301
|
Rogers ZN, McFarland CD, Winters IP, Seoane JA, Brady JJ, Yoon S, Curtis C, Petrov DA, Winslow MM. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat Genet 2018; 50:483-486. [PMID: 29610476 PMCID: PMC6061949 DOI: 10.1038/s41588-018-0083-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
The functional impact of most genomic alterations found in cancer, alone or in combination, remains largely unknown. Here we integrate tumor barcoding, CRISPR/Cas9-mediated genome editing and ultra-deep barcode sequencing to interrogate pairwise combinations of tumor suppressor alterations in autochthonous mouse models of human lung adenocarcinoma. We map the tumor suppressive effects of 31 common lung adenocarcinoma genotypes and identify a landscape of context dependence and differential effect strengths.
Collapse
Affiliation(s)
- Zoë N Rogers
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ian P Winters
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose A Seoane
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephanie Yoon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
302
|
Teles Alves I, Cohen N, Ersan PG, Eyre R, Godet I, Holovanchuk D, Jackstadt R, Kyjacova L, Mahal K, Noguera-Castells A, Recalde-Percaz L, Sleeman JP. EACR-MRS conference on Seed and Soil: In Vivo Models of Metastasis. Clin Exp Metastasis 2018; 34:449-456. [PMID: 29589151 DOI: 10.1007/s10585-018-9886-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/10/2018] [Indexed: 12/22/2022]
Abstract
New experimental tools are urgently required to better understand the metastatic process. The importance of such tools is underscored by the fact that many anti-cancer therapies are generally ineffective against established metastases. This makes a major contribution to the fact that metastatic spread is responsible for over 90% of cancer patient deaths. It was therefore timely that the recent "Seed and Soil: In Vivo Models of Metastasis" conference held in Berlin, Germany (27-29 of November 2017) aimed to give an in-depth overview of the latest research models and tools for studying metastasis, and to showcase recent findings from world-leading metastasis researchers. This Meeting Report summarises the major themes of this ground-breaking conference.
Collapse
Affiliation(s)
- I Teles Alves
- Department of Cell Biology and Biochemistry, Springer Science + Business Media B.V., Dordrecht, The Netherlands.
| | - N Cohen
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - P G Ersan
- Departments of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - R Eyre
- Breast Biology Group, Breast Cancer Now Research Unit, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - I Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - D Holovanchuk
- Molecular Oncology group, Cancer Research UK, Manchester Institute, The University of Manchester, Manchester, UK
| | - R Jackstadt
- Cancer Research UK, Beatson Institute, Glasgow, UK
| | - L Kyjacova
- Medical Faculty Mannheim, Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, Mannheim, Germany
| | - K Mahal
- Molecular Oncology group, Cancer Research UK, Manchester Institute, The University of Manchester, Manchester, UK
| | | | - L Recalde-Percaz
- Institut d'Investigacions Biomédiques August Pi i Sunyer, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - J P Sleeman
- Cancer Research UK, Beatson Institute, Glasgow, UK.,Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
303
|
Grees M, Sharbi-Yunger A, Evangelou C, Baumann D, Cafri G, Tzehoval E, Eichmüller SB, Offringa R, Utikal J, Eisenbach L, Umansky V. Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models. Oncoimmunology 2018; 7:e1445457. [PMID: 29900058 DOI: 10.1080/2162402x.2018.1445457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Despite melanoma immunogenicity and remarkable therapeutic effects of negative immune checkpoint inhibitors, a significant fraction of patients does not respond to current treatments. This could be due to limitations in tumor immunogenicity and profound immunosuppression in the melanoma microenvironment. Moreover, insufficient tumor antigen processing and presentation by dendritic cells (DC) may hamper the development of tumor-specific T cells. Using two genetically engineered mouse melanoma models (RET and BRAFV600E transgenic mice), in which checkpoint inhibitor therapy alone is not efficacious, we performed proof-of-concept studies with an improved, multivalent DC vaccination strategy based on our recently developed genetic mRNA cancer vaccines. The in vivo expression of multiple chimeric MHC class I receptors allows a simultaneous presentation of several melanoma-associated shared antigens tyrosinase related protein (TRP)-1, tyrosinase, human glycoprotein 100 and TRP-2. The DC vaccine induced a significantly improved survival in both transgenic mouse models. Vaccinated melanoma-bearing mice displayed an increased CD8 T cell reactivity indicated by a higher IFN-γ production and an upregulation of activation marker expression along with an attenuated immunosuppressive pattern of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). The combination of DC vaccination with ultra-low doses of paclitaxel or anti-PD-1 antibodies resulted in further prolongation of mouse survival associated with a stronger reduction of MDSC and Treg immunosuppressive phenotype. Our data suggest that an improved multivalent DC vaccine based on shared tumor antigens induces potent anti-tumor effects and could be combined with checkpoint inhibitors or targeting immunosuppressive cells to further improve their therapeutic efficiency.
