301
|
Bajaj AO, Parker R, Farnsworth C, Law C, Johnson-Davis KL. Method validation of multi-element panel in whole blood by inductively coupled plasma mass spectrometry (ICP-MS). J Mass Spectrom Adv Clin Lab 2022; 27:33-39. [PMID: 36593911 PMCID: PMC9803809 DOI: 10.1016/j.jmsacl.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Background Analytical methods to measure trace and toxic elements are essential to evaluate exposure and nutritional status. A ten-element panel was developed and validated for clinical testing in whole blood. Retrospective data analysis was conducted on patient samples performed at ARUP Laboratories. Methods A method was developed and validated to quantify ten elements in whole blood by ICP-MS. Fifty microliters of sample were extracted with 950 μL of diluent containing 1 % ammonium hydroxide, 0.1 % Triton X-100, 1.75 % EDTA along with spiked internal standards. Four calibrators were used for each element and prepared in goat blood to match the patient specimen matrix. Samples were analyzed with an Agilent 7700 ICP-MS with a Cetac MVX 7100 μL Workstation autosampler. Results The assay was linear for all elements with inter- and intra-assay imprecision less than or equal to 11% CV at the low end of the analytical measurement range (AMR) and less than or equal to 4% CV at the upper end of the AMR for all elements. Accuracy was checked with a minimum of 40 repeat patient samples, proficiency testing samples, and matrix-matched spikes. The linear slopes for the ten elements ranged from 0.94 to 1.03 with intercepts below the AMR and R2 ranging from 0.97 to 1.00. Conclusions The multi-element panel was developed to analyze ten elements in whole blood to unify the sample preparation and increase batch run efficiency. The improved analytical method utilized matrix-matched calibrators for accurate quantification to meet regulatory requirements. The assay was validated according to guidelines for CLIA-certified clinical laboratories and was suitable for clinical testing to assess nutritional status and toxic exposure.
Collapse
Key Words
- AAPCC, American Association of Poison Control Centers
- AMR, Analytical measurement range
- As, arsenic
- Bi, bismuth
- CLIA, Clinical Laboratory Improvement Amendments
- CLRW, Clinical Laboratory Reagent Water
- Cd, cadmium
- Co, cobalt
- Hg, mercury
- ICP-MS
- ICP-MS, Inductively coupled plasma-mass spectrometry
- IRB, institutional review board
- KED, kinetic energy discrimination
- LOB, limit of the blank
- LOD, limit of detection
- LOQ, limit of quantitation
- Method validation
- Mn, manganese
- NH4OH, ammonium hydroxide
- Pb, lead
- SD, standard deviation
- Sb, antimony
- Tl, thallium
- Toxic elements
- Trace elements
- ULOQ, upper limit of quantification
- WB, Whole blood
- Whole blood
- Zn, zinc
Collapse
Affiliation(s)
- Amol O. Bajaj
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States,ARUP Laboratories, Salt Lake City, UT, United States,Corresponding authors at: ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States.
| | | | | | - Christian Law
- ARUP Laboratories, Salt Lake City, UT, United States
| | - Kamisha L. Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, United States,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States,Corresponding authors at: ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States.
| |
Collapse
|
302
|
Shan B, Hao R, Zhang J, Li J, Ye Y, Lu A. Microbial remediation mechanisms and applications for lead-contaminated environments. World J Microbiol Biotechnol 2022; 39:38. [PMID: 36510114 DOI: 10.1007/s11274-022-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
High concentrations of lead (Pb) in agricultural soil and wastewater represent a severe threat to the ecosystem and health of living organisms. Among available removal techniques, microbial remediation has attracted much attention due to its lower cost, higher efficiency, and less impact on the environment; hence, it is an effective alternative to conventional physical or chemical Pb-remediation technologies. In the present review, recent advances on the Pb-remediation mechanisms of bacteria, fungi and microalgae have been reported, as well as their detoxification pathways. Based on the previous researches, microorganisms have various remediation mechanisms to cope with Pb pollution, which are basically categorized into biosorption, bioprecipitation, biomineralization, and bioaccumulations. This paper summarizes microbial Pb-remediation mechanisms, factors affecting Pb removal, and examples of each case are described in detail. We emphatically discuss the mechanisms of microbial immobilization of Pb, which can resist toxicity by synthesizing nanoparticles to convert dissolved Pb(II) into less toxic forms. The tolerance mechanisms of microbes to Pb are discussed at the molecular level as well. Finally, we conclude the research challenges and development prospects regarding the microbial remediation of Pb-polluted environment. The current review provides insight of interaction between lead and microbes and their potential applications for Pb removal.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
303
|
Zhou T, Wang Y, Qin J, Zhao S, Cao D, Zhu M, Jiang Y. Potential Risk, Spatial Distribution, and Soil Identification of Potentially Toxic Elements in Lycium barbarum L. (Wolfberry) Fruits and Soil System in Ningxia, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16186. [PMID: 36498258 PMCID: PMC9739834 DOI: 10.3390/ijerph192316186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Eight potentially toxic elements (PTEs, including nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb), chromium (Cr), and mercury (Hg)) in Lycium barbarum L. (wolfberries) and the associated root soil from a genuine producing area were analyzed. The potential ecological risk of PTEs in the soil and the health risk of PTEs through wolfberry consumption were determined. Geostatistical methods were used to predict the PTE concentrations in the wolfberries and soil. Positive matrix factorization (PMF) was applied to identify the source of PTEs in the soil. The PTE concentrations in the soils were within the standard limits, and Cd in the wolfberries exceeded the standard limit at only one site. The bioconcentration factors (BCF) order for the different PTEs was Cd > Cu > 1 > Zn > Cr > As > Ni > Pb, indicating that Cd and Cu were highly accumulated in wolfberries. The multiple regression models for Ni, Cu, Zn, As, Pb, and Cr concentrations in the wolfberries exhibited good correlations (p < 0.1). The ecological risk for Hg in the soil was high, whereas the risks for the remaining PTEs were mostly medium or low. Health risks for inhabitants through wolfberry consumption were not obvious. The spatial distributions of the PTEs in the soil differed from the PTE concentrations in the wolfberries. Source identification results were in the order of natural source (48.2%) > industrial activity source (27.8%) > agricultural activity source (14.5%) > transportation source (9.5%). The present study can guide the site selection of wolfberry cultivation and ensure the safety of wolfberry products when considering PTE contamination.
Collapse
Affiliation(s)
- Tongning Zhou
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Wang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaqi Qin
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Siyuan Zhao
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Deyan Cao
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Meilin Zhu
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- College of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanxue Jiang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
304
|
Rezazadeh N, Eftekhari M, Akhondi M, Aljalawee EAJ. Novel Graphene oxide-Polyethylene Glycol mono-4-nonylphenyl Ether adsorbent for solid phase extraction of Pb 2+ in blood and water samples. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:675-689. [PMID: 36406596 PMCID: PMC9672194 DOI: 10.1007/s40201-022-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
A novel and efficient Graphene Oxide-Polyethylene Glycol mono-4-nonylphenyl Ether (GO-PEGPE) nanocomposite was synthesized and used for solid phase extraction of trace levels of Pb2+ in different water and blood samples. The synthesized adsorbent was then characterized by the Fourier Transform-Infrared spectrophotometry (FT-IR), Field Emission-Scanning Electron Microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). To optimize the critical parameters including pH of samples solution, amounts of adsorbent and extraction time, the response surface methodology based on the central composite design (RSM-CCD) was used and based on the results, pH = 6.0, extraction time = 22 min and amounts of adsorbent = 15 mg were selected as the optimum conditions. The relative standard deviation based on seven replicate analysis of 2 µg L-1 Pb2+ was 5.2% and the limit of detection was 0.023 µg L-1 (n = 8). The results of adsorption isotherm investigation show that the adsorption of Pb2+ onto the GO-PEGPE nanocomposite obeyed by the Langmuir isotherm with the maximum adsorption capacity of 69.44 mg g-1. Also, based on the Temkin and Dubinin-Radushkevich (DR) isotherms, the adsorption of Pb2+ onto the GO-PEGPE nanocomposite is a physisorption phenomenon and the consequences of the kinetic models illustrated that the adsorption of Pb2+ followed by the pseudo second order adsorption kinetic model. Finally, the proposed method was successfully applied for preconcentration of Pb2+ in different water and blood samples of turning industry workers.
Collapse
Affiliation(s)
- Najmeh Rezazadeh
- Department of Civil Engineering, Faculty of Engineering, Ferdowsi University, P.O.Box:91775-1111, Mashhad, Iran
| | - Mohammad Eftekhari
- Department of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur, Iran
| | - Mahsa Akhondi
- Department of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur, Iran
| | | |
Collapse
|
305
|
Almalki DA. Hepatorenal Protective Effect of Fenugreek Aqueous Extract against Lead Toxicity in Experimental Rats. DOKL BIOCHEM BIOPHYS 2022; 507:318-325. [PMID: 36786994 DOI: 10.1134/s1607672922340014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 02/15/2023]
Abstract
In this study, aqueous extract of germinated fenugreek seeds was investigated to assess its therapeutic effect on hepatorenal lead toxicity in experimental rats. After overnight fasting, rats were injected intraperitoneally with 0.5 mL of lead acetate at a dose of 35 mg/kg body weight for five consecutive days. Animals were divided into four groups of ten rats each: normal control; untreated negative control and rats treated with 200 or 400 mg/kg body weight of the aqueous extract. Treatments were performed by intraperitoneal injection of 1mL of the extract once a day for 28 consecutive days. Results showed significant differences between treated and control groups during the whole period of the experiment. This was demonstrated by improving body weight and level of serum total protein, decreasing levels of serum ALT, AST, total bilirubin, blood urea nitrogen, and creatinine. As well, histological analysis revealed a marked reduction in inflammation and structural alterations of liver and kidney organs of fenugreek-treated rats. This hepatoprotective effect can be attributed to the anti-inflammatory, anti-oxidant and regenerative capacity of the high content of the phytochemical constituents in the extract.
Collapse
Affiliation(s)
- D A Almalki
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University, Qilwah, Saudi Arabia.
| |
Collapse
|
306
|
Zeiner M, Šoltić M, Nemet I, Juranović Cindrić I. Multielement Determination in Turmeric ( Curcuma longa L.) Using Different Digestion Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238392. [PMID: 36500487 PMCID: PMC9741154 DOI: 10.3390/molecules27238392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
The antioxidant, anti-inflammatory and antiseptic properties of turmeric (Curcuma longa L.) derive from its rich nutritional composition making it interesting for medicinal uses, besides being used as spice in cooking. To complete the picture on the composition of turmeric, not only the organic compounds need to be known, but also the elemental composition covering essential and potentially toxic elements. The samples were digested in a microwave assisted digestion system using different reagent mixtures. The best digestion mixture was semi-concentrated nitric acid combined with hydrogen peroxide. After optimization of the sample preparation method, the contents of Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Se, Sr, Te, Tl, V and Zn in curcuma were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), as well as by inductively coupled plasma mass spectrometry (ICP-MS). Even if the general composition found is in line with the scarce data in literature, clear differences can be seen between the analyzed samples, considering provenience, production procedures, and harvesting year as potential influencing factors. Whereas all samples contained less As and Pb than regulated by WHO, one limit exceeding was found for Cd.
