301
|
Oh YJ, Shin DY, Hwang SM, Kim SM, Im K, Park HS, Kim JA, Song YW, Márquez A, Martín J, Lee DS, Park JK. Mutation of ten-eleven translocation-2 is associated with increased risk of autoimmune disease in patients with myelodysplastic syndrome. Korean J Intern Med 2020; 35:457-464. [PMID: 31640337 PMCID: PMC7061008 DOI: 10.3904/kjim.2018.247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Myelodysplastic syndrome (MDS) is caused by genetic and epigenetic alteration of hematopoietic precursors and immune dysregulation. Approximately 20% of patients with MDS develop an autoimmune disease (AID). Here, we investigated whether particular genetic mutations are associated with AID in patients with MDS. METHODS Eighty-eight genetic mutations associated with myeloid malignancy were sequenced in 73 MDS patients. The association between these mutations and AID was then analyzed. RESULTS The median age of the 73 MDS patients was 70 years (interquartile range, 56 to 75), and 49 (67.1%) were male. AID was observed in 16 of 73 patients (21.9%). Mutations were detected in 57 (78.1%) patients. The percentage (68.8% vs. 80.7%, p = 0.32) and the mean number of mutations (1.8 ± 1.6 vs. 2.2 ± 1.8, p = 0.34) in MDS patients with or without AID were similar. However, the ten-eleven translocation- 2 (TET2) mutation rate was significantly higher in patients with AID than in those without (31.3% vs. 5.3%, respectively; p = 0.001). All TET2 mutations were variants of strong clinical significance. CONCLUSION Mutation of TET2 in patients with MDS may be associated with increased risk of developing AID.
Collapse
Affiliation(s)
- Yoon-Jeong Oh
- Division of Rheumatology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Dong-Yeop Shin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Sue Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Ah Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yeong Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ana Márquez
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, Granada, Spain
| | - Javier Martín
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, Granada, Spain
| | - Dong-Soon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Dong-Soon Lee, M.D. Department of Laboratory Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-3986, Fax: +82-2-747-0359, E-mail:
| | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Correspondence to Jin Kyun Park, M.D. Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea Tel: +82-2-2072-4765, Fax: +82-2-762-9662, E-mail:
| |
Collapse
|
302
|
Song J, Hussaini M. Adopting solutions for annotation and reporting of next generation sequencing in clinical practice. Pract Lab Med 2020; 19:e00154. [PMID: 32099889 PMCID: PMC7031307 DOI: 10.1016/j.plabm.2020.e00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
With advancements in the understanding of human cancers (carcinomas, sarcomas, and hematopoietic malignancies), molecular profiling, especially by Next Generation Sequencing (NGS), is playing an increasingly important role in the diagnosis, prognostication, and therapeutic management of cancer patients. The final and critical step in NGS is the annotation of detected variants and reporting of their clinical significance. Automated bioinformatics tools are available to assist with annotation, but the final responsibility for interpretation and validation of the annotation rests with the pathologist who may be constrained by the pressures of clinical sign-out and limited training in NGS. In this manuscript, we detail our experience in outsourcing variant annotation to a high-quality vendor to improve quality, standardize reporting, and decrease turn-around time of NGS reporting in clinical practice. We describe the composition of the evaluation team, steps that should be taken to evaluate potential annotation vendors, and detailed parameters that should be addressed before contracting with a vendor to guarantee the clinical reliability of the reported annotations.
Collapse
Affiliation(s)
| | - Mohammad Hussaini
- Department of Hematopathology and Lab Medicine, Moffitt Cancer Center, Tampa, FL, 33612, USA
| |
Collapse
|
303
|
Mannelli L, Guglielmelli P, Vannucchi AM. Stem cell transplant for the treatment of myelofibrosis. Expert Rev Hematol 2020; 13:363-374. [DOI: 10.1080/17474086.2020.1733406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lara Mannelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università Degli Studi, Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università Degli Studi, Firenze, Italy
| | - Alessandro M. Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università Degli Studi, Firenze, Italy
| |
Collapse
|
304
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
305
|
Ogasawara T, Kawauchi K, Ono T, Marshall S, Shide K, Shimoda K, Mori N, Sakura H. JAK2-negative acute monocytic leukemia with TET2 mutation in essential thrombocythemia with JAK2 mutation with literature review. Leuk Res Rep 2020; 13:100194. [PMID: 32042586 PMCID: PMC6997900 DOI: 10.1016/j.lrr.2019.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022] Open
Abstract
Essential thrombocythemia (ET) is an indolent myeloproliferative neoplasm (MPN) with a transformation to acute myeloid leukemia in <5% of patients. A 79-year-old man with JAK2V617F-positive ET exhibited leukocytosis with an increase in monoblastic cells, leading to a diagnosis of acute monoblastic and monocytic leukemia. Leukemic cells carried a TET2 mutation but not JAK2V617F mutation. We concluded that the TET2 mutation occurred in MPN-initiating cells and overcame JAK2-mutated cells. The absence of a JAK2 mutation in the leukemic cells in this case suggests the leukemia emerged from a JAK2-negative MPN cell clone carrying the TET2 mutation.
Collapse
Affiliation(s)
- Toshie Ogasawara
- Tokyo Women's Medical University, Medical Center East, Department of medicine, 2-1-10, Nishiogu Arakawa-ku, Tokyo 116-8569, Japan
- Corresponding author.
| | - Kiyotaka Kawauchi
- Tokyo Women's Medical University, Medical Center East, Department of medicine, 2-1-10, Nishiogu Arakawa-ku, Tokyo 116-8569, Japan
| | - Takuya Ono
- Tokyo Women's Medical University, Medical Center East, Department of medicine, 2-1-10, Nishiogu Arakawa-ku, Tokyo 116-8569, Japan
| | - Shoko Marshall
- Tokyo Women's Medical University, Medical Center East, Department of Medicine, Tokyo Joshi Ika Daigaku Higashi Iryo Center
| | - Kotaro Shide
- University of Miyazaki, Depertment of Internal Medicine II, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kazuya Shimoda
- University of Miyazaki, Depertment of Internal Medicine II, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Naoki Mori
- Tokyo Women's Medical University, Medical Center East, Department of medicine, 2-1-10, Nishiogu Arakawa-ku, Tokyo 116-8569, Japan
| | - Hiroshi Sakura
- Tokyo Women's Medical University, Medical Center East, Department of medicine, 2-1-10, Nishiogu Arakawa-ku, Tokyo 116-8569, Japan
| |
Collapse
|
306
|
Jia R, Kralovics R. Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions. Int J Hematol 2020; 111:182-191. [PMID: 31741139 DOI: 10.1007/s12185-019-02778-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are hematological diseases that are driven by somatic mutations in hematopoietic stem and progenitor cells. These mutations include JAK2, CALR and MPL mutations as the main disease drivers, mutations driving clonal expansion, and mutations that contribute to progression of chronic MPNs to myelodysplasia and acute leukemia. JAK-STAT pathway has played a central role in the disease pathogenesis of MPNs. Mutant JAK2, CALR or MPL constitutively activates JAK-STAT pathway independent of the cytokine regulation. Symptomatic management is the primary goal of MPN therapy in ET and low-risk PV patients. JAK2 inhibitors and interferon-α are the established therapies in MF and high-risk PV patients.
Collapse
Affiliation(s)
- Ruochen Jia
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
307
|
Lupak O, Han X, Xie P, Mahmood S, Mohammed H, Donthireddy V. The role of a low erythropoietin level for the polycythemia vera diagnosis. Blood Cells Mol Dis 2020; 80:102355. [DOI: 10.1016/j.bcmd.2019.102355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023]
|
308
|
Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, Rossiev V, Dulicek P, Illes A, Pylypenko H, Sivcheva L, Mayer J, Yablokova V, Krejcy K, Grohmann-Izay B, Hasselbalch HC, Kralovics R, Kiladjian JJ. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. LANCET HAEMATOLOGY 2020; 7:e196-e208. [PMID: 32014125 DOI: 10.1016/s2352-3026(19)30236-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The PROUD-PV and CONTINUATION-PV trials aimed to compare the novel monopegylated interferon ropeginterferon alfa-2b with hydroxyurea, the standard therapy for patients with polycythaemia vera, over 3 years of treatment. METHODS PROUD-PV and its extension study, CONTINUATION-PV, were phase 3, randomised, controlled, open-label, trials done in 48 clinics in Europe. Patients were eligible if 18 years or older with early stage polycythaemia vera (no history of cytoreductive treatment or less than 3 years of previous hydroxyurea treatment) diagnosed by WHO's 2008 criteria. Patients were randomly assigned 1:1 to ropeginterferon alfa-2b (subcutaneously every 2 weeks, starting at 100 μg) or hydroxyurea (orally starting at 500 mg/day). After 1 year, patients could opt to enter the extension part of the trial, CONTINUATION-PV. The primary endpoint in PROUD-PV was non-inferiority of ropeginterferon alfa-2b versus hydroxyurea regarding complete haematological response with normal spleen size (longitudinal diameter of ≤12 cm for women and ≤13 cm for men) at 12 months; in CONTINUATION-PV, the coprimary endpoints were complete haematological response with normalisation of spleen size and with improved disease burden (ie, splenomegaly, microvascular disturbances, pruritus, and headache). We present the final results of PROUD-PV and an interim analysis at 36 months of the CONTINUATION-PV study (per statistical analysis plan). Analyses for safety and efficacy were per-protocol. The trials were registered on EudraCT, 2012-005259-18 (PROUD-PV) and 2014-001357-17 (CONTINUATION-PV, which is ongoing). FINDINGS Patients were recruited from Sept 17, 2013 to March 13, 2015 with 306 enrolled. 257 patients were randomly assigned, 127 were treated in each group (three patients withdrew consent in the hydroxyurea group), and 171 rolled over to the CONTINUATION-PV trial. Median follow-up was 182·1 weeks (IQR 166·3-201·7) in the ropeginterferon alfa-2b and 164·5 weeks (144·4-169·3) in the standard therapy group. In PROUD-PV, 26 (21%) of 122 patients in the ropeginterferon alfa-2b group and 34 (28%) of 123 patients in the standard therapy group met the composite primary endpoint of complete haematological response with normal spleen size. In CONTINUATION-PV, complete haematological response with improved disease burden was met in 50 (53%) of 95 patients in the ropeginterferon alfa-2b group versus 28 (38%) of 74 patients in the hydroxyurea group, p=0·044 at 36 months. Complete haematological response without the spleen criterion in the ropeginterferon alfa-2b group versus standard therapy group were: 53 (43%) of 123 patients versus 57 (46%) of 125 patients, p=0·63 at 12 months (PROUD-PV), and 67 (71%) of 95 patients versus 38 (51%) of 74 patients, p=0·012 at 36 months (CONTINUATION-PV). The most frequently reported grade 3 and grade 4 treatment-related adverse events were increased γ-glutamyltransferase (seven [6%] of 127 patients) and increased alanine aminotransferase (four [3%] of 127 patients) in the ropeginterferon alfa-2b group, and leucopenia (six [5%] of 127 patients) and thrombocytopenia (five [4%] of 127 patients) in the standard therapy group. Treatment-related serious adverse events occurred in three (2%) of 127 patients in the ropeginterferon alfa-2b group and five (4%) of 127 patients in the hydroxyurea group. One treatment-related death was reported in the standard therapy group (acute leukaemia). INTERPRETATION In patients with early polycythaemia vera, who predominantly presented without splenomegaly, ropeginterferon alfa-2b was effective in inducing haematological responses; non-inferiority to hydroxyurea regarding haematological response and normal spleen size was not shown at 12 months. However, response to ropeginterferon alfa-2b continued to increase over time with improved responses compared with hydroxyurea at 36 months. Considering the high and durable haematological and molecular responses and its good tolerability, ropeginterferon alfa-2b offers a valuable and safe long-term treatment option with features distinct from hydroxyurea. FUNDING AOP Orphan Pharmaceuticals AG.
