301
|
Follo MY, Finelli C, Mongiorgi S, Clissa C, Chiarini F, Ramazzotti G, Paolini S, Martinelli G, Martelli AM, Cocco L. Synergistic induction of PI-PLCβ1 signaling by azacitidine and valproic acid in high-risk myelodysplastic syndromes. Leukemia 2011; 25:271-80. [PMID: 21109771 DOI: 10.1038/leu.2010.266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/29/2010] [Indexed: 01/09/2023]
Abstract
The association between azacitidine (AZA) and valproic acid (VPA) has shown high response rates in high-risk myelodysplastic syndromes (MDS) cases with unfavorable prognosis. However, little is known about the molecular mechanisms underlying this therapy, and molecular markers useful to monitor the disease and the effect of the treatment are needed. Phosphoinositide-phospholipase C (PI-PLC) β1 is involved in both genetic and epigenetic mechanisms of MDS progression to acute myeloid leukemia. Indeed, AZA as a single agent was able to induce PI-PLCβ1 expression, therefore providing a promising new tool in the evaluation of response to demethylating therapies. In this study, we assessed the efficacy of the combination of AZA and VPA on inducing PI-PLCβ1 expression in high-risk MDS patients. Furthermore, we observed an increase in Cyclin D3 expression, a downstream target of PI-PLCβ1 signaling, therefore suggesting a potential combined activity of AZA and VPA in high-risk MDS in activating PI-PLCβ1 signaling, thus affecting cell proliferation and differentiation. Taken together, our findings might open up new lines of investigations aiming at evaluating the role of the activation of PI-PLCβ1 signaling in the epigenetic therapy, which may also lead to the identification of innovative targets for the epigenetic therapy of high-risk MDS.
Collapse
Affiliation(s)
- M Y Follo
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
303
|
Strey CW, Schamell L, Oppermann E, Haferkamp A, Bechstein WO, Blaheta RA. Valproate inhibits colon cancer growth through cell cycle modification in vivo and in vitro. Exp Ther Med 2011; 2:301-307. [PMID: 22977502 DOI: 10.3892/etm.2011.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/30/2010] [Indexed: 12/27/2022] Open
Abstract
Valproate (VPA) is a well-characterized histone deacetylase inhibitor with anti-neoplastic properties. We analyzed the growth blocking effects and the molecular mode of action of this compound in colorectal cancer cells in vitro and in vivo. Caco-2, SW-480, CX-1 or WIDR cell lines were exposed to VPA (0.25-2 mM) for various time periods. Cell growth, cell cycle progression and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide dye reduction assay and flow cytometry. Cell cycle- and apoptosis-regulating proteins and histone acetylation were assessed by Western blotting. In vivo tumor growth and regulating protein expression under VPA were investigated in a subcutaneous xenograft tumor model. VPA inhibited the growth of all cell lines with cell cycle arrest paralleled by the up-regulation of H3 and H4 acetylation. In vivo tumor growth was substantially depressed by VPA (200 mg/kg bw). Cell cycle proteins (cdk1, cdk2, cdk4, cyclin D, cyclin E, p19, p21 and p27) were differentially altered by VPA. Predominantly cdk1 was decreased and p27 was up-regulated in all models. Apoptosis-related proteins were altered in vivo with up-regulation of bax and down-regulation of bcl-2. VPA exerts anti-neoplastic activity in colorectal tumor cell lines in vitro and in vivo by altering cell cycle regulation.
Collapse
|
304
|
Bountra C, Oppermann U, Heightman TD. Animal models of epigenetic regulation in neuropsychiatric disorders. Curr Top Behav Neurosci 2011; 7:281-322. [PMID: 21225415 DOI: 10.1007/7854_2010_104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epigenetics describes the phenomenon of heritable changes in gene regulation that are governed by non-Mendelian processes, primarily through biochemical modifications to chromatin structure that occur during cell development and differentiation. Numerous lines of evidence link abnormal levels of chromatin modifications (either to DNA, histones, or both) in patients with a wide variety of diseases including cancer, psychiatry, neurodegeneration, metabolic and inflammatory disorders. Drugs that target the proteins controlling chromatin modifications can modulate the expression of clusters of genes, potentially offering higher therapeutic efficacy than classical agents with single target pharmacologies that are susceptible to biochemical pathway degeneracy. Here, we summarize recent research linking epigenetic dysregulation with diseases in neurosciences, the application of relevant animal models, and the potential for small molecule modulator development to facilitate target discovery, validation and translation into clinical treatments.
