301
|
Ferguson SK, Redinius K, Yalamanoglu A, Harral JW, Hyen Baek J, Pak D, Loomis Z, Hassell D, Eigenberger P, Nozik-Grayck E, Nuss R, Hassell K, Stenmark KR, Buehler PW, Irwin DC. Effects of living at moderate altitude on pulmonary vascular function and exercise capacity in mice with sickle cell anaemia. J Physiol 2018; 597:1073-1085. [PMID: 29931797 DOI: 10.1113/jp275810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Sickle cell disease (SCD) results in cardiopulmonary dysfunction, which may be exacerbated by prolonged exposure to environmental hypoxia. It is currently unknown whether exposure to mild and moderate altitude exacerbates SCD associated cardiopulmonary and systemic complications. Three months of exposure to mild (1609 m) and moderate (2438 m) altitude increased rates of haemolysis and right ventricular systolic pressures in mice with SCD compared to healthy wild-type cohorts and SCD mice at sea level. The haemodynamic changes in SCD mice that had lived at mild and moderate altitude were accompanied by changes in the balance between pulmonary vascular endothelial nitric oxide synthase and endothelin receptor expression and impaired exercise tolerance. These data demonstrate that chronic altitude exposure exacerbates the complications associated with SCD and provides pertinent information for the clinical counselling of SCD patients. ABSTRACT Exposure to high altitude worsens symptoms and crises in patients with sickle cell disease (SCD). However, it remains unclear whether prolonged exposure to low barometric pressures exacerbates SCD aetiologies or impairs quality of life. We tested the hypothesis that, relative to wild-type (WT) mice, Berkley sickle cell mice (BERK-SS) residing at sea level, mild (1609 m) and moderate (2438 m) altitude would have a higher rate of haemolysis, impaired cardiac function and reduced exercise tolerance, and that the level of altitude would worsen these decrements. Following 3 months of altitude exposure, right ventricular systolic pressure was measured (solid-state transducer). In addition, the adaptive balance between pulmonary vascular endothelial nitric oxide synthase and endothelin was assessed in lung tissue to determine differences in pulmonary vascular adaptation and the speed/duration relationship (critical speed) was used to evaluate treadmill exercise tolerance. At all altitudes, BERK-SS mice had a significantly lower percentage haemocrit and higher total bilirubin and free haemoglobin concentration (P < 0.05 for all). right ventricular systolic pressures in BERK-SS were higher than WT at moderate altitude and also compared to BERK-SS at sea level (P < 0.05, for both). Critical speed was significantly lower in BERK-SS at mild and moderate altitude (P < 0.05). BERK-SS demonstrated exacerbated SCD complications and reduced exercise capacity associated with an increase in altitude. These results suggest that exposure to mild and moderate altitude enhances the progression of SCD in BERK-SS mice compared to healthy WT cohorts and BERK-SS mice at sea level and provides crucial information for the clinical counselling of SCD patients.
Collapse
Affiliation(s)
- Scott K Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Katherine Redinius
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Ayla Yalamanoglu
- Division of Blood Components and Devices, Office of Blood Research and Review, The Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, MD, USA
| | - Julie W Harral
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Jin Hyen Baek
- Division of Blood Components and Devices, Office of Blood Research and Review, The Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, MD, USA
| | - David Pak
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Zoe Loomis
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Daniel Hassell
- Division of Hematology and Colorado Sickle Cell Treatment and Research Center, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Paul Eigenberger
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Eva Nozik-Grayck
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Rachelle Nuss
- Division of Hematology and Colorado Sickle Cell Treatment and Research Center, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Kathryn Hassell
- Division of Hematology and Colorado Sickle Cell Treatment and Research Center, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Kurt R Stenmark
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Paul W Buehler
- Division of Blood Components and Devices, Office of Blood Research and Review, The Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, MD, USA
| | - David C Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| |
Collapse
|
302
|
Kramer M, Du Randt R, Watson M, Pettitt RW. Oxygen uptake kinetics and speed-time correlates of modified 3-minute all-out shuttle running in soccer players. PLoS One 2018; 13:e0201389. [PMID: 30130362 PMCID: PMC6103506 DOI: 10.1371/journal.pone.0201389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/13/2018] [Indexed: 11/23/2022] Open
Abstract
How parameters derived from oxygen uptake V˙O2 kinetics relate to critical speed is not fully understood, and how such parameters relate to more sport-specific performances, such as shuttle running, has not been investigated. Therefore, the primary aims of the present student were to examine the V˙O2 kinetics during all-out linear and shuttle running and compare physiological variables of all-out running to variables measured during a graded exercise test (GXT). Fifteen male soccer players performed a graded exercise test (GXT) and the V˙O2 kinetics from a series of three different 3-min all-out tests (3MT’s) were evaluated. V˙O2max achieved during the GXT did not differ from maximal V˙O2 achieved during the all-out tests (F = 1.85, p = 0.13) (overall ICC = 0.65; typical error = 2.48 ml∙kg-1∙min-1; coefficient of variation = 4.8%). A moderate, inverse correlation (r = -0.62, p = 0.02) was observed between τ (14.7 ± 1.92 s) and CS (3.96 ± 0.52 m∙s-1) despite the narrow SD for τ. No differences (p > 0.05) were observed for any of the V˙O2 kinetics between continuous and shuttle running bouts. The linear running 3MT (r3MT) represents a viable surrogate to the GXT and data beyond CS and D’ may be gleaned by using the bi-exponential speed-time model.
Collapse
Affiliation(s)
- Mark Kramer
- Human Movement Science Department, Nelson Mandela University, Port Elizabeth, South Africa
- * E-mail:
| | - Rosa Du Randt
- Human Movement Science Department, Nelson Mandela University, Port Elizabeth, South Africa
| | - Mark Watson
- Psychology Department, Nelson Mandela University, Port Elizabeth, South Africa
| | - Robert W. Pettitt
- Rocky Mountain University of Health Professions, Provo, Utah, United States of America
| |
Collapse
|
303
|
Dicks ND, Joe TV, Hackney KJ, Pettitt RW. Validity of Critical Velocity Concept for Weighted Sprinting Performance. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2018; 11:900-909. [PMID: 30147825 PMCID: PMC6102197 DOI: 10.70252/rwfv3565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
We investigated the validity of a recently developed equation for predicting sprinting times of various tactical loads based upon the performance of a running 3-min all-out exercise test (3MT). Thirteen recreationally trained participants completed the running 3MT to determine critical velocity (CV) and finite running capacity for running velocities exceeding CV (D'). Two subsequent counterbalanced loaded sprints of 800 and 1000 m distances with 20 and 15% of their body mass, respectively, were evaluated. Estimated times (t, sec) for running 800 and 1000 m with a tactical load was derived using t = (D - D')/CV. Critical velocity adjusted for an added load using the following regression equation: original CV + (-0.0638 × %load) + 0.6982, D was 800 or 1000 m, and whole percentage load was ~15 or 20% of the participant's body mass. From the 3MT, CV (3.80 ± 0.5 m·s-1) and D' (200 ± 49.88 m) values were determined. The typical error of predicting actual times for the 800 and 1000 m loaded sprints were 5.6 and 10.1 s, with corresponding ICCs of 0.95 and 0.87, and coefficient of variations of 2.9 and 4.3%. The effect size differences between estimated and actual sprint times were small (0.27) and moderate (0.60) for 800 and 1000 m, respectively. The adjustment to CV through the regression equation yields small to moderate overestimates of maximally loaded sprint times for distances of 800 and 1000 m. Whether such errors remain pervasive for prescribing high-intensity interval training is unclear and requires further investigation.