Collapse
Affiliation(s)
- Heinz Gisslinger
- Department of Internal Medicine I, Division of Haematology and Blood Coagulation, Medical University Vienna, Vienna, Austria.
| | | | - Pencho Georgiev
- University Multiprofile Hospital for Active Treatment "Sveti Georgi", Clinic of Haematology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dorota Krochmalczyk
- Teaching Unit of the Haematology Department, University Hospital in Krakow, Krakow, Poland
| | - Liana Gercheva-Kyuchukova
- Multiprofile Hospital for Active Treatment "Sveta Marina", Clinical Haematology Clinic, Varna, Bulgaria
| | - Miklos Egyed
- Department of Internal Medicine II, Kaposi MorCounty Teaching Hospital, Kaposvar, Hungary
| | - Viktor Rossiev
- Samara Kalinin Regional Clinical Hospital, Samara, Russia
| | - Petr Dulicek
- Department of Clinical Haematology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Arpad Illes
- Department of Haematology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Halyna Pylypenko
- Department of Haematology, Regional Treatment and Diagnostics Haematology Centre, Cherkasy Regional Oncology Centre, Cherkasy, Ukraine
| | - Lylia Sivcheva
- Multiprofile Hospital for Active Treatment-HristoBotev, First Department of Internal Medicine, Vratsa, Bulgaria
| | - Jiri Mayer
- Clinic of Internal Medicine-Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Vera Yablokova
- Yaroslavl Regional Clinical Hospital, Department of Haematology, Yaroslavl, Russia
| | - Kurt Krejcy
- AOP Orphan Pharmaceuticals AG, Vienna, Austria
| | | | - Hans C Hasselbalch
- Department of Haematology, Zealand University Hospital, Roskilde, University of Copenhagen, Denmark
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jean-Jacques Kiladjian
- Université de Paris, CIC 1427, Inserm, F-75010, Paris, France; Centre d'Investigations Cliniques, AP-HP, Hopital Saint-Louis, F-75010, Paris, France
| | | |
Collapse
|
309
|
Fenerich BA, Fernandes JC, Rodrigues Alves APN, Coelho-Silva JL, Scopim-Ribeiro R, Scheucher PS, Eide CA, Tognon CE, Druker BJ, Rego EM, Machado-Neto JA, Traina F. NT157 has antineoplastic effects and inhibits IRS1/2 and STAT3/5 in JAK2 V617F-positive myeloproliferative neoplasm cells. Signal Transduct Target Ther 2020; 5:5. [PMID: 32296029 PMCID: PMC6978524 DOI: 10.1038/s41392-019-0102-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 12/25/2022] Open
Abstract
Recent data indicate that IGF1R/IRS signaling is a potential therapeutic target in BCR-ABL1-negative myeloproliferative neoplasms (MPN); in this pathway, IRS2 is involved in the malignant transformation induced by JAK2V617F, and upregulation of IGF1R signaling induces the MPN phenotype. NT157, a synthetic compound designed as an IGF1R-IRS1/2 inhibitor, has been shown to induce antineoplastic effects in solid tumors. Herein, we aimed to characterize the molecular and cellular effects of NT157 in JAK2V617F-positive MPN cell lines (HEL and SET2) and primary patient hematopoietic cells. In JAK2V617F cell lines, NT157 decreased cell viability, clonogenicity, and cell proliferation, resulting in increases in apoptosis and cell cycle arrest in the G2/M phase (p < 0.05). NT157 treatment inhibited IRS1/2, JAK2/STAT, and NFκB signaling, and it activated the AP-1 complex, downregulated four oncogenes (CCND1, MYB, WT1, and NFKB1), and upregulated three apoptotic-related genes (CDKN1A, FOS, and JUN) (p < 0.05). NT157 induced genotoxic stress in a JAK2/STAT-independent manner. NT157 inhibited erythropoietin-independent colony formation in cells from polycythemia vera patients (p < 0.05). These findings further elucidate the mechanism of NT157 action in a MPN context and suggest that targeting IRS1/2 proteins may represent a promising therapeutic strategy for MPN.
Collapse
Affiliation(s)
- Bruna Alves Fenerich
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Cristina Fernandes
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Nunes Rodrigues Alves
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Renata Scopim-Ribeiro
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Priscila Santos Scheucher
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Eduardo Magalhães Rego
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
- Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - João Agostinho Machado-Neto
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Fabiola Traina
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil.
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
310
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
311
|
C. Diaconu C, Gurban P, Mambet C, Chivu-Economescu M, G. Necula L, Matei L, Dragu D, Nedeianu S, I. Neagu A, Tatic A, Cristodor D, Bleotu C. Programmed Cell Death Deregulation in BCR-ABL1-Negative Myeloproliferative Neoplasms. PROGRAMMED CELL DEATH 2020. [DOI: 10.5772/intechopen.86062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
312
|
MIPSS70+ v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. Blood Adv 2020; 3:83-95. [PMID: 30622146 DOI: 10.1182/bloodadvances.2018026658] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/07/2018] [Indexed: 01/14/2023] Open
Abstract
Although allogeneic hematopoietic cell transplantation (allo-HCT) is the only curative treatment for myelofibrosis (MF), data are limited on how molecular markers predict transplantation outcomes. We retrospectively evaluated transplantation outcomes of 110 consecutive MF patients who underwent allo-HCT with a fludarabine/melphalan (Flu/Mel) conditioning regimen at our center and assessed the impact of molecular markers on outcomes based on a 72-gene next-generation sequencing panel and Mutation-Enhanced International Prognostic Scoring System 70+ v2.0 (MIPSS70+ v2.0). With a median follow-up of 63.7 months, the 5-year overall survival (OS) rate was 65% and the nonrelapse mortality (NRM) rate was 17%. In mutational analysis, JAK2 V617F and ASXL1 mutations were the most common. By univariable analysis, higher Dynamic International Prognostic Scoring System scores, unrelated donor type, and very-high-risk cytogenetics were significantly associated with lower OS. Only CBL mutations were significantly associated with lower OS (hazard ratio [HR], 2.64; P = .032) and increased NRM (HR, 3.68; P = .004) after allo-HCT, but CALR, ASXL1, and IDH mutations did not have an impact on transplantation outcomes. Patient classification per MIPSS70 showed worse OS for high-risk (HR, 0.49; P = .039) compared with intermediate-risk patients. Classification per MIPSS70+ v2.0 demonstrated better OS when intermediate-risk patients were compared with high-risk patients (HR, 0.291) and much lower OS when very-high-risk patients were compared with high-risk patients (HR, 5.05; P ≤ .001). In summary, we present one of the largest single-center experiences of Flu/Mel-based allo-HCT, demonstrating that revised cytogenetic changes and MIPSS70+ v2.0 score predict transplantation outcomes, and thus can better inform physicians and patients in making decisions about allo-HCT.
Collapse
|
313
|
Takenaka K. Progress in elucidation of molecular pathophysiology and its application in therapeutic decision-making for myeloproliferative neoplasms. Int J Hematol 2020; 111:180-181. [PMID: 31907735 DOI: 10.1007/s12185-019-02812-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
314
|
Jang MA, Choi CW. Recent insights regarding the molecular basis of myeloproliferative neoplasms. Korean J Intern Med 2020; 35:1-11. [PMID: 31778606 PMCID: PMC6960053 DOI: 10.3904/kjim.2019.317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal disorders characterized by the overproduction of mature blood cells that have an increased risk of thrombosis and progression to acute myeloid leukemia. Next-generation sequencing studies have provided key insights regarding the molecular mechanisms of MPNs. MPN driver mutations in genes associated with the JAK-STAT pathway include JAK2 V617F, JAK2 exon 12 mutations and mutations in MPL, CALR, and CSF3R. Cooperating driver genes are also frequently detected and also mutated in other myeloid neoplasms; these driver genes are involved in epigenetic methylation, messenger RNA splicing, transcription regulation, and signal transduction. In addition, other genetic factors such as germline predisposition, order of mutation acquisition, and variant allele frequency also influence disease initiation and progression. This review summarizes the current understanding of the genetic basis of MPN, and demonstrates how molecular pathophysiology can improve both our understanding of MPN heterogeneity and clinical practice.