Collapse
Affiliation(s)
- Chas Bountra
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK,
| | | | | |
Collapse
|
305
|
Identification of four potential epigenetic modulators from the NCI structural diversity library using a cell-based assay. J Biomed Biotechnol 2010; 2011:868095. [PMID: 21234371 PMCID: PMC3014726 DOI: 10.1155/2011/868095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/07/2010] [Indexed: 11/17/2022] Open
Abstract
Epigenetic pathways help control the expression of genes. In cancer and other diseases, aberrant silencing or overexpression of genes, such as those that control cell growth, can greatly contribute to pathogenesis. Access to these genes by the transcriptional machinery is largely mediated by chemical modifications of DNA or histones, which are controlled by epigenetic enzymes, making these enzymes attractive targets for drug discovery. Here we describe the characterization of a locus derepression assay, a fluorescence-based mammalian cellular system which was used to screen the NCI structural diversity library for novel epigenetic modulators using an automated imaging platform. Four structurally unique compounds were uncovered that, when further investigated, showed distinct activities. These compounds block the viability of lung cancer and melanoma cells, prevent cell cycle progression, and/or inhibit histone deacetylase activity, altering levels of cellular histone acetylation.
Collapse
|
306
|
Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol 2010; 2011:475641. [PMID: 21188171 PMCID: PMC3004414 DOI: 10.1155/2011/475641] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/12/2010] [Indexed: 12/18/2022] Open
Abstract
The human genome is epigenetically organized through a series of modifications to the histone proteins that interact with the DNA. In cancer, many of the proteins that regulate these modifications can be altered in both function and expression. One example of this is the family of histone deacetylases (HDACs), which as their name implies remove acetyl groups from the histone proteins, allowing for more condensed nucleosomal structure. HDACs have increased expression in cancer and are also believed to promote carcinogenesis through the acetylation and interaction with key transcriptional regulators. Given this, small molecule histone deacetylases inhibitors have been identified and developed, which not only inhibit HDACs, but can also lead to growth arrest, differentiation, and/or apoptosis in tumors both in vitro and in vivo. Here, we will discuss some of the recent developments in clinical trials utilizing HDACs inhibitors for the treatment of both hematological malignancies as well as solid tumors.
Collapse
|
307
|
Ex vivo activity of histone deacetylase inhibitors against multidrug-resistant clinical isolates of Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2010; 55:961-6. [PMID: 21135175 DOI: 10.1128/aac.01220-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone acetylation plays an important role in regulating gene transcription and silencing in Plasmodium falciparum. Histone deacetylase (HDAC) inhibitors, particularly those of the hydroxamate class, have been shown to have potent in vitro activity against drug-resistant and -sensitive laboratory strains of P. falciparum, raising their potential as a new class of antimalarial compounds. In the current study, stage-specific ex vivo susceptibility profiles of representative hydroxamate-based HDAC inhibitors suberoylanilide hydroxamic acid (SAHA), 2-ASA-9, and 2-ASA-14 (2-ASA-9 and 2-ASA-14 are 2-aminosuberic acid-based HDAC inhibitors) were assessed in multidrug-resistant clinical isolates of P. falciparum (n = 24) and P. vivax (n = 25) from Papua, Indonesia, using a modified schizont maturation assay. Submicromolar concentrations of SAHA, 2-ASA-9, and 2-ASA-14 inhibited the growth of both P. falciparum (median 50% inhibitory concentrations [IC₅₀s] of 310, 533, and 266 nM) and P. vivax (median IC₅₀s of 170, 503, and 278 nM). Inverse correlation patterns between HDAC inhibitors and chloroquine for P. falciparum and mefloquine for P. vivax indicate species-specific susceptibility profiles for HDAC inhibitors. These HDAC inhibitors were also found to be potent ex vivo against P. vivax schizont maturation, comparable to that in P. falciparum, suggesting that HDAC inhibitors may be promising candidates for antimalarial therapy in geographical locations where both species are endemic. Further studies optimizing the selectivity and in vivo efficacy of HDAC inhibitors in Plasmodium spp. and defining drug interaction with common antimalarial compounds are warranted to investigate the role of HDAC inhibitors in antimalarial therapy.