Collapse
Affiliation(s)
- Mareike Grees
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christos Evangelou
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Daniel Baumann
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gal Cafri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan B Eichmüller
- GMP and T cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
304
|
Wellenstein MD, de Visser KE. Cancer-Cell-Intrinsic Mechanisms Shaping the Tumor Immune Landscape. Immunity 2018; 48:399-416. [DOI: 10.1016/j.immuni.2018.03.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/09/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
|
305
|
Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: The CRISPR generation. Eur J Cancer 2018; 93:10-18. [PMID: 29433054 DOI: 10.1016/j.ejca.2018.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/03/2018] [Indexed: 02/08/2023]
Abstract
The hallmarks of cancer were proposed as a logical framework to guide research efforts that aim to understand the molecular mechanisms and derive treatments for this highly complex disease. Recent technological advances, including comprehensive sequencing of different cancer subtypes, have illuminated how genetic and epigenetic alterations are associated with specific hallmarks of cancer. However, as these associations are purely descriptive, one particularly exciting development is the emergence of genome editing technologies, which enable rapid generation of precise genetic and epigenetic modifications to assess the consequences of these perturbations on the cancer phenotype. The most recently developed of these tools, the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), consists of an RNA-guided endonuclease that can be repurposed to edit both genome and epigenome with high specificity, and facilitates the functional interrogation of multiple loci in parallel. This system has the potential to dramatically accelerate progress in cancer research, whether by modelling the genesis and progression of cancer in vitro and in vivo, screening for novel therapeutic targets, conducting functional genomics/epigenomics, or generating targeted cancer therapies. Here, we discuss CRISPR research on each of the ten hallmarks of cancer, outline potential barriers for its clinical implementation and speculate on the advances it may allow in cancer research in the near future.
Collapse
Affiliation(s)
- Colette Moses
- Cancer Epigenetics Laboratory, Harry Perkins Institute of Medical Research, Perth, Australia; School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Benjamin Garcia-Bloj
- Cancer Epigenetics Laboratory, Harry Perkins Institute of Medical Research, Perth, Australia; School of Medicine, P. Universidad Catolica de Chile, Santiago, Chile
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perth, Australia; Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, Harry Perkins Institute of Medical Research, Perth, Australia; School of Human Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
306
|
Winters IP, Chiou SH, Paulk NK, McFarland CD, Lalgudi PV, Ma RK, Lisowski L, Connolly AJ, Petrov DA, Kay MA, Winslow MM. Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nat Commun 2017; 8:2053. [PMID: 29233960 PMCID: PMC5727199 DOI: 10.1038/s41467-017-01519-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Large-scale genomic analyses of human cancers have cataloged somatic point mutations thought to initiate tumor development and sustain cancer growth. However, determining the functional significance of specific alterations remains a major bottleneck in our understanding of the genetic determinants of cancer. Here, we present a platform that integrates multiplexed AAV/Cas9-mediated homology-directed repair (HDR) with DNA barcoding and high-throughput sequencing to simultaneously investigate multiple genomic alterations in de novo cancers in mice. Using this approach, we introduce a barcoded library of non-synonymous mutations into hotspot codons 12 and 13 of Kras in adult somatic cells to initiate tumors in the lung, pancreas, and muscle. High-throughput sequencing of barcoded Kras HDR alleles from bulk lung and pancreas reveals surprising diversity in Kras variant oncogenicity. Rapid, cost-effective, and quantitative approaches to simultaneously investigate the function of precise genomic alterations in vivo will help uncover novel biological and clinically actionable insights into carcinogenesis.
