301
|
Mattyasovszky SG, Langendorf EK, Ritz U, Schmitz C, Schmidtmann I, Nowak TE, Wagner D, Hofmann A, Rommens PM, Drees P. Exposure to radial extracorporeal shock waves modulates viability and gene expression of human skeletal muscle cells: a controlled in vitro study. J Orthop Surg Res 2018; 13:75. [PMID: 29625618 PMCID: PMC5889540 DOI: 10.1186/s13018-018-0779-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent clinical and animal studies have shown that extracorporeal shock wave therapy has a promoting influence on the healing process of musculoskeletal disorders. However, the underlying biological effects of extracorporeal shock wave therapy on human skeletal muscle cells have not yet been investigated. METHODS In this study, we investigated human skeletal muscle cells after exposure to radial extracorporeal shock waves in a standardized in vitro setup. Cells were isolated from muscle specimens taken from adult patients undergoing spine surgery. Primary muscle cells were exposed once or twice to radial extracorporeal shock waves in vitro with different energy flux densities. Cell viability and gene expression of the paired box protein 7 (Pax7), neural cell adhesion molecule (NCAM), and myogenic factor 5 (Myf5) and MyoD as muscle cell markers were compared to non-treated muscle cells that served as controls. RESULTS Isolated muscle cells were positive for the hallmark protein of satellite cells, Pax7, as well as for the muscle cell markers NCAM, MyoD, and Myf5. Exposure to radial extracorporeal shock waves at low energy flux densities enhanced cell viability, whereas higher energy flux densities had no further significant impact. Gene expression analyses of muscle specific genes (Pax7, NCAM, Myf5, and MyoD) demonstrated a significant increase after single exposure to the highest EFD (4 bar, 0.19 mJ/mm2) and after double exposure with the medium EFDs (2 and 3 bar; 0.09 and 0.14 mJ/mm2, respectively). Double exposure of the highest EFD, however, results in a significant down-regulation when compared to single exposure with this EFD. CONCLUSIONS This is the first study demonstrating that radial extracorporal shock wave therapy has the potential to modulate the biological function of human skeletal muscle cells. Based on our experimental findings, we hypothesize that radial extracorporal shock wave therapy could be a promising therapeutic modality to improve the healing process of sports-related structural muscle injuries.
Collapse
Affiliation(s)
- Stefan G Mattyasovszky
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Eva K Langendorf
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Christoph Schmitz
- Extracorporeal Shock Wave Research Unit, Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Irene Schmidtmann
- Institue for Medical Biometry, Epidemiology and Computer Science, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Tobias E Nowak
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Daniel Wagner
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
302
|
Gorski T, Mathes S, Krützfeldt J. Uncoupling protein 1 expression in adipocytes derived from skeletal muscle fibro/adipogenic progenitors is under genetic and hormonal control. J Cachexia Sarcopenia Muscle 2018; 9:384-399. [PMID: 29399988 PMCID: PMC5879989 DOI: 10.1002/jcsm.12277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intramuscular fatty infiltration is generally associated with the accumulation of white adipocytes in skeletal muscle and unfavourable metabolic outcomes. It is, however, still unclear whether intramuscular adipocytes could also acquire a brown-like phenotype. Here, we detected intramuscular expression of brown adipocyte markers during fatty infiltration in an obesity-resistant mouse strain and extensively compared the potential of two different stem cell populations residing in skeletal muscle to differentiate into brown-like adipocytes. METHODS Fatty infiltration was induced using intramuscular glycerol or cardiotoxin injection in the tibialis anterior muscles of young or aged 129S6/SvEvTac (Sv/129) mice or interleukin-6 (IL-6) knockout mice, and the expression of general and brown adipocyte markers was assessed after 4 weeks. Fibro/adipogenic progenitors (FAPs) and myogenic progenitors were prospectively isolated using fluorescence-activated cell sorting from skeletal muscle of male and female C57Bl6/6J and Sv/129 mice, and monoclonal and polyclonal cultures were treated with brown adipogenic medium. Additionally, FAPs were differentiated with medium supplemented or not with triiodothyronine. RESULTS Although skeletal muscle expression of uncoupling protein 1 (Ucp1) was barely detectable in uninjected tibialis anterior muscle, it was drastically induced following intramuscular adipogenesis in Sv/129 mice and further increased in response to beta 3-adrenergic stimulation. Intramuscular Ucp1 expression did not depend on IL-6 and was preserved in aged skeletal muscle. Myogenic progenitors did not form adipocytes neither in polyclonal nor monoclonal cultures. Fibro/adipogenic progenitors, on the other hand, readily differentiated into brown-like, UCP1+ adipocytes. Uncoupling protein 1 expression in differentiated FAPs was regulated by genetic background, sex, and triiodothyronine treatment independently of adipogenic differentiation levels. CONCLUSIONS Intramuscular adipogenesis is associated with increased Ucp1 expression in skeletal muscle from obesity-resistant mice. Fibro/adipogenic progenitors provide a likely source for intramuscular adipocytes expressing UCP1 under control of both genetic and hormonal factors. Therefore, FAPs constitute a possible target for therapies aiming at the browning of intramuscular adipose tissue and the metabolic improvement of skeletal muscle affected by fatty infiltration.