Collapse
Affiliation(s)
- Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Chul Won Choi
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
- Correspondence to Chul Won Choi, M.D. Division of Oncology and Hematology, Department of Internal Medicine, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea Tel: +82-2-2626-3058 Fax: +82-2-862-6453 E-mail:
| |
Collapse
|
315
|
Belcic Mikic T, Pajic T, Sever M. CALR mutations in a cohort of JAK2 V617F negative patients with suspected myeloproliferative neoplasms. Sci Rep 2019; 9:19838. [PMID: 31882869 PMCID: PMC6934448 DOI: 10.1038/s41598-019-56236-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Suspicion of myeloproliferative neoplasms (MPNs) and especially essential thrombocythemia (ET) in primary care is often based solely on blood counts, with patients referred to a haematologist without a thorough evaluation. We retrospectively assessed the role of calreticulin gene (CALR) mutations in the diagnosis of MPN in this population. We studied CALR mutations in 524 JAK2 V617F-negative patients with suspected MPN. Uncommon CALR mutations were confirmed by Sanger sequencing and searched for in the COSMIC or HGMD database. Mutations were defined as frameshift or non-frameshift mutations. CALR mutations were detected in 23 patients (23/524 = 4.4%). Four mutations detected in our study were newly identified mutations. Non-frameshift mutations were detected in two patients. Most patients (380/524 = 72.5%) were diagnosed with secondary conditions leading to blood count abnormalities such as iron deficiency, inflammatory and infectious diseases, malignancy and hyposplenism. Nine patients (9/23 = 39%) were retrospectively diagnosed with ET based on CALR mutation confirmation. Two patients with non-frameshift CALR mutations were diagnosed with reactive thrombocytosis and MPN unclassifiable, respectively. Our study showed that CALR mutations are important, non-invasive diagnostic indicators of ET and can aid in its diagnosis. Moreover, the type of CALR mutation must be accurately defined, as non-frameshift mutations may not be associated with ET. Finally, CALR mutation detection should be reserved for patients with high suspicion of clonal haematological disease.
Collapse
Affiliation(s)
- Tanja Belcic Mikic
- Department of Haematology, University Medical Centre Ljubljana, Zaloska 7, 1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| | - Tadej Pajic
- Department of Haematology, University Medical Centre Ljubljana, Zaloska 7, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Matjaz Sever
- Department of Haematology, University Medical Centre Ljubljana, Zaloska 7, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
316
|
Bewersdorf JP, Jaszczur SM, Afifi S, Zhao JC, Zeidan AM. Beyond Ruxolitinib: Fedratinib and Other Emergent Treatment Options for Myelofibrosis. Cancer Manag Res 2019; 11:10777-10790. [PMID: 31920387 PMCID: PMC6935287 DOI: 10.2147/cmar.s212559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by clonal proliferation of differentiated myeloid cells leading to bone marrow fibrosis, cytopenias and extramedullary hematopoiesis. In late 2019, the FDA approved the highly selective JAK2 inhibitor, fedratinib, for intermediate-2 or high-risk primary or secondary MF, making it the second drug approved for MF after ruxolitinib, a JAK1/2 inhibitor, which was approved for MF in 2011. The approval of fedratinib was based on phase II trials and the phase III JAKARTA trial, in which the drug significantly reduced splenomegaly and symptom burden compared to placebo, including some patients previously treated with ruxolitinib. The main side effects of fedratinib include anemia, gastrointestinal symptoms, and elevations in liver transaminases. Fedratinib also has ablack box warning for encephalopathy, although this occurred only in about 1% of the treated patients, most of which were ultimately felt not to represent Wernicke’s encephalopathy. Nonetheless, monitoring of thiamine levels and supplementation are recommended especially in high-risk patients. This concern has led to a prolonged clinical hold and delayed the drug approval by several years during which the drug exchanged manufacturers, highlighting the need for meticulous investigation and adjudication of serious, but rare, adverse events in drug development that could end up preventing drugs with favorable risk/benefit ratio from being approved. In this review, we discuss the pharmacokinetic data and efficacy, as well as the toxicity results of clinical trials of fedratinib. We also review ongoing trials of JAK inhibitors in MF and explore future treatment options for MF patients who are refractory to ruxolitinib.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | | | - Salma Afifi
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
317
|
Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol 2019; 111:206-216. [PMID: 31865539 DOI: 10.1007/s12185-019-02803-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
High frequency of JAK2V617F or CALR exon 9 mutations is a main molecular feature of myeloproliferative neoplasms (MPNs). Analysis of mouse models driven by these mutations suggests that they are a direct cause of MPNs and that the expression levels of the mutated genes define the disease phenotype. The function of MPN-initiating cells has also been elucidated by these mouse models. Such mouse models also play an important role in modeling disease to investigate the effects and action mechanisms of therapeutic drugs, such as JAK2 inhibitors and interferon α, against MPNs. The mutation landscape of hematological tumors has already been clarified by next-generation sequencing technology, and the importance of functional analysis of mutant genes in vivo should increase further in the future.
Collapse
Affiliation(s)
- Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
318
|
Tetu M, El Hachami K, Marty C. [Thrombopoietin receptor and mutant calreticulin : the pathogenic interaction leading to myeloproliferative neoplasms]. Med Sci (Paris) 2019; 35:901-903. [PMID: 31845884 DOI: 10.1051/medsci/2019176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Maude Tetu
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | | | - Caroline Marty
- Inserm, UMR1170, Gustave Roussy, Villejuif, France - Université Paris-Saclay, UMR 1170, Gustave Roussy, Villejuif, France - Gustave Roussy, UMR 1170, Villejuif, France
| |
Collapse
|
319
|
The role of calreticulin mutations in myeloproliferative neoplasms. Int J Hematol 2019; 111:200-205. [DOI: 10.1007/s12185-019-02800-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
|
320
|
Yin B, Chen X, Gao F, Li J, Wang HW. Analysis of gene mutation characteristics in patients with chronic neutrophilic leukaemia. ACTA ACUST UNITED AC 2019; 24:538-543. [PMID: 31315541 DOI: 10.1080/16078454.2019.1642554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: This study aims to investigate the gene mutation characteristics of chronic neutrophilic leukaemia (CNL). Method: This study retrospectively analyses the molecular biological characteristics, laboratory characteristics and clinical data of four patients with CNL that were admitted in the second Hospital of Shanxi Medical University from May 2014 to October 2016. On the basis of the molecular biological data of 22 patients with CNL and 4 patients with CNL, we further analysed the characteristics of CNL molecular mutation. Results: Two out of the four patients with CNL were carriers of colony-stimulating factor 3 receptor (CSF3R) mutation, among which two were carriers of CSF3R T618I mutation combined with ASXL1 mutation and SETBP1 mutation, and two were only carriers of JAK2 V617F mutation. According to the molecular biological data of 22 patients with CNL, 20 patients were positive for CSF3R mutation. Two patients were positive for JAK2 V617F mutation. A total of 10 patients were positive for SETBP1 mutation which was correlated with the CSF3R T618I gene mutation (P = 0.03). A total of 13 patients were positive for ASXL1 mutation. No patients carried mutations in ASXL2 and MPL genes. Conclusion and Discussion: CSF3R mutation is the main tumorigenic mutation in CNL, in which CSF3R T618I mutation is the main mutation, and an extremely small number of CNL patients may be caused by JAK2 V617F mutation. SETBP1 and ASXL1 are the most common concomitant mutations in CNL with CSF3R mutation, and SETBP1 and CSF3R T618Imutations may have a certain correlation.
Collapse
Affiliation(s)
- Bin Yin
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China.,b Clinical Medical Laboratory Center , Children's Hospital of Shanxi , Taiyuan , People's Republic of China
| | - XiuHua Chen
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China
| | - Feng Gao
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China
| | - Juan Li
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China
| | - Hong Wei Wang
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China
| |
Collapse
|
321
|
Kim H, Yun JW, Lee ST, Kim HJ, Kim SH, Kim JW. Korean Society for Genetic Diagnostics Guidelines for Validation of Next-Generation Sequencing-Based Somatic Variant Detection in Hematologic Malignancies. Ann Lab Med 2019; 39:515-523. [PMID: 31240878 PMCID: PMC6660343 DOI: 10.3343/alm.2019.39.6.515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/31/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Next-generation sequencing (NGS) is currently used in the clinical setting for targeted therapies and diagnosis of hematologic malignancies. Accurate detection of somatic variants is challenging because of tumor purity, heterogeneity, and the complexity of genetic alterations, with various issues ranging from high detection design to test implementation. This article presents guidelines developed through consensus among a panel of experts from the Korean Society for Genetic Diagnostics. They are based on experiences with the validation processes of NGS-based somatic panels for hematologic malignancies, with reference to previous international recommendations. These guidelines describe basic parameters with emphasis on the design of a validation protocol for NGS-based somatic panels to be used in practice. In addition, they suggest thresholds of key metrics, including minimum coverage, mean coverage with uniformity index, and minimum variant allele frequency, for the initial diagnosis of hematologic malignancies.
Collapse
Affiliation(s)
- Heyjin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Jae Won Yun
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Hee Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Won Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | | |
Collapse
|
322
|
Shallis RM, Zeidan AM. Myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-U): More than just a "catch-all" term? Best Pract Res Clin Haematol 2019; 33:101132. [PMID: 32460977 DOI: 10.1016/j.beha.2019.101132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
The clinicopathology of MDS and MPN are not mutually exclusive and for this reason the category of myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) exists. Several sub-entities have been included under the MDS/MPN umbrella, including MDS/MPN-unclassifiable (MDS/MPN-U) for those cases whose morphologic and clinical phenotype do not meet criteria to be classified as any other MDS/MPN sub-entity. Though potentially regarded as a wastebasket diagnosis, since its integration into myeloid disease classification, MDS/MPN-U has been refined with increasing understanding of the mutational and genomic events that drive particular clinicopathologic phenotypes, even within MDS/MPN-U. The prototypical example is the identification of SF3B1 mutations and its durable association with MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T), an entity previously buried within, but now a separate category outside of MDS/MPN-U. Continued and enhanced study of those entities under MDS/MPN-U, a perhaps provisional category itself, is likely to progressively identify commonality between many "unclassifiables" to establish a new classifiable diagnosis.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA; Yale Cancer Center, New Haven, USA.
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA; Yale Cancer Center, New Haven, USA
| |
Collapse
|
323
|
Gerds AT. Beyond JAK-STAT: novel therapeutic targets in Ph-negative MPN. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:407-414. [PMID: 31808852 PMCID: PMC6913459 DOI: 10.1182/hematology.2019000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) share a common pathobiology of constitutive activation of the JAK and STAT pathway, despite having the 3 distinct phenotypes of essential thrombocythemia, polycythemia vera, and primary myelofibrosis. Targeting the JAK-STAT pathway has led to remarkable clinical benefit, including reduction in splenomegaly, amelioration of cytokine-driven symptoms, improvement in quality of life, and even some improvement in survival. However, targeting this pathway has not resulted in consistent disease modification by current metrics, including a reduction in mutant allele burden or reversal of fibrosis. Moreover, targeting JAK-STAT can lead to limiting treatment-emergent side effects, such as anemia and thrombocytopenia. Continued discovery points to a complex system of pathogenesis beyond JAK-STAT driving the formation and evolution of MPNs. This article reviews the successes and limitations of JAK-STAT inhibition, surveys the strategies behind emerging therapies, and discusses the challenges that are present in moving beyond JAK-STAT.