Collapse
Affiliation(s)
- Ian P Winters
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shin-Heng Chiou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole K Paulk
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Pranav V Lalgudi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rosanna K Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Leszek Lisowski
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Translational Vectorology Group, Children's Medical Research Institute, Westmead, NSW, 2145, Australia
- Military Institute of Hygiene and Epidemiology, Puławy, 24-100, Poland
| | - Andrew J Connolly
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Mark A Kay
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
307
|
Brandsma I, Fleuren ED, Williamson CT, Lord CJ. Directing the use of DDR kinase inhibitors in cancer treatment. Expert Opin Investig Drugs 2017; 26:1341-1355. [PMID: 28984489 PMCID: PMC6157710 DOI: 10.1080/13543784.2017.1389895] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Defects in the DNA damage response (DDR) drive the development of cancer by fostering DNA mutation but also provide cancer-specific vulnerabilities that can be exploited therapeutically. The recent approval of three different PARP inhibitors for the treatment of ovarian cancer provides the impetus for further developing targeted inhibitors of many of the kinases involved in the DDR, including inhibitors of ATR, ATM, CHEK1, CHEK2, DNAPK and WEE1. Areas covered: We summarise the current stage of development of these novel DDR kinase inhibitors, and describe which predictive biomarkers might be exploited to direct their clinical use. Expert opinion: Novel DDR inhibitors present promising candidates in cancer treatment and have the potential to elicit synthetic lethal effects. In order to fully exploit their potential and maximize their utility, identifying highly penetrant predictive biomarkers of single agent and combinatorial DDR inhibitor sensitivity are critical. Identifying the optimal drug combination regimens that could used with DDR inhibitors is also a key objective.
Collapse
Affiliation(s)
- Inger Brandsma
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Emmy D.G. Fleuren
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Chris T. Williamson
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
308
|
Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 2017; 17:751-765. [PMID: 29077691 DOI: 10.1038/nrc.2017.92] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncology research in humans is limited to analytical and observational studies for obvious ethical reasons, with therapy-focused clinical trials being the one exception to this rule. Preclinical mouse tumour models therefore serve as an indispensable intermediate experimental model system bridging more reductionist in vitro research with human studies. Based on a systematic survey of preclinical mouse tumour studies published in eight scientific journals in 2016, this Analysis provides an overview of how contemporary preclinical mouse tumour biology research is pursued. It thereby identifies some of the most important challenges in this field and discusses potential ways in which preclinical mouse tumour models could be improved for better relevance, reproducibility and translatability.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
309
|
DNAJB1-PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci U S A 2017; 114:13076-13084. [PMID: 29162699 DOI: 10.1073/pnas.1716483114] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A segmental deletion resulting in DNAJB1-PRKACA gene fusion is now recognized as the signature genetic event of fibrolamellar hepatocellular carcinoma (FL-HCC), a rare but lethal liver cancer that primarily affects adolescents and young adults. Here we implement CRISPR-Cas9 genome editing and transposon-mediated somatic gene transfer to demonstrate that expression of either the endogenous fusion protein or a chimeric cDNA leads to the formation of indolent liver tumors in mice that closely resemble human FL-HCC. Notably, overexpression of the wild-type PRKACA was unable to fully recapitulate the oncogenic activity of DNAJB1-PRKACA, implying that FL-HCC does not simply result from enhanced PRKACA expression. Tumorigenesis was significantly enhanced by genetic activation of β-catenin, an observation supported by evidence of recurrent Wnt pathway mutations in human FL-HCC, as well as treatment with the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which causes tissue injury, inflammation, and fibrosis. Our study validates the DNAJB1-PRKACA fusion kinase as an oncogenic driver and candidate drug target for FL-HCC, and establishes a practical model for preclinical studies to identify strategies to treat this disease.
Collapse
|
310
|
Mainz L, Rosenfeldt MT. Autophagy and cancer - insights from mouse models. FEBS J 2017; 285:792-808. [PMID: 28921866 DOI: 10.1111/febs.14274] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/10/2017] [Accepted: 09/13/2017] [Indexed: 01/09/2023]
Abstract
(Macro-)autophagy is an evolutionary conserved 'self-digestion program' that serves to maintain cellular metabolism and is implicated in many pathological processes such as cancer. In recent years, an increasing number of studies in murine cancer models have provided a plethora of sometimes conflicting results about the role of autophagy in cancer biology. This review summarizes these studies and raises awareness that there are situations in which autophagy blockage might indeed reduce tumor growth, but that sometimes the exact opposite is the case. It is therefore vital to mimic patient conditions in preclinical mouse experiments as thoroughly as possible before commencing clinical trials.