Collapse
|
308
|
Manipulating protein acetylation in breast cancer: a promising approach in combination with hormonal therapies? J Biomed Biotechnol 2010; 2011:856985. [PMID: 21188173 PMCID: PMC3004450 DOI: 10.1155/2011/856985] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/03/2010] [Indexed: 01/17/2023] Open
Abstract
Estrogens play an essential role in the normal physiology of the breast as well as in mammary tumorigenesis. Their effects are mediated by two nuclear estrogen receptors, ERα and β, which regulate transcription of specific genes by interacting with multiprotein complexes, including histone deacetylases (HDACs). During the past few years, HDACs have raised great interest as therapeutic targets in the field of cancer therapy. In breast cancer, several experimental arguments suggest that HDACs are involved at multiple levels in mammary tumorigenesis: their expression is deregulated in breast tumors; they interfere with ER signaling in intricate ways, restoring hormone sensitivity in models of estrogen resistance, and they clinically represent new potential targets for HDACs inhibitors (HDIs) in combination with hormonal therapies. In this paper, we will describe these different aspects and underline the clinical interest of HDIs in the context of breast cancer resistance to hormone therapies (HTs).
Collapse
|
309
|
Targeting histone deacetyalses in the treatment of B- and T-cell malignancies. Invest New Drugs 2010; 28 Suppl 1:S58-78. [PMID: 21132350 PMCID: PMC3003796 DOI: 10.1007/s10637-010-9591-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 02/06/2023]
Abstract
HDAC inhibitors (HDACI) are now emerging as one of the most promising new classes of drugs for the treatment of select forms of non-Hodgkin’s lymphoma (NHL). They are particularly active in T-cell lymphomas, possibly hodgkin’s lymphoma and indolent B cell lymphomas. Presently, two of these agents, vorinostat and romidepsin, have been approved in the US for the treatment of relapsed and refractory cutaneous T cell lymphomas (CTCL). Initially, these agents were developed with the idea that they affected transcriptional activation and thus gene expression, by modulating chromatin condensation and decondensation. It is now clear that their effects go beyond chromatin and by affecting the acetylation status of histones and other intra-cellular proteins, they modify gene expression and cellular function via multiple pathways. Gene expression profiles and functional genetic analysis has led to further understanding of the various molecular pathways that are affected by these agents including cell cycle regulation, pathways of cellular proliferation, apoptosis and angiogenesis all important in lymphomagenesis. There is also increasing data to support the effects of these agents on T cell receptor and immune function which may explain the high level of activity of these agents in T cell lymphomas and hodgkin’s lymphoma. There is ample evidence of epigenetic dysregulation in lymphomas which may underlie the mechanisms of action of these agents but how these agents work is still not clear. Current HDAC inhibitors can be divided into at least four classes based on their chemical structure. At present several of these HDAC inhibitors are in clinical trials both as single agents and in combination with chemotherapy or other biological agents. They are easy to administer and are generally well tolerated with minimal side effects. Different dosing levels and schedules and the use of isospecific HDAC inhibitors are some of the strategies that are being employed to increase the therapeutic effect of these agents in the treatment of lymphomas. There may also be class differences that translate into specific activity against different lymphoma. HDAC inhibitors will likely be incorporated into combinations of targeted therapies both in the upfront and relapsed setting for lymphomas.
Collapse
|
310
|
Abstract
Ovarian cancer is the leading cause of death among gynecological cancers. It is now recognized that in addition to genetic alterations, epigenetic mechanisms, such as DNA methylation, histone modifications and nucleosome remodeling, play an important role in the development and progression of ovarian cancer by modulating chromatin structure, and gene and miRNA expression. Furthermore, epigenetic alterations have been recognized as useful tools for the development of novel biomarkers for diagnosis, prognosis, therapeutic prediction and monitoring of diseases. Moreover, new epigenetic therapies, such as DNA methyltransferase inhibitors and histone deacetylase inhibitors, have been found to be a potential therapeutic option, especially when used in combination with other agents. Here we discuss current developments in ovarian carcinoma epigenome research, the importance of the ovarian carcinoma epigenome for development of diagnostic and prognostic biomarkers, and the current epigenetic therapies used in ovarian cancer.