Collapse
Affiliation(s)
- Tatiane Gorski
- Division of Endocrinology, Diabetes, and Clinical NutritionUniversity Hospital ZürichRämistrasse 100Zürich8091Switzerland
- Competence Center Personalized Medicine UZH/ETHETH Zürich and University of ZürichZürichSwitzerland
| | - Sebastian Mathes
- Division of Endocrinology, Diabetes, and Clinical NutritionUniversity Hospital ZürichRämistrasse 100Zürich8091Switzerland
- Zürich Center for Integrative Human PhysiologyUniversity of ZürichZürichSwitzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical NutritionUniversity Hospital ZürichRämistrasse 100Zürich8091Switzerland
- Competence Center Personalized Medicine UZH/ETHETH Zürich and University of ZürichZürichSwitzerland
- Zürich Center for Integrative Human PhysiologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
303
|
Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M, Zupan J. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration? Stem Cell Rev Rep 2018; 14:346-369. [DOI: 10.1007/s12015-018-9800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
304
|
Abstract
Down syndrome, caused by trisomy 21, is characterized by a variety of medical conditions including intellectual impairments, cardiovascular defects, blood cell disorders and pre-mature aging phenotypes. Several somatic stem cell populations are dysfunctional in Down syndrome and their deficiencies may contribute to multiple Down syndrome phenotypes. Down syndrome is associated with muscle weakness but skeletal muscle stem cells or satellite cells in Down syndrome have not been investigated. We find that a failure in satellite cell expansion impairs muscle regeneration in the Ts65Dn mouse model of Down syndrome. Ts65Dn satellite cells accumulate DNA damage and over express Usp16, a histone de-ubiquitinating enzyme that regulates the DNA damage response. Impairment of satellite cell function, which further declines as Ts65Dn mice age, underscores stem cell deficiencies as an important contributor to Down syndrome pathologies.
Collapse
|
305
|
Latroche C, Weiss-Gayet M, Gitiaux C, Chazaud B. Cell sorting of various cell types from mouse and human skeletal muscle. Methods 2018; 134-135:50-55. [DOI: 10.1016/j.ymeth.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023] Open
|
306
|
Werner JU, Tödter K, Xu P, Lockhart L, Jähnert M, Gottmann P, Schürmann A, Scheja L, Wabitsch M, Knippschild U. Comparison of Fatty Acid and Gene Profiles in Skeletal Muscle in Normal and Obese C57BL/6J Mice before and after Blunt Muscle Injury. Front Physiol 2018; 9:19. [PMID: 29441023 PMCID: PMC5797686 DOI: 10.3389/fphys.2018.00019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/08/2018] [Indexed: 01/14/2023] Open
Abstract
Injury and obesity are two major health burdens affecting millions of people worldwide. Obesity is recognized as a state of chronic inflammation accompanied by various co-morbidities like T2D or cardiovascular diseases. There is increasing evidence that obesity impairs muscle regeneration, which is mainly due to chronic inflammation and to excessive accumulation of lipids in adipose and non-adipose tissue. To compare fatty acid profiles and changes in gene expression at different time points after muscle injury, we used an established drop tower-based model with a defined force input to damage the extensor iliotibialis anticus on the left hind limb of female C57BL/6J mice of normal weight and obese mice. Although most changes in fatty acid content in muscle tissue are diet related, levels of eicosaenoic (normal weight) and DHG-linolenic acid (obese) in the phospholipid and docosahexaenoic acid (normal weight) in the triglyceride fraction are altered after injury. Furthermore, changes in gene transcription were detected in 3829 genes in muscles of normal weight mice, whereas only 287 genes were altered in muscles of obese mice after trauma. Alterations were found within several pathways, among them notch-signaling, insulin-signaling, sonic hedgehog-signaling, apoptosis related pathways, fat metabolism related cholesterol homeostasis, fatty acid biosynthetic process, fatty acid elongation, and acyl-CoA metabolic process. We could show that genes involved in fat metabolism are affected 3 days after trauma induction mostly in normal weight but not in obese mice. The strongest effects were observed in normal weight mice for Alox5ap, the activating protein for leukotriene synthesis, and Apobec1, an enzyme substantial for LDL synthesis. In summary, we show that obesity changes the fat content of skeletal muscle and generally shows a negative impact upon blunt muscle injury on various cellular processes, among them fatty acid related metabolism, notch-, insulin-, sonic hedgehog-signaling, and apoptosis.
Collapse
Affiliation(s)
- Jens-Uwe Werner
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Lydia Lockhart
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital for Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
307
|
Goldman SM, Henderson BEP, Walters TJ, Corona BT. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury. PLoS One 2018; 13:e0191245. [PMID: 29329332 PMCID: PMC5766229 DOI: 10.1371/journal.pone.0191245] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML). A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN) as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect) within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1) functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2) The capacity for VML therapies to augment regeneration and repair within the remaining musculature may have significant clinical impact and warrants further exploration.
