and their AMPKalpha2(+/+) littermates. Our finding that AMPKalpha2(-/-) mice had a higher eNOS acetylation indicates that AMPK phosphorylation of eNOS is required for the SIRT1 deacetylation of eNOS. These results suggest that atheroprotective flow, via AMPK and SIRT1, increases NO bioavailability in endothelium.
Collapse
|
320
|
Marton O, Koltai E, Nyakas C, Bakonyi T, Zenteno-Savin T, Kumagai S, Goto S, Radak Z. Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats. Biogerontology 2010; 11:679-86. [PMID: 20467811 DOI: 10.1007/s10522-010-9279-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/27/2010] [Indexed: 01/17/2023]
Abstract
Aging is associated with a gradual decline in cognitive and motor functions, the result of complex biochemical processes including pre- and posttranslational modifications of proteins. Sirtuins are NAD(+) dependent protein deacetylases. These enzymes modulate the aging process by lysine deacetylation, which alters the activity and stability of proteins. Exercise can increase mean life-span and improve quality of life. Data from our laboratories revealed that 4 weeks of treadmill running improves performance in the Morris Maze test for young (4 months, old) but not old (30 months, old) male rats, and the exercise could not prevent the age-associated loss in muscle strength assessed by a gripping test. The positive correlation between protein acetylation and the gripping test suggests that the age-dependent decrease in relative activity of SIRT1 in the cerebellum impairs motor function. Similarly to the acetylation level of total proteins, the acetylation of ά -tubulin is also increased with aging, while the effect of exercise training was not found to be significant. Moreover, the protein content of nicotinamide phosphoribosyltransferase, one of the key enzymes of NAD biosynthesis, decreased in the young exercise group. These data suggest that aging results in decreased specific activity of SIRT1 in cerebellum, which could lead to increased acetylation of protein residues, including ά-tubulin, that interfere with motor function.
Collapse
Affiliation(s)
- Orsolya Marton
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Funk JA, Odejinmi S, Schnellmann RG. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J Pharmacol Exp Ther 2010; 333:593-601. [PMID: 20103585 PMCID: PMC2872958 DOI: 10.1124/jpet.109.161992] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/25/2010] [Indexed: 01/11/2023] Open
Abstract
Mitochondrial biogenesis occurs under basal conditions and is an adaptive response initiated by cells to maintain energetic demands and metabolic homeostasis after injuries targeting mitochondrial function. Identifying pharmacological agents that stimulate mitochondrial biogenesis is a critical step in the development of new therapeutics for the treatment of these injuries and to test the hypothesis that these agents will expedite recovery of cell and organ function after acute organ injuries. In this study, we examined the effects of N-[2-[3-(piperazin-1-ylmethyl)imidazo[2,1-b][1,3]thiazol-6-yl]phenyl]quinoxaline-2-carboxamide (SRT1720) on mitochondrial biogenesis and function in primary cultures of renal proximal tubule cells (RPTCs). We also tested the ability of this compound to restore mitochondrial functions after oxidant-induced RPTC injury. SRT1720 (3-10 microM) induced mitochondrial biogenesis in RPTCs within 24 h as determined by elevations in mitochondrial DNA copy number, increased expression of the mitochondrial proteins NADH dehydrogenase 1beta subcomplex subunit 8 (NDUFB8) and ATP synthase beta, and elevated mitochondrial respiration rates and ATP levels. Induction of mitochondrial biogenesis depended on mammalian sirtuin 1 (SIRT1) deacetylase activity, correlated with deacetylated nuclear peroxisome proliferator-activated receptor coactivator (PGC)-1alpha, and occurred in the absence of AMP-dependent kinase (AMPK) activation. Finally, SRT1720 treatment accelerated recovery of mitochondrial functions after acute oxidant injury. This study demonstrates that SRT1720 can induce mitochondrial biogenesis through SIRT1 activity and deacetylated PGC-1alpha, but not AMPK, in RPTCs within 24 h after oxidant injury. The results support further study of mitochondrial biogenesis as a repair process and a pharmacological target in acute organ injuries and disorders plagued by mitochondrial impairment.