Collapse
Affiliation(s)
- Leonel Maldonado
- Department of Otolaryngology & Head & Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
311
|
Jiang S, Ma X, Huang Y, Xu Y, Zheng R, Chiao JW. Reactivating aberrantly hypermethylated p15 gene in leukemic T cells by a phenylhexyl isothiocyanate mediated inter-active mechanism on DNA and chromatin. J Hematol Oncol 2010; 3:48. [PMID: 21114827 PMCID: PMC3009608 DOI: 10.1186/1756-8722-3-48] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/29/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We have previously demonstrated that phenylhexyl isothiocyanate (PHI), a synthetic isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner. METHODS To investigate the effect of PHI, a novel histone deacetylases inhibitor (HDACi), on demethylation and activation of transcription of p15 in acute lymphoid leukemia cell line Molt-4, and to further decipher the potential mechanism of demethylation, DNA sequencing and modified methylation specific PCR (MSP) were used to screen p15-M and p15-U mRNA after Molt-4 cells were treated with PHI, 5-Aza and TSA. DNA methyltransferase 1 (DNMT1), 3A (DNMT3A), 3B (DNMT3B) and p15 mRNA were measured by RT-PCR. P15 protein, acetylated histone H3 and histone H4 were detected by Western Blot. RESULTS The gene p15 in Molt-4 cells was hypermethylated and inactive. Hypermethylation of gene p15 was attenuated and p15 gene was activated de novo after 5 days exposure to PHI in a concentration-dependent manner. DNMT1 and DNMT3B were inhibited by PHI (P < 0.05). Alteration of DNMT3A was not significant at those concentrations. Acetylated histone H3 and histone H4 were accumulated markedly after exposure to PHI. CONCLUSION PHI could induce both DNA demethylation and acetylated H3 and H4 accumulation in Molt-4 cells. Hypermethylation of gene p15 was reversed and p15 transcription could be reactivated de novo by PHI.
Collapse
Affiliation(s)
- Shaohong Jiang
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, China
| | | | | | | | | | | |
Collapse
|
312
|
Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PLoS One 2010; 5:e15535. [PMID: 21124847 PMCID: PMC2990756 DOI: 10.1371/journal.pone.0015535] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/08/2010] [Indexed: 12/13/2022] Open
Abstract
Background Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. Nε-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. Nε-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors. Principal Findings High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4) family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II) and to modulate demethylation at the H3K9 locus in a cell-based assay. Conclusions These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation.
Collapse
|
313
|
Abstract
Bioactive natural products often possess uniquely functionalized structures with unusual modes of action; however, the natural product itself is not always the active species. We discuss molecules that draw on protecting group chemistry or else require activation to unmask reactive centers, illustrating that nature is not only a source of complex structures but also a guide for elegant chemical transformations which provides ingenious chemical solutions for drug delivery.
Collapse
Affiliation(s)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
314
|
Mahboobi S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Ciossek T, Baer T, Maier T, Beckers T. Novel chimeric histone deacetylase inhibitors: a series of lapatinib hybrides as potent inhibitors of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and histone deacetylase activity. J Med Chem 2010; 53:8546-55. [PMID: 21080629 DOI: 10.1021/jm100665z] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reversible lysine-specific acetylation has been described as an important posttranslational modification, regulating chromatin structure and transcriptional activity in the case of core histone proteins. Histone deacetylases (HDAC) are considered as a promising target for anticancer drug development, with 2a as pan-HDAC inhibitor approved for cutanous T-cell lymphoma therapy and several other HDAC inhibitors currently in preclinical and clinical development. Protein kinases are a well-established target for cancer therapy with the EGFR/HER2 inhibitor 5 approved for treatment of advanced, HER2 positive breast cancer as a prominent example. In the present report, we present a novel strategy for cancer drug development by combination of EGFR/HER2 kinase and HDAC inhibitory activity in one molecule. By combining the structural features of 5 with an (E)-3-(aryl)-N-hydroxyacrylamide motif known from HDAC inhibitors like 1 or 3, we obtained selective inhibitors for both targets with potent cellular activity (target inhibition and cytotoxicity) of selected compounds 6a and 6c. By combining two distinct pharmacologically properties in one molecule, we postulate a broader activity spectrum and less likelihood of drug resistance in cancer patients.