Collapse
Affiliation(s)
- Laura Mainz
- Institute for Pathology, Germany & Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Germany
| | - Mathias T Rosenfeldt
- Institute for Pathology, Germany & Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Germany
| |
Collapse
|
311
|
Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 2017; 9:137-153. [PMID: 28028012 PMCID: PMC5286388 DOI: 10.15252/emmm.201606857] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune‐proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell‐intrinsic and cell‐extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast‐track generation and fine‐tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic.
Collapse
Affiliation(s)
- Kelly Kersten
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
312
|
Ogilvie LA, Kovachev A, Wierling C, Lange BMH, Lehrach H. Models of Models: A Translational Route for Cancer Treatment and Drug Development. Front Oncol 2017; 7:219. [PMID: 28971064 PMCID: PMC5609574 DOI: 10.3389/fonc.2017.00219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Every patient and every disease is different. Each patient therefore requires a personalized treatment approach. For technical reasons, a personalized approach is feasible for treatment strategies such as surgery, but not for drug-based therapy or drug development. The development of individual mechanistic models of the disease process in every patient offers the possibility of attaining truly personalized drug-based therapy and prevention. The concept of virtual clinical trials and the integrated use of in silico, in vitro, and in vivo models in preclinical development could lead to significant gains in efficiency and order of magnitude increases in the cost effectiveness of drug development and approval. We have developed mechanistic computational models of large-scale cellular signal transduction networks for prediction of drug effects and functional responses, based on patient-specific multi-level omics profiles. However, a major barrier to the use of such models in a clinical and developmental context is the reliability of predictions. Here we detail how the approach of using “models of models” has the potential to impact cancer treatment and drug development. We describe the iterative refinement process that leverages the flexibility of experimental systems to generate highly dimensional data, which can be used to train and validate computational model parameters and improve model predictions. In this way, highly optimized computational models with robust predictive capacity can be generated. Such models open up a number of opportunities for cancer drug treatment and development, from enhancing the design of experimental studies, reducing costs, and improving animal welfare, to increasing the translational value of results generated.
Collapse
Affiliation(s)
| | | | | | | | - Hans Lehrach
- Alacris Theranostics GmbH, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
313
|
Gómez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech 2017; 10:1061-1074. [PMID: 28883015 PMCID: PMC5611969 DOI: 10.1242/dmm.030403] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the spread of cancer cells from a primary tumor to distant sites within the body to establish secondary tumors. Although this is an inefficient process, the consequences are devastating as metastatic disease accounts for >90% of cancer-related deaths. The formation of metastases is the result of a series of events that allow cancer cells to escape from the primary site, survive in the lymphatic system or blood vessels, extravasate and grow at distant sites. The metastatic capacity of a tumor is determined by genetic and epigenetic changes within the cancer cells as well as contributions from cells in the tumor microenvironment. Mouse models have proven to be an important tool for unraveling the complex interactions involved in the metastatic cascade and delineating its many stages. Here, we critically appraise the strengths and weaknesses of the current mouse models and highlight the recent advances that have been made using these models in our understanding of metastasis. We also discuss the use of these models for testing potential therapies and the challenges associated with the translation of these findings into the provision of new and effective treatments for cancer patients.