Collapse
Affiliation(s)
- Nathan D Dicks
- Department of Health, Nutrition and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Tammy V Joe
- Department of Health, Nutrition and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Kyle J Hackney
- Department of Health, Nutrition and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Robert W Pettitt
- Office of Research and Sponsored Projects, Rocky Mountain University of Health Professions, Provo, UT, USA
| |
Collapse
|
304
|
ZUCCARELLI LUCREZIA, PORCELLI SIMONE, RASICA LETIZIA, MARZORATI MAURO, GRASSI BRUNO. Comparison between Slow Components of HR and V˙O2 Kinetics: Functional Significance. Med Sci Sports Exerc 2018; 50:1649-1657. [DOI: 10.1249/mss.0000000000001612] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
305
|
CLARK IDAE, VANHATALO ANNI, BAILEY STEPHENJ, WYLIE LEEJ, KIRBY BRETTS, WILKINS BRADW, JONES ANDREWM. Effects of Two Hours of Heavy-Intensity Exercise on the Power–Duration Relationship. Med Sci Sports Exerc 2018. [DOI: 10.1249/mss.0000000000001601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
306
|
Kordi M, Fullerton C, Passfield L, Parker Simpson L. Influence of upright versus time trial cycling position on determination of critical power and W' in trained cyclists. Eur J Sport Sci 2018; 19:192-198. [PMID: 30009673 DOI: 10.1080/17461391.2018.1495768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Body position is known to alter power production and affect cycling performance. The aim of this study was to compare mechanical power output in two riding positions, and to calculate the effects on critical power (CP) and W' estimates. Seven trained cyclists completed three peak power output efforts and three fixed-duration trial (3-, 5- and 12-min) riding with their hands on the brake lever hoods (BLH), or in a time trial position (TTP). A repeated-measures analysis of variance showed that mean power output during the 5-min trial was significantly different between BLH and TTP positions, resulting in a significantly lower estimate of CP, but not W', for the TTP trial. In addition, TTP decreased the performance during each trial and increased the percentage difference between BLH and TTP with greater trial duration. There were no differences in pedal cadence or heart rate during the 3-min trial; however, TTP results for the 12-min trial showed a significant fall in pedal cadence and a significant rise in heart rate. The findings suggest that cycling position affects power output and influences consequent CP values. Therefore, cyclists and coaches should consider the cycling position used when calculating CP.
Collapse
Affiliation(s)
- Mehdi Kordi
- a English Institute of Sport , Manchester Institute of Health and Performance , Manchester , UK.,b Department of Sport, Exercise and Rehabilitation , Northumbria University , Newcastle upon Tyne , UK.,e British Cycling , National Cycling Centre , Manchester , UK
| | - Chris Fullerton
- c School of Sport and Exercise Science , University of Kent , Kent , UK
| | - Louis Passfield
- c School of Sport and Exercise Science , University of Kent , Kent , UK
| | - Len Parker Simpson
- c School of Sport and Exercise Science , University of Kent , Kent , UK.,d Scottish Institute of Sport , Stirling , UK
| |
Collapse
|
307
|
Abstract
Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
308
|
EMG amplitude, fatigue threshold, and time to task failure: A meta-analysis. J Sci Med Sport 2018; 21:736-741. [DOI: 10.1016/j.jsams.2017.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Accepted: 11/05/2017] [Indexed: 11/23/2022]
|
309
|
Handgrip fatiguing exercise can provide objective assessment of cancer-related fatigue: a pilot study. Support Care Cancer 2018; 27:229-238. [PMID: 29936623 DOI: 10.1007/s00520-018-4320-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/13/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE As a subjective symptom, cancer-related fatigue is assessed via patient-reported outcomes. Due to the inherent bias of such evaluation, screening and treatment for cancer-related fatigue remains suboptimal. The purpose is to evaluate whether objective cancer patients' hand muscle mechanical parameters (maximal force, critical force, force variability) extracted from a fatiguing handgrip exercise may be correlated to the different dimensions (physical, emotional, and cognitive) of cancer-related fatigue. METHODS Fourteen women with advanced breast cancer, still under or having previously received chemotherapy within the preceding 3 months, and 11 healthy women participated to the present study. Cancer-related fatigue was first assessed through the EORTC QLQ-30 and its fatigue module. Fatigability was then measured during 60 maximal repeated handgrip contractions. The maximum force, critical force (asymptote of the force-time evolution), and force variability (root mean square of the successive differences) were extracted. Multiple regression models were performed to investigate the influence of the force parameters on cancer-related fatigue's dimensions. RESULTS The multiple linear regression analysis evidenced that physical fatigue was best explained by maximum force and critical force (r = 0.81; p = 0.029). The emotional fatigue was best explained by maximum force, critical force, and force variability (r = 0.83; p = 0.008). The cognitive fatigue was best explained by critical force and force variability (r = 0.62; p = 0.035). CONCLUSION The handgrip maximal force, critical force, and force variability may offer objective measures of the different dimensions of cancer-related fatigue and could provide a complementary approach to the patient reported outcomes.
Collapse
|
310
|
Wright J, Bruce-Low S, Jobson SA. The 3-minute all-out cycling test is sensitive to changes in cadence using the Lode Excalibur Sport ergometer. J Sports Sci 2018; 37:156-162. [PMID: 29932805 DOI: 10.1080/02640414.2018.1487115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study investigated the effect cadence has on the estimation of critical power (CP) and the finite work capacity (W') during the 3-minute all-out cycling test. Ten participants completed 8 tests: 1) an incremental test to calculate gas exchange threshold (GET), maximal aerobic power (MAP) and peak oxygen uptake (V̇O2peak), 2-4) three time-to-exhaustion tests at 80, 100 and 105% MAP to calculate CP and W', 5-7) four 3-minute all-out tests to calculate end power (EP) and work done above EP (WEP) using cadences ranging from preferred -5 to preferred +10 rev·min-1 to set the fixed resistance. Significant differences were seen between CP and EP-preferred (267.5 ± 22.6 W vs. 296.6 ± 26.1 W, P < 0.001), CP and EP-5 (267.5 ± 22.6 W vs. 303.6 ± 24.0 W, P < 0.001) and between CP and EP+5 (267.5 ± 22.6 W vs. 290.0 ± 28.0 W, P = 0.002). No significant differences were seen between CP and EP+10 (267.5 ± 22.6 W vs. 278.1 ± 30.9 W, P = 0.331). Significant differences were seen between W' and WEP at all tested fixed resistances. EP is reduced when cycling at higher than preferred cadences, providing better estimates of CP.
Collapse
Affiliation(s)
- James Wright
- a School of Sport, Health and Social Science , Southampton Solent Unviersity , Southampton , UK
| | - Stewart Bruce-Low
- a School of Sport, Health and Social Science , Southampton Solent Unviersity , Southampton , UK
| | - Simon A Jobson
- b Department of Sport & Exercise , University of Winchester , Winchester , UK
| |
Collapse
|
311
|
Puchowicz MJ, Mizelman E, Yogev A, Koehle MS, Townsend NE, Clarke DC. The Critical Power Model as a Potential Tool for Anti-doping. Front Physiol 2018; 9:643. [PMID: 29928234 PMCID: PMC5997808 DOI: 10.3389/fphys.2018.00643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
Existing doping detection strategies rely on direct and indirect biochemical measurement methods focused on detecting banned substances, their metabolites, or biomarkers related to their use. However, the goal of doping is to improve performance, and yet evidence from performance data is not considered by these strategies. The emergence of portable sensors for measuring exercise intensities and of player tracking technologies may enable the widespread collection of performance data. How these data should be used for doping detection is an open question. Herein, we review the basis by which performance models could be used for doping detection, followed by critically reviewing the potential of the critical power (CP) model as a prototypical performance model that could be used in this regard. Performance models are mathematical representations of performance data specific to the athlete. Some models feature parameters with physiological interpretations, changes to which may provide clues regarding the specific doping method. The CP model is a simple model of the power-duration curve and features two physiologically interpretable parameters, CP and W′. We argue that the CP model could be useful for doping detection mainly based on the predictable sensitivities of its parameters to ergogenic aids and other performance-enhancing interventions. However, our argument is counterbalanced by the existence of important limitations and unresolved questions that need to be addressed before the model is used for doping detection. We conclude by providing a simple worked example showing how it could be used and propose recommendations for its implementation.