Collapse
Affiliation(s)
- Stephen M. Goldman
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Beth E. P. Henderson
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Thomas J. Walters
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Benjamin T. Corona
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| |
Collapse
|
308
|
Baghdadi MB, Tajbakhsh S. Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 2018; 433:200-209. [DOI: 10.1016/j.ydbio.2017.07.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
309
|
Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages. Stem Cell Reports 2017; 9:2018-2033. [PMID: 29198825 PMCID: PMC5785732 DOI: 10.1016/j.stemcr.2017.10.027] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
In skeletal muscle, new functions for vessels have recently emerged beyond oxygen and nutrient supply, through the interactions that vascular cells establish with muscle stem cells. Here, we demonstrate in human and mouse that endothelial cells (ECs) and myogenic progenitor cells (MPCs) interacted together to couple myogenesis and angiogenesis in vitro and in vivo during skeletal muscle regeneration. Kinetics of gene expression of ECs and MPCs sorted at different time points of regeneration identified three effectors secreted by both ECs and MPCs. Apelin, Oncostatin M, and Periostin were shown to control myogenesis/angiogenesis coupling in vitro and to be required for myogenesis and vessel formation during muscle regeneration in vivo. Furthermore, restorative macrophages, which have been previously shown to support myogenesis in vivo, were shown in a 3D triculture model to stimulate myogenesis/angiogenesis coupling, notably through Oncostatin M production. Our data demonstrate that restorative macrophages orchestrate muscle regeneration by controlling myogenesis/angiogenesis coupling. Endothelial cells (ECs) promote myogenesis Myogenic progenitor cells (MPCs) stimulate angiogenesis as they differentiate EC- and MPC-derived Apelin, Oncostatin M, and Periostin promote myo-angiogenesis Restorative macrophages stimulate myo-angiogenesis via Oncostatin M secretion
Collapse
|
310
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
311
|
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. [PMID: 29127046 DOI: 10.1016/j.semcdb.2017.11.011] [Citation(s) in RCA: 508] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
312
|
Mackey AL, Kjaer M. The breaking and making of healthy adult human skeletal muscle in vivo. Skelet Muscle 2017; 7:24. [PMID: 29115986 PMCID: PMC5688812 DOI: 10.1186/s13395-017-0142-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 01/11/2023] Open
Abstract
Background While muscle regeneration has been extensively studied in animal and cell culture models, in vivo myogenesis in adult human skeletal muscle has not been investigated in detail. Methods Using forced lengthening contractions induced by electrical stimulation, we induced myofibre injury in young healthy males. Muscle biopsies were collected from the injured leg 7 and 30 days after muscle injury and from the uninjured leg as a control. Immuno-stained single muscle fibres and muscle cross sections were studied by wide-field and confocal microscopy. Samples were also studied at the ultra-structural level by electron microscopy. Results Microscopy of single muscle fibres in 3 dimensions revealed a repeating pattern of necrotic and regenerating zones along the length of the same myofibre, characterised by extensive macrophage infiltration alongside differentiating myogenic progenitor cells and myotubes: the hallmarks of myogenesis. The myofibre basement membrane was preserved during these processes and interestingly was seen at a later stage as a second basement membrane surrounding the regenerating fibres. Conclusions This is the first work to document in vivo myogenesis in humans in detail and highlights the importance of the basement membrane in the process of regeneration. In addition, it provides insight into parallels between the regeneration of adult skeletal muscle in mouse and man, confirming that this model may be a useful tool in investigating myofibre and matrix formation, as well as specific cell types, during regeneration from the perspective of human muscle.
Collapse
Affiliation(s)
- Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark. .,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
313
|
Oh J, Sinha I, Tan KY, Rosner B, Dreyfuss JM, Gjata O, Tran P, Shoelson SE, Wagers AJ. Age-associated NF-κB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function. Aging (Albany NY) 2017; 8:2871-2896. [PMID: 27852976 PMCID: PMC5191876 DOI: 10.18632/aging.101098] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
Abstract
Skeletal muscle is a highly regenerative tissue, but muscle repair potential is increasingly compromised with advancing age. In this study, we demonstrate that increased NF-κB activity in aged muscle fibers contributes to diminished myogenic potential of their associated satellite cells. We further examine the impact of genetic modulation of NF-κB signaling in muscle satellite cells or myofibers on recovery after damage. These studies reveal that NF-κB activity in differentiated myofibers is sufficient to drive dysfunction of muscle regenerative cells via cell-non-autonomous mechanisms. Inhibition of NF-κB, or its downstream target Phospholipase A2, in myofibers rescued muscle regenerative potential in aged muscle. Moreover, systemic administration of sodium salicylate, an FDA-approved NF-κB inhibitor, decreased inflammatory gene expression and improved repair in aged muscle. Together, these studies identify a unique NF-κB regulated, non-cell autonomous mechanism by which stem cell function is linked to lipid signaling and homeostasis, and provide important new targets to stimulate muscle repair in aged individuals.