Collapse
Affiliation(s)
- Siavosh Mahboobi
- Department of Pharmaceutical Chemistry I, University of Regensburg, D-93040 Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Moffat D, Patel S, Day F, Belfield A, Donald A, Rowlands M, Wibawa J, Brotherton D, Stimson L, Clark V, Owen J, Bawden L, Box G, Bone E, Mortenson P, Hardcastle A, van Meurs S, Eccles S, Raynaud F, Aherne W. Discovery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicyclo[3.1.0]hex-3-yl)-N-hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor. J Med Chem 2010; 53:8663-78. [PMID: 21080647 DOI: 10.1021/jm101177s] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of HDAC inhibitors demonstrating class I subtype selectivity and good oral bioavailability is described. The compounds are potent enzyme inhibitors (IC₅₀ values less than 100 nM), and improved activity in cell proliferation assays was achieved by modulation of polar surface area (PSA) through the introduction of novel linking groups. Employing oral pharmacokinetic studies in mice, comparing drug levels in spleen to plasma, we selected compounds that were tested for efficacy in human tumor xenograft studies based on their potential to distribute into tumor. One compound, 21r (CHR-3996), showed good oral activity in these models, including dose-related activity in a LoVo xenograft. In addition 21r showed good activity in combination with other anticancer agents in in vitro studies. On the basis of these results, 21r was nominated for clinical development.
Collapse
Affiliation(s)
- David Moffat
- Chroma Therapeutics Ltd., Abingdon, OX14 4RY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease. Prog Neurobiol 2010; 93:99-110. [PMID: 21056617 DOI: 10.1016/j.pneurobio.2010.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/19/2010] [Accepted: 10/28/2010] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease is a tauopathy which involves the deposition of microtubule-associated tau proteins into neurofibrillary tangles. Post-translational modifications, in particular site-specific phosphorylations, affect the conformation of tau protein which is an intrinsically disordered protein. These structural changes significantly increase the affinity of tau protein for certain molecular chaperones. Hsp90 is a major cellular chaperone which assembles large complexes with a variety of co-chaperones. The main function of Hsp90 complexes is to maintain protein quality control and assist in protein degradation via proteasomal and autophagic-lysosomal pathways. Tau protein is a client protein for these Hsp90 complexes. If the tau protein is in an abnormal or modified form, then it can trigger the recruitment of CHIP protein, a co-chaperone with E3 activity, to the complex which induces the ubiquitination of tau protein and activates its downstream degradation processes. Large immunophilins, FKBP51 and FKBP52 are also co-chaperones of Hsp90-tau complexes. These proteins contain peptidylprolyl cis/trans isomerase activity which catalyzes phosphorylation-dependent rotation in pSer/Thr-Pro peptide bond. The proline switch in the tau conformation triggers dephosphorylation of Ser/Thr residues phosphorylated, e.g. by two well-known tau kinases Cdk5 and GSK-3β. Binding of PP5 protein phosphatase to Hsp90 complex, can also dephosphorylate tau protein. Subsequently, dephosphorylated tau protein can be shuttled back to the microtubules. It seems that high-affinity binding of abnormal tau to Hsp90 complexes may have some counteracting effects on the aggregation process, since Hsp90 inhibitors can ameliorate the aggregation process in several neurodegenerative diseases. We will review the role of Hsp90 chaperone network in the regulation of tau biology and pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
317
|
Schroeder M, Krebs MO, Bleich S, Frieling H. Epigenetics and depression: current challenges and new therapeutic options. Curr Opin Psychiatry 2010; 23:588-92. [PMID: 20644477 DOI: 10.1097/yco.0b013e32833d16c1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Epigenetics comprises heritable but concurrent variable modifications of genomic DNA defining gene expression. The aim of this publication is to review the field of epigenetics in depression. Within this scope, we outline potential therapeutic options evolving in this young field of psychiatric research. RECENT FINDINGS Recently published papers show that epigenetic mechanisms like histone modifications and DNA methylation affect diverse pathways leading to depression-like behaviors in animal models. Adverse alterations of gene expression profiles, including glucocorticoid receptor or brain-derived neurotrophic factor, were shown to be inducible by early life stress and reversible by epigenetic drugs. Postmortem studies revealed epigenetic changes in the frontal cortex of depressed suicide victims. There exists profound evidence for histone deacetylase inhibitors to be a novel line of effective antidepressants via counteracting previously acquired adverse epigenetic marks. SUMMARY Because of the complex causal factors leading to depression, epigenetics is of considerable interest for the understanding of early life stress in depression. The current research regarding epigenetic pharmaceuticals is promising and deserves further attention in depression and psychiatry in general, and may strike out new ways towards individually tailored therapies.