Collapse
Affiliation(s)
- Aaron T Gerds
- Leukemia and Myeloid Disorders Program, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| |
Collapse
|
324
|
Veenstra C, Bruce D, Timbs A, Hamblin A. Application of Genomics to Clinical Practice in Haematological Malignancy. CURRENT GENETIC MEDICINE REPORTS 2019. [DOI: 10.1007/s40142-019-00179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose of Review
The usual abundance of fresh cells and high-quality DNA derived from bone marrow aspirate and peripheral blood mean haematological malignancies are at the forefront of the application of genomics to malignancy. This review evaluates where genomics is routinely used in clinical care and where opportunities for further application exist.
Recent Findings
The 2016 revision of the WHO classification of tumours of haematopoietic and lymphoid tissues increased the number of disease entities defined by, or whose diagnosis was strongly supported by, a specific genetic change. Increasingly combinations of mutations rather than individual lesions are being used to genomically classify heterogeneous disorders to inform prognosis and direct treatment. Furthermore, the role of different genetic aberrations as markers of measurable residual disease is being evaluated in clinical trials to allow intensification/de-intensification of treatment as appropriate and early detection of relapse.
Summary
Implementation of broader sequencing technologies such as whole exome/genome sequencing coupled with continuing developments in genomic technology to improve turn-around-times are likely to further reinforce the centrality of genomics in the management of haematological malignancies.
Collapse
|
325
|
Liu P, Zhao L, Loos F, Marty C, Xie W, Martins I, Lachkar S, Qu B, Waeckel-Énée E, Plo I, Vainchenker W, Perez F, Rodriguez D, López-Otin C, van Endert P, Zitvogel L, Kepp O, Kroemer G. Immunosuppression by Mutated Calreticulin Released from Malignant Cells. Mol Cell 2019; 77:748-760.e9. [PMID: 31785928 DOI: 10.1016/j.molcel.2019.11.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/23/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
Mutations affecting exon 9 of the CALR gene lead to the generation of a C-terminally modified calreticulin (CALR) protein that lacks the KDEL endoplasmic reticulum (ER) retention signal and consequently mislocalizes outside of the ER where it activates the thrombopoietin receptor in a cell-autonomous fashion, thus driving myeloproliferative diseases. Here, we used the retention using selective hooks (RUSH) assay to monitor the trafficking of CALR. We found that exon-9-mutated CALR was released from cells in response to the biotin-mediated detachment from its ER-localized hook, in vitro and in vivo. Cellular CALR release was confirmed in suitable mouse models bearing exon-9-mutated hematopoietic systems or tumors. Extracellular CALR mediated immunomodulatory effects and inhibited the phagocytosis of dying cancer cells by dendritic cells (DC), thereby suppressing antineoplastic immune responses elicited by chemotherapeutic agents or by PD-1 blockade. Altogether, our results demonstrate paracrine immunosuppressive effects for exon-9-mutated CALR.
Collapse
Affiliation(s)
- Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France
| | - Liwei Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France; Université Paris-Saclay, Villejuif, France
| | - Friedemann Loos
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France
| | - Caroline Marty
- Université Paris-Saclay, Villejuif, France; INSERM, UMR 1170, Villejuif, France; Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - Wei Xie
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France
| | - Isabelle Martins
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France
| | - Sylvie Lachkar
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France
| | - Bo Qu
- Gustave Roussy Comprehensive Cancer Center, Villejuif, France; INSERM, U1015, Villejuif, France; Center of Clinical Investigations, CIC1428, Villejuif, France
| | - Emmanuelle Waeckel-Énée
- Université of Paris, Paris, France; INSERM, U1151, Paris, France; CNRS UMR8253, Paris, France
| | - Isabelle Plo
- Université Paris-Saclay, Villejuif, France; INSERM, UMR 1170, Villejuif, France; Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - William Vainchenker
- Université Paris-Saclay, Villejuif, France; INSERM, UMR 1170, Villejuif, France; Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - David Rodriguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos López-Otin
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Peter van Endert
- Université of Paris, Paris, France; INSERM, U1151, Paris, France; CNRS UMR8253, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Center, Villejuif, France; INSERM, U1015, Villejuif, France; Center of Clinical Investigations, CIC1428, Villejuif, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France.
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMR 1138, Paris, France; Sorbonne Université, Paris, France; Université of Paris, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Karolinska Institutet, Department of Women's and Children's Health, Stockholm, Sweden; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
326
|
Mazzacurati L, Collins RJ, Pandey G, Lambert-Showers QT, Amin NE, Zhang L, Stubbs MC, Epling-Burnette PK, Koblish HK, Reuther GW. The pan-PIM inhibitor INCB053914 displays potent synergy in combination with ruxolitinib in models of MPN. Blood Adv 2019; 3:3503-3514. [PMID: 31725895 PMCID: PMC6880903 DOI: 10.1182/bloodadvances.2019000260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Aberrant JAK2 tyrosine kinase signaling drives the development of Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. However, JAK2 kinase inhibitors have failed to significantly reduce allele burden in MPN patients, underscoring the need for improved therapeutic strategies. Members of the PIM family of serine/threonine kinases promote cellular proliferation by regulating a variety of cellular processes, including protein synthesis and the balance of signaling that regulates apoptosis. Overexpression of PIM family members is oncogenic, exemplified by their ability to induce lymphomas in collaboration with c-Myc. Thus, PIM kinases are potential therapeutic targets for several malignancies such as solid tumors and blood cancers. We and others have shown that PIM inhibitors augment the efficacy of JAK2 inhibitors by using in vitro models of MPNs. Here we report that the recently developed pan-PIM inhibitor INCB053914 augments the efficacy of the US Food and Drug Administration-approved JAK1/2 inhibitor ruxolitinib in both in vitro and in vivo MPN models. INCB053914 synergizes with ruxolitinib to inhibit cell growth in JAK2-driven MPN models and induce apoptosis. Significantly, low nanomolar INCB053914 enhances the efficacy of ruxolitinib to inhibit the neoplastic growth of primary MPN patient cells, and INCB053914 antagonizes ruxolitinib persistent myeloproliferation in vivo. These findings support the notion that INCB053914, which is currently in clinical trials in patients with advanced hematologic malignancies, in combination with ruxolitinib may be effective in MPN patients, and they support the clinical testing of this combination in MPN patients.
Collapse
Affiliation(s)
- Lucia Mazzacurati
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Que T Lambert-Showers
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Narmin E Amin
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | | | | | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
327
|
Rao TN, Hansen N, Hilfiker J, Rai S, Majewska JM, Leković D, Gezer D, Andina N, Galli S, Cassel T, Geier F, Delezie J, Nienhold R, Hao-Shen H, Beisel C, Di Palma S, Dimeloe S, Trebicka J, Wolf D, Gassmann M, Fan TWM, Lane AN, Handschin C, Dirnhofer S, Kröger N, Hess C, Radimerski T, Koschmieder S, Čokić VP, Skoda RC. JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood 2019; 134:1832-1846. [PMID: 31511238 PMCID: PMC6872961 DOI: 10.1182/blood.2019000162] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/17/2019] [Indexed: 12/20/2022] Open
Abstract
Increased energy requirement and metabolic reprogramming are hallmarks of cancer cells. We show that metabolic alterations in hematopoietic cells are fundamental to the pathogenesis of mutant JAK2-driven myeloproliferative neoplasms (MPNs). We found that expression of mutant JAK2 augmented and subverted metabolic activity of MPN cells, resulting in systemic metabolic changes in vivo, including hypoglycemia, adipose tissue atrophy, and early mortality. Hypoglycemia in MPN mouse models correlated with hyperactive erythropoiesis and was due to a combination of elevated glycolysis and increased oxidative phosphorylation. Modulating nutrient supply through high-fat diet improved survival, whereas high-glucose diet augmented the MPN phenotype. Transcriptomic and metabolomic analyses identified numerous metabolic nodes in JAK2-mutant hematopoietic stem and progenitor cells that were altered in comparison with wild-type controls. We studied the consequences of elevated levels of Pfkfb3, a key regulatory enzyme of glycolysis, and found that pharmacological inhibition of Pfkfb3 with the small molecule 3PO reversed hypoglycemia and reduced hematopoietic manifestations of MPNs. These effects were additive with the JAK1/2 inhibitor ruxolitinib in vivo and in vitro. Inhibition of glycolysis by 3PO altered the redox homeostasis, leading to accumulation of reactive oxygen species and augmented apoptosis rate. Our findings reveal the contribution of metabolic alterations to the pathogenesis of MPNs and suggest that metabolic dependencies of mutant cells represent vulnerabilities that can be targeted for treating MPNs.