Collapse
Affiliation(s)
- Michaela Zeiner
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
- Correspondence: ; Tel.: +46-1-930-3779
| | - Monika Šoltić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivan Nemet
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Iva Juranović Cindrić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
307
|
Alrowaili Z, Yilmaz E, Çalişkan F, Öztürk B, Olarinoye I, Arslan H, Al-Buriahi M. Radiation shielding performance of a newly synthesized bismuth borate glass system. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
308
|
Santana CM, de Sousa TL, Latif ALO, Lobo LS, da Silva GR, Magalhães HIF, Lopes MV, de Jesus Benevides CM, Araujo RGO, Dos Santos DCMB, de Freitas Santos Júnior A. Multielement determination (essential and potentially toxic elements) in eye shadows exposed to consumption in Brazil using ICP OES. Biometals 2022; 35:1281-1297. [PMID: 36255608 DOI: 10.1007/s10534-022-00444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/10/2022] [Indexed: 12/14/2022]
Abstract
Worldwide, cosmetics (especially eye shadows) are widely consumed and have a great impact on the economy. The aim of this study was to determine the multielement composition, focusing on essential and potentially toxic elements, in cosmetics (eye shadow) exposed to consumption in Brazil. Concentrations of 17 elements (Al, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, V and Zn) were determined in samples (produced in China and Brazil) using a sequential optical emission spectrometer with inductively coupled plasma (ICP OES) after acid digestion, assisted by a closed digester block (6 mL of HNO3 + 2 mL of H2O2 + 1 mL of Triton ×-100 + 1 mL of ultrapure water). The method was validated by linearity, precision, accuracy, limits of detection (LoD) and quantification (LoQ). The elements were quantified (in µg g-1): Al (852-21,900), Ba (3.47-104), Cd (1.70-6.93), Cr (< 8.53-66.6), Cu (< 0.480-14.5), Mn (92.20-1,190), Ni (< 4.23-40.7), Pb (< 2.16-5.06), Sb (1.10-10.5), Sr (0.760-46.0), Ti (32.0-440), V (< 0.85-1.7) and Zn (24.90-2,600). As, Co, Mo and Se in all the investigated samples were found to be below the LoQ values of ICP OES. In this study, regardless of sample compositions and origins (Brazilian or Chinese), high levels of Al, Cd, Cr, Cu, Mn, Ni, Pb, Sb, Ti, V and Zn were observed, exceeding the recommended maximum tolerable limits, according to Brazilian and global legislations, which may present potential risks to human health and the environment.
Collapse
Affiliation(s)
- Cinira Mello Santana
- Department of Exact and Earth Sciences, Universidade do Estado da Bahia, Salvador, BA, 41195-001, Brazil
| | - Thaís Luz de Sousa
- Chemistry Institute, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
| | | | - Lorena Santos Lobo
- Chemistry Institute, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
| | - Gleice Rayanne da Silva
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, PB, 58051900, Brazil
| | | | - Mariângela Vieira Lopes
- Department of Life Sciences, Universidade do Estado da Bahia, Salvador, BA, 41195-001, Brazil
| | | | | | | | - Aníbal de Freitas Santos Júnior
- Department of Exact and Earth Sciences, Universidade do Estado da Bahia, Salvador, BA, 41195-001, Brazil. .,Department of Life Sciences, Universidade do Estado da Bahia, Salvador, BA, 41195-001, Brazil.
| |
Collapse
|
309
|
Yohannes YB, Nakayama SM, Yabe J, Toyomaki H, Kataba A, Nakata H, Muzandu K, Miyashita C, Ikenaka Y, Choongo K, Ishizuka M. Methylation profiles of global LINE-1 DNA and the GSTP1 promoter region in children exposed to lead (Pb). Epigenetics 2022; 17:2377-2388. [PMID: 36131534 PMCID: PMC9665151 DOI: 10.1080/15592294.2022.2123924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022] Open
Abstract
Lead (Pb) exposure has adverse health effects and altered DNA methylation may contribute to Pb toxicity. LINE-1 is an interspersed repeated DNA that is used as a surrogate marker for estimating genomic DNA methylation levels, and GSTP1 is an isozyme that detoxifies xenobiotics like Pb, and its expression is inhibited by methylation. Thus, to assess the effects of Pb exposure on global hypomethylation and gene-specific promoter hypermethylation, we examined DNA methylation at LINE-1 repetitive elements and the GSTP1 promoter region. Blood samples were obtained from children (N = 123) living in Pb-polluted areas (as exposed children) and children (N = 63) living in Pb-unpolluted areas (as control children) in Kabwe, Zambia. ICP-MS was used to determine blood lead levels (BLLs), and pyrosequencing and a fluorescence-based polymerase chain reaction assay were used to determine levels of LINE-1 methylation and GSTP1 promoter methylation, respectively. Inverse association was found between BLLs and LINE-1 methylation (β = - 0.046, p = 0.006). The highest quartile of BLL had significant hypomethylation of LINE-1 (p for trend = 0.03), suggesting the higher the BLL, the lower LINE-1 methylation. GSTP1 methylation levels did not differ significantly between the two areas (p = 0.504), nor was it associated with Pb poisoning risk (OR = 1.03, p = 0.476), indicating GSTP1 methylation may not be a reliable biomarker of Pb exposure in healthy people. Therefore, Pb-related health problems could result from global DNA methylation changes due to high BLLs.
Collapse
Affiliation(s)
- Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar, Ethiopia
| | - Shouta M.M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - John Yabe
- School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
- Department of Veterinary Para-Clinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Haruya Toyomaki
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Andrew Kataba
- School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Hokuto Nakata
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kaampwe Muzandu
- School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Kennedy Choongo
- School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
- College of Agriculture, Fisheries & Forestry, School of Animal and Veterinary Sciences, Fiji National University, Koronivia Campus, Suva, Fiji
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
310
|
Nakata H, Nakayama SMM, Yabe J, Muzandu K, Kataba A, Ikeda-Araki A, Drisse MNB, Onyon LJ, Gorman J, Kritika P, Fukunaga H, Ikenaka Y, Kishi R, Ishizuka M. Narrative review of lead poisoning in humans caused by industrial activities and measures compatible with sustainable industrial activities in Republic of Zambia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157833. [PMID: 35961390 DOI: 10.1016/j.scitotenv.2022.157833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) pollution and human exposure to Pb, is an important issue for the international community to address being associated with 0.90 million deaths from long-term effects. The Republic of Zambia is a typical mineral resource-rich country, with long-standing mining and smelting activities of metals including Pb in several parts of the country. This narrative review provides a comprehensive overview of previous papers that have assessed human exposure to Pb and related health effects in Zambia. Environmental remediation methods that should be applied locally, ways to reduce Pb exposure of the population, and issues that need to be addressed by various sectors are discussed. Environmental remediation methods using locally available and affordable materials are needed to ensure both sustainable industrial activities and pollution prevention. In the Zambian mining towns, including Kabwe, various research activities have been conducted, including environmental monitoring, human biomonitoring and health impact assessments. The town of Kabwe, which was one of Zambia's largest Pb mining area in the 20th century, continues to have formal and informal Pb-related industries and is known as one of the most polluted areas in the world. For example, despite the World Health Organization asserting that "For an individual with a blood Pb concentration ≥ 5 μg/dL, appropriate action should be taken to terminate exposure", there are reports of blood Pb levels in Kabwe children exceeding 100 μg/dL. While Pb pollution is a global issue, not many places have such continuous and comprehensive research has been conducted, and there is much to be learned from the knowledge accumulated in these areas. Because the high levels of Pb accumulation in humans and the adverse health effects were clarified, we consider that it is important to combine mining activities, which are a key industry, with measures to prevent environmental pollution.
Collapse
Affiliation(s)
- Hokuto Nakata
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; The University of Zambia, School of Veterinary Medicine, P.O. Box 32379, Lusaka, Zambia
| | - John Yabe
- The University of Zambia, School of Veterinary Medicine, P.O. Box 32379, Lusaka, Zambia; University of Namibia, School of Veterinary Medicine, P/B. 13301, Windhoek, Namibia
| | - Kaampwe Muzandu
- The University of Zambia, School of Veterinary Medicine, P.O. Box 32379, Lusaka, Zambia
| | - Andrew Kataba
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; The University of Zambia, School of Veterinary Medicine, P.O. Box 32379, Lusaka, Zambia
| | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Kita-ku, Sapporo 060-0812, Japan; WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Japan.
| | - Marie-Noel Brune Drisse
- Department of Environment, Climate and Health, World Health Organization, Geneva, Switzerland
| | - Lesley Jayne Onyon
- Department of Environment, Climate and Health, World Health Organization, Geneva, Switzerland
| | - Julia Gorman
- Department of Environment, Climate and Health, World Health Organization, Geneva, Switzerland
| | - Poudel Kritika
- Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Kita-ku, Sapporo 060-0812, Japan; WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Japan
| | - Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Kita-ku, Sapporo 060-0812, Japan; WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Development, North-West University, Potchefstroom, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Kita-ku, Sapporo 060-0812, Japan; WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
311
|
Kaur S, Garg N, Rubal R, Dhiman M. Correlative study on heavy metal-induced oxidative stress and hypertension among the rural population of Malwa Region of Punjab, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90948-90963. [PMID: 35881282 DOI: 10.1007/s11356-022-20850-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal-induced toxicity contributes to the progression of various metabolic disorders and possible mechanisms involved in disease progression are not well established. In this study, the correlation of heavy metal exposure and hypertension have been demonstrated. The results showed that in hypertensive subjects, the lipid profiles (triglycerides, LDL-C, HDL-C, and total cholesterol) and cardiac markers (CK-MB and LDH) were altered abruptly. As a consequence of heavy- induced oxidative stress, the oxidants (TBARS and protein carbonyls) and antioxidants (SOD, GSH, and TAC) were significantly increased and decreased, respectively in hypertension subjects. The concentrations of heavy metals (Pb, Cd, and As) exceeded the permissible limits in hypertensive subjects. The Nrf-2 genotyping indicated that heavy metals may induce mutations at molecular level. The results of correlation analysis revealed that the heavy metals interact with cellular components and interfere with metabolic processes which then results in disturbed lipid profile, enhanced oxidative stress, and reduced antioxidant status. The current study systematically estimated the association of hair and nail heavy metal concentrations with hypertension among the population residing in the Malwa region of Punjab. The proposed study highlighted that heavy metals act as a silent risk factor in the hypertension progression in the population of Malwa region. Future studies are required to confirm current findings and further scrutinize the effect of heavy metals exposure in early adulthood, early, and late mid-life to develop metabolic complications such as hypertension.