Collapse
Affiliation(s)
- Juhyun Oh
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Joslin Diabetes Center, Boston, MA 02215, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Indranil Sinha
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Joslin Diabetes Center, Boston, MA 02215, USA.,Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kah Yong Tan
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Joslin Diabetes Center, Boston, MA 02215, USA
| | - Bernard Rosner
- Department of Biostatistics, Harvard School of Public Health, MA 02115, USA
| | - Jonathan M Dreyfuss
- Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Biomedical Engineering, Boston University, Boston 02215, USA
| | - Ornela Gjata
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Peter Tran
- Joslin Diabetes Center, Boston, MA 02215, USA
| | - Steven E Shoelson
- Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Joslin Diabetes Center, Boston, MA 02215, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
314
|
Shahidi B, Shah SB, Esparza M, Head BP, Ward SR. Skeletal Muscle Atrophy and Degeneration in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2017; 35:398-401. [PMID: 28895461 DOI: 10.1089/neu.2017.5172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Atrophy is thought to be a primary mode of muscle loss in neuromuscular injuries. The differential effects of central and peripheral injuries on atrophy and degeneration/regeneration in skeletal muscle tissue have not been well described. This study investigated skeletal muscle atrophy and degeneration/regeneration in an animal model of traumatic brain injury (TBI). Eight 8-month-old wild-type C57BL6 mice underwent either a sham craniotomy or TBI targeting the motor cortex. Atrophy (fiber area; FA) and degeneration/regeneration (centralized nuclei proportions; CN) of the soleus and tibialis anterior (TA) muscles were measured 2 months post-injury. Injured soleus FAs were smaller than sham soleus (p = 0.02) and injured TA (p < 0.001). Mean CNs were higher in the TBI-injured TA than in other muscles. Differential TBI-induced atrophy and degeneration/regeneration in lower limb muscles suggests that muscle responses to cortical injury involve more complex changes than those observed with simple disuse atrophy.
Collapse
Affiliation(s)
- Bahar Shahidi
- 1 Department of Orthopedic Surgery, University of California , San Diego, California
| | - Sameer B Shah
- 1 Department of Orthopedic Surgery, University of California , San Diego, California
| | - Mary Esparza
- 1 Department of Orthopedic Surgery, University of California , San Diego, California
| | - Brian P Head
- 2 Department of Anesthesiology, University of California , San Diego, California
| | - Samuel R Ward
- 1 Department of Orthopedic Surgery, University of California , San Diego, California
| |
Collapse
|
315
|
Finnerty CC, McKenna CF, Cambias LA, Brightwell CR, Prasai A, Wang Y, El Ayadi A, Herndon DN, Suman OE, Fry CS. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury. J Physiol 2017; 595:6687-6701. [PMID: 28833130 PMCID: PMC5663820 DOI: 10.1113/jp274841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Severe burns result in significant skeletal muscle cachexia that impedes recovery. Activity of satellite cells, skeletal muscle stem cells, is altered following a burn injury and likely hinders regrowth of muscle. Severe burn injury induces satellite cell proliferation and fusion into myofibres with greater activity in muscles proximal to the injury site. Conditional depletion of satellite cells attenuates recovery of myofibre area and volume following a scald burn injury in mice. Skeletal muscle regrowth following a burn injury requires satellite cell activity, underscoring the therapeutic potential of satellite cells in the prevention of prolonged frailty in burn survivors. ABSTRACT Severe burns result in profound skeletal muscle atrophy; persistent muscle atrophy and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma, and we have previously shown concurrent activation and apoptosis of muscle satellite cells following a burn injury in paediatric patients. To determine the necessity of satellite cells during muscle recovery following a burn injury, we utilized a genetically modified mouse model (Pax7CreER -DTA) that allows for the conditional depletion of satellite cells in skeletal muscle. Additionally, mice were provided 5-ethynyl-2'-deoxyuridine to determine satellite cell proliferation, activation and fusion. Juvenile satellite cell-wild-type (SC-WT) and satellite cell-depleted (SC-Dep) mice (8 weeks of age) were randomized to sham or burn injury consisting of a dorsal scald burn injury covering 30% of total body surface area. Both hindlimb and dorsal muscles were studied at 7, 14 and 21 days post-burn. SC-Dep mice had >93% depletion of satellite cells compared to SC-WT (P < 0.05). Burn injury induced robust atrophy in muscles located both proximal and distal to the injury site (∼30% decrease in fibre cross-sectional area, P < 0.05). Additionally, burn injury induced skeletal muscle regeneration, satellite cell proliferation and fusion. Depletion of satellite cells impaired post-burn recovery of both muscle fibre cross-sectional area and volume (P < 0.05). These findings support an integral role for satellite cells in the aetiology of lean tissue recovery following a severe burn injury.