Collapse
Affiliation(s)
- Laura Gómez-Cuadrado
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| | - Natasha Tracey
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| | - Ruoyu Ma
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Binzhi Qian
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research UK Centre, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| |
Collapse
|
314
|
Abstract
The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research toward identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism, various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely toward uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster, and D. rerio, do not develop cancers but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating preclinical efficacy of microRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Arpita S Pal
- PULSe Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Andrea L Kasinski
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
315
|
Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 2017; 36:6446-6461. [PMID: 28759043 PMCID: PMC5701091 DOI: 10.1038/onc.2017.246] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
The majority of long noncoding RNAs (lncRNAs) is still poorly characterized with respect to function, interactions with protein-coding genes, and mechanisms that regulate their expression. As for protein-coding RNAs, epigenetic deregulation of lncRNA expression by alterations in DNA methylation might contribute to carcinogenesis. To provide genome-wide information on lncRNAs aberrantly methylated in breast cancer we profiled tumors of the C3(1) SV40TAg mouse model by MCIp-seq (Methylated CpG Immunoprecipitation followed by sequencing). This approach detected 69 lncRNAs differentially methylated between tumor tissue and normal mammary glands, with 26 located in antisense orientation of a protein-coding gene. One of the hypomethylated lncRNAs, 1810019D21Rik (now called Esrp2-antisense (as)) was identified in proximity to the epithelial splicing regulatory protein 2 (Esrp2) that is significantly elevated in C3(1) tumors. ESRPs were shown previously to have a dual role in carcinogenesis. Both gain and loss have been associated with poor prognosis in human cancers, but the mechanisms regulating expression are not known. In-depth analyses indicate that coordinate overexpression of Esrp2 and Esrp2-as inversely correlates with DNA methylation. Luciferase reporter gene assays support co-expression of Esrp2 and the major short Esrp2-as variant from a bidirectional promoter, and transcriptional regulation by methylation of a proximal enhancer. Ultimately, this enhancer-based regulatory mechanism provides a novel explanation for tissue-specific expression differences and upregulation of Esrp2 during carcinogenesis. Knockdown of Esrp2-as reduced Esrp2 protein levels without affecting mRNA expression and resulted in an altered transcriptional profile associated with extracellular matrix (ECM), cell motility and reduced proliferation, whereas overexpression enhanced proliferation. Our findings not only hold true for the murine tumor model, but led to the identification of an unannotated human homolog of Esrp2-as which is significantly upregulated in human breast cancer and associated with poor prognosis.
Collapse
|
316
|
Veelken C, Bakker GJ, Drell D, Friedl P. Single cell-based automated quantification of therapy responses of invasive cancer spheroids in organotypic 3D culture. Methods 2017; 128:139-149. [PMID: 28739118 DOI: 10.1016/j.ymeth.2017.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022] Open
Abstract
Organotypic in vitro culture of 3D spheroids in an extracellular matrix represent a promising cancer therapy prediction model for personalized medicine screens due to their controlled experimental conditions and physiological similarities to in vivo conditions. As in tumors in vivo, 3D invasion cultures identify intratumor heterogeneity of growth, invasion and apoptosis induction by cytotoxic therapy. We here combine in vitro 3D spheroid invasion culture with irradiation and automated nucleus-based segmentation for single cell analysis to quantify growth, survival, apoptosis and invasion response during experimental radiation therapy. As output, multi-parameter histogram-based representations deliver an integrated insight into therapy response and resistance. This workflow may be suited for high-throughput screening and identification of invasive and therapy-resistant tumor sub-populations.
Collapse
Affiliation(s)
- Cornelia Veelken
- Department of Cell Biology, Radboudumc Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Gert-Jan Bakker
- Department of Cell Biology, Radboudumc Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - David Drell
- MetaViLabs, 16238 Ranch Road 620 North Suite F-347, Austin TX 78717, USA
| | - Peter Friedl
- Department of Cell Biology, Radboudumc Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Genomics Center, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
317
|
Mizutani T, Tsukamoto Y, Clevers H. Oncogene-inducible organoids as a miniature platform to assess cancer characteristics. J Cell Biol 2017; 216:1505-1507. [PMID: 28512141 PMCID: PMC5461034 DOI: 10.1083/jcb.201704014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Direct effects of oncogenic proteins or inhibitor treatments on signaling pathways are difficult to assess in transgenic mice. In this issue, Riemer et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201610058) demonstrate that oncogene-inducible organoids offer the experimental versatility of two-dimensional cell lines, while closely representing the in vivo situation.
Collapse
Affiliation(s)
- Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584CT Utrecht, Netherlands
| | - Yoshiyuki Tsukamoto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584CT Utrecht, Netherlands.,Department of Molecular Pathology, Faculty of Medicine, Oita University, 879-5593 Yufu, Japan
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584CT Utrecht, Netherlands
| |
Collapse
|
318
|
Rossanese O, Eccles S, Springer C, Swain A, Raynaud FI, Workman P, Kirkin V. The pharmacological audit trail (PhAT): Use of tumor models to address critical issues in the preclinical development of targeted anticancer drugs. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ddmod.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|