Collapse
Affiliation(s)
- Marc Schroeder
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
318
|
Abstract
The identification of all epigenetic modifications implicated in gene expression is the next step for a better understanding of human biology in both normal and pathological states. This field is referred to as epigenomics, and it is defined as epigenetic changes (ie, DNA methylation, histone modifications and regulation by noncoding RNAs such as microRNAs) on a genomic scale rather than a single gene. Epigenetics modulate the structure of the chromatin, thereby affecting the transcription of genes in the genome. Different studies have already identified changes in epigenetic modifications in a few genes in specific pathways in cancers. Based on these epigenetic changes, drugs against different types of tumors were developed, which mainly target epimutations in the genome. Examples include DNA methylation inhibitors, histone modification inhibitors, and small molecules that target chromatin-remodeling proteins. However, these drugs are not specific, and side effects are a major problem; therefore, new DNA sequencing technologies combined with epigenomic tools have the potential to identify novel biomarkers and better molecular targets to treat cancers. The purpose of this review is to discuss current and emerging epigenomic tools and to address how these new technologies may impact the future of cancer management.
Collapse
Affiliation(s)
- Fabricio F Costa
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Northwestern University's Feinberg School of Medicine, 2430 N. Halsted St, Box 220, Chicago, IL, USA
| |
Collapse
|
319
|
Fischer A, Sananbenesi F, Mungenast A, Tsai LH. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 2010; 31:605-17. [PMID: 20980063 DOI: 10.1016/j.tips.2010.09.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/18/2023]
Abstract
Changes in gene expression in the brain may underlie cognitive deficits inherent to normal aging and neurodegenerative disease. However, the mechanisms underlying pathological alterations in the brain transcriptome are incompletely understood. Epigenetic mechanisms such as DNA methylation and histone acetylation have been shown to be important for memory processes in the adult brain. There is accumulating evidence that altered chromatin plasticity and histone acetylation are also involved in cognitive aging, neurodegeneration, and neuropsychiatric diseases. Inhibitors of histone deacetylase (HDAC) exhibit neuroprotective and neuroregenerative properties in animal models of various brain diseases. As such, targeting of HDACs seems to be a promising therapeutic strategy. In this review, we discuss the specific roles of each HDAC protein and the possible function of distinct histone modifications. We hope that this knowledge will aid in the development of diagnostic tools and in designing more potent and specific treatment for neurological disorders targeting selective HDAC proteins.
Collapse
Affiliation(s)
- André Fischer
- Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Grisebach Str. 5, D-37077 Goettingen, Germany.
| | | | | | | |
Collapse
|
320
|
Abstract
In the last decade, the novel agents lenalidomide, bortezomib, and thalidomide have dramatically improved outcomes for patients with multiple myeloma (MM). A number of new therapies with precise targets involved in MM cell growth and replication are now in development and have the potential for further improvements. Second-generation proteasome inhibitors and thalidomide derivatives may offer increased efficacy and safety. Investigational therapies with rationally selected targets in MM include inhibitors of histone deacetylase, heat shock protein 90, mammalian target of rapamycin, BCL2, Akt, mitogen-activated protein kinase, and telomerase. In addition, monoclonal antibodies directed against several targets have been developed and many are showing promise in initial clinical trials in MM. Interest in the ancient remedy of arsenic trioxide has been revived because of its proapoptotic effects on mitochondria, despite its established toxicities. In general, combination regimens are proving the most efficacious, which is to be expected given the multiple overlapping pathways responsible for MM growth and progression.