Collapse
Affiliation(s)
- Michael J Puchowicz
- Department of Health Services, Arizona State University, Tempe, AZ, United States
| | - Eliran Mizelman
- Department of Biomedical Physiology and Kinesiology and Sports Analytics Group, Simon Fraser University, Burnaby, BC, Canada
| | - Assaf Yogev
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Michael S Koehle
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada.,Division of Sport and Exercise Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Nathan E Townsend
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - David C Clarke
- Department of Biomedical Physiology and Kinesiology and Sports Analytics Group, Simon Fraser University, Burnaby, BC, Canada.,Canadian Sport Institute Pacific, Victoria, BC, Canada
| |
Collapse
|
312
|
Korzeniewski B. Regulation of oxidative phosphorylation is different in electrically- and cortically-stimulated skeletal muscle. PLoS One 2018; 13:e0195620. [PMID: 29698403 PMCID: PMC5919680 DOI: 10.1371/journal.pone.0195620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 01/09/2023] Open
Abstract
A computer model of the skeletal muscle bioenergetic system was used to study the regulation of oxidative phosphorylation (OXPHOS) in electrically-stimulated and cortically-stimulated skeletal muscle. Two types of the dependence of the intensity of each-step activation (ESA) of OXPHOS complexes on ATP usage activity were tested: power-type dependence and saturating-type dependence. The dependence of muscle oxygen consumption ([Formula: see text]), phosphocreatine (PCr), cytosolic ADP, ATP, inorganic phosphate (Pi), pH and τp (characteristic transition time) of the principal component of the muscle [Formula: see text] on-kinetics on the ATP usage activity was simulated for both types of the ESA intensity-ATP usage activity dependence. Computer simulations involving the power-type dependence predict system properties that agree well with experimental data for electrically-stimulated muscle. On the other hand, model predictions for the saturating-type dependence in the presence of the 'additional' ATP usage (postulated previously to underlie the slow component of the VO2 on-kinetics) reproduce well system properties encountered in human skeletal muscle during voluntary exercise. It is postulated that the difference between the regulation and kinetic properties of the system in electrically- and cortically-stimulated muscle is mostly due to the different muscle fibers recruitment pattern. In the former, all fiber types are recruited in parallel already at low power output (PO) values, while in the latter type I fibers (with higher ESA intensity) are stimulated at low PO values, while type II fibers (especially type II b and IIx fibers) with low ESA intensity are recruited predominantly at high PO values.
Collapse
Affiliation(s)
- Bernard Korzeniewski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
313
|
|
314
|
Silveira R, Andrade-Souza VA, Arcoverde L, Tomazini F, Sansonio A, Bishop DJ, Bertuzzi R, Lima-Silva AE. Caffeine Increases Work Done above Critical Power, but Not Anaerobic Work. Med Sci Sports Exerc 2018; 50:131-140. [PMID: 28832393 DOI: 10.1249/mss.0000000000001408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The assumption that the curvature constant (W') of the power-duration relationship represents anaerobic work capacity is a controversial, unresolved question. We investigated if caffeine ingestion could increase total work done above critical power (CP), and if this would be accompanied by greater anaerobic energy expenditure and by an enhanced maintenance of maximal oxidative metabolic rate. METHODS Nine men (26.6 ± 5.3 yr, V˙O2max 40.6 ± 5.8 mL·kg·min) cycled until exhaustion at different exercise intensities on different days to determine the CP and W'. On separated days, participants cycled until exhaustion in the severe-intensity domain (136% ± 7% of CP) after ingesting either caffeine (5 mg·kg body mass) or a placebo. RESULTS Time to exhaustion was 34% longer with caffeine compared with placebo, and this was accompanied by a greater work done above CP (23.7 ± 5.7 vs 17.5 ± 3.6 kJ; 130% ± 30% vs 95% ± 14% of W', P < 0.01). Caffeine increased the aerobic energy expenditure (296.4 ± 91.0 vs 210.2 ± 71.9 kJ, P < 0.01), but not anaerobic lactic, anaerobic alactic, and total anaerobic (lactic + alactic) energy expenditure. The end values of heart rate and ventilation were higher with caffeine, but the V˙O2 end was similar between conditions and was not different from V˙O2max. Caffeine did not change time to reach V˙O2max but increased time maintained at V˙O2max (199.3 ± 105.9 vs 111.9 ± 87.1 s, P < 0.05). CONCLUSIONS Caffeine increased total work done above CP, but this was not associated with greater anaerobic work. Rather, this was associated with a higher tolerance to maintain exercise at maximal oxidative metabolic rate.
Collapse
Affiliation(s)
- Rodrigo Silveira
- 1Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco, BRAZIL; 2Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, AUSTRALIA; 3School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA; 4Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, Sao Paulo, BRAZIL; and 5Human Performance Research Group, Academic Department of Physical Education, Technological Federal University of Parana, Curitiba, Parana, BRAZIL
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Keir DA, Paterson DH, Kowalchuk JM, Murias JM. Using ramp-incremental V̇O 2 responses for constant-intensity exercise selection. Appl Physiol Nutr Metab 2018; 43:882-892. [PMID: 29570982 DOI: 10.1139/apnm-2017-0826] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite compelling evidence to the contrary, the view that oxygen uptake (V̇O2) increases linearly with exercise intensity (e.g., power output, speed) until reaching its maximum persists within the exercise physiology literature. This viewpoint implies that the V̇O2 response at any constant intensity is predictable from a ramp-incremental exercise test. However, the V̇O2 versus task-specific exercise intensity relationship constructed from ramp-incremental versus constant-intensity exercise are not equivalent preventing the use of V̇O2 responses from 1 domain to predict those of the other. Still, this "linear" translational framework continues to be adopted as the guiding principle for aerobic exercise prescription and there remains in the sport science literature a lack of understanding of how to interpret V̇O2 responses to ramp-incremental exercise and how to use those data to assign task-specific constant-intensity exercise. The objectives of this paper are to (i) review the factors that disassociate the V̇O2 versus exercise intensity relationship between ramp-incremental and constant-intensity exercise paradigms; (ii) identify when it is appropriate (or not) to use ramp V̇O2 responses to accurately assign constant-intensity exercise; and (iii) illustrate the technical and theoretical challenges with prescribing constant-intensity exercise solely on information acquired from ramp-incremental tests. Actual V̇O2 data collected during cycling exercise and V̇O2 kinetics modelling are presented to exemplify these concepts. Possible solutions to overcome these challenges are also presented to inform on appropriate intensity selection for individual-specific aerobic exercise prescription in both research and practical settings.
Collapse
Affiliation(s)
- Daniel A Keir
- a University Health Network, Department of Medicine, Toronto, Ontario, Canada.,b Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON N6A 3K7, Canada.,c School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Donald H Paterson
- b Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON N6A 3K7, Canada.,c School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - John M Kowalchuk
- b Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON N6A 3K7, Canada.,c School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada.,d Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Juan M Murias
- e Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
316
|
do Nascimento Salvador PC, Souza KMD, De Lucas RD, Guglielmo LGA, Denadai BS. The effects of priming exercise on the V̇O 2 slow component and the time-course of muscle fatigue during very-heavy-intensity exercise in humans. Appl Physiol Nutr Metab 2018; 43:909-919. [PMID: 29566544 DOI: 10.1139/apnm-2017-0769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that prior exercise would attenuate the muscle fatigue accompanied by oxygen uptake slow-component (V̇O2SC) behavior during a subsequent very-heavy (VH)-intensity cycling exercise. Thirteen healthy male subjects performed tests to determine the critical power (CP) and the fixed amount of work above CP ([Formula: see text]) and performed 6 square-wave bouts until 3 or 8 min, each at a work rate set to deplete 70% [Formula: see text] in 8 min, with a maximal isokinetic effort before and after the conditions without (VHCON) and with prior exercise (VHEXP), to measure the cycling peak torque decrement. The V̇O2SC magnitude at 3 min (VHCON = 0.280 ± 0.234, VHEXP = 0.116 ± 0.109 L·min-1; p = 0.04) and the V̇O2SC trajectory were significantly lower for VHEXP (VHCON = 0.108 ± 0.042, VHEXP = 0.063 ± 0.031 L·min-2; p < 0.01), leading to a V̇O2SC magnitude at the eighth minute that was significantly lower than VHCON (VHCON = 0.626 ± 0.296 L·min-1, VHEXP = 0.337 ± 0.179; p < 0.01). Conversely, peak torque progressively decreased from pre-exercise to 3 min (Δtorque = 21.5 ± 7.7 vs. 19.6 ± 9.2 Nm) and to 8 min (Δtorque = 29.4 ± 15.8 vs. 27.5 ± 12.0 Nm) at VHCON and VHEXP, respectively, without significant differences between conditions. Regardless of the condition, there was a significant relationship between Δtorque and the V̇O2SC (R2: VHCON = 0.23, VHEXP = 0.25; p = 0.01). Considering that "priming" effects on the V̇O2SC were not accompanied by the muscle force behavior, these findings do not support the hypothesis of a "causal" relationship between the time-course of muscle fatigue and V̇O2SC.