Collapse
Affiliation(s)
- Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Neha Garg
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Rubal Rubal
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
312
|
Sadiku OO, Rodríguez-Seijo A. Metabolic and genetic derangement: a review of mechanisms involved in arsenic and lead toxicity and genotoxicity. Arh Hig Rada Toksikol 2022; 73:244-255. [PMID: 36607725 PMCID: PMC9985351 DOI: 10.2478/aiht-2022-73-3669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Urbanisation and industrialisation are on the rise all over the world. Environmental contaminants such as potentially toxic elements (PTEs) are directly linked with both phenomena. Two PTEs that raise greatest concern are arsenic (As) and lead (Pb) as soil and drinking water contaminants, whether they are naturally occurring or the consequence of human activities. Both elements are potential carcinogens. This paper reviews the mechanisms by which As and Pb impair metabolic processes and cause genetic damage in humans. Despite efforts to ban or limit their use, due to high persistence both continue to pose a risk to human health, which justifies the need for further toxicological research.
Collapse
Affiliation(s)
- Olubusayo Olujimi Sadiku
- University of Lagos, College of Medicine, Faculty of Basic Medical Sciences, Department of Medical Laboratory Science, Lagos, Nigeria
| | - Andrés Rodríguez-Seijo
- University of Porto, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- University of Porto, Faculty of Sciences, Biology Department, Porto, Portugal
- University of Vigo, Department of Plant Biology and Soil Sciences, Ourense, Spain
| |
Collapse
|
313
|
Mušović J, Vraneš M, Papović S, Gadžurić S, Ražić S, Trtić-Petrović T. Greener sample preparation method for direct determination of Cd(II) and Pb(II) in river sediment based on an aqueous biphasic system with functionalized ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
314
|
Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, Zhang W, Lin Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. ECO-ENVIRONMENT & HEALTH 2022; 1:229-243. [PMID: 38077254 PMCID: PMC10702911 DOI: 10.1016/j.eehl.2022.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2024]
Abstract
Heavy metal(loid)s (HMs) have caused serious environmental pollution and health risks. Although the past few years have witnessed the achievements of studies on environmental behavior of HMs, the related toxicity mechanisms, and pollution control, their relationship remains a mystery. Researchers generally focused on one topic independently without comprehensive considerations due to the knowledge gap between environmental science and human health. Indeed, the full life cycle control of HMs is crucial and should be reconsidered with the combination of the occurrence, transport, and fate of HMs in the environment. Therefore, we started by reviewing the environmental behaviors of HMs which are affected by a variety of natural factors as well as their physicochemical properties. Furthermore, the related toxicity mechanisms were discussed according to exposure route, toxicity mechanism, and adverse consequences. In addition, the current state-of-the-art of available technologies for pollution control of HMs wastewater and solid wastes were summarized. Finally, based on the research trend, we proposed that advanced in-operando characterizations will help us better understand the fundamental reaction mechanisms, and big data analysis approaches will aid in establishing the prediction model for risk management.
Collapse
Affiliation(s)
- Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuling Tu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ziyi Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanyu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
315
|
Olufemi AC, Mji A, Mukhola MS. Potential Health Risks of Lead Exposure from Early Life through Later Life: Implications for Public Health Education. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316006. [PMID: 36498077 PMCID: PMC9741093 DOI: 10.3390/ijerph192316006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/11/2022] [Indexed: 05/14/2023]
Abstract
Lead (Pb) exposure has been a serious environmental and public health problem throughout the world over the years. The major sources of lead in the past were paint and gasoline before they were phased out due to its toxicity. Meanwhile, people continue to be exposed to lead from time to time through many other sources such as water, food, soil and air. Lead exposure from these sources could have detrimental effects on human health, especially in children. UNICEF reported that approximately 800 million children have blood lead levels (BLLs) at or above 5 micrograms per deciliter (µg/dL) globally. This paper reports on the potential risks of lead exposure from early life through later life. The articles used in this study were searched from databases such as Springer, Science Direct, Hindawi, MDPI, Google Scholar, PubMed and other academic databases. The levels of lead exposure in low income and middle-income countries (LMICs) and high-income countries (HICs) were reported, with the former being more affected. The intake of certain nutrients could play an essential role in reducing (e.g., calcium and iron) or increasing (e.g., high fat foods) lead absorption in children. Elevated blood lead levels may disturb the cells' biological metabolism by replacing beneficial ions in the body such as calcium, magnesium, iron and sodium. Once these ions are replaced by lead, they can lead to brain disorders, resulting in reduced IQ, learning difficulties, reduced attention span and some behavioral problems. Exposure to lead at an early age may lead to the development of more critical problems later in life. This is because exposure to this metal can be harmful even at low exposure levels and may have a lasting and irreversible effect on humans. Precautionary measures should be put in place to prevent future exposure. These will go a long way in safeguarding the health of everyone, most especially the young ones.
Collapse
|
316
|
Völlmecke K, Afroz R, Bierbach S, Brenker LJ, Frücht S, Glass A, Giebelhaus R, Hoppe A, Kanemaru K, Lazarek M, Rabbe L, Song L, Velasco Suarez A, Wu S, Serpe M, Kuckling D. Hydrogel-Based Biosensors. Gels 2022; 8:768. [PMID: 36547292 PMCID: PMC9777866 DOI: 10.3390/gels8120768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
There is an increasing interest in sensing applications for a variety of analytes in aqueous environments, as conventional methods do not work reliably under humid conditions or they require complex equipment with experienced operators. Hydrogel sensors are easy to fabricate, are incredibly sensitive, and have broad dynamic ranges. Experiments on their robustness, reliability, and reusability have indicated the possible long-term applications of these systems in a variety of fields, including disease diagnosis, detection of pharmaceuticals, and in environmental testing. It is possible to produce hydrogels, which, upon sensing a specific analyte, can adsorb it onto their 3D-structure and can therefore be used to remove them from a given environment. High specificity can be obtained by using molecularly imprinted polymers. Typical detection principles involve optical methods including fluorescence and chemiluminescence, and volume changes in colloidal photonic crystals, as well as electrochemical methods. Here, we explore the current research utilizing hydrogel-based sensors in three main areas: (1) biomedical applications, (2) for detecting and quantifying pharmaceuticals of interest, and (3) detecting and quantifying environmental contaminants in aqueous environments.
Collapse
Affiliation(s)
- Katharina Völlmecke
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Rowshon Afroz
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Sascha Bierbach
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lee Josephine Brenker
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Sebastian Frücht
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Alexandra Glass
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Ryland Giebelhaus
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Axel Hoppe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Karen Kanemaru
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michal Lazarek
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Lukas Rabbe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Longfei Song
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Andrea Velasco Suarez
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michael Serpe
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Dirk Kuckling
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
317
|
Zhou N, Huang Y, Li M, Zhou L, Jin H. Trends in global burden of diseases attributable to lead exposure in 204 countries and territories from 1990 to 2019. Front Public Health 2022; 10:1036398. [PMID: 36504990 PMCID: PMC9727290 DOI: 10.3389/fpubh.2022.1036398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lead hazards are ubiquitous in the environment, and lead exposure has been proved to damage human health. Nevertheless, there is limited data on the global burden of diseases attributable to lead exposure. In this study, we evaluated the temporal-spatial trend of disease burden caused by lead exposure in 204 countries and territories from 1990 to 2019. Methods Based on Global Burden of Disease (GBD) Study 2019, deaths, disability-adjusted life years (DALYs), age-standardized mortality rate (ASMR) and DALYs rate (ASDR) were estimated by region, country, sex and age. The estimated annual percentage change (EAPC) was calculated to assess the temporal trends of ASMR and ASDR between 1990 and 2019. Results Global deaths increased from 0.53 (95% UI: 0.31, 0.77) to 0.90 (95% UI: 0.55, 1.29) million, and the number of DALYs increased from 16.02 (95% UI: 10.32, 22.17) to 21.68 (95% UI: 13.81, 30.30) million between 1990 and 2019. China, India and Bangladesh were top three countries with the largest number of deaths and DALYs in 2019. The ASMR (per 100,000 population) decreased from 14.47 (95% UI: 8.40, 21.43) to 11.48 (95% UI: 7.00, 16.49) with EAPC of -0.75 (95% UI: -0.87, -0.64), and the ASDR (per 100,000 population) decreased from 378.01 (95% UI: 240.55, 524.18) to 267.52 (95% UI: 170.57, 373.44) with EAPC of -1.19 (95% UI: -1.32, -1.07). Most of disease burden of lead exposure occurred in the men and elderly population. Stroke and ischemic heart disease were two key sources of disease burden of lead exposure. Also, a negative association between sociodemographic index (SDI) and disease burden of lead exposure was observed. Conclusions Lead exposure poses a significant disease burden globally, and is still a great threat to public health. Primary prevention measures of reducing lead exposure in the environment are essential.
Collapse
Affiliation(s)
- Nan Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yue Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Mingma Li
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Lu Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hui Jin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, Nanjing, China,*Correspondence: Hui Jin
| |
Collapse
|
318
|
Masoud MA, El-Khayatt AM, Shahien MG, Bakhit BR, Suliman II, Zayed AM. Radiation Attenuation Assessment of Serpentinite Rocks from a Geological Perspective. TOXICS 2022; 10:697. [PMID: 36422904 PMCID: PMC9698313 DOI: 10.3390/toxics10110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 05/14/2023]
Abstract
Serpentinites are metamorphic rocks that are widely applied as aggregates in the production of radiation-shielding concrete. Different varieties of massive serpentinite mountains located in Egypt exist without real investment. Hence, this study aims to evaluate the radiation shielding efficacy of three varieties of serpentinite rocks from different geological perspectives: mineralogical, geochemical, and morphological characteristics. X-ray diffraction, transmitted-light microscopy, and thermal analysis were required to characterize their mineralogical composition, while X-ray fluorescence was necessary to investigate their geochemical features. Moreover, scanning electron microscopy was used to detect their morphological characteristics. On the other hand, the PuBe source and stilbene detector were employed for the experimental determination of fast neutrons and γ-ray attenuations, which were conducted at energy ranges of 0.8−11 and 0.4−8.3 MeV, respectively. Based on the mineralogical, geochemical, and morphological characteristics of these rocks, the radiation attenuation capacity of lizardite > antigorite > chrysotile. However, these serpentinites can be applied as a natural alternative to some radiation-shielding concrete in radiotherapy centers and other counterpart facilities.