Collapse
Affiliation(s)
- Jason A Funk
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
322
|
Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 2010; 299:H18-24. [PMID: 20418481 DOI: 10.1152/ajpheart.00260.2010] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. Resveratrol was also shown to confer vasoprotection in animal models of type 2 diabetes and aging. However, the mechanisms by which resveratrol exerts its antioxidative vasculoprotective effects are not completely understood. Using a nuclear factor-E(2)-related factor-2 (Nrf2)/antioxidant response element-driven luciferase reporter gene assay, we found that in cultured coronary arterial endothelial cells, resveratrol, in a dose-dependent manner, significantly increases transcriptional activity of Nrf2. Accordingly, resveratrol significantly upregulates the expression of the Nrf2 target genes NAD(P)H:quinone oxidoreductase 1, gamma-glutamylcysteine synthetase, and heme oxygenase-1. Resveratrol treatment also significantly attenuated high glucose (30 mM)-induced mitochondrial and cellular oxidative stress (assessed by flow cytometry using MitoSox and dihydroethidine staining). The aforementioned effects of resveratrol were significantly attenuated by the small interfering RNA downregulation of Nrf2 or the overexpression of Kelch-like erythroid cell-derived protein 1, which inactivates Nrf2. To test the effects of resveratrol in vivo, we used mice fed a high-fat diet (HFD), which exhibit increased vascular oxidative stress associated with an impaired endothelial function. In HFD-fed Nrf2(+/+) mice, resveratrol treatment attenuates oxidative stress (assessed by the Amplex red assay), improves acetylcholine-induced vasodilation, and inhibits apoptosis (assessed by measuring caspase-3 activity and DNA fragmentation) in branches of the femoral artery. In contrast, the aforementioned endothelial protective effects of resveratrol were diminished in HFD-fed Nrf2(-/-) mice. Taken together, our results indicate that resveratrol both in vitro and in vivo confers endothelial protective effects which are mediated by the activation of Nrf2.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Dept. of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Baur JA. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 2010; 131:261-9. [PMID: 20219519 PMCID: PMC2862768 DOI: 10.1016/j.mad.2010.02.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 02/13/2010] [Accepted: 02/20/2010] [Indexed: 12/24/2022]
Abstract
Dietary restriction (DR) delays or prevents age-related diseases and extends lifespan in species ranging from yeast to primates. Although the applicability of this regimen to humans remains uncertain, a proportional response would add more healthy years to the average life than even a cure for cancer or heart disease. Because it is unlikely that many would be willing or able to maintain a DR lifestyle, there has been intense interest in mimicking its beneficial effects on health, and potentially longevity, with drugs. To date, such efforts have been hindered primarily by our lack of mechanistic understanding of how DR works. Sirtuins, NAD(+)-dependent deacetylases and ADP-ribosyltransferases that influence lifespan in lower organisms, have been proposed to be key mediators of DR, and based on this model, the sirtuin activator resveratrol has been proposed as a candidate DR mimetic. Indeed, resveratrol extends lifespan in yeast, worms, flies, and a short-lived species of fish. In rodents, resveratrol improves health, and prevents the early mortality associated with obesity, but its precise mechanism of action remains a subject of debate, and extension of normal lifespan has not been observed. This review summarizes recent work on resveratrol, sirtuins, and their potential to mimic beneficial effects of DR.
Collapse
Affiliation(s)
- Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
324
|
Sun AY, Wang Q, Simonyi A, Sun GY. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 2010; 41:375-83. [PMID: 20306310 DOI: 10.1007/s12035-010-8111-y] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/17/2010] [Indexed: 12/20/2022]
Abstract
Excess production of reactive oxygen species in the brain has been implicated as a common underlying risk factor for the pathogenesis of a number of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In recent years, there is considerable interest concerning investigation of antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we first describe oxidative mechanisms associated with stroke, AD, and PD, and subsequently, we place emphasis on recent studies implicating neuroprotective effects of resveratrol, a polyphenolic compound derived from grapes and red wine. These studies show that the beneficial effects of resveratrol are not only limited to its antioxidant and anti-inflammatory action but also include activation of sirtuin 1 (SIRT1) and vitagenes, which can prevent the deleterious effects triggered by oxidative stress. In fact, SIRT1 activation by resveratrol is gaining importance in the development of innovative treatment strategies for stroke and other neurodegenerative disorders. The goal here is to provide a better understanding of the mode of action of resveratrol and its possible use as a potential therapeutic agent to ameliorate stroke damage as well as other age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Albert Y Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
325
|
Schini-Kerth VB, Auger C, Kim JH, Etienne-Selloum N, Chataigneau T. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF. Pflugers Arch 2010; 459:853-62. [PMID: 20224869 DOI: 10.1007/s00424-010-0806-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 02/05/2023]
Abstract
Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74, route du Rhin, 67401, Illkirch, France.