Collapse
Affiliation(s)
| | - Kristopher Mendes de Souza
- a Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Ricardo Dantas De Lucas
- a Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | | | | |
Collapse
|
317
|
Gama MCT, dos Reis IGM, Sousa FADB, Gobatto CA. The 3-min all-out test is valid for determining critical power but not anaerobic work capacity in tethered running. PLoS One 2018; 13:e0192552. [PMID: 29444141 PMCID: PMC5812641 DOI: 10.1371/journal.pone.0192552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 01/25/2018] [Indexed: 11/19/2022] Open
Abstract
The purpose of the study was to investigate if the 3-min all-out test (3MT) is valid for obtaining critical power intensity (CP) and the amount of work that can be performed above CP (W’) on non-motorized treadmills in tethered running. Eight physically active individuals (24 ± 3 years; 78.3 ± 8.7 kg; 179 ± 5 cm; 9.0 ± 2.5% body fat) performed four different efforts at constant intensity to exhaustion in order to determine CP and W’. The mechanical power values obtained were subsequently plotted with their corresponding time to exhaustion (limit time) for application of three mathematical models: power hyperbolic versus time limit (Hyp), linear power versus 1/time (P vs 1/t) and linear work versus time limit (Ԏ vs t). The 3MT test was carried out on the last day to determine end power (EP) and anaerobic capacity (WEP) using this methodology. EP value of 181.7 ± 52 was similar (p = 0.486) to 178.2 ± 61 (CP Hyp), 191.4 ± 55 (Ԏ vs t) and 188.3 ± 55 (P vs 1/t). WEP value of 17.9 ± 4.8 was not similar (p = 0.000) to 50.2 ± 15.3 (CP Hyp), 44.8 ± 8.7 (Ԏ vs t) and 45.5 ± 8.4 (P vs 1/t). Positive results (r = 0.78–0.98 and ICC = 0.88–0.99) of Pearson correlation and intraclass correlation (ICC–absolute agreement) were found for aerobic applications of conventional CP and 3MT. For anaerobic data, only the three models of conventional CP were correlated (r = 0.76–0.93); however, W’ from the three models was not correlated with WEP (r = 0.37–0.52). The results of this study suggest that 3MT in tethered running on non-motorized treadmills is a valid test for estimating CP aerobic parameters in a single day of application but not anaerobic parameters of W’.
Collapse
|
318
|
Bertuzzi R, Gáspari AF, Trojbicz LR, Silva-Cavalcante MD, Lima-Silva AE, Billaut F, Girard O, Millet GP, Bossi AH, Hopker J, Pandeló DR, Fulton TJ, Paris HL, Chapman RF, Grosicki GJ, Murach KA, Hureau TJ, Dufour SP, Favret F, Kruse NT, Nicolò A, Sacchetti M, Pedralli M, Pinheiro FA, Tricoli V, Brietzke C, Pires FO, Sandford GN, Pearson S, Kilding AE, Ross A, Laursen PB, da Silveira ALB, Olivares EL, de Azevedo Cruz Seara F, Miguel-dos-Santos R, Mesquita TRR, Nelatury S, Vagula M. Commentaries on Viewpoint: Resistance training and exercise tolerance during high-intensity exercise: moving beyond just running economy and muscle strength. J Appl Physiol (1985) 2018; 124:529-535. [PMID: 29480788 DOI: 10.1152/japplphysiol.01064.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| | - Arthur F. Gáspari
- Endurance Performance Research Group (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| | - Lucas R. Trojbicz
- Endurance Performance Research Group (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| | - Marcos D. Silva-Cavalcante
- Endurance Performance Research Group (GEDAE-USP), University of São Paulo, São Paulo, Brazil,Sport Science Research Group, Federal University of Pernambuco, Pernambuco, Brazil
| | - Adriano E. Lima-Silva
- Sport Science Research Group, Federal University of Pernambuco, Pernambuco, Brazil,Human Performance Research Group, Technological Federal University of Parana, Parana, Brazil
| | | | - Oliver Girard
- Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Grégoire P. Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Arthur Henrique Bossi
- School of Sport and Exercise Sciences University of Kent, Chatham Maritime, Chatham, Kent, England
| | - James Hopker
- School of Sport and Exercise Sciences University of Kent, Chatham Maritime, Chatham, Kent, England
| | - Domingos R. Pandeló
- Federal University of São Paulo Centro de Alta Performance (High Performance Center)
| | | | | | | | - Gregory J. Grosicki
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Kevin A. Murach
- Department of Rehabilitation Sciences and Center for Muscle Biology, University of Kentucky, Lexington, KY
| | - Thomas J. Hureau
- University of Strasbourg Faculty of Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Stéphane P. Dufour
- University of Strasbourg Faculty of Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Fabrice Favret
- University of Strasbourg Faculty of Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Nicholas T. Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa
| | - Andrea Nicolò
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Marinei Pedralli
- Department of Kinesiology & Health Education, Cardiovascular Aging Research Laboratory, The University of Texas at Austin, Austin, TX
| | - Fabiano A. Pinheiro
- Laboratory of Adaptation to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil,Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Valmor Tricoli
- Laboratory of Adaptation to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Cayque Brietzke
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Flávio Oliveira Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Gareth N. Sandford
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand,High Performance Sport New Zealand, Auckland, New Zealand,Athletics New Zealand, Auckland, New Zealand
| | - Simon Pearson
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand,Queensland Academy of Sport, Nathan, Australia
| | - Andrew E. Kilding
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Angus Ross
- High Performance Sport New Zealand, Auckland, New Zealand,Athletics New Zealand, Auckland, New Zealand
| | - Paul B. Laursen
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand,High Performance Sport New Zealand, Auckland, New Zealand
| | - Anderson Luiz B. da Silveira
- Laboratory of Physiology and Human Performance, Department of Physical Education and Sports, Federal Rural University of Rio de Janeiro, Brazil
| | - Emerson Lopes Olivares
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Brazil
| | - Fernando de Azevedo Cruz Seara
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Department of Biophysics, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
319
|
Effects of normobaric hypoxia on upper body critical power and anaerobic working capacity. Respir Physiol Neurobiol 2018; 249:1-6. [DOI: 10.1016/j.resp.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 11/19/2022]
|
320
|
Relationship between power–duration parameters and mechanical and anthropometric properties of the thigh in elite cyclists. Eur J Appl Physiol 2018; 118:637-645. [DOI: 10.1007/s00421-018-3807-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
|
321
|
|
322
|
Berg OK, Nyberg SK, Windedal TM, Wang E. Maximal strength training-induced improvements in forearm work efficiency are associated with reduced blood flow. Am J Physiol Heart Circ Physiol 2017; 314:H853-H862. [PMID: 29351462 DOI: 10.1152/ajpheart.00435.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maximal strength training (MST) improves work efficiency. However, since blood flow is greatly dictated by muscle contractions in arms during exercise and vascular conductance is lower, it has been indicated that arms rely more upon adapting oxygen extraction than legs in response to the enhanced work efficiency. Thus, to investigate if metabolic and vascular responses are arm specific, we used Doppler-ultrasound and a catheter placed in the subclavian vein to measure blood flow and the arteriovenous oxygen difference during steady-state work in seven young men [24 ± 3 (SD) yr] following 6 wk of handgrip MST. As expected, MST improved maximal strength (49 ± 9 to 62 ± 10 kg) and the rate of force development (923 ± 224 to 1,086 ± 238 N/s), resulting in a reduced submaximal oxygen uptake (30 ± 9 to 24 ± 10 ml/min) and concomitantly increased work efficiency (9.3 ± 2.5 to 12.4 ± 3.9%) (all P < 0.05). In turn, the work efficiency improvement was associated with reduced blood flow (486 ± 102 to 395 ± 114 ml/min), mediated by a lower blood velocity (43 ± 8 to 32 ± 6 cm/s) (all P < 0.05). Conduit artery diameter and the arteriovenous oxygen difference remained unaltered. The maximal work test revealed an increased time to exhaustion (949 ± 239 to 1,102 ± 292 s) and maximal work rate (both P < 0.05) but no change in peak oxygen uptake. In conclusion, despite prior indications of metabolic and vascular limb-specific differences, these results reveal that improved work efficiency after small muscle mass strength training in the upper extremities is accompanied by a blood flow reduction and coheres with what has been documented for lower extremities. NEW & NOTEWORTHY Maximal strength training increases skeletal muscle work efficiency. Oxygen extraction has been indicated to be the adapting component with this increased work efficiency in arms. However, we document that decreased blood flow, achieved by blood velocity reduction, is the adapting mechanism responding to the improved aerobic metabolism in the forearm musculature.