Collapse
Affiliation(s)
- Mostafa A. Masoud
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| | - Ahmed M. El-Khayatt
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11642, Saudi Arabia
| | - Mohamed G. Shahien
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| | - Bottros R. Bakhit
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| | - Ibrahim I. Suliman
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11642, Saudi Arabia
| | - Ahmed M. Zayed
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| |
Collapse
|
319
|
Obinna UCHEWAO, Shallom EMECHETAS, Ogugua EGWUA, Joy EDEC, Augustine IBEGBUO. Neuromodulatory roles of PIPER GUINEENSE and honey against Lead-Induced neurotoxicity in social interactive behaviors and motor activities in rat models. AIMS Neurosci 2022; 9:460-478. [PMID: 36660078 PMCID: PMC9826751 DOI: 10.3934/neuroscience.2022026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Piper guineense and honey contain antioxidative, anti-inflammatory, and antimicrobial properties that can help restore neuronal and other cell damage. To investigate the neuromodulatory roles of p. guineense and honey against lead toxicity on the hippocampus and cerebellum, impairing social behaviors and motor activities. Methodology Thirty Wistar rats were separated into six groups of five rats each, marked with dye. Group A served as control; B was untreated lead; C was a medium dose of the extract (50 mg/kg) and honey (1000 mg/kg); D was a high dose of the extract (80 mg/kg) and honey (1500 mg/kg); E received extract (80 mg/kg), and F received honey (1500 mg/kg). All groups received 110 mg/kg of lead orally, except the control. Social interaction, antidepressant effects, and motor activities were studied using a sociability chamber (SC), Forced Swim Test (FST), and String methods. A blood sample was used to evaluate glutathione peroxidase (GPx) and glutathione oxide transaminase (GOT), while the lipid level was estimated using cerebellar homogenate. Neuronal damage, vacuolation, necrosis, cell degeneration, and alterations in both hippocampus and cerebellum marked untreated group, with decreased GPx and GOT activities followed by impaired motor activities, social behavior, memory, and motivation. Using SCT, group B spent significantly lesser time (47.60 ± 47.60) with stranger 1 compared to A (138.20 ± 34.05), while group C spent considerably more time with stranger 1 (86.80 ± 30.32) than group B at P ≥ 0.05. The treatment increased the enzyme level and restored histoarchitecture (Figures 1-12), improving motor activities, social behavior, memory, motivation, and social affiliation (Tables 3, 4, 2, and 6). The extract and honey may be helpful as neuromodulators in lead toxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- UCHEWA O. Obinna
- * Correspondence: E-mail: ; Tel: +2348172628746 or +2347061644732
| | | | | | | | | |
Collapse
|
320
|
An Evaluation of the Biocatalyst for the Synthesis and Application of Zinc Oxide Nanoparticles for Water Remediation—A Review. Catalysts 2022. [DOI: 10.3390/catal12111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global water scarcity is threatening the lives of humans, and it is exacerbated by the contamination of water, which occurs because of increased industrialization and soaring population density. The available conventional physical and chemical water treatment techniques are hazardous to living organisms and are not environmentally friendly, as toxic chemical elements are used during these processes. Nanotechnology has presented a possible way in which to solve these issues by using unique materials with desirable properties. Zinc oxide nanoparticles (ZnO NPs) can be used effectively and efficiently for water treatment, along with other nanotechnologies. Owing to rising concerns regarding the environmental unfriendliness and toxicity of nanomaterials, ZnO NPs have recently been synthesized through biologically available and replenishable sources using a green chemistry or green synthesis protocol. The green-synthesized ZnO NPs are less toxic, more eco-friendly, and more biocompatible than other chemically and physically synthesized materials. In this article, the biogenic synthesis and characterization techniques of ZnO NPs using plants, bacteria, fungi, algae, and biological derivatives are reviewed and discussed. The applications of the biologically prepared ZnO NPs, when used for water treatment, are outlined. Additionally, their mechanisms of action, such as the photocatalytic degradation of dyes, the production of reactive oxygen species (ROS), the generation of compounds such as hydrogen peroxide and superoxide, Zn2+ release to degrade microbes, as well as their adsorbent properties with regard to heavy metals and other contaminants in water bodies, are explained. Furthermore, challenges facing the green synthesis of these nanomaterials are outlined. Future research should focus on how nanomaterials should reach the commercialization stage, and suggestions as to how this ought to be achieved are presented.
Collapse
|
321
|
Mayer MM, Basta NT, Scheckel KG. Using phosphate amendments to reduce bioaccessible Pb in contaminated soils: A meta-analysis. FRONTIERS IN SOIL SCIENCE 2022; 2:1-14. [PMID: 36733849 PMCID: PMC9890325 DOI: 10.3389/fsoil.2022.1028328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Measuring the reduction of in vitro bioaccessible (IVBA) Pb from the addition of phosphate amendments has been researched for more than 20 years. A range of effects have been observed from increases in IVBA Pb to almost 100% reduction. This study determined the mean change in IVBA Pb as a fraction of total Pb (AC) and relative to the IVBA Pb of the control soil (RC) with a random effects meta-analysis. Forty-four studies that investigated the ability of inorganic phosphate amendments to reduce IVBA Pb were identified through 5 databases. These studies were split into 3 groups: primary, secondary, and EPA Method 1340 based on selection criteria, with the primary group being utilized for subgroup analysis and meta-regression. The mean AC was approximately -12% and mean RC was approximately -25% for the primary and secondary groups. For the EPA Method 1340 group, the mean AC was -5% and mean RC was -8%. The results of subgroup analysis identified the phosphorous amendment applied and contamination source as having a significant effect on the AC and RC. Soluble amendments reduce bioaccessible Pb more than insoluble amendments and phosphoric acid is more effective than other phosphate amendments. Urban Pb contamination associated with legacy Pb-paint and tetraethyl Pb from gasoline showed lower reductions than other sources such as shooting ranges and smelting operations. Meta-regression identified high IVBA Pb in the control, low incubated soil pH, and high total Pb with the greater reductions in AC and RC. In order to facilitate comparisons across future remediation research, a set of minimum reported data should be included in published studies and researchers should use standardized in vitro bioaccessibility methods developed for P-treated soils. Additionally, a shared data repository should be created for soil remediation research to enhance available soil property information and better identify unique materials.
Collapse
Affiliation(s)
- Manfred M. Mayer
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, United States
| | - Nicholas T. Basta
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, United States
| | - Kirk G. Scheckel
- U.S. Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Cincinnati, OH, United States
| |
Collapse
|
322
|
Mbunga BK, Gjengedal ELF, Bangelesa F, Langfjord MM, Bosonkie MM, Strand TA, Mapatano MA, Engebretsen IMS. Heavy metals in children's blood from the rural region of Popokabaka, Democratic Republic of Congo: a cross-sectional study and spatial analysis. Sci Rep 2022; 12:18576. [PMID: 36329123 PMCID: PMC9633830 DOI: 10.1038/s41598-022-23332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to heavy metals can affect cell differentiation, neurocognitive development, and growth during early life, even in low doses. Little is known about heavy metal exposure and its relationship with nutrition outcomes in non-mining rural environments. We carried out a community-based cross-sectional study to describe the distribution of four heavy metal concentrations [arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg)] in the serum of a representative population of children aged 12 to 59 months old from the rural region of Popokabaka, Democratic Republic of Congo. The four metals were measured in 412 samples using inductively coupled plasma-mass spectrometry (ICP-MS). Limits of detection (LoD) and quantification (LoQ) were set. Percentiles were reported. Statistical and geospatial bivariate analyses were performed to identify relationships with other nutrition outcomes. Arsenic was quantified in 59.7%, while Cd, Hg, and Pb were quantified in less than 10%, all without toxicities. The arsenic level was negatively associated with the zinc level, while the Hg level was positively associated with the selenium level. This common detection of As in children of Popokabaka requires attention, and urgent drinking water exploration and intervention for the profit of the Popokabaka community should be considered.
Collapse
Affiliation(s)
- Branly Kilola Mbunga
- grid.9783.50000 0000 9927 0991Kinshasa School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Elin L. F. Gjengedal
- grid.19477.3c0000 0004 0607 975XFaculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Freddy Bangelesa
- grid.9783.50000 0000 9927 0991Kinshasa School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo ,grid.8379.50000 0001 1958 8658Institute of Geography and Geology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mina M. Langfjord
- grid.19477.3c0000 0004 0607 975XFaculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Marc M. Bosonkie
- grid.9783.50000 0000 9927 0991Kinshasa School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Tor A. Strand
- grid.7914.b0000 0004 1936 7443Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5009 Bergen, Norway ,grid.412929.50000 0004 0627 386XDepartment of Research, Innlandet Hospital Trust, 2609 Lillehammer, Norway
| | - Mala Ali Mapatano
- grid.9783.50000 0000 9927 0991Kinshasa School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Ingunn M. S. Engebretsen
- grid.7914.b0000 0004 1936 7443Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
323
|
Giovos I, Brundo MV, Doumpas N, Kazlari Z, Loukovitis D, Moutopoulos DK, Spyridopoulou RNA, Papadopoulou A, Papapetrou M, Tiralongo F, Ferrante M, Copat C. Trace elements in edible tissues of elasmobranchs from the North Aegean Sea (Eastern Mediterranean) and potential risks from consumption. MARINE POLLUTION BULLETIN 2022; 184:114129. [PMID: 36307944 DOI: 10.1016/j.marpolbul.2022.114129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Trace elements have the potential to bioaccumulate in marine organisms and to biomagnify towards the upper levels of marine trophic webs, resulting in a range of negative effects on organisms. Elasmobranchs are highly susceptible to bioaccumulation of trace metals, while their consumption by humans is increasing worldwide. Therefore, it is important to monitor the trace metal content in the edible tissues of elasmobranchs. This work reveals the content of 12 trace metals in the edible tissues of 10 elasmobranch species caught in Greek waters. Levels above the permissible limits for Hg and Pb were found in some species, while analysis of the lifetime consumption risk for adults and children using the Target Hazard Quotient (THQ), revealed a high risk for two of the most toxic substances on the priority list for substances, namely As and Hg. These are preliminary results, and further research is required to understand better the issue.