| | | | | | | | | |
Collapse
|
326
|
Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y. SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb 2010; 17:431-5. [PMID: 20215708 DOI: 10.5551/jat.3525] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sir2 (silent information regulator-2), an NAD(+)-dependent histone deacetylase, is highly conserved in organisms ranging from archaea to humans. Yeast Sir2 is responsible for silencing at repeated DNA sequences in mating-type loci, telomeres and rDNA, and plays critical roles in DNA repair, stress resistance and longevity.The phenomenon of human aging is known to be a critical cardiovascular risk factor. Senescence of endothelial cells has been proposed to be involved in vascular dysfunction and atherogenesis. Recent studies have demonstrated that mammalian Sirt1 NAD(+)-dependent protein deacetylase, the closest homologue of Sir2, regulates vascular angiogenesis, homeostasis and senescence. This review focuses on SIRT1 as a potential therapeutic target against atherosclerosis.
Collapse
Affiliation(s)
- Hidetaka Ota
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
327
|
Li H, Förstermann U. Resveratrol: a multifunctional compound improving endothelial function. Editorial to: "Resveratrol supplementation gender independently improves endothelial reactivity and suppresses superoxide production in healthy rats" by S. Soylemez et al. Cardiovasc Drugs Ther 2010; 23:425-9. [PMID: 19937102 PMCID: PMC2797420 DOI: 10.1007/s10557-009-6209-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression and activity of NADPH oxidases, resveratrol inhibits superoxide-mediated NO inactivation. Some resveratrol effects are mediated by sirtuin 1 (SIRT1) or estrogen receptors, respectively.
Collapse
|
328
|
Page MM, Robb EL, Salway KD, Stuart JA. Mitochondrial redox metabolism: aging, longevity and dietary effects. Mech Ageing Dev 2010; 131:242-52. [PMID: 20219522 DOI: 10.1016/j.mad.2010.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/27/2010] [Accepted: 02/20/2010] [Indexed: 12/23/2022]
Abstract
Mitochondrial redox metabolism has long been considered to play important roles in mammalian aging and the development of age-related pathologies in the major oxidative organs. Both genetic and dietary manipulations of mitochondrial redox metabolism have been associated with the extension of lifespan. Here we provide a broad overview of the circumstantial evidence showing associations between mitochondrial reactive oxygen species (ROS) metabolism, aging and longevity. We address most aspects of mitochondrial ROS metabolism, from superoxide production, to ROS detoxification and the repair/removal of ROS-mediated macromolecular damage. Finally, we discuss the effects of dietary manipulations (e.g. caloric restriction, methionine restriction), dietary deficiencies (e.g. folate) and dietary supplementation (e.g. resveratrol) on mitochondrial ROS metabolism and lifespan.
Collapse
Affiliation(s)
- Melissa M Page
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | | | | | | |
Collapse
|
329
|
Ye K, Ji CB, Lu XW, Ni YH, Gao CL, Chen XH, Zhao YP, Gu GX, Guo XR. Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress. JOURNAL OF RADIATION RESEARCH 2010; 51:473-479. [PMID: 20679743 DOI: 10.1269/jrr.10009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Resveratrol, a member of a class of polyphenolic compounds known as flavonols, has been extensively studied for its anticancer, antiviral, anti-inflammatory, and neuroprotective roles. Caenorhabidits elegans is a well-established animal for investigating responses to radiation. We found that resveratrol may provide protection against hazardous radiation. Pre-treatment with resveratrol extended both the maximum and mean life span of irradiated C. elegans. Resveratrol acted as a strong radical scavenger and regulated superoxide dismutase (SOD) expression. In addition, resveratrol was shown to be capable of alleviating gamma-ray radiation exposure-induced reduction in mitochondrial SOD expression. Ultimately, a correlation may exist between dietary intake of trace amounts of resveratrol and anti-aging effects. A specific response mechanism may be activated after the administration of resveratrol in irradiated animals. Our results suggest the protective effect of resveratrol is due to its strong ability to protect from oxidative stress and protective effects in mitochondria. Therefore, resveratrol is potentially an effective protecting agent against irradiative damage.