Collapse
Affiliation(s)
- Tata Nageswara Rao
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Nils Hansen
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julian Hilfiker
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Shivam Rai
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julia-Magdalena Majewska
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Danijela Leković
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicola Andina
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Serena Galli
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Teresa Cassel
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Florian Geier
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Ronny Nienhold
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Serena Di Palma
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Sarah Dimeloe
- Immunobiology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
- Department of Gastroenterology, Odense Hospital, University of Southern Denmark, Odense, Denmark
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Dominik Wolf
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
- Medical Clinic III for Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY
| | | | - Stefan Dirnhofer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Christoph Hess
- Immunobiology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Vladan P Čokić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Radek C Skoda
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
328
|
Stoner SA, Yan M, Liu KTH, Arimoto KI, Shima T, Wang HY, Johnson DT, Bejar R, Jamieson C, Guan KL, Zhang DE. Hippo kinase loss contributes to del(20q) hematologic malignancies through chronic innate immune activation. Blood 2019; 134:1730-1744. [PMID: 31434702 PMCID: PMC6856986 DOI: 10.1182/blood.2019000170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Heterozygous deletions within chromosome 20q, or del(20q), are frequent cytogenetic abnormalities detected in hematologic malignancies. To date, identification of genes in the del(20q) common deleted region that contribute to disease development have remained elusive. Through assessment of patient gene expression, we have identified STK4 (encoding Hippo kinase MST1) as a 20q gene that is downregulated below haploinsufficient amounts in myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN). Hematopoietic-specific gene inactivation in mice revealed Hippo kinase loss to induce splenomegaly, thrombocytopenia, megakaryocytic dysplasia, and a propensity for chronic granulocytosis; phenotypes that closely resemble those observed in patients harboring del(20q). In a JAK2-V617F model, heterozygous Hippo kinase inactivation led to accelerated development of lethal myelofibrosis, recapitulating adverse MPN disease progression and revealing a novel genetic interaction between these 2 molecular events. Quantitative serum protein profiling showed that myelofibrotic transformation in mice was associated with cooperative effects of JAK2-V617F and Hippo kinase inactivation on innate immune-associated proinflammatory cytokine production, including IL-1β and IL-6. Mechanistically, MST1 interacted with IRAK1, and shRNA-mediated knockdown was sufficient to increase IRAK1-dependent innate immune activation of NF-κB in human myeloid cells. Consistent with this, treatment with a small molecule IRAK1/4 inhibitor rescued the aberrantly elevated IL-1β production in the JAK2-V617F MPN model. This study identified Hippo kinase MST1 (STK4) as having a central role in the biology of del(20q)-associated hematologic malignancies and revealed a novel molecular basis of adverse MPN progression that may be therapeutically exploitable via IRAK1 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rafael Bejar
- Moores Cancer Center
- Biomedical Sciences Graduate Program
- Division of Hematology and Oncology, Department of Medicine
| | - Catriona Jamieson
- Moores Cancer Center
- Biomedical Sciences Graduate Program
- Division of Regenerative Medicine, Department of Medicine, and
| | - Kun-Liang Guan
- Moores Cancer Center
- Biomedical Sciences Graduate Program
- Department of Pharmacology, University of California San Diego, La Jolla, CA
| | - Dong-Er Zhang
- Moores Cancer Center
- Biomedical Sciences Graduate Program
- Division of Biological Sciences
- Department of Pathology
| |
Collapse
|
329
|
McPherson S, Greenfield G, Andersen C, Grinfeld J, Hasselbalch HC, Nangalia J, Mills KI, McMullin MF. Methylation age as a correlate for allele burden, disease status, and clinical response in myeloproliferative neoplasm patients treated with vorinostat. Exp Hematol 2019; 79:26-34. [PMID: 31563618 DOI: 10.1016/j.exphem.2019.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 01/05/2023]
Abstract
The myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal neoplastic disorders. Driver mutations in JAK2, CALR, and MPL genes have been identified in the majority of cases. Alongside these, an increasing number of genes are repeatedly identified as mutated in MPN. These, including ASXL1, TET2, DMNT3A, and EZH2, have key roles in epigenetic regulation. Dysregulation of epigenetic processes is therefore a key feature of MPN. Vorinostat is a pan histone deacetylase inhibitor (HDACi) that has been investigated in MPN. DNA methylation (DNAm) is a well-defined epigenetic mechanism of transcription modification. It is known to be affected by ageing, lifestyle, and disease. Epigenetic ageing signatures have been previously described allowing calculation of a methylation age (MA). In this study we examined the effect of vorinostat on MA in MPN cell lines and in patients with polycythaemia vera (PV) and essential thrombocythaemia (ET) treated with vorinostat as part of a clinical trial. An older MA was observed in patients with a higher JAK2 V617F allele burden and those with a longer duration of disease. PV patients had a MA older than that predicted whilst MA was younger than predicted in ET. Treatment with vorinostat resulted in a younger MA in PV patients and older MA in ET patients, in both cases a trend towards the normal chronological age. When MA change was compared against response, nonresponse was associated with a younger than predicted MA in ET patients and a higher than predicted MA in PV patients. The link between MA and JAK2 mutant allele burden implies that allele burden has a role not only in clinical phenotype and disease evolution in MPN patients, but also in the overall methylation landscape of the mutated cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA Methylation/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Epigenesis, Genetic/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Polycythemia Vera/drug therapy
- Polycythemia Vera/genetics
- Polycythemia Vera/metabolism
- Polycythemia Vera/pathology
- Thrombocythemia, Essential/drug therapy
- Thrombocythemia, Essential/genetics
- Thrombocythemia, Essential/metabolism
- Thrombocythemia, Essential/pathology
- Vorinostat/administration & dosage
Collapse
Affiliation(s)
- Suzanne McPherson
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Graeme Greenfield
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | | | - Jacob Grinfeld
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Jyoti Nangalia
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ken I Mills
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Mary F McMullin
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Centre for Medical Education, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
330
|
A molecular diagnostic algorithm for JAK2 V617F investigations in suspected myeloproliferative neoplasms. Ir J Med Sci 2019; 189:621-626. [DOI: 10.1007/s11845-019-02100-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
|
331
|
Experimental Modeling of Myeloproliferative Neoplasms. Genes (Basel) 2019; 10:genes10100813. [PMID: 31618985 PMCID: PMC6826898 DOI: 10.3390/genes10100813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 12/25/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are genetically very complex and heterogeneous diseases in which the acquisition of a somatic driver mutation triggers three main myeloid cytokine receptors, and phenotypically expresses as polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The course of the diseases may be influenced by germline predispositions, modifying mutations, their order of acquisition and environmental factors such as aging and inflammation. Deciphering these contributory elements, their mutual interrelationships, and their contribution to MPN pathogenesis brings important insights into the diseases. Animal models (mainly mouse and zebrafish) have already significantly contributed to understanding the role of several acquired and germline mutations in MPN oncogenic signaling. Novel technologies such as induced pluripotent stem cells (iPSCs) and precise genome editing (using CRISPR/Cas9) contribute to the emerging understanding of MPN pathogenesis and clonal architecture, and form a convenient platform for evaluating drug efficacy. In this overview, the genetic landscape of MPN is briefly described, with an attempt to cover the main discoveries of the last 15 years. Mouse and zebrafish models of the driver mutations are discussed and followed by a review of recent progress in modeling MPN with patient-derived iPSCs and CRISPR/Cas9 gene editing.
Collapse
|
332
|
Hsu CC, Chen YJ, Huang CE, Wu YY, Wang MC, Pei SN, Liao CK, Lu CH, Chen PT, Tsou HY, Li CP, Chuang WH, Chuang CK, Yang CY, Lai YH, Lin YH, Chen CC. Molecular heterogeneity unravelled by single-cell transcriptomics in patients with essential thrombocythaemia. Br J Haematol 2019; 188:707-722. [PMID: 31610612 DOI: 10.1111/bjh.16225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Significant phenotypic heterogeneity exists in patients with all subtypes of myeloproliferative neoplasms (MPN), including essential thrombocythaemia (ET). Single-cell RNA sequencing (scRNA-Seq) holds the promise of unravelling the biology of MPN at an unprecedented level of resolution. Herein we employed this approach to dissect the transcriptomes in the CD34+ cells from the peripheral blood of seven previously untreated ET patients and one healthy adult. The mutational profiles in these patients were as follows: JAK2 V617F in two, CALR in three (one type I and two type II) and triple-negative (TN) in two. Our results reveal substantial heterogeneity within this enrolled cohort of patients. Activation of JAK/STAT signalling was recognized in discrepant progenitor lineages among different samples. Significantly disparate molecular profiling was identified in the comparison between ET patients and the control, between patients with different driver mutations (JAK2 V617F and CALR exon 9 indel), and even between patients harbouring the same driver. Intra-individual clonal diversity was also found in the CD34+ progenitor population of a patient, possibly indicating the presence of multiple clones in this case. Estimation of subpopulation size based on cellular immunophenotyping suggested differentiation bias in all analysed samples. Furthermore, combining the transcriptomic information with data from targeted sequencing enabled us to unravel key somatic mutations that are molecularly relevant. To conclude, we demonstrated that scRNA-Seq extended our knowledge of clonal diversity and inter-individual heterogeneity in patients with ET. The obtained information could potentially leapfrog our efforts in the elucidation of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Ju Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cih-En Huang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Ying Wu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Chung Wang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sung-Nan Pei
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Kai Liao
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chang-Hsien Lu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ping-Tsung Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsing-Yi Tsou
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chian-Pei Li
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei-Hsuan Chuang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | - Cheng-Yu Yang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Hua Lai
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Hsuan Lin
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Cheng Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
333
|
Porto-Soares MA, de Oliveira RD, Cortopassi GM, Machado-Neto JA, Palma LC, Figueiredo-Pontes LLD. Clinical and molecular profile of a Brazilian cohort of patients with classical BCR-ABL1-negative myeloproliferative neoplasms. Hematol Transfus Cell Ther 2019; 42:238-244. [PMID: 31676277 PMCID: PMC7417460 DOI: 10.1016/j.htct.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Background The classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) are Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF). In developing countries, there are few reports that truly reveal the clinical setting of these patients. Therefore, we aimed to characterize a single center MPN population with a special focus on the correct diagnosis based on the recent review of the WHO criteria for the diagnosis of myeloid neoplasms. Methods This retrospective study analyzed data from medical records of patients with classical BCR-ABL1-negative MPNs diagnosed from January 1997 to October 2017 and followed at the University Hospital of Ribeirão Preto Medical School. Results A total of 162 patients were assessed, 61 with PV, 50 with ET, and 51 with PMF. The mutational status analysis revealed that 113 (69.3%) harbored the JAK2V617F mutation, 23 (14.1%), the CALR mutation, and 12 (7.4%) had a triple-negative status. None of the patients were found to have mutations on the thrombopoietin receptor gene (MPL), including some ET and PMF patients who were not tested. Among the PV patients, 57 (93.5%) were positive for the JAK2V617F mutation, one (1.6%) presented an in-frame deletion JAK2 exon 12 mutation and one (1.6%) presented a missense JAK2 exon 9 mutation, not previously described. The overall survival was lower in the triple-negative patients with PMF, when compared to the JAK2V617F or CALR-mutated (p = 0.002). Conclusion The frequency of somatic mutations and survival in our cohort, stratified according to the respective disease, was consistent with the literature data, despite some limitations. Further prospective epidemiological studies of MPN cohorts are encouraged in developing countries.