Collapse
Affiliation(s)
- Ioannis Giovos
- iSea, Environmental Organisation for the Preservation of the Aquatic Ecosystems, Thessaloníki, Greece; University of Patras, Department of Animal Production, Fisheries & Aquaculture, Mesolongi, Greece; Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Nikolaos Doumpas
- iSea, Environmental Organisation for the Preservation of the Aquatic Ecosystems, Thessaloníki, Greece
| | - Zoi Kazlari
- Lab of Agrobiotechnology and Inspection of Agricultural Products, School of Agriculture, International Hellenic University, Sindos, Thessaloniki, Greece
| | - Dimitrios Loukovitis
- Lab of Agrobiotechnology and Inspection of Agricultural Products, School of Agriculture, International Hellenic University, Sindos, Thessaloniki, Greece; Research Institute of Animal Science, ELGO Demeter, 58100 Paralimni, Giannitsa, Greece
| | - Dimitrios K Moutopoulos
- University of Patras, Department of Animal Production, Fisheries & Aquaculture, Mesolongi, Greece
| | | | - Athina Papadopoulou
- iSea, Environmental Organisation for the Preservation of the Aquatic Ecosystems, Thessaloníki, Greece
| | - Maria Papapetrou
- Lab of Agrobiotechnology and Inspection of Agricultural Products, School of Agriculture, International Hellenic University, Sindos, Thessaloniki, Greece
| | - Francesco Tiralongo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy; Ente Fauna Marina Mediterranea, Avola, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| |
Collapse
|
324
|
Taylor S, Terkildsen M, McQuilty R, Lee D, Wing-Simpson A, Gray R. Non-essential heavy metals and protective effects of selenium against mercury toxicity in endangered Australian sea lion (Neophoca cinerea) pups with hookworm disease. ENVIRONMENT INTERNATIONAL 2022; 169:107521. [PMID: 36148712 DOI: 10.1016/j.envint.2022.107521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The endangered Australian sea lion, Neophoca cinerea, faces ongoing population decline. Identification of key threats to N. cinerea population recovery, including disease and pollutants, is an objective of the species' recovery plan. Previous studies have identified Uncinaria sanguinis, an intestinal nematode, as a significant cause of disease and mortality in N. cinerea pups. Given the impact of heavy metals on the immune response, investigation of these pollutants is critical. To this end, the concentrations of arsenic (As), total mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb) and selenium (Se) were determined in blood collected from N. cinerea pups sampled during the 2017/18, 2019 and 2020/21 breeding seasons at Seal Bay Conservation Park, South Australia. Significant differences (p < 0.05) in Hg, As, Cr, and Se concentrations and molar ratio of Se:Hg were seen between breeding seasons. Pup age, maternal parity and inter-individual foraging behaviour were considered factors driving these differences. The concentrations of Hg (357, 198 and 241 µg/L) and As (225, 834 and 608 µg/L) were high in 2017/18, 2019 and 2020/21 respectively with Hg concentrations in the blood of N. cinerea pups above toxicological thresholds reported for marine mammals. The concentration of Se (1332, 647, 763 µg/L) and molar ratio of Se:Hg (9.47, 7.98 and 6.82) were low compared to other pinniped pups, indicating potential vulnerability of pups to the toxic effects of Hg. Significant (p < 0.05) negative associations for Pb and Cd with several red blood cell parameters suggest they could be exacerbating the anaemia caused by hookworm disease. Temporal (age-related) changes in element concentrations were also seen, such that pup age needs to be considered when interpreting bioaccumulation patterns. Further investigation of the role of elevated heavy metal concentrations on N. cinerea pup health, disease and development is recommended, particularly with respect to immunological impacts.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Robert McQuilty
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - David Lee
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Aileen Wing-Simpson
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
325
|
Zhou Z, Dong Y, Zhu L, Xia X, Li S, Wang G, Shi K. Effective and stable adsorptive removal of Cadmium(II) and Lead(II) using selenium nanoparticles modified by microbial SmtA metallothionein. CHEMOSPHERE 2022; 307:135818. [PMID: 35944684 DOI: 10.1016/j.chemosphere.2022.135818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Metallothionein SmtA-modified selenium nanoparticles (SmtA-SeNPs), efficient adsorbents for Cd(II) and Pb(II), were synthesized in the present work. The ligand, microbial SmtA protein, was synthesized using an engineered strain Escherichia coli, posing the benefits of simplicity, safety, and high production. SmtA-SeNPs were spheres with diameters between 68.1 and 122.4 nm, containing amino, hydroxyl, and sulfhydryl functional groups with negatively charged (pH > 5). SmtA-SeNPs displayed better adsorption performance than dissociative SmtA and SeNPs. The adsorption of Cd(II) and Pb(II) mainly depends on the electrostatic attractions and the metal chelation of abundant functional groups. The maximum adsorption capacity was 506.3 mg/g for Cd(II) and 346.7 mg/g for Pb(II), which were higher than the values of most nanoparticles. In addition, SmtA-SeNPs were immobilized with a membrane filter to produce a SmtA-SeNPs filter, and the percentage removal of Cd(II) and Pb(II) increased from 26.75% to 98.13% for Cd(II) and from 9.95% to 99.20% compared with the blank filter. Moreover, the SmtA-SeNPs filter was regenerated using subacid deionized water, and the filter exhibited a stable removal ratio of Cd(II) and Pb(II) in ten continuous cycles of Cd(II)- or Pb(II)-containing wastewater treatment. The residual amounts of Cd and Pb met national standard levels of wastewater discharge.
Collapse
Affiliation(s)
- Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yixuan Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, PR China
| | - Sikui Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
326
|
Baral T, Datta C, Das S. Cu Nanoparticle-Based Solution and Paper Strips for Colorimetric and Visual Detection of Heavy Metal Ions. ACS OMEGA 2022; 7:37279-37285. [PMID: 36312334 PMCID: PMC9609079 DOI: 10.1021/acsomega.2c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The intrinsic toxicity of heavy metal ions to human health or other species calls for the need to develop an analytical tool for the easy and rapid detection of these ions based on inexpensive and stable nanomaterials. This article describes the potential utility of stable Cu nanoparticles (CuNPs) in the detection of toxic metal ions by solution and paper strip-based methods. For this, first, a dodecyl sulfate ion-stabilized CuNP (DS-CuNP) colloid was synthesized by a chemical reduction method. This was followed by treating the dispersion with heavy metal ions and monitoring the spectral change by spectrophotometric and colorimetric techniques. Among a host of metal ions, Hg2+, Cd2+, and Pb2+ have been found to significantly affect the surface plasmon resonance band of CuNPs by concomitantly altering the color of its solution. Notably, the brownish color of CuNP solution changed readily to milky white in the presence of Hg2+. Furthermore, the fabricated brownish-yellow test paper strips containing DS-CuNPs transformed to a prominent white color in the presence of a few drops of Hg2+ solution. This change in color of the paper strips could be visually detected by the naked eye. The experiments involving the detection of the various ions were carried out by optimizing the experimental conditions qualitatively as well as quantitatively. The limit of detection of the analytes (metal ions) has been found to be 10 μM. Routine analytical techniques like UV-vis spectroscopy, dynamic light scattering, transmission electron microscopy, and Fourier transform infrared spectroscopy formed part of the experiments.
Collapse
Affiliation(s)
- Trilochan Baral
- Department
of Chemistry, National Institute of Technology
Agartala, Tripura799046, India
| | - Chitraniva Datta
- Department
of Chemistry, National Institute of Technology
Agartala, Tripura799046, India
| | - Subhojit Das
- Department
of Chemistry, National Institute of Technology
Agartala, Tripura799046, India
| |
Collapse
|
327
|
Wąsik M, Miśkiewicz-Orczyk K, Słota M, Lisowska G, Kasperczyk A, Bellanti F, Dobrakowski M, Błaszczyk U, Bułdak RJ, Kasperczyk S. Relationship between Postural Stability, Lead Content, and Selected Parameters of Oxidative Stress. Int J Mol Sci 2022; 23:12768. [PMID: 36361558 PMCID: PMC9655670 DOI: 10.3390/ijms232112768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2024] Open
Abstract
This study attempts to determine whether the increased blood lead concentration affects the posturographic test and to determine the relationship between the parameters of posture stability and selected parameters of oxidative stress. The study population consisted of 268 male employees and was divided into two equal subgroups, depending on the lead content in the blood. A posturographic examination was performed. Concentrations of lead, cadmium, zinc protoporphyrin, selected essential elements, and selected markers of oxidative stress in the blood were tested. Higher blood lead concentrations positively affected the values of the sway results: the field and the mean velocity of the center of the feet pressure in posturography. The absolute value of the proprioception ratio was similar in both subgroups. The content of malondialdehyde shows a statistically significantly higher value in a subgroup with high blood lead concentration and exhibits significant correlations only with some of the posturography parameters. The lipofuscin content in erythrocytes correlates with the results of the posturography test. Zinc protoporphyrin, total oxidant status, total antioxidant capacity, selected minerals, and metals did not correlate with the results of the posturography test. In conclusion, posturographic results correlate only with selected markers of oxidative stress, so it can be assumed that the effect on the body balance is only partial.
Collapse
Affiliation(s)
- Marta Wąsik
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Laryngological Oncology, Medical University of Silesia in Katowice, Skłodowskiej-Curie 10, 41-840 Zabrze, Poland
| | - Michał Słota
- ARKOP Sp. z o.o., Kolejowa 34a, 32-332 Bukowno, Poland
| | - Grażyna Lisowska
- Department of Otorhinolaryngology and Laryngological Oncology, Medical University of Silesia in Katowice, Skłodowskiej-Curie 10, 41-840 Zabrze, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Urszula Błaszczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Rafał Jakub Bułdak
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
328
|
Rahman SU, Yasin G, Nawaz MF, Cheng H, Azhar MF, Riaz L, Javed A, Lu Y. Evaluation of heavy metal phytoremediation potential of six tree species of Faisalabad city of Pakistan during summer and winter seasons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115801. [PMID: 35930882 DOI: 10.1016/j.jenvman.2022.115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/16/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution induced by heavy metals has been identified as a leading threat in the modern era. Woody tree species may play a crucial role in the removal of heavy metals from soil and air, thus minimizing pollution potential. The present study was designed to evaluate the phytoremediation potential of six tree species; Azadirachta indica, Cassia fistula, Conocarpus erectus, Eucalyptus camaldulensis, Morus alba, and Populus deltoids, respectively, in the industrial and residential areas of Faisalabad based on the concentrations of lead (Pb), zinc (Zn), cadmium (Cd), and copper (Cu) in their leaves and barks in winter (2018) and summer (2019) seasons. The seasonal contents of heavy metals in both the leaves and barks of these trees decreased in the order of: Zn > Pb > Cu > Cd at both study sites. The highest heavy metal contents were recorded in the leaves and barks of trees grown in the industrial areas as compared to residential areas, with leaves and barks having higher contents of heavy metals in the summer than winter. The tree species exhibited significantly different capacity for heavy metal accumulation, with the accumulation of Cd decreased in the order of: E. camaldulensis > M. alba > C. erectus > A. indica > P. deltoids > C. fistula, and while the order varied for different heavy metals. Overall, M. alba, E. camaldulensis and A. indica performed well in accumulating the targeted heavy metals from the ambient environment. Among the six tree species grown commonly in Faisalabad city, M. alba, E. camaldulensis, and A. indica are recommended for the industrial and residential areas due to their phytoremediation capacity for heavy metals.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakriya University Multan, Pakistan.
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Muhammad Farooq Azhar
- Department of Forestry and Range Management, Bahauddin Zakriya University Multan, Pakistan.
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, Narowal, 51750, Punjab, 453007, Pakistan.
| | - Atif Javed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Yanlinag Lu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
329
|
Teschke R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int J Mol Sci 2022; 23:12213. [PMID: 36293069 PMCID: PMC9602583 DOI: 10.3390/ijms232012213] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, 63450 Hanau, Germany
| |
Collapse
|
330
|
Mutagenic, Carcinogenic, and Teratogenic Effect of Heavy Metals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8011953. [PMID: 36248437 PMCID: PMC9556253 DOI: 10.1155/2022/8011953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Heavy metal (HM)-induced toxicity and its associated complications have become a major issue in the medical world. HMs are not biodegradable, enter into the food chain, and gets accumulated in the living systems. Increased concentrations and accumulation of HMs can cause severely damaging effects and severe complications in living organisms and can even lead to the death of the organism. In Ayurvedic medicine, ingredients of natural origin, including whole plants or certain portions of the plant, animal sources, and minerals, are used for therapeutic purposes as medicine, both alone and in combination. HM such as cadmium, copper, zinc, lead, chromium, nickel, and arsenic cause hazardous effects on animals, human health, and the environment. This review focuses on mutagenic, carcinogenic, and teratogenic effects of HM , mechanism, organ toxicity, available remedies in the market, and their side effects. Also, emphasis is given to alternative systems of medicine to treat HM toxicity.