Collapse
Affiliation(s)
- Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
| | - Colleen F. McKenna
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| | - Lauren A. Cambias
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| | - Camille R. Brightwell
- Division of Rehabilitation SciencesUniversity of Texas Medical Branch, GalvestonTXUSA
| | - Anesh Prasai
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Ye Wang
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Amina El Ayadi
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
| | - Oscar E. Suman
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Christopher S. Fry
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
316
|
Cezar CA, Arany P, Vermillion SA, Seo BR, Vandenburgh HH, Mooney DJ. Timed Delivery of Therapy Enhances Functional Muscle Regeneration. Adv Healthc Mater 2017; 6:10.1002/adhm.201700202. [PMID: 28703489 PMCID: PMC5641972 DOI: 10.1002/adhm.201700202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/09/2017] [Indexed: 01/14/2023]
Abstract
Cell transplantation is a promising therapeutic strategy for the treatment of traumatic muscle injury in humans. Previous investigations have typically focused on the identification of potent cell and growth factor treatments and optimization of spatial control over delivery. However, the optimal time point for cell transplantation remains unclear. Here, this study reports how myoblast and morphogen delivery timed to coincide with specific phases of the inflammatory response affects donor cell engraftment and the functional repair of severely injured muscle. Delivery of a biomaterial-based therapy timed with the peak of injury-induced inflammation leads to potent early and long-term regenerative benefits. Diminished inflammation and fibrosis, enhanced angiogenesis, and increased cell engraftment are seen during the acute stage following optimally timed treatment. Over the long term, treatment during peak inflammation leads to enhanced functional regeneration, as indicated by reduced chronic inflammation and fibrosis along with increased tissue perfusion and muscle contractile force. Treatments initiated immediately after injury or after inflammation had largely resolved provided more limited benefits. These results demonstrate the importance of appropriately timing the delivery of biologic therapy in the context of muscle regeneration. Biomaterial-based timed delivery can likely be applied to other tissues and is of potential wide utility in regenerative medicine.
Collapse
Affiliation(s)
- Christine A Cezar
- Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Suite 403, Cambridge, MA, 02138, USA
| | - Praveen Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14260, USA
| | - Sarah A Vermillion
- Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Suite 403, Cambridge, MA, 02138, USA
| | - Bo Ri Seo
- Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Suite 403, Cambridge, MA, 02138, USA
| | - Herman H Vandenburgh
- Department of Pathology and Lab Medicine, Brown University, Providence, RI, 02912, USA
| | - David J Mooney
- Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Suite 403, Cambridge, MA, 02138, USA
| |
Collapse
|
317
|
Roche JA, Begam M, Galen SS. Minimally Invasive Muscle Embedding (MIME) - A Novel Experimental Technique to Facilitate Donor-Cell-Mediated Myogenesis. J Vis Exp 2017. [PMID: 28872121 PMCID: PMC5614364 DOI: 10.3791/55731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Skeletal muscle possesses regenerative capacity due to tissue-resident, muscle-fiber-generating (myogenic) satellite cells (SCs), which can form new muscle fibers under the right conditions. Although SCs can be harvested from muscle tissue and cultured in vitro, the resulting myoblast cells are not very effective in promoting myogenesis when transplanted into host muscle. Surgically exposing the host muscle and grafting segments of donor muscle tissue, or the isolated muscle fibers with their SCs onto host muscle, promotes better myogenesis compared to myoblast transplantation. We have developed a novel technique that we call Minimally Invasive Muscle Embedding (MIME). MIME involves passing a surgical needle through the host muscle, drawing a piece of donor muscle tissue through the needle track, and then leaving the donor tissue embedded in the host muscle so that it may act as a source of SCs for the host muscle. Here we describe in detail the steps involved in performing MIME in an immunodeficient mouse model that expresses a green fluorescent protein (GFP) in all of its cells. Immunodeficiency in the host mouse reduces the risk of immune rejection of the donor tissue, and GFP expression enables easy identification of the host muscle fibers (GFP+) and donor-cell-derived muscle fibers (GFP-). Our pilot data suggest that MIME can be used to implant an extensor digitorum longus (EDL) muscle from a donor mouse into the tibialis anterior (TA) muscle of a host mouse. Our data also suggest that when a myotoxin (barium chloride, BaCl2) is injected into the host muscle after MIME, there is evidence of donor-cell-derived myogenesis in the host muscle, with approximately 5%, 26%, 26% and 43% of the fibers in a single host TA muscle showing no host contribution, minimal host contribution, moderate host contribution, and maximal host contribution, respectively.
Collapse
Affiliation(s)
- Joseph A Roche
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University;
| | - Morium Begam
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University
| | - Sujay S Galen
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University
| |
Collapse
|
318
|
Patsalos A, Pap A, Varga T, Trencsenyi G, Contreras GA, Garai I, Papp Z, Dezso B, Pintye E, Nagy L. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol 2017; 595:5815-5842. [PMID: 28714082 DOI: 10.1113/jp274361] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. ABSTRACT Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6Chigh ) to a repair (Ly6Clow ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics.
Collapse
Affiliation(s)
- Andreas Patsalos
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | | | - Gerardo Alvarado Contreras
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Dezso
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Pintye
- Department of Radiotherapy, Institute of Oncology, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,MTA-DE 'Lendület' Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.,Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| |
Collapse
|
319
|
Juban G, Chazaud B. Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. FEBS Lett 2017; 591:3007-3021. [PMID: 28555751 DOI: 10.1002/1873-3468.12703] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022]
Abstract
Macrophages are highly versatile cells that are involved both in the mounting and the resolution of inflammatory responses. Besides their properties in innate immunity to fight against pathogens, macrophages are essential for tissue repair, during which they adopt sequential inflammatory status. While the acquisition of some canonical polarized inflammatory statuses in vitro (M1/M2) is beginning to be understood at the molecular level, the regulation of macrophage skewing in vivo has been less investigated. Immunometabolism, in particular, is an emerging field, and most of the studies so far have investigated the control of macrophage polarization using in vitro set-ups. In this context, skeletal muscle regeneration is an excellent paradigm to study tissue repair, since the sequential steps of inflammatory response and tissue repair are well characterized. In this Review, after introducing macrophage populations and functions during skeletal muscle regeneration, we present the current knowledge on the metabolic regulation of macrophage inflammatory status, with particular emphasis on the comparison between in vitro and in vivo models of macrophage activation. We also discuss the metabolic regulation of macrophages in vivo during skeletal muscle regeneration.