Collapse
Affiliation(s)
- Moysés Antonio Porto-Soares
- Faculdade de Medicina de Ribeirão Preto e Centro de Terapia Celular, Universidade de São Paulo, FMRP-USP, Ribeirão Preto, SP, Brazil; Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Rafael Daltro de Oliveira
- Faculdade de Medicina de Ribeirão Preto e Centro de Terapia Celular, Universidade de São Paulo, FMRP-USP, Ribeirão Preto, SP, Brazil
| | - Gabriel Macedo Cortopassi
- Faculdade de Medicina de Ribeirão Preto e Centro de Terapia Celular, Universidade de São Paulo, FMRP-USP, Ribeirão Preto, SP, Brazil
| | - João Agostinho Machado-Neto
- Faculdade de Medicina de Ribeirão Preto e Centro de Terapia Celular, Universidade de São Paulo, FMRP-USP, Ribeirão Preto, SP, Brazil; Instituto de Ciências Biomédicas, Universidade de São Paulo, ICB USP, São Paulo, SP, Brazil
| | - Leonardo Carvalho Palma
- Faculdade de Medicina de Ribeirão Preto e Centro de Terapia Celular, Universidade de São Paulo, FMRP-USP, Ribeirão Preto, SP, Brazil
| | - Lorena Lobo de Figueiredo-Pontes
- Faculdade de Medicina de Ribeirão Preto e Centro de Terapia Celular, Universidade de São Paulo, FMRP-USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
334
|
Abstract
Mammal megakaryocytes (MK) undergo polyploidization during their differentiation. This process leads to a marked increase in the MK size and of their cytoplasm. Contrary to division by classical mitosis, ploidization allows an economical manner to produce platelets as they arise from the fragmentation of the MK cytoplasm. The platelet production in vivo correlates to the entire MK cytoplasm mass that depends both upon the number of MKs and their size. Polyploidization occurs by several rounds of DNA replication with at the end of each round an aborted mitosis at late phase of cytokinesis. As there is also a defect in karyokinesis, MKs are giant cells with a single polylobulated nucleus with a 2xN ploidy. However, polyploidization per se does not increase platelet production because it requires a parallel development of MK organelles such as mitochondria, granules and the demarcation membrane system. MK polyploidization is regulated by extrinsic factors, more particularly by thrombopoietin (TPO), which during a platelet stress increases first polyploidization before enhancing the MK number and by transcription factors such as RUNX1, GATA1, and FLI1 that regulate MK differentiation explaining why polyploidization and cytoplasmic maturation are intermingled. MK polyploidization is ontogenically regulated and is markedly altered in malignant myeloid disorders such as acute megakaryoblastic leukemia and myeloproliferative disorders as well as in hereditary thrombocytopenia, more particularly those involving transcription factors or signaling pathways. In addition, MKs arising from progenitors in vitro have a much lower ploidy in vitro than in vivo leading to a low yield of platelet production in vitro. Thus, it is tempting to find approaches to increase MK polyploidization in vitro. However, these approaches require molecules that are able to simultaneously increase MK polyploidization and to induce terminal differentiation. Here, we will focus on the regulation by extrinsic and intrinsic factors of MK polyploidization during development and pathological conditions.
Collapse
Affiliation(s)
- William Vainchenker
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer , Villejuif, France
| | - Hana Raslova
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer , Villejuif, France
| |
Collapse
|
335
|
Konantz M, Schürch C, Hanns P, Müller JS, Sauteur L, Lengerke C. Modeling hematopoietic disorders in zebrafish. Dis Model Mech 2019; 12:12/9/dmm040360. [PMID: 31519693 PMCID: PMC6765189 DOI: 10.1242/dmm.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish offer a powerful vertebrate model for studies of development and disease. The major advantages of this model include the possibilities of conducting reverse and forward genetic screens and of observing cellular processes by in vivo imaging of single cells. Moreover, pathways regulating blood development are highly conserved between zebrafish and mammals, and several discoveries made in fish were later translated to murine and human models. This review and accompanying poster provide an overview of zebrafish hematopoiesis and discuss the existing zebrafish models of blood disorders, such as myeloid and lymphoid malignancies, bone marrow failure syndromes and immunodeficiencies, with a focus on how these models were generated and how they can be applied for translational research. Summary: This At A Glance article and poster summarize the last 20 years of research in zebrafish models for hematopoietic disorders, highlighting how these models were created and are being applied for translational research.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Loïc Sauteur
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland.,Division of Hematology, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
336
|
Wang JC, Shi G, Wong C, Gotlieb V, Ramachandran P, Chen H. Quantification of IGF-1 receptor is useful in the differential diagnosis of essential thrombocytosis from reactive thrombocytosis. Eur J Haematol 2019; 103:573-577. [PMID: 31479555 DOI: 10.1111/ejh.13323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND To make a definite diagnosis of essential thrombocytosis (ET) from reactive thrombocytosis (RT), the most reliable criteria are the presence of driver mutations, namely JAK2, CALR, or MPL gene mutations. In the absence of these driver mutations, so-called triple-negative ET, the differential diagnosis could be difficult. Although bone marrow biopsy could be helpful, it may be difficult in some cases, to do gene sequence analysis to identify other clonal marker gene mutations than the driver mutations, as only very few were found. METHODS IGF-1R quantification by flow cytometry in mononuclear cells (MNC) from peripheral blood was performed in 33 patients with ET (untreated or off treatment with hydroxyurea), 28 patients with RT, and 16 normal volunteer controls. RESULTS We found IGF-1R levels were significantly elevated in ET patients compared to RT patients or controls. A cutoff value of 253 was chosen from the logistic regression to predict each patient's group, a value ≥253 meant that a patient belonged to the ET group (sensitivity 96.4% and specificity 68.6%). CONCLUSION We suggest that adding quantification of IGF-1R in blood MNC by flow cytometry is useful in differentiating ET from RT.
Collapse
Affiliation(s)
- Jen C Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Guanfang Shi
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Ching Wong
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Vladimir Gotlieb
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Preethi Ramachandran
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Hui Chen
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| |
Collapse
|
337
|
Vu HA, Thao TT, Dong CV, Vuong NL, Chuong HQ, Van PNT, Nghia H, Binh NT, Dung PC, Xinh PT. Clinical and Hematological Relevance of JAK2V617F, CALR, and MPL Mutations in Vietnamese Patients with Essential Thrombocythemia. Asian Pac J Cancer Prev 2019; 20:2775-2780. [PMID: 31554376 PMCID: PMC6976857 DOI: 10.31557/apjcp.2019.20.9.2775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background: The picture of Vietnamese patients with essential thrombocythemia (ET) remains mostly undetermined. Our study intended to determine the frequency of JAK2V617F, CALR exon 9, and MPL exon 10 mutations as well as to analyze clinical characteristics associated with different mutational status in Vietnamese ET patients. Methods: We explored mutations of JAK2V617F, MPL, and CALR from 395 patients using allele specific oligonucleotide – polymerase chain reaction and Sanger sequencing techniques; then, the clinical and hematological features were compared according to mutation patterns. Results: We found that JAK2V617F, CALR exon 9, and MPL exon 10 mutations were present in 56.2%, 27.6%, and 1% of the 395 patients with ET, respectively. Twelve different types of CALR mutation were detected in 109 patients, with the CALR type 1 mutation (c.1099_1150del; L367fs*46) was the most common, followed by CALR type 2 mutation (c.1154_1155insTTGTC; K385fs*47). The JAK2V617F-positive patients had older age, higher white blood cell counts and higher hemoglobin levels but lower platelet counts than patients with CALR mutations or patients negative for triple tests. There was no significant difference regarding sex ratio, white blood cell counts, platelet counts and hemoglobin levels among CALR mutation subtypes. Conclusion: we reported high frequency of JAK2V617F, CALR, and MPL mutations in Vietnamese patients with ET and underscored the importance of combined genetic tests for diagnosis and classification of ET into different subtypes.
Collapse
Affiliation(s)
- Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tran Thi Thao
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Cao Van Dong
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Nguyen Lam Vuong
- Department of Medical Statistics and Informatics, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ho Quoc Chuong
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phan Nguyen Thanh Van
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Huynh Nghia
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam. ,Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Nguyen Tan Binh
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Phu Chi Dung
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Phan Thi Xinh
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam. ,Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| |
Collapse
|
338
|
Sant'Antonio E, Bonifacio M, Breccia M, Rumi E. A journey through infectious risk associated with ruxolitinib. Br J Haematol 2019; 187:286-295. [PMID: 31468506 DOI: 10.1111/bjh.16174] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ruxolitinib has proved to be effective for the treatment of patients with myelofibrosis (either primary or secondary) and polycythaemia vera, and its approval led to a significant change in the current treatment algorithm. Despite its efficacy and beyond its well described haematological toxicity, a peculiar immunosuppressive effect emerged as our clinical experience grew, both within and outside of a clinical trial setting. Definite and negative interactions with multiple pathways of the immune system of patients have been reported so far, involving both adaptive and innate immune responses. These pathophysiological mechanisms may contribute to the increased risk of reactivation of silent infections (e.g., tuberculosis, hepatitis B virus and varicella zoster virus) that have been associated with the drug. Even though such infectious events may be fatal or may lead to significant impairment of organ function, compromising the eligibility of patients for an allotransplant procedure, there are no dedicated guidelines that may help us in assessing and managing the risk of developing serious infections. On this basis, our aim for the present work was to review the current knowledge on the pathophysiological mechanisms through which ruxolitinib may exert its immunosuppressive effect, and to illustrate our personal approach to the management of three peculiar clinical scenarios, for which a risk-based algorithm is suggested.