Collapse
|
331
|
Wróbel M, Trzyna A, Zeynalli F, Rybak J. The Comprehensive Health Risk Assessment of Polish Smelters with Ecotoxicological Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12634. [PMID: 36231934 PMCID: PMC9564705 DOI: 10.3390/ijerph191912634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Air pollution connected to smelter activity can significantly deteriorate the quality of soil due to the precipitation of rain or simple deposition of the air particulates into the ground. Hence, in this study, we focused on the analysis of the soil which can inform us about the general state of the environment in the area and the possible health hazard for humans. If the top layer of the soil is in bad condition, it can indicate that air pollution in the area is also not in good condition, and the lives of the inhabitants of these areas can be at serious risk. To comprehensively identify the level of contamination in the soils from the areas of Polish smelters, studies of the concentration of potentially toxic elements (PTEs) in the soil were conducted. On the basis of the obtained results, health risk assessment was performed to verify the possible influence on human health. The results showed that the non-carcinogenic risk existed only for Oława, while the possibility of the carcinogenic risk occurred in all of the studied places. The outcome is very disturbing and certain steps must be undertaken in order to protect the lives of the inhabitants. Additionally, in order to assess the suitability of soils for the cultivation of edible plants, phytotoxicity tests were conducted. The obtained results revealed that in all the studied areas, a visible inhibition of roots and shoots can be observed. The conducted study indicated the most polluted regions and the possible health hazard, and it can provide the general information about the impact of smelters on the environment.
Collapse
|
332
|
Jaafarzadeh M, Mahjoob Khaligh R, Mohsenifar Z, Shabani A, Rezvani Gilkalaei M, Rajabi Keleshteri S, Beigi Harchegani A. Protecting Effects of N-acetyl Cysteine Supplementation Against Lead and Cadmium-Induced Brain Toxicity in Rat Models. Biol Trace Elem Res 2022; 200:4395-4403. [PMID: 34816377 DOI: 10.1007/s12011-021-03034-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/13/2021] [Indexed: 01/13/2023]
Abstract
We aimed to investigate mitigating effects of N-acetylcysteine (NAC) on the oxidative stress, apoptosis and Parkinson's disease (PD)-related genes in the brain tissue of male rats exposed to continuous doses of cadmium and lead. Rats were randomly divided into five groups, including G1 (control), G2 (continuous dose of Cd), G3 (continuous dose of Pb), G4 (continuous dose of Cd + NAC), and G5 (continuous dose of Pb + NAC). Biomarkers of oxidative stress, malondialdehyde (MDA), and total antioxidant capacity (TAC) were measured. Expression of PD- and apoptosis-related genes was considered using RT-PCR. Chronic exposure to these heavy metals was associated with accumulation of Pb and Cd in the brain and blood and caused severe morphological changes in the brain, as well as decreased body and brain weights. Continuous exposure to Cd and Pb significantly decreased TAC content and SOD expression but increased MDA level in the brain tissues (P < 0.001). A significant increase was observed in expression of PD-related genes, Parkin, Pink1, LRRK2, SNCA, and Caspase-3 in the brain tissues following exposure to Cd and Pb. Pb exhibited stronger toxicity on the brain tissue compared to Cd. NAC supplementation not only improved morphological changes, but also compensated antioxidant capacity and expression of apoptosis- and PD-related genes in the brain tissues when compared to rats exposed to Pb and Cd alone. Chronic exposure to Pb and Cd is strongly associated with accumulation of these heavy metals in the brain, morphological changes, antioxidants depletion, oxidative stress, and brain cells apoptosis. Changes in expression of PD-related genes indicate the higher risk of PD among individuals who are chronically exposed to these heavy metals. NAC can protect brain tissue against Pb and Cd toxicity by elevating antioxidants capacity, mitigating oxidative stress, apoptosis, and down-regulating of PD-related genes.
Collapse
Affiliation(s)
- MohammadMahdi Jaafarzadeh
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Roham Mahjoob Khaligh
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Zhaleh Mohsenifar
- Ayatollah Taleghani Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Shabani
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Sara Rajabi Keleshteri
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Asghar Beigi Harchegani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
333
|
Oleko A, Pecheux M, Saoudi A, Zeghnoun A, Hulin M, Le Barbier M, Menard C, Denys S, Fillol C. Estimation of blood lead levels in the French population using two complementary approaches: Esteban (2014-2016) as part of the human biomonitoring program and the national surveillance system for childhood lead poisoning (2015-2018). ENVIRONMENTAL RESEARCH 2022; 213:113630. [PMID: 35679905 DOI: 10.1016/j.envres.2022.113630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Used widely for centuries, lead is a common environmental pollutant. As a cumulative toxic, its presence in the body is always evidence of exposure, and health effects occur without threshold. Though regulated by European directives, lead requires close monitoring due to its environmental persistence and toxicity. METHODS The first data source was the French surveillance system for monitoring childhood lead poisoning, which records the screening results of children (-18 years), providing data on their temporal and geographical distribution, characteristics, and risk factors. The second data source was Esteban, a cross-sectional study conducted in 2014-2016 on a random sample of the French population as part of the human biomonitoring program. The Esteban lead study concerns 904 children (6-17 years) and 999 adults (18-74 years), providing data on biological samples, sociodemographic characteristics, occupational exposure, environmental and dietary factors. RESULTS The surveillance system highlighted that lead poisoning affected 10% of children screened between 2015 and 2018. The main risk factor remains housing. Esteban confirmed this observation, finding a general mean of blood lead level (BLL) at 9.9 and 18.5 μg/L for children and adults, respectively. In children, parents' occupation increased BLLs. In adults, the greatest exposure factors were smoking, age, place of residence, alcohol, bread-based products, and homegrown livestock products. In both, drinking tap water and year of housing construction increased BLLs. CONCLUSIONS The surveillance system showed a high number of children with lead poisoning despite the implementation of prevention measures, which mainly concern lead paints in old and degraded homes. To help identify children at risk, healthcare providers need to know about exposure from housing and the emerging sources identified in the Esteban survey. Despite lower BLLs, the well-known risk factors of lead exposure persist, meaning prevention efforts must continue in order to limit their impact on the population.
Collapse
Affiliation(s)
- Amivi Oleko
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France.
| | - Marie Pecheux
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Abdesattar Saoudi
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Abdelkrim Zeghnoun
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Marion Hulin
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Mélina Le Barbier
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Céline Menard
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Sébastien Denys
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Clémence Fillol
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| |
Collapse
|
334
|
Joshi DJ, Lalrinhlupuii, Malek NI, Muthukumaran RB, Kailasa SK. Microwave-Assisted Synthesis of Red Emitting Copper Nanoclusters Using Trypsin as a Ligand for Sensing of Pb 2+ And Hg 2+ Ions in Water and Tobacco Samples. APPLIED SPECTROSCOPY 2022; 76:1234-1245. [PMID: 35477299 DOI: 10.1177/00037028221100544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a microwave assisted method was developed for synthesis of red fluorescent copper nanoclusters (NCs) using trypsin as a template (trypsin-Cu). The as-synthesized trypsin-Cu NCs are stable and water soluble, exhibiting fluorescence emission at 657 nm when excited at 490 nm. The as-prepared red-emitting trypsin-Cu NCs were characterized by using several analytical techniques such as ultraviolet-visible (UV-Vis) and fluorescence, fluorescence lifetime, Fourier transform infrared, and X-ray photoelectron spectroscopic techniques. Red-emitting trypsin-Cu NCs acted as a nanosensor for sensing both Pb2+ and Hg2+ ions through fluorescence quenching. Using this approach, good linearities are observed in the range of 0.1-25 and of 0.001-1 μM with the lower limit of detection of 14.63 and 56.81 nM for Pb2+ and Hg2+ ions, respectively. Trypsin-Cu NCs-based fluorescence assay was successfully applied to detect both Hg2+ and Pb2+ ions in water and tobacco samples.
Collapse
Affiliation(s)
- Dharaben J Joshi
- Department of Chemistry, 123518Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Lalrinhlupuii
- Department of Chemistry, 29670Mizoram University, Aizawl, India
| | - Naved I Malek
- Department of Chemistry, 123518Sardar Vallabhbhai National Institute of Technology, Surat, India
| | | | - Suresh Kumar Kailasa
- Department of Chemistry, 123518Sardar Vallabhbhai National Institute of Technology, Surat, India
| |
Collapse
|
335
|
Liu M, Wang W, Li J, Wang T, Xu Z, Song Y, Zhang W, Zhou L, Lian C, Yang J, Li Y, Sun Y, Tong S, Guo Y, Ge M. High fraction of soluble trace metals in fine particles under heavy haze in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156771. [PMID: 35724777 DOI: 10.1016/j.scitotenv.2022.156771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/17/2023]
Abstract
Atmospheric trace metals are a key component of particulate matter and significantly influence the atmospheric process and human health. The dissolved fraction of trace metals represents their bioavailability and exhibits high chemical activity. However, the optimum measurement method for detecting the soluble fraction of trace metals is still undetermined. The impact of variations in pollution on the soluble fraction is largely unrevealed. Therefore, in this work, a one-month field observation was conducted in Central China and different extraction solvents were used to determine the proper measurement method for the soluble fraction of trace metals and investigate the variation pattern under different pollution conditions. The findings show that solvents with acidity near that of aerosol water can better reflect the actual soluble fraction of trace metals in fine particulate matter. The soluble fraction of trace metals tends to increase with pollution level increased, demonstrating unexpectedly high health risks and chemical activity under heavy haze conditions. Our results indicate that remediation and trace metal pollution control are urgently needed.
Collapse
Affiliation(s)
- Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Ambient Air Quality Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tiantian Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Zhenying Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Wenyu Zhang
- Department of Clinical Research, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinxing Yang
- Sanmenxia Environmental Monitoring Station, Sanmenxia 472400, China
| | - Yanyu Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
336
|
Owumi SE, Arunsi UO, Oyewumi OM, Altayyar A. Accidental lead in contaminated pipe-borne water and dietary furan intake perturbs rats' hepatorenal function altering oxidative, inflammatory, and apoptotic balance. BMC Pharmacol Toxicol 2022; 23:76. [PMID: 36180958 PMCID: PMC9526313 DOI: 10.1186/s40360-022-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Inadvertent exposure to furan and Pb is associated with hepatorenal abnormalities in humans and animals. It is perceived that these two chemical species may work in synergy to orchestrate liver and kidney damage. Against this background, we investigated the combined effect of furan and incremental lead (Pb) exposure on hepatorenal dysfunction. Wistar rats (n = 30; 150 g) were treated for 28 days accordingly: Control; FUR (8 mg/kg), PbAc (100 µg/L), FUR + PbAc1 (8 mg/kg FUR + 1 µg/L PbAc); FUR + PbAc1 (8 mg/kg FUR + 10 µg/L PbAc), and FUR + PbAc1 (8 mg/kg FUR + 100 µg/L PbAc). Biomarkers of hepatorenal function, oxidative stress, inflammation, DNA damage, and apoptosis were examined. Furan and incrementally Pb exposure increased the levels of hepatorenal biomarkers and oxidative and pro-inflammatory mediators, including lipid peroxidation, reactive oxygen and nitrogen species, and interleukin-1 beta. Increased DNA damage, caspases- 9 and -3, and atypical histoarchitecture of the hepatorenal tissues exemplified furan and Pb treatment-related perturbations. Furthermore, the levels of antioxidants and IL-10 were also suppressed. Furan and Pb dose-dependently exacerbated hepatorenal derangements by altering the redox and inflammatory rheostats, worsened DNA damage, and related apoptotic onset that may potentiate hepatorenal disorders in humans and animals. The findings validate the synergistic effect of furan and Pb in the pathophysiology of kidney and liver disorders.