Collapse
Affiliation(s)
- Ole Kristian Berg
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| | - Stian Kwak Nyberg
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway
| | - Tobias Midtvedt Windedal
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway
| | - Eivind Wang
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| |
Collapse
|
323
|
Mattioni Maturana F, Fontana FY, Pogliaghi S, Passfield L, Murias JM. Critical power: How different protocols and models affect its determination. J Sci Med Sport 2017; 21:742-747. [PMID: 29203319 DOI: 10.1016/j.jsams.2017.11.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022]
Abstract
In cycling, critical power (CP) and work above CP (W') can be estimated through linear and nonlinear models. Despite the concept of CP representing the upper boundary of sustainable exercise, overestimations may be made as the models possess inherent limitations and the protocol design is not always appropriate. OBJECTIVES To measure and compare CP and W' through the exponential (CPexp), 3-parameter hyperbolic (CP3-hyp), 2-parameter hyperbolic (CP2-hyp), linear (CPlinear), and linear 1/time (CP1/time) models, using different combinations of TTE trials of different durations (approximately 1-20min). DESIGN Repeated measures. METHODS Thirteen healthy young cyclists (26±3years; 69.0±9.2kg; 174±10cm; 60.4±5.9mLkg-1min-1) performed five TTE trials on separate days. CP and W' were modeled using two, three, four, and/or five trials. All models were compared against a criterion method (CP3-hyp with five trials; confirmed using the leaving-one-out cross-validation analysis) using smallest worthwhile change (SWC) and concordance correlation coefficient (CCC) analyses. RESULTS CP was considerably overestimated when only trials lasting less than 10min were included, independent of the mathematical model used. Following CCC analysis, a number of alternative methods were able to predict our criterion method with almost a perfect agreement. However, the application of other common approaches resulted in an overestimation of CP and underestimation of W', typically these methods only included TTE trials lasting less than 12min. CONCLUSIONS Estimations from CP3-hyp were found to be the most accurate, independently of TTE range. Models that include two trials between 12 and 20min provide good agreement with the criterion method (for both CP and W').
Collapse
Affiliation(s)
| | - Federico Y Fontana
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Silvia Pogliaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Louis Passfield
- Faculty of Kinesiology, University of Calgary, Canada; School of Sport & Exercise Sciences, University of Kent, United Kingdom
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Canada.
| |
Collapse
|
324
|
Poole DC. Escaping Virgil's underworld: dissociating Aeneas's task from his toil. J Physiol 2017; 595:6591-6592. [PMID: 28925045 DOI: 10.1113/jp275065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
325
|
Toigo M, Flück M, Riener R, Klamroth-Marganska V. Robot-assisted assessment of muscle strength. J Neuroeng Rehabil 2017; 14:103. [PMID: 29020968 PMCID: PMC5637351 DOI: 10.1186/s12984-017-0314-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/03/2017] [Indexed: 11/14/2022] Open
Abstract
Impairment of neuromuscular function in neurological disorders leads to reductions in muscle force, which may lower quality of life. Rehabilitation robots that are equipped with sensors are able to quantify the extent of muscle force impairment and to monitor a patient during the process of neurorehabilitation with sensitive and objective assessment methods. In this article, we provide an overview of fundamental aspects of muscle function and how the corresponding variables can be quantified by means of meaningful robotic assessments that are primarily oriented towards upper limb neurorehabilitation. We discuss new concepts for the assessment of muscle function, and present an overview of the currently available systems for upper limb measurements. These considerations culminate in practical recommendations and caveats for the rational quantification of force magnitude, force direction, moment of a force, impulse, critical force (neuromuscular fatigue threshold) and state and trait levels of fatigue.
Collapse
Affiliation(s)
- Marco Toigo
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Martin Flück
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology ETH Zurich, Zurich, Switzerland.,Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Verena Klamroth-Marganska
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology ETH Zurich, Zurich, Switzerland. .,Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
326
|
Denadai BS, Greco CC. Resistance training and exercise tolerance during high-intensity exercise: moving beyond just running economy and muscle strength. J Appl Physiol (1985) 2017; 124:526-528. [PMID: 28982948 DOI: 10.1152/japplphysiol.00800.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Camila Coelho Greco
- Human Performance Laboratory, Paulista State University, Rio Claro, SP, Brazil
| |
Collapse
|
327
|
Craig JC, Broxterman RM, Wilcox SL, Chen C, Barstow TJ. Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin + myoglobin]. J Appl Physiol (1985) 2017; 123:1571-1578. [PMID: 28935822 DOI: 10.1152/japplphysiol.00207.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Craig JC, Broxterman RM, Wilcox SL, Chen C, Barstow TJ. Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin + myoglobin]. J Appl Physiol 123: 1571-1578, 2017. First published September 21, 2017; doi: 10.1152/japplphysiol.00207.2017 .-Adipose tissue thickness (ATT) attenuates signals from near-infrared spectroscopy (NIRS) and diminishes the absolute quantification of underlying tissues by contemporary NIRS devices. Based on the relationship between NIRS-derived total-[hemoglobin + myoglobin] (total-[Hb + Mb]) and ATT, we tested the hypotheses that the correction factor for ATT 1) is muscle site specific; 2) does not differ between men and women; and that 3) exclusion of the shortest source-detector distance from data analysis increases total-[Hb + Mb]. Fourteen healthy subjects (7 men) rested in a neutral body position (supine or prone) while measurements of total-[Hb + Mb] and ATT were taken at four muscles common to resting and exercise studies: vastus lateralis (VL), rectus femoris (RF), gastrocnemius (GS), and flexor digitorum superficialis (FDS). ATT averaged 6.0 ± 0.4 mm across all muscles. Every muscle showed a negative slope ( r2: 0.6-0.94; P < 0.01) for total-[Hb + Mb] as a function of ATT: VL (-34 μM/mm), RF (-26 μM/mm), GS (-54 μM/mm), and FDS (-33 μM/mm). The projected total-[Hb + Mb] at 0 mm ATT ( y-intercept) was 452, 372, 620, and 456 μM for VL, RF, GS, and FDS, respectively. No differences were found between the sexes within VL, RF, or FDS, but men had a greater projected total-[Hb + Mb] at 0 mm for GS (688 ± 44 vs. 552 ± 40 μM; P < 0.05). Exclusion of the shortest source-detector distance increased total-[Hb + Mb] by 12 ± 1 μM ( P < 0.05). The present findings demonstrate that total-[Hb + Mb] should be corrected for ATT using muscle site-specific factors which are not sex specific, except in the case of GS. NEW & NOTEWORTHY Near-infrared spectroscopy (NIRS) is an important tool for physiologists and clinicians. However, adipose tissue greatly attenuates the signals from these devices. Correcting for this attenuation has been suggested based on the strength of the relationship between NIRS-derived measurements and the adipose tissue thickness. We show that this relationship is unique to the muscle site of interest but may not be sex specific. Accurate quantification of underlying tissue mandates researchers correct for adipose tissue thickness.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Ryan M Broxterman
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Samuel L Wilcox
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Chixiang Chen
- Department of Statistics, Kansas State University , Manhattan, Kansas
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
328
|
Inglis EC, Iannetta D, Murias JM. The plateau in the NIRS-derived [HHb] signal near the end of a ramp incremental test does not indicate the upper limit of O 2 extraction in the vastus lateralis. Am J Physiol Regul Integr Comp Physiol 2017; 313:R723-R729. [PMID: 28931547 DOI: 10.1152/ajpregu.00261.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
This study aimed to examine, at the level of the active muscles, whether the plateau in oxygen (O2) extraction normally observed near the end of a ramp incremental (RI) exercise test to exhaustion is caused by the achievement of an upper limit in O2 extraction. Eleven healthy men (27.3 ± 3.0 yr, 81.6 ± 8.1 kg, 183.9 ± 6.3 cm) performed a RI cycling test to exhaustion. O2 extraction of the vastus lateralis (VL) was measured continuously throughout the test using the near-infrared spectroscopy (NIRS)-derived deoxygenated hemoglobin [HHb] signal. A leg blood flow occlusion was performed at rest (LBFOCC1) and immediately after the RI test (LBFOCC2). The [HHb] values during the resting occlusion (108.1 ± 21.7%; LBFOCC1) and the peak values during exercise (100 ± 0%; [HHb]plateau) were significantly greater than those observed at baseline (0.84 ± 10.6% at baseline 1 and 0 ± 0% at baseline 2) (P < 0.05). No significant difference was found between LBFOCC1 and [HHb]plateau (P > 0.05) or between the baseline measurements (P > 0.05). [HHb] values at LBFOCC2 (130.5 ± 19.7%) were significantly greater than all other time points (P < 0.05). These results support the existence of an O2 extraction reserve in the VL muscle at the end of a RI cycling test and suggest that the observed plateau in the [HHb] signal toward the end of a RI test is not representative of an upper limit in O2 extraction.