Collapse
Affiliation(s)
- Emanuela Sant'Antonio
- Department of Oncology, Division of Haematology, Azienda USL Toscana Nord Ovest, Lucca, Italy
| | | | - Massimo Breccia
- Division of Cellular Biotechnologies and Haematology, University Sapienza, Roma, Italy
| | - Elisa Rumi
- Department of Haematology Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
339
|
Ogasawara K, Zhou S, Krishna G, Palmisano M, Li Y. Population pharmacokinetics of fedratinib in patients with myelofibrosis, polycythemia vera, and essential thrombocythemia. Cancer Chemother Pharmacol 2019; 84:891-898. [PMID: 31444617 PMCID: PMC6768916 DOI: 10.1007/s00280-019-03929-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/07/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE Fedratinib (SAR302503, TG101348) is an orally administered Janus kinase (JAK) 2-selective inhibitor that is being developed for the treatment of patients with myelofibrosis (MF). The objectives of this analysis were to develop a population pharmacokinetic (PK) model to characterize fedratinib concentration-time profiles in patients with MF, polycythemia vera (PV) and essential thrombocythemia (ET) following oral fedratinib administration; and to investigate the effects of selected covariates on fedratinib PK parameters. METHODS Nonlinear mixed effects modeling was employed in developing a population PK model for fedratinib. Intensive or sparse fedratinib concentration data collected in adult subjects with MF, PV or ET from six studies were pooled, and a total of 452 subjects and 3442 plasma concentration observations were included in the final model. RESULTS Fedratinib PK in patients with MF/PV/ET was adequately described by a two-compartment structural PK model with first-order absorption incorporating a lag time and first-order elimination. Following oral administration, fedratinib undergoes biphasic disposition and exhibits linear, time-invariant PK at doses of 200 mg and above. Compared to MF/ET patients, PV patients had higher apparent clearance (CL/F) and apparent central volume of distribution. Creatinine clearance was a statistically significant covariate on CL/F, and patients with mild and moderate renal impairment had 10% and 37% increases in fedratinib exposure as compared to patients with normal renal function. No clinically meaningful effect on fedratinib exposure was observed regarding age, body weight, sex, race and liver function. CONCLUSIONS These results should serve as the basis for dose adjustment of fedratinib for special populations.
Collapse
Affiliation(s)
- Ken Ogasawara
- Translational Development and Clinical Pharmacology, Celgene Corporation, 556 Morris Ave, Summit, NJ, 07901, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Celgene Corporation, 556 Morris Ave, Summit, NJ, 07901, USA
| | - Gopal Krishna
- Translational Development and Clinical Pharmacology, Celgene Corporation, 556 Morris Ave, Summit, NJ, 07901, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Celgene Corporation, 556 Morris Ave, Summit, NJ, 07901, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Celgene Corporation, 556 Morris Ave, Summit, NJ, 07901, USA.
| |
Collapse
|
340
|
Sørensen AL, Bjørn ME, Riley CH, Holmstrøm M, Andersen MH, Svane IM, Mikkelsen SU, Skov V, Kjaer L, Hasselbalch HC, Nielsen CH. B-cell frequencies and immunoregulatory phenotypes in myeloproliferative neoplasms: Influence of ruxolitinib, interferon-α2, or combination treatment. Eur J Haematol 2019; 103:351-361. [PMID: 31297883 DOI: 10.1111/ejh.13292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Given a proposed role for PD-L1+ and IL-10-producing B-cell subsets in promoting certain cancers, we sought to characterize the frequency and phenotype of B cells in patients with chronic myeloproliferative neoplasms (MPNs) and the influence of ruxolitinib and interferon-α2 therapy. METHODS We analyzed B-cell frequencies and phenotype in patients with MPNs (n = 107), before and during treatment with ruxolitinib (n = 29), interferon-α2 (n = 21), or the two drugs in combination (COMBI; n = 42) and healthy donors (HDs; n = 52) using flow cytometry. RESULTS Myelofibrosis patients had lower lymphocyte counts and proportions of B cells than patients with essential thrombocythemia or polycythemia vera and HDs. The B-cell count correlated inversely with JAK2-V617F allele burden and spleen size and increased after ruxolitinib or COMBI treatment. The proportions of PD-L1+ B cells and PD-1+ B cells were significantly higher in patients with myelofibrosis or polycythemia vera than in HDs and decreased during ruxolitinib and COMBI treatment. The proportions of TNF-α+ and IL-6+ B cells were elevated in myelofibrosis patients. The proportion of IL-6+ B cells decreased, and the proportion of IL-10+ B cells increased during ruxolitinib treatment. CONCLUSION B-cell frequency and phenotype were altered in MPN patients. Ruxolitinib therapy had marked effects on both frequency and phenotype.
Collapse
Affiliation(s)
- Anders Lindholm Sørensen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Mads Emil Bjørn
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Caroline H Riley
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Morten Holmstrøm
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.,Department of Hematology, Center for Cancer Immune Therapy, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | - Mads Hald Andersen
- Department of Hematology, Center for Cancer Immune Therapy, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | - Inge Marie Svane
- Department of Hematology, Center for Cancer Immune Therapy, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | - Stine Ulrik Mikkelsen
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjaer
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
341
|
Inano T, Araki M, Morishita S, Imai M, Yasuda H, Nitta H, Ito M, Edahiro Y, Ochiai T, Misawa K, Fukuda Y, Ohsaka A, Komatsu N. JAK2
exon 12 mutation in myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis: Not an exclusive mutation to polycythaemia vera. Br J Haematol 2019; 187:e27-e31. [DOI: 10.1111/bjh.16146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tadaaki Inano
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Misa Imai
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
- Leading Centre for the Development and Research of Cancer Medicine, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Hajime Yasuda
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Hideaki Nitta
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Masafumi Ito
- Department of Pathology Japanese Red Cross Nagoya First Hospital Aichi Japan
| | - Yoko Edahiro
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Tomonori Ochiai
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Kyohei Misawa
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Yasutaka Fukuda
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell Regulation, Graduate School of Medicine Juntendo University Tokyo Japan
| | - Norio Komatsu
- Department of Haematology, Graduate School of Medicine Juntendo University Tokyo Japan
| |
Collapse
|
342
|
Fisher DAC, Miner CA, Engle EK, Hu H, Collins TB, Zhou A, Allen MJ, Malkova ON, Oh ST. Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFκB signaling. Leukemia 2019; 33:1978-1995. [PMID: 30718771 PMCID: PMC6813809 DOI: 10.1038/s41375-019-0379-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The distinct clinical features of myelofibrosis (MF) have been attributed in part to dysregulated inflammatory cytokine production. Circulating cytokine levels are elevated in MF patients; a subset of which have been shown to be poor prognostic indicators. In this study, cytokine overproduction was examined in MF patient plasma and in MF blood cells ex vivo using mass cytometry. Plasma cytokines measured following treatment with ruxolitinib remained markedly abnormal, indicating that aberrant cytokine production persists despite therapeutic JAK2 inhibition. In MF patient samples, 14/15 cytokines measured by mass cytometry were found to be constitutively overproduced, with the principal cellular source for most cytokines being monocytes, implicating a non-cell-autonomous role for monocyte-derived cytokines impacting disease-propagating stem/progenitor cells in MF. The majority of cytokines elevated in MF exhibited ex vivo hypersensitivity to thrombopoietin (TPO), toll-like receptor (TLR) ligands, and/or tumor necrosis factor (TNF). A subset of this group (including TNF, IL-6, IL-8, IL-10) was minimally sensitive to ruxolitinib. All TPO/TLR/TNF-sensitive cytokines, however, were sensitive to pharmacologic inhibition of NFκB and/or MAP kinase signaling. These results indicate that NFκB and MAP kinase signaling maintain cytokine overproduction in MF, and that inhibition of these pathways may provide optimal control of inflammatory pathophysiology in MF.
Collapse
Affiliation(s)
- Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cathrine A Miner
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth K Engle
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hengrui Hu
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Program in Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor B Collins
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Zhou
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie J Allen
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Olga N Malkova
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
343
|
Li B, Rampal RK, Xiao Z. Targeted therapies for myeloproliferative neoplasms. Biomark Res 2019; 7:15. [PMID: 31346467 PMCID: PMC6636147 DOI: 10.1186/s40364-019-0166-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
The discovery of JAK2V617F and the demonstration that BCR-ABL-negative myeloproliferative neoplasms (MPNs) are driven by abnormal JAK2 activation have led to advances in diagnostic algorithms, prognosis and ultimately also treatment strategies. The JAK 1/2 inhibitor ruxolitinib was a pivotal moment in the treatment of MPNs, representing the first targeted treatment in this field. Despite a weak effect on the cause of the disease itself in MPNs, ruxolitinib improves the clinical state of patients and increases survival in myelofibrosis. In parallel, other JAK inhibitors with potential for pathologic and molecular remissions, less myelosuppression, and with greater selectivity for JAK1 or JAK2, and the ability to overcome JAK inhibitor persistence are in various stages of development. Moreover, many novel classes of targeted agents continue to be investigated in efforts to build on the progress made with ruxolitinib. This article will discuss some of the advances in the targeted therapy in this field in recent years and explore in greater detail some of the most advanced emerging agents as well as those with greatest potential.
Collapse
Affiliation(s)
- Bing Li
- 1MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,2State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Raajit K Rampal
- 3Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Zhijian Xiao
- 1MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,2State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
344
|
Sun T, Ju M, Dai X, Dong H, Gu W, Gao Y, Fu R, Liu X, Huang Y, Liu W, Ch Y, Wang W, Li H, Zhou Y, Shi L, Yang R, Zhang L. Multilevel defects in the hematopoietic niche in essential thrombocythemia. Haematologica 2019; 105:661-673. [PMID: 31289202 PMCID: PMC7049349 DOI: 10.3324/haematol.2018.213686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
The role of the bone marrow niche in essential thrombocythemia (ET) remains unclear. Here, we observed multilevel defects in the hematopoietic niche of patients with JAK2V617F-positive ET, including functional deficiency in mesenchymal stromal cells (MSC), immune imbalance, and sympathetic-nerve damage. Mesenchymal stromal cells from patients with JAK2V617F-positive essential thrombocythemia had a transformed transcriptome. In parallel, they showed enhanced proliferation, decreased apoptosis and senescence, attenuated ability to differentiate into adipocytes and osteocytes, and insufficient support for normal hematopoiesis. Additionally, they were inefficient in suppressing immune responses. For instance, they poorly inhibited proliferation and activation of CD4-positive T cells and the secretion of the inflammatory factor soluble CD40-ligand. They also poorly induced formation of mostly immunosuppressive T-helper 2 cells (Th2) and the secretion of the anti-inflammatory factor interleukin-4 (IL-4). Furthermore, we identified WDR4 as a potent protein with low expression and which was correlated with increased proliferation, reduced senescence and differentiation, and insufficient support for normal hematopoiesis in MSC from patients with JAK2V617F-positive ET. We also observed that loss of WDR4 in MSC cells downregulated the interleukin-6 (IL-6) level through the ERK–GSK3β–CREB signaling based on our in vitro studies. Altogether, our results show that multilevel changes occur in the bone marrow niche of patients with JAK2V617F-positive ET, and low expression of WDR4 in MSC may be critical for inducing hematopoietic related changes.