Collapse
Affiliation(s)
- Kan Ye
- School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Baur JA. Biochemical effects of SIRT1 activators. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1626-34. [PMID: 19897059 DOI: 10.1016/j.bbapap.2009.10.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/06/2009] [Accepted: 10/28/2009] [Indexed: 01/09/2023]
Abstract
SIRT1 is the closest mammalian homologue of enzymes that extend life in lower organisms. Its role in mammals is incompletely understood, but includes modulation of at least 34 distinct targets through its nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase activity. Recent experiments using small molecule activators and genetically engineered mice have provided new insight into the role of this enzyme in mammalian biology and helped to highlight some of the potentially relevant targets. The most widely employed activator is resveratrol, a small polyphenol that improves insulin sensitivity and vascular function, boosts endurance, inhibits tumor formation, and ameliorates the early mortality associated with obesity in mice. Many of these effects are consistent with modulation of SIRT1 targets, such as PGC1alpha and NFkappaB, however, resveratrol can also activate AMPK, inhibit cyclooxygenases, and influence a variety of other enzymes. A novel activator, SRT1720, as well as various methods to manipulate NAD(+) metabolism, are emerging as alternative methods to increase SIRT1 activity, and in many cases recapitulate effects of resveratrol. At present, further studies are needed to more directly test the role of SIRT1 in mediating beneficial effects of resveratrol, to evaluate other strategies for SIRT1 activation, and to confirm the specific targets of SIRT1 that are relevant in vivo. These efforts are especially important in light of the fact that SIRT1 activators are entering clinical trials in humans, and "nutraceutical" formulations containing resveratrol are already widely available.
Collapse
Affiliation(s)
- Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism, and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
331
|
Ungvari Z, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P, Zhang C, Pacher P, Csiszar A. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol 2009; 297:H1876-H1881. [PMID: 19749157 PMCID: PMC2781360 DOI: 10.1152/ajpheart.00375.2009] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/24/2009] [Indexed: 01/25/2023]
Abstract
The production of hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) is a key event in the development of diabetic complications. Because resveratrol, a naturally occurring polyphenol, has been reported to confer vasoprotection, improving endothelial function and preventing complications of diabetes, we investigated the effect of resveratrol on mtROS production in cultured human coronary arterial endothelial cells (CAECs). The measurement of MitoSox fluorescence showed that resveratrol attenuates both steady-state and high glucose (30 mM)-induced mtROS production in CAECs, an effect that was prevented by the knockdown of the protein deacetylase silent information regulator 2/sirtuin 1 (SIRT1), an intracellular target of resveratrol. An overexpression of SIRT1 mimicked the effects of resveratrol, attenuating mtROS production. Similar results were obtained in CAECs transfected with mitochondria-targeted H(2)O(2)-sensitive HyPer-Mito fluorescent sensor. Amplex red assay showed that resveratrol and SIRT1 overexpression significantly reduced cellular H(2)O(2) levels as well. Resveratrol upregulated MnSOD expression and increased cellular GSH content in a concentration-dependent manner (measured by HPLC coulometric analysis). These effects were attenuated by SIRT1 knockdown and mimicked by SIRT1 overexpression. We propose that resveratrol, via a pathway that involves the activation of SIRT1 and the upregulation of antioxidant defense mechanisms, attenuates mtROS production, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Physiology, New York Medical College, Valhalla, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Gracia-Sancho J, Villarreal G, Zhang Y, García-Cardeña G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc Res 2009; 85:514-9. [PMID: 19815564 DOI: 10.1093/cvr/cvp337] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Resveratrol activates Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase which modulates metabolic homeostasis and improves several pathophysiological features present in diseases of ageing. In particular, it has been shown that SIRT1 activation improves endothelial dysfunction and suppresses vascular inflammation, two central pathophysiological processes involved in the initiation and progression of cardiovascular disease. The downstream targets of SIRT1 activation in this context, however, remain poorly defined. Therefore, in this study, we aimed to characterize mechanistically how SIRT1 activation regulates the endothelial vasoprotective phenotype. METHODS AND RESULTS We demonstrate that SIRT1 activation by resveratrol increases the expression of the transcription factor Krüppel-like factor 2 (KLF2) in human vascular endothelial cells, resulting in the orchestrated regulation of transcriptional programs critical for conferring an endothelial vasoprotective phenotype. Moreover, we show that KLF2 upregulation by resveratrol occurs via a mitogen-activated protein kinase 5/myocyte enhancing factor 2-dependent signalling pathway. CONCLUSION Collectively, these observations provide a new mechanistic framework to understand the vascular protective effects mediated by SIRT1 activators and define KLF2 as a critical mediator of these effects.
Collapse
Affiliation(s)
- Jorge Gracia-Sancho
- Laboratory for Systems Biology, Department of Pathology, Center for Excellence in Vascular Biology, Harvard Medical School and Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB-730C, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
333
|
Szabó G. A glass of red wine to improve mitochondrial biogenesis? Novel mechanisms of resveratrol. Am J Physiol Heart Circ Physiol 2009; 297:H8-9. [DOI: 10.1152/ajpheart.00471.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|