Collapse
Affiliation(s)
- Gaëtan Juban
- INSERM U1217, CNRS 5310, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Bénédicte Chazaud
- INSERM U1217, CNRS 5310, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| |
Collapse
|
320
|
Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1814-1827. [PMID: 28618254 DOI: 10.1016/j.ajpath.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration.
Collapse
|
321
|
Mahdy MAA, Warita K, Hosaka YZ. Effects of transforming growth factor-β1 treatment on muscle regeneration and adipogenesis in glycerol-injured muscle. Anim Sci J 2017; 88:1811-1819. [PMID: 28585769 DOI: 10.1111/asj.12845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Transforming growth factor (TGF)-β1 is associated with fibrosis in many organs. Recent studies demonstrated that delivery of TGF-β1 into chemically injured muscle enhances fibrosis. In this study, we investigated the effects of exogenous TGF-β1 on muscle regeneration and adipogenesis in glycerol-injured muscle of normal mice. Tibialis anterior (TA) muscles were injured by glycerol injection. TGF-β1 was either co-injected with glycerol, as an 'early treatment' group, or injected at day 4 after glycerol, as a 'late treatment' group and the TA muscles were collected at day 7 after initial injury. Myotube density was significantly lower in the early treatment group than in the glycerol-injured group (without TGF-β1 treatment). Moreover, the Oil red O-positive area was significantly smaller in the early treatment group than in the late treatment group and glycerol-injured group. Furthermore, TGF-β1 treatment increased endomysial fibrosis and induced immunostaining of α-smooth muscle actin. The greater inhibitory effects of early TGF-β1 treatment than that of late TGF-β1 treatment during regeneration in glycerol-injured muscle suggest a more potent effect of TGF-β1 on the initial stage of muscle regeneration and adipogenesis. Combination of TGF-β1 with glycerol might be an alternative to enhance muscle fibrosis for future studies.
Collapse
Affiliation(s)
- Mohamed A A Mahdy
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
322
|
Quattrocelli M, Barefield DY, Warner JL, Vo AH, Hadhazy M, Earley JU, Demonbreun AR, McNally EM. Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy. J Clin Invest 2017; 127:2418-2432. [PMID: 28481224 DOI: 10.1172/jci91445] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoid steroids such as prednisone are prescribed for chronic muscle conditions such as Duchenne muscular dystrophy, where their use is associated with prolonged ambulation. The positive effects of chronic steroid treatment in muscular dystrophy are paradoxical because these steroids are also known to trigger muscle atrophy. Chronic steroid use usually involves once-daily dosing, although weekly dosing in children has been suggested for its reduced side effects on behavior. In this work, we tested steroid dosing in mice and found that a single pulse of glucocorticoid steroids improved sarcolemmal repair through increased expression of annexins A1 and A6, which mediate myofiber repair. This increased expression was dependent on glucocorticoid response elements upstream of annexins and was reinforced by the expression of forkhead box O1 (FOXO1). We compared weekly versus daily steroid treatment in mouse models of acute muscle injury and in muscular dystrophy and determined that both regimens provided comparable benefits in terms of annexin gene expression and muscle repair. However, daily dosing activated atrophic pathways, including F-box protein 32 (Fbxo32), which encodes atrogin-1. Conversely, weekly steroid treatment in mdx mice improved muscle function and histopathology and concomitantly induced the ergogenic transcription factor Krüppel-like factor 15 (Klf15) while decreasing Fbxo32. These findings suggest that intermittent, rather than daily, glucocorticoid steroid regimen promotes sarcolemmal repair and muscle recovery from injury while limiting atrophic remodeling.
Collapse
|
323
|
Kawai M, Ohmori YK, Nishino M, Yoshida M, Tabata K, Hirota DS, Ryu-Mon A, Yamamoto H, Sonobe J, Kataoka YH, Shiotsu N, Ikegame M, Maruyama H, Yamamoto T, Bessho K, Ohura K. Determination of cell fate in skeletal muscle following BMP gene transfer by in vivo electroporation. Eur J Histochem 2017; 61:2772. [PMID: 28735515 PMCID: PMC5641669 DOI: 10.4081/ejh.2017.2772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
We previously developed a novel method for gene transfer, which combined a non-viral gene expression vector with transcutaneous in vivo electroporation. We applied this method to transfer the bone morphogenetic protein (BMP) gene and induce ectopic bone formation in rat skeletal muscles. At present, it remains unclear which types of cells can differentiate into osteogenic cells after BMP gene transfer by in vivo electroporation. Two types of stem cells in skeletal muscle can differentiate into osteogenic cells: muscle-derived stem cells, and bone marrow-derived stem cells in the blood. In the present study, we transferred the BMP gene into rat skeletal muscles. We then stained tissues for several muscle-derived stem cell markers (e.g., Pax7, M-cadherin), muscle regeneration-related markers (e.g., Myod1, myogenin), and an inflammatory cell marker (CD68) to follow cell differentiation over time. Our results indicate that, in the absence of BMP, the cell population undergoes muscle regeneration, whereas in its presence, it can differentiate into osteogenic cells. Commitment towards either muscle regeneration or induction of ectopic bone formation appears to occur five to seven days after BMP gene transfer.