Collapse
Affiliation(s)
- Ting Sun
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology
| | - Huan Dong
- State Key Laboratory of Experimental Hematology
| | - Wenjing Gu
- State Key Laboratory of Experimental Hematology
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Yueting Huang
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Wei Liu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Ying Ch
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology.,Tianjin Laboratory of Blood Disease Gene Therapy.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology .,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Center for Stem Cell Medicine.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology .,National Clinical Research Center for Blood Diseases.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases.,CAMS Center for Stem Cell Medicine
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology .,National Clinical Research Center for Blood Diseases.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases.,CAMS Center for Stem Cell Medicine.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| |
Collapse
|
345
|
Mejía-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000-2018. BMC Cancer 2019; 19:590. [PMID: 31208359 PMCID: PMC6580484 DOI: 10.1186/s12885-019-5764-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Research into Philadelphia-negative chronic myeloproliferative neoplasms is heterogeneous. In addition, no systematization of studies of polycythemia vera (PV), essential thrombocythemia (ET) or primary myelofibrosis (PMF) have been carried out. The objective of this review is to characterize studies on BCR-ABL1-negative chronic myeloproliferative neoplasms and to compare the frequency of JAK2, MPL and CALR mutations in PV, ET and PMF. METHOD A systematic review of the scientific literature was conducted, as was meta-analysis with an ex-ante selection of protocol, according to phases of the PRISMA guide in three interdisciplinary databases. To guarantee reproducibility in the pursuit and retrieval of information, the reproducibility and methodological quality of the studies were evaluated by two researchers. RESULTS Fifty-two studies were included, the majority having been carried out in the United States, China, Brazil and Europe. The frequency of the JAK2V617F mutation ranged from 46.7 to 100% in patients with PV, from 31.3 to 72.1% in patients with ET, and from 25.0 to 85.7% in those with PMF. The frequency of the MPL mutation was 0% in PV, from 0.9 to 12.5% in ET, and from 0 to 17.1% in PMF. The CALR mutation occurred at a frequency of 0.0% in PV, whereas in ET, it ranged from 12.6 to 50%, and in PMF, it ranged from 10 to 100%. The risk of this mutation presenting in PV is 3.0 times that found for ET and 4.0 times that found for PMF. CONCLUSION Given the specificity and reported high frequencies of the JAK2V617F, MPL and CALR mutations in this group of neoplasms, the diagnosis of these diseases should not be made on clinical and hematological characteristics alone but should include genetic screening of patients.
Collapse
Affiliation(s)
- Mónica Mejía-Ochoa
- Molecular Hematopathology Research Group, School of Microbiology,University of Antioquia, Laboratorio Médico de referencia, Medellin, Colombia
| | - Paola Andrea Acevedo Toro
- Molecular Hematopathology Research Group, School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Jaiberth Antonio Cardona-Arias
- School of Microbiology University of Antioquia, School of Medicine, Cooperativa Universidad de Colombia, Calle 67 Número 53 - 108, Bloque 5, oficina 103, Medellin, Colombia.
| |
Collapse
|
346
|
Marin Oyarzún CP, Heller PG. Platelets as Mediators of Thromboinflammation in Chronic Myeloproliferative Neoplasms. Front Immunol 2019; 10:1373. [PMID: 31258539 PMCID: PMC6587101 DOI: 10.3389/fimmu.2019.01373] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic myeloproliferative neoplasms (MPN) are stem cell disorders driven by mutations in JAK2, CALR, or MPL genes and characterized by myeloid proliferation and increased blood cell counts. They encompass three closely related conditions, including essential thrombocythemia, polycythemia vera, and primary myelofibrosis. Elevated levels of cytokines released by clonal and non-clonal cells generate a chronic proinflammatory state that contributes to disease pathogenesis. Thrombosis represents the most common cause of morbidity and mortality in MPN, although paradoxically, patients may also present with a bleeding diathesis. The mechanisms leading to thrombosis are complex and multiple and include increased blood cells together with qualitative abnormalities of red cells, leukocytes, and platelets that favor a prothrombotic activated phenotype. The functional interplay between blood cells, the clotting cascade, and dysfunctional endothelium contributes to hypercoagulability and this process is perpetuated by the effect of inflammatory cytokines. In addition to their well-known function in hemostasis, platelets contribute to innate immunity and inflammation and play a key role in MPN thromboinflammatory state. In vivo platelet activation leads to platelet aggregate formation and exposure of adhesion molecules which favor their interaction with activated neutrophils and monocytes leading to circulating platelet-leukocyte heterotypic aggregates. Platelets are recruited to the activated endothelium further enhancing the reciprocal activation of both cell types. Crosstalk between activated cells drives cytokine production, further fuelling the self-reinforcing thromboinflammatory loop. In addition, MPN platelets provide a procoagulant scaffold which triggers the coagulation cascade and platelet-derived microparticles amplify this response. Markers of platelet, leukocyte, endothelial and coagulation activation are increased in MPN patients although prospective studies are required to determine the potential value of these parameters for identifying patients at increased thrombotic risk. Thrombosis remains the main complication of MPN patients, with a high risk of recurrence despite adequate cytoreductive and antithrombotic treatment. Deeper insight into the mechanism favoring thrombosis development in this setting may lead to novel therapeutic approaches for MPN thrombosis. Considering the critical role of inflammation in the vascular risk, concomitant targeting of inflammatory pathways could potentially impact on primary or secondary prevention strategies.
Collapse
Affiliation(s)
- Cecilia P Marin Oyarzún
- Department of Hematology Research, National Scientific and Technical Research Council (CONICET), Institute of Medical Research (IDIM) "Dr. Alfredo Lanari", University of Buenos Aires, Buenos Aires, Argentina
| | - Paula G Heller
- Department of Hematology Research, National Scientific and Technical Research Council (CONICET), Institute of Medical Research (IDIM) "Dr. Alfredo Lanari", University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
347
|
Gilani JA, Ashfaq MA, Mansoor AER, Abdul Jabbar A, Siddiqui T, Khan M. Overview of the Mutational Landscape in Primary Myelofibrosis and Advances in Novel Therapeutics. Asian Pac J Cancer Prev 2019; 20:1691-1699. [PMID: 31244289 PMCID: PMC7021616 DOI: 10.31557/apjcp.2019.20.6.1691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
Primary Myelofibrosis is a BCR-ABL negative myeloproliferative neoplasm with a variety of hematological presentations, including thrombosis, bleeding diathesis and marrow fibrosis. It is estimated to have an incidence of 1.5 per 100,000 people each year. Although JAK2 or MPL mutations are seen in PMF, several other mutations have recently been documented, including mutations in CALR, epigenetic regulators like TET, ASXL1, and 13q deletions. The identification of these mutations has improved the ability to develop novel treatment options. These include JAK inhibitors like ruxolitinib, heat shock protein-90 inhibitors like ganetespib, histone deacetylase inhibitors including panobinostat, pracinostat, vorinostat and givinostat, hypomethylating agents like decitabine, hedgehog inhibitors like glasdegib, PI3K, AKT and mTOR inhibitors like everolimus as well as telomerase inhibitors like imtelstat. Research on novel therapeutic options is being actively pursued in order to expand treatment options for primary myelofibrosis however currently, there is no curative therapy other than allogenic hematopoietic stem cell transplantation (ASCT) which is possible in select patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Maliha Khan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
348
|
Relationship between disease biology and clinical phenotype in myeloproliferative neoplasms. Hemasphere 2019; 3:HEMASPHERE-2019-0061. [PMID: 35309791 PMCID: PMC8925713 DOI: 10.1097/hs9.0000000000000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 11/26/2022] Open
|
349
|
Vainchenker W, Plo I, Marty C, Varghese LN, Constantinescu SN. The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications. Expert Rev Hematol 2019; 12:437-448. [PMID: 31092065 DOI: 10.1080/17474086.2019.1617129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Classical Myeloproliferative Neoplasms (MPNs) include three disorders: Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF). MPNs are associated with constitutive activation of JAK2 leading to persistent cell signaling downstream of the dimeric myeloid cytokine receptors due to mutations in three genes encoding JAK2, calreticulin (CALR) and the thrombopoietin (TPO) receptor (MPL or TPOR). CALR and MPL mutants induce JAK2 activation that depends on MPL expression, thus explaining why they induce megakaryocyte pathologies including ET and PMF, but not PV. In contrast, JAK2 V617F drives all three diseases as it induces persistent signaling via EPOR, G-CSFR (CSF3R) and MPL. Areas Covered: Here, we review how different pathogenic mutations of MPL are translated into active receptors by inducing stable dimerization. We focus on the unique role of MPL on the hematopoietic stem cell (HSC), explaining why MPL is indispensable for the development of all MPNs. Last but not least, we describe how CALR mutants are pathogenic via binding and activation of MPL. Expert Opinion: Altogether, we believe that MPL is an important, but challenging, therapeutic target in MPNs that requires novel strategies to interrupt the specific conformational changes induced by each mutation or pathologic interaction without compromising the key functions of wild type MPL.
Collapse
Affiliation(s)
- William Vainchenker
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Isabelle Plo
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Caroline Marty
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Leila N Varghese
- c Ludwig Institute for Cancer Research Brussels , Brussels , Belgium.,d de Duve Institute, Université catholique de Louvain , Brussels , Belgium
| | - Stefan N Constantinescu
- c Ludwig Institute for Cancer Research Brussels , Brussels , Belgium.,d de Duve Institute, Université catholique de Louvain , Brussels , Belgium.,e WELBIO (Walloon Excellence in Life Sciences and Biotechnology) , Brussels , Belgium
| |
Collapse
|
350
|
DeZern AE, Malcovati L, Ebert BL. CHIP, CCUS, and Other Acronyms: Definition, Implications, and Impact on Practice. Am Soc Clin Oncol Educ Book 2019; 39:400-410. [PMID: 31099654 DOI: 10.1200/edbk_239083] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Unexplained blood cytopenias can be a clinical challenge for patients and clinicians alike. The relationship between these cytopenias and myeloid neoplasms like myelodysplastic syndromes (MDS) is currently an area of active research. There have been marked developments in our understanding of clonal hematopoiesis based on findings of somatic mutations in genes known to be associated with MDS. This has led to newer terms to describe precursor states to MDS, such as clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). These conditions may allow earlier diagnosis, modify surveillance for MDS, and guide additional therapies. This review summarizes recent updates in the field for affected patients.
Collapse
Affiliation(s)
- Amy E DeZern
- 1 Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Luca Malcovati
- 2 Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Benjamin L Ebert
- 3 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|