Collapse
Affiliation(s)
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
329
|
CORREIA-OLIVEIRA CARLOSRAFAELL, LOPES-SILVA JOÃOPAULO, BERTUZZI ROMULO, MCCONELL GLENNK, BISHOP DAVIDJOHN, LIMA-SILVA ADRIANOEDUARDO, KISS MARIAAUGUSTAPEDUTIDAL. Acidosis, but Not Alkalosis, Affects Anaerobic Metabolism and Performance in a 4-km Time Trial. Med Sci Sports Exerc 2017; 49:1899-1910. [DOI: 10.1249/mss.0000000000001295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
330
|
Kent JA, Ørtenblad N, Hogan MC, Poole DC, Musch TI. No Muscle Is an Island: Integrative Perspectives on Muscle Fatigue. Med Sci Sports Exerc 2017; 48:2281-2293. [PMID: 27434080 DOI: 10.1249/mss.0000000000001052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle fatigue has been studied with a variety approaches, tools and technologies. The foci of these studies have ranged tremendously, from molecules to the entire organism. Single cell and animal models have been used to gain mechanistic insight into the fatigue process. The theme of this review is the concept that the mechanisms of muscle fatigue do not occur in isolation in vivo: muscular work is supported by many complex physiological systems, any of which could fail during exercise and thus contribute to fatigue. To advance our overall understanding of fatigue, a combination of models and approaches is necessary. In this review, we examine the roles that neuromuscular properties, intracellular glycogen, oxygen metabolism, and blood flow play in the fatigue process during exercise and pathological conditions.
Collapse
Affiliation(s)
- Jane A Kent
- 1Department of Kinesiology, University of Massachusetts, Amherst MA; 2Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK; 3Department of Health Sciences, Mid Sweden University, Östersund, SWEDEN; 4Department of Medicine, University of California, San Diego, CA; and 5Department of Kinesiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
331
|
Bryce CM, Wilmers CC, Williams TM. Energetics and evasion dynamics of large predators and prey: pumas vs. hounds. PeerJ 2017; 5:e3701. [PMID: 28828280 PMCID: PMC5563439 DOI: 10.7717/peerj.3701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Quantification of fine-scale movement, performance, and energetics of hunting by large carnivores is critical for understanding the physiological underpinnings of trophic interactions. This is particularly challenging for wide-ranging terrestrial canid and felid predators, which can each affect ecosystem structure through distinct hunting modes. To compare free-ranging pursuit and escape performance from group-hunting and solitary predators in unprecedented detail, we calibrated and deployed accelerometer-GPS collars during predator-prey chase sequences using packs of hound dogs (Canis lupus familiaris, 26 kg, n = 4-5 per chase) pursuing simultaneously instrumented solitary pumas (Puma concolor, 60 kg, n = 2). We then reconstructed chase paths, speed and turning angle profiles, and energy demands for hounds and pumas to examine performance and physiological constraints associated with cursorial and cryptic hunting modes, respectively. Interaction dynamics revealed how pumas successfully utilized terrain (e.g., fleeing up steep, wooded hillsides) as well as evasive maneuvers (e.g., jumping into trees, running in figure-8 patterns) to increase their escape distance from the overall faster hounds (avg. 2.3× faster). These adaptive strategies were essential to evasion in light of the mean 1.6× higher mass-specific energetic costs of the chase for pumas compared to hounds (mean: 0.76 vs. 1.29 kJ kg-1 min-1, respectively). On an instantaneous basis, escapes were more costly for pumas, requiring exercise at ≥90% of predicted [Formula: see text] and consuming as much energy per minute as approximately 5 min of active hunting. Our results demonstrate the marked investment of energy for evasion by a large, solitary carnivore and the advantage of dynamic maneuvers to postpone being overtaken by group-hunting canids.
Collapse
Affiliation(s)
- Caleb M. Bryce
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, United States of America
- Botswana Predator Conservation Trust, Maun, Botswana
| | - Christopher C. Wilmers
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, CA, United States of America
| | - Terrie M. Williams
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, United States of America
| |
Collapse
|
332
|
Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Critical power testing or self-selected cycling: Which one is the best predictor of maximal metabolic steady-state? J Sci Med Sport 2017; 20:795-799. [DOI: 10.1016/j.jsams.2016.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/05/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
|
333
|
Griffin PJ, Ferguson RA, Gissane C, Bailey SJ, Patterson SD. Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test. J Sports Sci 2017; 36:1038-1043. [PMID: 28686083 DOI: 10.1080/02640414.2017.1349923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study tested the hypothesis that ischemic preconditioning (IPC) would increase critical power (CP) during a 3 minute all-out cycling test. Twelve males completed two 3 minute all-out cycling tests, in a crossover design, separated by 7 days. These tests were preceded by IPC (4 x 5 minute intervals at 220 mmHg bilateral leg occlusion) or SHAM treatment (4 x 5 minute intervals at 20 mmHg bilateral leg occlusion). CP was calculated as the mean power output during the final 30 s of the 3 minute test with W' taken as the total work done above CP. Muscle oxygenation was measured throughout the exercise period. There was a 15.3 ± 0.3% decrease in muscle oxygenation (TSI; [Tissue saturation index]) during the IPC stimulus, relative to SHAM. CP was significantly increased (241 ± 65 W vs. 234 ± 67 W), whereas W' (18.4 ± 3.8 vs 17.9 ± 3.7 kJ) and total work done (TWD) were not different (61.1 ± 12.7 vs 60.8 ± 12.7 kJ), between the IPC and SHAM trials. IPC enhanced CP during a 3 minute all-out cycling test without impacting W' or TWD. The improved CP after IPC might contribute towards the effect of IPC on endurance performance.
Collapse
Affiliation(s)
- Patrick J Griffin
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| | - Richard A Ferguson
- b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Conor Gissane
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| | - Stephen J Bailey
- b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Stephen D Patterson
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| |
Collapse
|
334
|
Hofmann P, Tschakert G. Intensity- and Duration-Based Options to Regulate Endurance Training. Front Physiol 2017; 8:337. [PMID: 28596738 PMCID: PMC5442222 DOI: 10.3389/fphys.2017.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/08/2017] [Indexed: 02/01/2023] Open
Abstract
The regulation of endurance training is usually based on the prescription of exercise intensity. Exercise duration, another important variable of training load, is rarely prescribed by individual measures and mostly set from experience. As the specific exercise duration for any intensity plays a substantial role regarding the different kind of cellular stressors, degree, and kind of fatigue as well as training effects, concepts integrating the prescription of both intensity and duration within one model are needed. An according recent approach was the critical power concept which seems to have a physiological basis; however, the mathematical approach of this concept does not allow applying the three zones/two threshold model of metabolism and its different physiological consequences. Here we show the combination of exercise intensity and duration prescription on an individual basis applying the power/speed to distance/time relationship. The concept is based on both the differentiation of intensities by two lactate or gas exchange variables derived turn points, and on the relationship between power (or velocity) and duration (or distance). The turn points define three zones of intensities with distinct acute metabolic, hormonal, and cardio-respiratory responses for endurance exercise. A maximal duration exists for any single power or velocity such as described in the power-duration relationship. Using percentages of the maximal duration allows regulating fatigue, recovery time, and adaptation for any single endurance training session. Four domains of duration with respect to induced fatigue can be derived from maximal duration obtained by the power-duration curve. For any micro-cycle, target intensities and durations may be chosen on an individual basis. The model described here is the first conceptual framework of integrating physiologically defined intensities and fatigue related durations to optimize high-performance exercise training.