Collapse
|
324
|
Ratnayake D, Currie PD. Stem cell dynamics in muscle regeneration: Insights from live imaging in different animal models. Bioessays 2017; 39. [PMID: 28440546 DOI: 10.1002/bies.201700011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, live imaging has been adopted to study stem cells in their native environment at cellular resolution. In the skeletal muscle field, this has led to visualising the initial events of muscle repair in mouse, and the entire regenerative response in zebrafish. Here, we review recent discoveries in this field obtained from live imaging studies. Tracking of tissue resident stem cells, the satellite cells, following injury has captured the morphogenetic dynamics of stem/progenitor cells as they facilitate repair. Asymmetric satellite cell division generated a clonogenic progenitor pool, providing in vivo validation for this mechanism. Furthermore, there is an emerging role of stem/progenitor cell guidance at the injury site by cellular protrusions. This review concludes that live imaging is a critical tool for discovering the distinct processes that occur during regeneration, emphasising the importance of imaging in diverse animal models to capture the entire scope of stem cell functions. Also see the Video Abstract. Link to: https://youtube/tgUHSBD1N0g.
Collapse
Affiliation(s)
- Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.,EMBL Australia, Monash University, Clayton, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.,EMBL Australia, Monash University, Clayton, VIC, Australia
| |
Collapse
|
325
|
Abstract
Diseases of muscle that are caused by pathological interactions between muscle and the immune system are devastating, but rare. However, muscle injuries that involve trauma and regeneration are fairly common, and inflammation is a clear feature of the regenerative process. Investigations of the inflammatory response to muscle injury have now revealed that the apparently nonspecific inflammatory response to trauma is actually a complex and coordinated interaction between muscle and the immune system that determines the success or failure of tissue regeneration.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California 90095-1606, USA
| |
Collapse
|
326
|
Lund DK, McAnulty P, Siegel AL, Cornelison D. Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro. Methods Mol Biol 2017; 1556:303-315. [PMID: 28247357 DOI: 10.1007/978-1-4939-6771-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Motility and/or chemotaxis of satellite cells has been suggested or observed in multiple in vitro and in vivo contexts. Satellite cell motility also affects the efficiency of muscle regeneration, particularly in the context of engrafted exogenous cells. Consequently, there is keen interest in determining what cell-autonomous and environmental factors influence satellite cell motility and chemotaxis in vitro and in vivo. In addition, the ability of activated satellite cells to relocate in vivo would suggest that they must be able to invade and transit through the extracellular matrix (ECM), which is supported by studies in which alteration or addition of matrix metalloprotease (MMP) activity enhanced the spread of engrafted satellite cells. However, despite its potential importance, analysis of satellite cell motility or invasion quantitatively even in an in vitro setting can be difficult; one of the most powerful techniques for overcoming these difficulties is timelapse microscopy. Identification and longitudinal evaluation of individual cells over time permits not only quantification of variations in motility due to intrinsic or extrinsic factors, it permits observation and analysis of other (frequently unsuspected) cellular activities as well. We describe here three protocols developed in our group for quantitatively analyzing satellite cell motility over time in two dimensions on purified ECM substrates, in three dimensions on a living myofiber, and in three dimensions through an artificial matrix.
Collapse
Affiliation(s)
- Dane K Lund
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65211 7310, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Patrick McAnulty
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65211 7310, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashley L Siegel
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65211 7310, USA
- Elemental Enzymes, St. Louis, MO, USA
| | - Ddw Cornelison
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65211 7310, USA.