Collapse
Affiliation(s)
- Solomon E Owumi
- ChangeLab-Changing Life Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Room NB302 Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo, 200004, Nigeria.
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Omolola M Oyewumi
- ChangeLab-Changing Life Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Room NB302 Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo, 200004, Nigeria
| | - Ahmad Altayyar
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
337
|
Liu C, Mao W, You Z, Xu B, Chen S, Wu J, Sun C, Chen M. Associations between exposure to different heavy metals and self-reported erectile dysfunction: a population-based study using data from the 2001-2004 National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73946-73956. [PMID: 35643996 DOI: 10.1007/s11356-022-20910-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are ubiquitous and nonbiodegradable pollutants that are widely distributed in the environment. Heavy metal exposure can damage various biological tissues and cause several diseases. This study aimed to investigate the association between blood and urinary cadmium, lead, and mercury levels and erectile dysfunction (ED) based on data from the 2001-2004 National Health and Nutrition Examination Survey. In total, 3681 participants were included in the analysis. Results showed that participants with ED had high blood cadmium, mercury, creatinine, urinary lead, cadmium levels, low blood lead, serum cotinine, and urinary mercury levels. Multivariate logistic regression analysis showed that only blood cadmium level was an independent risk factor of ED (tertile [T]2 vs T1: odds ratio = 1.495, 95% confidence interval: 1.181-1.892, p = 0.001; T3 vs T1: odds ratio = 2.089, 95% confidence interval: 1.554-2.809, p < 0.001). The dose-response curve showed a positive nonlinear association between blood cadmium and lead levels and ED and a negative nonlinear association between blood and urinary mercury levels and ED after propensity score matching. In conclusion, heavy metal exposure is closely correlated with the development of ED, and a high blood cadmium level is an independent risk factor of ED.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Zonghao You
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Chao Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
338
|
Bramwell L, Morton J, Harding AH, Lin N, Entwistle J. Determinants of blood and saliva lead concentrations in adult gardeners on urban agricultural sites. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3493-3513. [PMID: 34622415 PMCID: PMC9522656 DOI: 10.1007/s10653-021-01095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Soil Pb concentrations at urban agriculture sites (UAS) commonly exceed recommended safe levels. There is a lack of evidence regarding uptake of Pb by gardeners using such sites for food crops. Our study aimed to elucidate whether gardening in soil with raised Pb levels results in Pb body burdens of concern to health, and to assess confounding factors influencing Pb body burden. Our cross-sectional case study measured Pb in saliva and blood of UAS gardeners (n = 43), soil and produce samples from their UAS, and home tap water. Blood and saliva Pb concentrations were compared with those from non-UAS gardener controls (n = 29). A health risk threshold of 5 µg dL-1 blood Pb level (BLL) was selected in keeping with international guidance. Detailed surveys investigated individuals' anthropometrics and potential Pb exposures from diet, and historic and everyday activities. Saliva was not found to be a suitable biomarker of adult Pb exposure in this context. Predictors of higher BLLs were being older, being male and eating more root vegetables and shrub fruit. Eating more green vegetables predicted a lower BLL, suggesting a protective effect against Pb uptake. UAS gardeners' BLLs (geometric mean 1.53; range 0.6-4.1 µg dL-1) were not significantly higher (p = 0.39) than the control group (geometric mean 1.43; range 0.7-2.9 µg dL-1). All BLLs were below 5 µg dL-1 except one resulting from occupational exposure. Having paired the UAS gardeners with closely matched controls, we found Pb in UAS soils (with range 62-1300 mg kg-1from common urban sources) unlikely to pose an additional risk to adult health compared to their neighbours who did not access UAS. As such, other Pb sources may be the dominant factor controlling BLL.
Collapse
Affiliation(s)
- Lindsay Bramwell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX Tyne and Wear UK
- Present Address: Department of Geography and Environmental Sciences, Northumbria University, Ellison Building, Newcastle Upon Tyne, NE1 8ST Tyne and Wear UK
| | - Jackie Morton
- Health and Safety Executive Science and Research Centre, Buxton, SK17 9JN Derbyshire UK
| | - Anne-Helen Harding
- Health and Safety Executive Science and Research Centre, Buxton, SK17 9JN Derbyshire UK
| | - Nan Lin
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Building, Newcastle Upon Tyne, NE1 8ST Tyne and Wear UK
| | - Jane Entwistle
- Present Address: Department of Geography and Environmental Sciences, Northumbria University, Ellison Building, Newcastle Upon Tyne, NE1 8ST Tyne and Wear UK
| |
Collapse
|
339
|
Mabrouk S, Rinnert H, Balan L, Jasniewski J, Medjahdi G, Ben Chaabane R, Schneider R. Aqueous synthesis of core/shell/shell ZnSeS/Cu:ZnS/ZnS quantum dots and their use as a probe for the selective photoluminescent detection of Pb2+ in water. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
340
|
Gaine T, Tudu P, Ghosh S, Mahanty S, Bakshi M, Naskar N, Chakrabarty S, Bhattacharya S, Bhattacharya SG, Bhattacharya K, Chaudhuri P. Differentiating Wild and Apiary Honey by Elemental Profiling: a Case Study from Mangroves of Indian Sundarban. Biol Trace Elem Res 2022; 200:4550-4569. [PMID: 34860329 DOI: 10.1007/s12011-021-03043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/22/2021] [Indexed: 12/07/2022]
Abstract
Honey is a natural substance produced by honeybees from the nectar or secretion of flowering plants. Along with the botanical and geographical origin, several environmental factors also play a major role in determining the characteristics of honey. The aim of this study is to determine and compare the elemental concentration of various macro and trace elements in apiary and wild honeys collected from different parts of Indian Sundarbans. The elemental analysis was performed in inductively coupled plasma optical emission spectroscopy preceded by microwave digestion method. The concentrations of 19 elements (Ag, Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Se and Zn) were investigated from thirteen locations of Indian Sundarbans. This comparative study shows in wild honey samples, the concentration of K was highest followed by Ca, Mg and Na and Zn was lowest among all. In contrast, in apiary honey samples, Ca had maximum concentration followed by K, Mg and Na and Ag had minimum among all. The elemental concentration in honey from apiary was either equal or higher than their wild counterpart. The results of the factor analysis of PCA algorithm for wild and apiary honey samples were highly variable which implies that the elements are not coming from the same origin. The concentration of element was found to be highly variable across sites and across sources of honey samples.
Collapse
Affiliation(s)
- Tanushree Gaine
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
- Department of Environmental Studies, New Alipore College, Kolkata, West Bengal, 700053, India.
| | - Praveen Tudu
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Somdeep Ghosh
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Shouvik Mahanty
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Madhurima Bakshi
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
- School of Environmental Studies, Seth Soorajmull Jalan Girls' College, Kolkata, West Bengal, 700073, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, West Bengal, 700064, India
| | - Souparna Chakrabarty
- Department of Biological Sciences, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Subarna Bhattacharya
- School of Environmental Studies, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India
| | - Swati Gupta Bhattacharya
- Division of Plant Biology, Bose Institute, 93/1 Acharya P. C. Road, Kolkata, West Bengal, 700009, India
| | | | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| |
Collapse
|
341
|
Wang R, Yang M, Wu Y, Liu R, Liu M, Li Q, Su X, Xin Y, Huo W, Deng Q, Ba Y, Huang H. SIRT1 modifies DNA methylation linked to synaptic deficits induced by Pb in vitro and in vivo. Int J Biol Macromol 2022; 217:219-228. [PMID: 35839949 DOI: 10.1016/j.ijbiomac.2022.07.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
To investigate the mechanism of Silent information regulator 1 (SIRT1) regulation of DNA methylation and thus the expression of synaptic plasticity-related genes induced by lead (Pb) exposure, the early-life Sprague-Dawley rats and PC12 cells were used to establish Pb exposure models and treated with SIRT1 agonists (resveratrol and SRT1720). In vivo results demonstrated that Pb exposure increased the expression of DNMTs, MeCP2, PP1 and cleaved caspase3, decreased the expression of SIRT1, BDNF and RELIN and altered DNA methylation levels of synaptic plasticity genes. Moreover, we observed marked pathological damage in the hippocampal CA1 region of the 0.2 % Pb-exposure group. After treatment with resveratrol, the effects of Pb exposure on the expression of the above molecules and pathological features were significantly ameliorated in the hippocampus of rats. In vitro results showed that after the treatment with SRT1720, the expression of SIRT1 was activated and thus reversed the effect on DNMTs, MeCP2, apoptosis and synaptic plasticity-related genes and their DNA methylation levels induced by Pb exposure. In conclusion, we validated the important protective role of SIRT1 in neurotoxicity induced by Pb exposure through in vivo and in vitro experiments, providing potential therapeutic targets for the treatment and prevention of brain damage.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yongjuan Xin
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Wenqian Huo
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China.
| |
Collapse
|
342
|
Joshi NC, Rawat BS, Semwal P, Kumar N. Effective removal of highly toxic Pb 2+ and Cd 2+ ions using reduced graphene oxide, polythiophene, and silica-based nanocomposite. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2127752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - B. S. Rawat
- Department of Physics, Uttaranchal University, Dehradun, India
| | - Prashant Semwal
- Department of Physics, Uttaranchal University, Dehradun, India
| | - Niraj Kumar
- Division of Research & Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
343
|
Lisa John V, P M F, K P C, T P V. Carbon dots derived from frankincense soot for ratiometric and colorimetric detection of lead (II). NANOTECHNOLOGY 2022; 33:495706. [PMID: 36049475 DOI: 10.1088/1361-6528/ac8e76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
We report a simple one-pot hydrothermal synthesis of carbon dots from frankincense soot. Carbon dots prepared from frankincense (FI-CDs) have narrow size distribution with an average size of 1.80 nm. FI-CDs emit intense blue fluorescence without additional surface functionalization or modification. A negative surface charge was observed for FI-CDs, indicating the abundance of epoxy, carboxylic acid, and hydroxyl functionalities that accounts for their stability. A theoretical investigation of the FI-CDs attached to oxygen-rich functional groups is incorporated in this study. The characteristics of FI-CDs signify arm-chair orientation, which is confirmed by comparing the indirect bandgap of FI-CDs with the bandgap obtained from Tauc plots. Also, we demonstrate that the FI-CDs are promising fluoroprobes for the ratiometric detection of Pb2+ions (detection limit of 0.12μM). The addition of Pb2+to FI-CD solution quenched the fluorescence intensity, which is observable under illumination by UV light LED chips. We demonstrate a smartphone-assisted quantification of the fluorescence intensity change providing an efficient strategy for the colorimetric sensing of Pb2+in real-life samples.