Collapse
Affiliation(s)
- Peter Hofmann
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of GrazGraz, Austria
| | - Gerhard Tschakert
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of GrazGraz, Austria
| |
Collapse
|
335
|
Poole DC, Jones AM. Measurement of the maximum oxygen uptake V̇o2max: V̇o2peak is no longer acceptable. J Appl Physiol (1985) 2017; 122:997-1002. [DOI: 10.1152/japplphysiol.01063.2016] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/05/2017] [Accepted: 01/25/2017] [Indexed: 11/22/2022] Open
Abstract
The maximum rate of O2 uptake (i.e., V̇o2max), as measured during large muscle mass exercise such as cycling or running, is widely considered to be the gold standard measurement of integrated cardiopulmonary-muscle oxidative function. The development of rapid-response gas analyzers, enabling measurement of breath-by-breath pulmonary gas exchange, has facilitated replacement of the discontinuous progressive maximal exercise test (that produced an unambiguous V̇o2-work rate plateau definitive for V̇o2max) with the rapidly incremented or ramp testing protocol. Although this is more suitable for clinical and experimental investigations and enables measurement of the gas exchange threshold, exercise efficiency, and V̇o2 kinetics, a V̇o2-work rate plateau is not an obligatory outcome. This shortcoming has led to investigators resorting to so-called secondary criteria such as respiratory exchange ratio, maximal heart rate, and/or maximal blood lactate concentration, the acceptable values of which may be selected arbitrarily and result in grossly inaccurate V̇o2max estimation. Whereas this may not be an overriding concern in young, healthy subjects with experience of performing exercise to volitional exhaustion, exercise test naïve subjects, patient populations, and less motivated subjects may stop exercising before their V̇o2max is reached. When V̇o2max is a or the criterion outcome of the investigation, this represents a major experimental design issue. This CORP presents the rationale for incorporation of a second, constant work rate test performed at ~110% of the work rate achieved on the initial ramp test to resolve the classic V̇o2-work rate plateau that is the unambiguous validation of V̇o2max. The broad utility of this procedure has been established for children, adults of varying fitness, obese individuals, and patient populations.
Collapse
Affiliation(s)
- David C. Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Andrew M. Jones
- Sport and Health Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
336
|
Townsend NE, Nichols DS, Skiba PF, Racinais S, Périard JD. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling. Front Physiol 2017; 8:180. [PMID: 28386237 PMCID: PMC5362642 DOI: 10.3389/fphys.2017.00180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose: Develop a prediction equation for critical power (CP) and work above CP (W′) in hypoxia for use in the work-balance (WBAL′) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W′ at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W′ at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W′ were used to compute W′ during HIIT using differential (WBALdiff′) and integral (WBALint′) forms of the WBAL′ model. Results: CP decreased at altitude (P < 0.001) as described by 3rd order polynomial function (R2 = 0.99). W′ decreased at 4,250 m only (P < 0.001). A double-linear function characterized the effect of altitude on W′ (R2 = 0.99). There was no significant effect of parameter input (actual vs. predicted CP and W′) on modelled WBAL′ at 2,250 m (P = 0.24). WBALdiff′ returned higher values than WBALint′ throughout HIIT (P < 0.001). During HIIT, WBALdiff′ was not different to 0 kJ at completion, at 250 m (0.7 ± 2.0 kJ; P = 0.33) and 2,250 m (−1.3 ± 3.5 kJ; P = 0.30). However, WBALint′ was lower than 0 kJ at 250 m (−0.9 ± 1.3 kJ; P = 0.058) and 2,250 m (−2.8 ± 2.8 kJ; P = 0.02). Conclusion: The altitude prediction equations for CP and W′ developed in this study are suitable for use with the WBAL′ model in acute hypoxia. This enables the application of WBAL′ modelling to training prescription and competition analysis at altitude.
Collapse
Affiliation(s)
- Nathan E Townsend
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - David S Nichols
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - Philip F Skiba
- Department of Sports Medicine, Advocate Lutheran General Hospital Park Ridge, IL, USA
| | - Sebastien Racinais
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - Julien D Périard
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| |
Collapse
|
337
|
Determinants of curvature constant (W') of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis. Eur J Appl Physiol 2017; 117:901-912. [PMID: 28280973 PMCID: PMC5388723 DOI: 10.1007/s00421-017-3574-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 01/08/2023]
Abstract
Purpose This study investigated the effect of induced alkalosis on the curvature constant (W’) of the power-duration relationship under normoxic and hypoxic conditions. Methods Eleven trained cyclists (mean ± SD) Age: 32 ± 7.2 years; body mass (bm): 77.0 ± 9.2 kg; VO2peak: 59.2 ± 6.8 ml·kg−1·min−1 completed seven laboratory visits which involved the determination of individual time to peak alkalosis following sodium bicarbonate (NaHCO3) ingestion, an environment specific ramp test (e.g. normoxia and hypoxia) and four x 3 min critical power (CP) tests under different experimental conditions. Participants completed four trials: alkalosis normoxia (ALN); placebo normoxia (PLN); alkalosis hypoxia (ALH); and placebo hypoxia (PLH). Pre-exercise administration of 0.3 g.kg−1 BM of NaHCO3 was used to induce alkalosis. Environmental conditions were set at either normobaric hypoxia (FiO2: 14.5%) or normoxia (FiO2: 20.93%). Results An increase in W’ was observed with pre-exercise alkalosis under both normoxic (PLN: 15.1 ± 6.2 kJ vs. ALN: 17.4 ± 5.1 kJ; P = 0.006) and hypoxic conditions (ALN: 15.2 ± 4.9 kJ vs. ALN: 17.9 ± 5.2 kJ; P < 0.001). Pre-exercise alkalosis resulted in a larger reduction in bicarbonate ion (HCO3−) concentrations during exercise in both environmental conditions (p < 0.001) and a greater blood lactate accumulation under hypoxia (P = 0.012). Conclusion Pre-exercise alkalosis substantially increased W’ and, therefore, may determine tolerance to exercise above CP under normoxic and hypoxic conditions. This may be due to NaHCO3 increasing HCO3− buffering capacity to delay exercise-induced acidosis, which may, therefore, enhance anaerobic energy contribution.