| |
Collapse
|
327
|
Mothe-Satney I, Piquet J, Murdaca J, Sibille B, Grimaldi PA, Neels JG, Rousseau AS. Peroxisome Proliferator Activated Receptor Beta (PPARβ) activity increases the immune response and shortens the early phases of skeletal muscle regeneration. Biochimie 2016; 136:33-41. [PMID: 27939528 DOI: 10.1016/j.biochi.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022]
Abstract
Peroxisome Proliferator-Activated Receptor Beta (PPARβ) is a transcription factor playing an important role in both muscle myogenesis and remodeling, and in inflammation. However, its role in the coordination of the transient muscle inflammation and reparation process following muscle injury has not yet been fully determined. We postulated that activation of the PPARβ pathway alters the early phase of the muscle regeneration process, i.e. when immune cells infiltrate in injured muscle. Tibialis anteriors of C57BL6/J mice treated or not with the PPARβ agonist GW0742 were injected with cardiotoxin (or with physiological serum for the contralateral muscle). Muscle regeneration was monitored on days 4, 7, and 14 post-injury. We found that treatment of mice with GW0742 increased, at day 4 post-damage, the recruitment of immune cells (M1 and M2 macrophages) and upregulated the expression of the anti-inflammatory cytokine IL-10 and TGF-β mRNA. Those effects were accompanied by a significant increase at day 4 of myogenic regulatory factors (Pax7, MyoD, Myf5, Myogenin) mRNA in GW0742-treated mice. However, we showed an earlier return (7 days vs 14 days) of Myf5 and Myogenin to basal levels in GW0742- compared to DMSO-treated mice. Differential effects of GW0742 observed during the regeneration were associated with variations of PPARβ pathway activity. Collectively, our findings indicate that PPARβ pathway activity shortens the early phases of skeletal muscle regeneration by increasing the immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaap G Neels
- Université Côte d'Azur, Inserm, C3M, Nice, France
| | | |
Collapse
|
328
|
Mahdy MA, Warita K, Hosaka YZ. Early ultrastructural events of skeletal muscle damage following cardiotoxin-induced injury and glycerol-induced injury. Micron 2016; 91:29-40. [DOI: 10.1016/j.micron.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
|
329
|
Passipieri JA, Christ GJ. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies. Cells Tissues Organs 2016; 202:202-213. [PMID: 27825153 DOI: 10.1159/000447323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the robust regenerative capacity of skeletal muscle, there are a variety of congenital and acquired conditions in which the volume of skeletal muscle loss results in major permanent functional and cosmetic deficits. These latter injuries are referred to as volumetric muscle loss (VML) injuries or VML-like conditions, and they are characterized by the simultaneous absence of multiple tissue components (i.e., nerves, vessels, muscles, satellite cells, and matrix). There are currently no effective treatment options. Regenerative medicine/tissue engineering technologies hold great potential for repair of these otherwise irrecoverable VML injuries. In this regard, three-dimensional scaffolds have been used to deliver sustained amounts of growth factors into a variety of injury models, to modulate host cell recruitment and extracellular matrix remodeling. However, this is a nascent field of research, and more complete functional improvements require more precise control of the spatiotemporal distribution of critical growth factors over a physiologically relevant range. This is especially true for VML injuries where incorporation of a cellular component into the scaffolds might provide not only a source of new tissue formation but also additional signals for host cell migration, recruitment, and survival. To this end, we review the major features of muscle repair and regeneration for largely recoverable injuries, and then discuss recent cell- and/or growth factor-based approaches to repair the more profound and irreversible VML and VML-like injuries. The underlying supposition is that more rationale incorporation of exogenous growth factors and/or cellular components will be required to optimize the regenerative capacity of implantable therapeutics for VML repair.
Collapse
|
330
|
Maesner CC, Almada AE, Wagers AJ. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting. Skelet Muscle 2016; 6:35. [PMID: 27826411 PMCID: PMC5100091 DOI: 10.1186/s13395-016-0106-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/24/2016] [Indexed: 01/27/2023] Open
Abstract
Background Fluorescent-activated cell sorting (FACS) has enabled the direct isolation of highly enriched skeletal muscle stem cell, or satellite cell, populations from postnatal tissue. Several distinct surface marker panels containing different positively selecting surface antigens have been used to distinguish muscle satellite cells from other non-myogenic cell types. Because functional and transcriptional heterogeneity is known to exist within the satellite cell population, a direct comparison of results obtained in different laboratories has been complicated by a lack of clarity as to whether commonly utilized surface marker combinations select for distinct or overlapping subsets of the satellite cell pool. This study therefore sought to evaluate phenotypic and functional overlap among popular satellite cell sorting paradigms. Methods Utilizing a transgenic Pax7-zsGreen reporter mouse, we compared the overlap between the fluorescent signal of canonical paired homeobox protein 7 (Pax7) expressing satellite cells to cells identified by combinations of surface markers previously published for satellite cells isolation. We designed two panels for mouse skeletal muscle analysis, each composed of markers that exclude hematopoietic and stromal cells (CD45, CD11b, Ter119, CD31, and Sca1), combined with previously published antibody clones recognizing surface markers present on satellite cells (β1-integrin/CXCR4, α7-integrin/CD34, and Vcam1). Cell populations were comparatively analyzed by flow cytometry and FACS sorted for functional assessment of myogenic activity. Results Consistent with prior reports, each of the commonly used surface marker schemes evaluated here identified a highly enriched satellite cell population, with 89–90 % positivity for Pax7 expression based on zsGreen fluorescence. Distinct surface marker panels were also equivalent in their ability to identify the majority of the satellite cell pool, with 90–93 % of all Pax7-zsGreen positive cells marked by each of the surface marker schemes. The direct comparison among surface marker schemes validated their selection for highly overlapping subsets of cells. Functional analysis in vitro showed no differences in the abilities of cells sorted by these different methods to grow in culture and differentiate. Conclusions This study demonstrates the equivalency of several previously published and widely utilized surface marker schemes for isolating a highly purified and myogenically active population of satellite cells from the mouse skeletal muscle, which should facilitate cross-comparison of data across laboratories. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0106-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire C Maesner
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| | - Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138 USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|