Collapse
Affiliation(s)
- Asher A Chanan-Khan
- Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | | | |
Collapse
|
321
|
The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances taxol-induced cell death in breast cancer. Cancer Chemother Pharmacol 2010; 66:1131-40. [DOI: 10.1007/s00280-010-1455-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|
322
|
Epigenetic therapy in human choriocarcinoma. Cancers (Basel) 2010; 2:1683-8. [PMID: 24281181 PMCID: PMC3837331 DOI: 10.3390/cancers2031683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/03/2010] [Accepted: 09/09/2010] [Indexed: 11/28/2022] Open
Abstract
Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in choriocarcinomas, novel compounds endowed with a histone deacetylase (HDAC) inhibitory activity are an attractive therapeutic approach. HDAC inhibitors (HDACIs) were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in choriocarcinoma cell lines. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating choriocarcinoma, with a special focus on preclinical studies.
Collapse
|
323
|
Ellis L, Pili R. Histone Deacetylase Inhibitors: Advancing Therapeutic Strategies in Hematological and Solid Malignancies. Pharmaceuticals (Basel) 2010; 3:2411-2469. [PMID: 21151768 PMCID: PMC3000686 DOI: 10.3390/ph3082441] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advancement in the understanding of cancer development in recent years has identified epigenetic abnormalities as a common factor in both tumorigenesis and refractory disease. One such event is the dysregulation of histone deacetylases (HDACs) in both hematological and solid tumors, and has consequently resulted in the development of HDAC inhibitors (HDACI) to overcome this. HDACI exhibit pleiotropic biological effects including inhibition of angiogenesis and the induction of autophagy and apoptosis. Although HDACI exhibit modest results as single agents in preclinical and clinical data, they often fall short, and therefore HDACI are most promising in combinational strategies with either standard treatments or with other experimental chemotherapies and targeted therapies. This review will discuss the induction of autophagy and apoptosis and the inhibition of angiogenesis by HDACI, and also pre-clinical and clinical combination strategies using these agents.
Collapse
Affiliation(s)
- Leigh Ellis
- Roswell Park Cancer Institute, Genitourinary Program, Grace Cancer Drug Center, Buffalo, NY 14263, USA;
| | | |
Collapse
|
324
|
Altmann A, Eisenhut M, Bauder-Wüst U, Markert A, Askoxylakis V, Hess-Stumpp H, Haberkorn U. Therapy of thyroid carcinoma with the histone deacetylase inhibitor MS-275. Eur J Nucl Med Mol Imaging 2010; 37:2286-97. [DOI: 10.1007/s00259-010-1573-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/15/2010] [Indexed: 01/01/2023]
|
325
|
Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma. Blood 2010; 116:2531-42. [PMID: 20570860 DOI: 10.1182/blood-2010-02-268003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In Burkitt lymphoma/leukemia (BL), achievement of complete remission with first-line chemotherapy remains a challenging issue, as most patients who respond remain disease-free, whereas those refractory have few options of being rescued with salvage therapies. The mechanisms underlying BL chemoresistance and how it can be circumvented remain undetermined. We previously reported the frequent inactivation of the proapoptotic BIM gene in B-cell lymphomas. Here we show that BIM epigenetic silencing by concurrent promoter hypermethylation and deacetylation occurs frequently in primary BL samples and BL-derived cell lines. Remarkably, patients with BL with hypermethylated BIM presented lower complete remission rate (24% vs 79%; P = .002) and shorter overall survival (P = .007) than those with BIM-expressing lymphomas, indicating that BIM transcriptional repression may mediate tumor chemoresistance. Accordingly, by combining in vitro and in vivo studies of human BL-xenografts grown in immunodeficient RAG2(-/-)γc(-/-) mice and of murine B220(+)IgM(+) B-cell lymphomas generated in Eμ-MYC and Eμ-MYC-BIM(+/-) transgenes, we demonstrate that lymphoma chemoresistance is dictated by BIM gene dosage and is reversible on BIM reactivation by genetic manipulation or after treatment with histone-deacetylase inhibitors. We suggest that the combination of histone-deacetylase inhibitors and high-dose chemotherapy may overcome chemoresistance, achieve durable remission, and improve survival of patients with BL.