Collapse
|
338
|
How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier. Sports Med 2017; 47:1739-1750. [DOI: 10.1007/s40279-017-0708-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
339
|
Broxterman RM, Layec G, Hureau TJ, Amann M, Richardson RS. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. J Appl Physiol (1985) 2017; 122:1208-1217. [PMID: 28209743 DOI: 10.1152/japplphysiol.01093.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/22/2022] Open
Abstract
Although all-out exercise protocols are commonly used, the physiological mechanisms underlying all-out exercise performance are still unclear, and an in-depth assessment of skeletal muscle bioenergetics is lacking. Therefore, phosphorus magnetic resonance spectroscopy (31P-MRS) was utilized to assess skeletal muscle bioenergetics during a 5-min all-out intermittent isometric knee-extensor protocol in eight healthy men. Metabolic perturbation, adenosine triphosphate (ATP) synthesis rates, ATP cost of contraction, and mitochondrial capacity were determined from intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate ([Formula: see text]), and pH. Peripheral fatigue was determined by exercise-induced alterations in potentiated quadriceps twitch force (Qtw) evoked by supramaximal electrical femoral nerve stimulation. The oxidative ATP synthesis rate (ATPOX) attained and then maintained peak values throughout the protocol, despite an ~63% decrease in quadriceps maximal force production. ThusATPOX normalized to force production (ATPOX gain) significantly increased throughout the exercise (1st min: 0.02 ± 0.01, 5th min: 0.04 ± 0.01 mM·min-1·N-1), as did the ATP cost of contraction (1st min: 0.048 ± 0.019, 5th min: 0.052 ± 0.015 mM·min-1·N-1). Additionally, the pre- to postexercise change in Qtw (-52 ± 26%) was significantly correlated with the exercise-induced change in intramuscular pH (r = 0.75) and [Formula: see text] concentration (r = 0.77). In conclusion, the all-out exercise protocol utilized in the present study elicited a "slow component-like" increase in intramuscular ATPOX gain as well as a progressive increase in the phosphate cost of contraction. Furthermore, the development of peripheral fatigue was closely related to the perturbation of specific fatigue-inducing intramuscular factors (i.e., pH and [Formula: see text] concentration).NEW & NOTEWORTHY The physiological mechanisms and skeletal muscle bioenergetics underlying all-out exercise performance are unclear. This study revealed an increase in oxidative ATP synthesis rate gain and the ATP cost of contraction during all-out exercise. Furthermore, peripheral fatigue was related to the perturbation in pH and deprotonated phosphate ion. These findings support the concept that the oxygen uptake slow component arises from within active skeletal muscle and that skeletal muscle force generating capacity is linked to the intramuscular metabolic milieu.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah; .,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Center on Aging, University of Utah, Salt Lake City, Utah
| | - Thomas J Hureau
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Markus Amann
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Center on Aging, University of Utah, Salt Lake City, Utah.,Department of Anesthesiology, University of Utah, Salt Lake City, Utah; and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Center on Aging, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
340
|
Joyner MJ. Physiological limits to endurance exercise performance: influence of sex. J Physiol 2017; 595:2949-2954. [PMID: 28028816 DOI: 10.1113/jp272268] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/16/2016] [Indexed: 11/08/2022] Open
Abstract
This brief review summarizes factors associated with elite endurance performance, trends in distance running training, and participation by men and more recently women. It is framed in the context of key ideas about the physiological determinants of endurance performance but also touches on some historical and sociological factors relevant to the overall topic. Historical trends that served to increase women's participation in elite endurance events are also discussed as is the role of increased volume and intensity of training. The rapid improvement in women's world record marathon times in the 1970s and 80s are emblematic of these trends and represent a combination of increased training volume and intensity and more competitive opportunities. This occurred as bans on participation by women in endurance events were lifted. For men these same trends evolved over a much longer time frame. The main physiological factor responsible for 10-12% slower times in women compared to men at the elite level are also considered and probably centre aroundV̇O2 max .
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
341
|
Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of critical power precisely estimate the maximal metabolic steady-state? Appl Physiol Nutr Metab 2017; 41:1197-1203. [PMID: 27819154 DOI: 10.1139/apnm-2016-0248] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Critical power (CP) conceptually represents the highest power output (PO) at physiological steady-state. In cycling exercise, CP is traditionally derived from the hyperbolic relationship of ∼5 time-to-exhaustion trials (TTE) (CPHYP). Recently, a 3-min all-out test (CP3MIN) has been proposed for estimation of CP as well the maximal lactate steady-state (MLSS). The aim of this study was to compare the POs derived from CPHYP, CP3MIN, and MLSS, and the oxygen uptake and blood lactate concentrations at MLSS. Thirteen healthy young subjects (age, 26 ± 3years; mass, 69.0 ± 9.2 kg; height, 174 ± 10 cm; maximal oxygen uptake, 60.4 ± 5.9 mL·kg-1·min-1) were tested. CPHYP was estimated from 5 TTE. CP3MIN was calculated as the mean PO during the last 30 s of a 3-min all-out test. MLSS was the highest PO during a 30-min ride where the variation in blood lactate concentration was ≤ 1.0 mmol·L-1 during the last 20 min. PO at MLSS (233 ± 41 W; coefficient of variation (CoV), 18%) was lower than CPHYP (253 ± 44 W; CoV, 17%) and CP3MIN (250 ± 51 W; CoV, 20%) (p < 0.05). Limits of agreement (LOA) from Bland-Altman plots between CPHYP and CP3MIN (-39 to 31 W), and CP3MIN and MLSS (-29 to 62 W) were wide, whereas CPHYP and MLSS presented the narrowest LOA (-7 to 48 W). MLSS yielded not only the maximum PO of stable blood lactate concentration, but also stable oxygen uptake. In conclusion, POs associated to CPHYP and CP3MIN were larger than those observed during MLSS rides. Although CPHYP and CP3MIN were not different, the wide LOA between these 2 tests and the discrepancy with PO at MLSS questions the ability of CP measures to determine the maximal physiological steady-state.
Collapse
Affiliation(s)
| | - Daniel A Keir
- b School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7 Canada
| | - Kaitlin M McLay
- b School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7 Canada
| | - Juan M Murias
- a Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
342
|
Muniz-Pumares D, Pedlar C, Godfrey R, Glaister M. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles. J Sports Sci 2016; 35:2357-2364. [PMID: 28019724 DOI: 10.1080/02640414.2016.1267386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study investigated (i) whether the accumulated oxygen deficit (AOD) and curvature constant of the power-duration relationship (W') are different during constant work-rate to exhaustion (CWR) and 3-min all-out (3MT) tests and (ii) the relationship between AOD and W' during CWR and 3MT. Twenty-one male cyclists (age: 40 ± 6 years; maximal oxygen uptake [V̇O2max]: 58 ± 7 ml · kg-1 · min-1) completed preliminary tests to determine the V̇O2-power output relationship and V̇O2max. Subsequently, AOD and W' were determined as the difference between oxygen demand and oxygen uptake and work completed above critical power, respectively, in CWR and 3MT. There were no differences between tests for duration, work, or average power output (P ≥ 0.05). AOD was greater in the CWR test (4.18 ± 0.95 vs. 3.68 ± 0.98 L; P = 0.004), whereas W' was greater in 3MT (9.55 ± 4.00 vs. 11.37 ± 3.84 kJ; P = 0.010). AOD and W' were significantly correlated in both CWR (P < 0.001, r = 0.654) and 3MT (P < 0.001, r = 0.654). In conclusion, despite positive correlations between AOD and W' in CWR and 3MT, between-test differences in the magnitude of AOD and W', suggest that both measures have different underpinning mechanisms.
Collapse
Affiliation(s)
- Daniel Muniz-Pumares
- a School of Sport, Health and Applied Science , St Mary's University , Twickenham , UK.,b Department of Psychology and Sport Science, School of Life and Medical Sciences , University of Hertfordshire , Hatfield , UK
| | - Charles Pedlar
- a School of Sport, Health and Applied Science , St Mary's University , Twickenham , UK
| | - Richard Godfrey
- c The Centre for Sports Medicine and Human Performance , Brunel University , Uxbridge , UK
| | - Mark Glaister
- a School of Sport, Health and Applied Science , St Mary's University , Twickenham , UK
| |
Collapse
|
343
|
Burnley M, Jones AM. Power-duration relationship: Physiology, fatigue, and the limits of human performance. Eur J Sport Sci 2016; 18:1-12. [PMID: 27806677 DOI: 10.1080/17461391.2016.1249524] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The duration that exercise can be maintained decreases as the power requirements increase. In this review, we describe the power-duration (PD) relationship across the full range of attainable power outputs in humans. We show that a remarkably small range of power outputs is sustainable (power outputs below the critical power, CP). We also show that the origin of neuromuscular fatigue differs considerably depending on the exercise intensity domain in which exercise is performed. In the moderate domain (below the lactate threshold, LT), fatigue develops slowly and is predominantly of central origin (residing in the central nervous system). In the heavy domain (above LT but below CP), both central and peripheral (muscle) fatigue are observed. In this domain, fatigue is frequently correlated with the depletion of muscle glycogen. Severe-intensity exercise (above the CP) is associated with progressive derangements of muscle metabolic homeostasis and consequent peripheral fatigue. To counter these effects, muscle activity increases progressively, as does pulmonary oxygen uptake ([Formula: see text]), with task failure being associated with the attainment of [Formula: see text] max. Although the loss of homeostasis and thus fatigue develop more rapidly the higher the power output is above CP, the metabolic disturbance and the degree of peripheral fatigue reach similar values at task failure. We provide evidence that the failure to continue severe-intensity exercise is a physiological phenomenon involving multiple interacting mechanisms which indicate a mismatch between neuromuscular power demand and instantaneous power supply. Valid integrative models of fatigue must account for the PD relationship and its physiological basis.
Collapse
Affiliation(s)
- Mark Burnley
- a Endurance Research Group, School of Sport and Exercise Sciences , University of Kent , Chatham , Kent , UK
| | - Andrew M Jones
- b Sport and Health Sciences, College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| |
Collapse
|