Collapse
Affiliation(s)
- Varsha Lisa John
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Fasila P M
- Department of Chemistry, Sir Syed College, Taliparamba, Kannur, Kerala 670142, India
| | - Chaithra K P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Vinod T P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
| |
Collapse
|
344
|
Alsugoor MH. Availability of Antidotes for Management of Acute Toxicity Cases at Emergency Departments in Qassim Hospitals: A Retrospective Study. Cureus 2022; 14:e28992. [PMID: 36249602 PMCID: PMC9548525 DOI: 10.7759/cureus.28992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Drug overdose is a medico-social issue worldwide that may occur intentionally or unintentionally. It is one of the most common reasons for emergency department visits, and it is also a frequent cause of morbidity and mortality globally. This study aims to determine the occurrence of acute toxicity cases and their management outcomes at the emergency departments in Qassim Province hospitals in Saudi Arabia. In addition, the study aims to investigate the antidote availabilities at those medical centers. Methods: A retrospective hospital record-based study of acute toxicity cases admitted to the emergency department in hospitals in Qassim during the period from January 1, 2020, to December 31, 2020, was conducted. Data were collected based on hospital resources such as gastrointestinal decontamination, stabilization, elimination enhancement resources, and antidotes from Qassim hospitals, and the availability of antidotes as well as the clinical data of the patients with the management outcome. Results: A total of 264 patients with acute toxicity were admitted to the emergency departments of 14 hospitals in Qassim Province in 2020. Of the 264 cases, 179 (68%) were males, and 85 (32%) cases were females. Ninety-five percent of the cases were admitted to public hospitals, whereas 5% were admitted to private hospitals. The largest group by age of admitted cases were aged 11-20 years (19.3%). This study showed that 99% received appropriate treatment for their cause of toxicity, whereas 1% did not. The most common causes of toxicity in Qassim were found to be food poisoning (20.5%), followed by intentional suicide attempts with warfarin/enoxaparin/aspirin overdoses (15.9%) and acetaminophen (paracetamol) overdosage seen in 15.5% of admitted cases. Flagyl, in addition to fluids, was used in the management of 16.7% of cases, N-acetyl cysteine was used for 16.3%, and vitamins K and B6 were used for 14.0% of cases. Activated charcoal, atropine, calcium chloride, calcium gluconate, flumazenil, insulin, magnesium, sodium bicarbonate, and vitamin K were available at all the studied hospitals. However, all the hospitals lacked both ethylenediaminetetraacetic acid (EDTA) and a cyanide kit. Methylene blue and leucovorin were available in only one of the studied hospitals.
Collapse
|
345
|
Wang Y, Nong Y, Zhang X, Mai T, Cai J, Liu J, Lai KP, Zhang Z. Comparative plasma metabolomic analysis to identify biomarkers for lead-induced cognitive impairment. Chem Biol Interact 2022; 366:110143. [PMID: 36063854 DOI: 10.1016/j.cbi.2022.110143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Lead (Pb), an environmental neurotoxicant, is known to induce cognitive impairment. Neuroinflammation and oxidative stress in the brain tissue are common pathogenetic links to Pb-induced cognitive impairment. There are no existing biomarkers to evaluate Pb-reduced cognition. Plasma metabolites are the readout of the biological functions of the host, making it a potential biomarker for assessing heavy metal-induced cognitive impairment. METHODS The present report aims to identify the plasma metabolite changes under conditions of high plasma Pb levels and low cognition. RESULTS We conducted a comparative plasma metabolomic analysis on two groups of adults those with low plasma Pb level and high cognition vs. those with high plasma Pb level and low cognition and identified 20 dysregulated metabolites. In addition, we found a significant reduction in docosahexaenoic acid, glycoursodeoxycholic acid, and arachidonic acid, and significant induction of p-cresol sulfate and phenylacetyl-l-glutamine. Gene Ontology enrichment analysis highlighted the importance of these plasma metabolites in brain functions and neurodegenerative diseases such as Parkinson's disease. CONCLUSIONS The findings of this report provide novel insights into the use of plasma metabolites to assess metal-induced cognitive impairment.
Collapse
Affiliation(s)
- Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yuan Nong
- Department of Neurology (Area Two), Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Xing Zhang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Tingyu Mai
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Jiansheng Cai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| | | |
Collapse
|
346
|
Lemaire J, Brischoux F, Marquis O, Mangione R, Caut S, Brault-Favrou M, Churlaud C, Bustamante P. Relationships between stable isotopes and trace element concentrations in the crocodilian community of French Guiana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155846. [PMID: 35561901 DOI: 10.1016/j.scitotenv.2022.155846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Trace elements in the blood of crocodilians and the factors that influence their concentrations are overall poorly documented. However, determination of influencing factors is crucial to assess the relevance of caimans as bioindicators of environmental contamination, and potential toxicological impact of trace elements on these reptiles. In the present study, we determined the concentrations of 14 trace elements (Ag, As, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Ni, Se, V, and Zn) in the blood of four French Guiana caiman species (the Spectacled Caiman Caiman crocodilus [n = 34], the Black Caiman Melanosuchus niger [n = 25], the Dwarf Caiman Paleosuchus palpebrosus [n = 5] and the Smooth-fronted Caiman Paleosuchus trigonatus [n = 20]) from 8 different sites, and further investigated the influence of individual body size and stable isotopes as proxies of foraging habitat and trophic position on trace element concentrations. Trophic position was identified to be an important factor influencing trace element concentrations in the four caiman species and explained interspecific variations. These findings highlight the need to consider trophic ecology when crocodilians are used as bioindicators of trace element contamination in environmental studies.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Oliver Marquis
- Muséum national d'Histoire naturelle, Parc Zoologique de Paris, 53 avenue de Saint Maurice, 75012 Paris, France
| | - Rosanna Mangione
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
| | - Stéphane Caut
- Consejo Superior de Investigaciones Cientificas (CSIC), Departamento de Etologia y Conservation de La Biodiversidad - Estacion Biologica de Doñana - C/Americo Vespucio, S/n (Isla de La Cartuja), E-41092 Sevilla, Spain; ANIMAVEG Conservation, 58 Avenue Du Président Salvador Allende, F-94800 Villejuif, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
347
|
Azam M, Khan MR, Wabaidur SM, Al-Resayes SI, Islam MS. Date pits waste as a solid phase extraction sorbent for the analysis of lead in wastewater and for use in manufacturing brick: An eco-friendly waste management approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022; 26:101519. [DOI: 10.1016/j.jscs.2022.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
348
|
James A, Yadav D. Bioaerogels, the emerging technology for wastewater treatment: A comprehensive review on synthesis, properties and applications. ENVIRONMENTAL RESEARCH 2022; 212:113222. [PMID: 35398081 DOI: 10.1016/j.envres.2022.113222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Over the past decade use of aerogels has received much attention as an emerging technology for wastewater treatment. However, production of aerogels is not environment-friendly. Owing to its excellent properties such as porosity, three-dimensional structure, being amenable to chemical modifications, it is imperative to devise strategies for their improved production and use. Bioaerogels are non-toxic and most of their precursor compounds are biomass-derived. This review aims to present a comprehensive report on survey of existing literature published on the use of bioaerogels for removal of all major categories of water contaminants, namely, heavy metals, industrial dyes, oil, organic compounds and pharmaceuticals. It also gives critical analysis of the lacunae in the existing knowledge such as lack of studies on domestic sewage, emerging pollutants, toxicity of raw materials and adequate disposal of used adsorbents. Proposals of overcoming the limitations in the applicability of bioaerogels, like combining constructed wetlands with use of bioaerogels, among others have been discussed. In this review, emphasis has been given on production of bioaerogels, with an aim to underscore the potential of valorization of biomass waste to develop novel materials for wastewater treatment in an effort towards creating a circular and green economy.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College (University of Delhi), Dwarka Sector 3, Delhi, 110078, India.
| | - Deepika Yadav
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India.
| |
Collapse
|
349
|
Oni AA, Babalola SO, Adeleye AD, Olagunju TE, Amama IA, Omole EO, Adegboye EA, Ohore OG. Non-carcinogenic and carcinogenic health risks associated with heavy metals and polycyclic aromatic hydrocarbons in well-water samples from an automobile junk market in Ibadan, SW-Nigeria. Heliyon 2022; 8:e10688. [PMID: 36193520 PMCID: PMC9526163 DOI: 10.1016/j.heliyon.2022.e10688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Unserviceable vehicles imported from developed countries are often dismantled in automobile junk markets and the useable parts sold. This generates hazardous waste oils which contain contaminants detrimental to the environment and human health. In this study, we quantified the potential human health risks associated with oral and dermal exposure to heavy metals and PAHs in well-water samples from a major automobile junk market in Ibadan, SW-Nigeria. Twenty-four to thirty-one water samples from seven wells within the market were analyzed for seven metals and eight PAHs using standard methods. Hazard-Quotient (HQ), Hazard-Index (HI), and Carcinogenic-Risk (CR) were computed for children and adults based on the USEPA Human-Health Risk Assessment model. Iron, Lead, Arsenic, Cadmium, Benzo(a)Anthracene, and Benzo(a)Pyrene exceeded regulatory limits. In children and adults, lead (1.14-3.71), cadmium (1.26-2.60) and arsenic (1.03-4.33) had HQingestion values exceeding 1. In addition, cadmium also posed risks via the dermal route in children in two of the seven sampled wells with an HQ of 1.76. Hazard Index was >1 via both routes in children (HIingestion:- 5.04-10.07; HIdermal:- 1.12-2.12) but only via ingestion in adults (HI ingestion:- 2.36-4.85). Well-3 samples posed the greatest non-carcinogenic risks via ingestion with HI values of 10.07 (children) and 4.85 (adults) respectively. Cadmium, arsenic, lead, and chromium could also elicit carcinogenic risk, with CR values of 1.00E - 02, 1.95E - 03, 1.11E - 04, and 3.30E - 04 which exceeded the 10-4 limit indicating high risk, particularly in children. However, HQ and HI values for PAHs were <1 via both pathways suggesting no non-carcinogenic risk from PAH exposure. Carcinogenic risk estimates for Benzo(a)Anthracene (9.66E - 04) and Benzo(a)Pyrene (2.31E - 04) suggest moderate risks in exposed children via the dermal route. Adverse health effects including cancer may occur in the exposed population on prolonged usage of these polluted water sources. Urgent remediation measures are therefore necessary to protect the exposed population.
Collapse
Affiliation(s)
- Adeola Anike Oni
- Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | | | | | | | | | | | | | | |
Collapse
|
350
|
Fomanyuk S, Vorobets V, Rusetskyi I, Kolbasov GY, Smilyk V, Danilov M. Photoelectrochemical determination of Pb2+ by combined electrochemical-chemical precipitations of PbI2 films. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|