Collapse
|
326
|
Strong expression of HDAC3 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Tumour Biol 2010; 31:533-9. [PMID: 20563766 DOI: 10.1007/s13277-010-0066-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/31/2010] [Indexed: 01/09/2023] Open
Abstract
Inhibition of histone deacetylases (HDACs) is a promising new approach to the treatment of lung cancer therapy. The relation between HDAC3 expression and the clinicopathological characteristics of lung cancer is not well understood, however. We therefore addressed this issue in patients with adenocarcinoma of the lung. We used semi-quantitative real-time reverse transcription polymerase chain reaction and immunohistochemical analysis to assess expression of HDAC3 in tumor samples from 94 patients with adenocarcinoma of the lung. We then correlated levels of HDAC3 expression with known clinicopathological factors. The 5-year disease-free survival (5-DFS) rate among patients expressing high levels of HDAC3 was significantly poorer than among those expressing lower levels (P = 0.005; log-rank test). Multivariate Cox proportional hazard analyses revealed male (hazard ratio, 3.88; 95% CI, 1.70-9.39; P = 0.001), nodal metastasis N1 (hazard ratio, 6.39; 95% CI, 1.54-22.7; P = 0.013), N2 (hazard ratio, 6.36; 95% CI, 1.55-33.6; P = 0.009), and HDAC3 (hazard ratio, 3.06; 95% CI, 1.07-7.55; P = 0.037) to be independent factors affecting the 5-DFS rate. Strong tumoral expression of HDAC3 is an independent predictor of a poor prognosis in patients with adenocarcinoma of the lung.
Collapse
|
327
|
Ibrahim RB. Histone deacetylase inhibitors: Are they here to stay? Am J Health Syst Pharm 2010; 67:791. [DOI: 10.2146/ajhp100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Rami B. Ibrahim
- Eugene Applebaum College of Pharmacy and Allied Health Professions Wayne State University 259 Mack Avenue, Suite 2190 Detroit, MI 48201-2427
| |
Collapse
|
328
|
Zhu X, Ma Y, Liu D. Novel agents and regimens for acute myeloid leukemia: 2009 ASH annual meeting highlights. J Hematol Oncol 2010; 3:17. [PMID: 20416083 PMCID: PMC2880983 DOI: 10.1186/1756-8722-3-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/23/2010] [Indexed: 01/12/2023] Open
Abstract
Prognostic markers, such as NPM1, Flt3-ITD, and cytogenetic abnormalities have made it possible to formulate aggressive treatment plans for unfavorable acute myeloid leukemia (AML). However, the long-term survival of AML with unfavorable factors remains unsatisfactory. The latest data indicate that the standard dose of daunorubicin (DNR) at 45 mg/m2 is inferior to high dose 90 mg/m2 for induction therapy. The rates of complete remission and overall survival are significantly better in the high dose induction regimen. New regimens exploring the new liposomal encapsulation of Ara-C and DNR as well as addition of gemtuzumab ozogamicin monoclonal antibody have been studied. New agents, including the nucleoside analogues (clofarabine, sapacitabine, elacytarabine), FLT3 inhibitor (sorafenib), farnesyl-transferase inhibitor (tipifarnib), histone deacetylase inhibitor (vorinostat), lenalidomide, as well as DNA methyltransferase inhibitors (decitabine, azacitidine), were recently reported for AML treatment in the 2009 ASH annual meeting. This review also summarizes the updates of the clinical trials on novel agents including voreloxin, AS1413, behenoylara-C, ARRY520, ribavirin, AZD1152, AZD6244, and terameprocol (EM-1421) from the 2009 ASH annual meeting.
Collapse
Affiliation(s)
- Xiongpeng Zhu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362000, China
- Division of Hematology and Oncology, New York Medical College, Valhalla, NY 10595, USA
| | - Yuehua Ma
- Division of Hematology and Oncology, New York Medical College, Valhalla, NY 10595, USA
| | - Delong Liu
- Division of Hematology and Oncology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|