301
|
Gauche E, Couturier A, Lepers R, Michaut A, Rabita G, Hausswirth C. Neuromuscular fatigue following high versus low-intensity eccentric exercise of biceps brachii muscle. J Electromyogr Kinesiol 2009; 19:e481-6. [DOI: 10.1016/j.jelekin.2009.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022] Open
|
302
|
Howatson G, Milak A. Exercise-Induced Muscle Damage Following a Bout of Sport Specific Repeated Sprints. J Strength Cond Res 2009; 23:2419-24. [DOI: 10.1519/jsc.0b013e3181bac52e] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
303
|
Chen TC, Nosaka K, Lin MJ, Chen HL, Wu CJ. Changes in running economy at different intensities following downhill running. J Sports Sci 2009; 27:1137-44. [DOI: 10.1080/02640410903062027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
304
|
Dingwell JB, Joubert JE, Diefenthaeler F, Trinity JD. Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Trans Biomed Eng 2009; 55:2666-74. [PMID: 18990638 DOI: 10.1109/tbme.2008.2001130] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Muscle fatigue may alter kinematics and contribute to repetitive strain injuries. This study quantified how both localized muscle fatigue and movement kinematics change over time during exhaustive cycling. Seven highly trained cyclists rode a stationary bicycle ergometer at 100% of their maximum oxygen consumption (VO(2) max) until voluntary exhaustion. Cycling kinematics and electromyography (EMG) activity from select lower extremity muscles were recorded. Cross-correlations were computed to quantify how EMG median frequencies (MDFs) changed with changes in movement kinematics. All athletes maintained both cadence and power output for approximately 90% of the trial duration. Significant sustained muscle fatigue occurred in 18 of 28 muscles tested, most prominently in the biceps femoris (p = 0.020) and gastrocnemius (p = 0.018). Kinematics and MDF both fluctuated nonmonotonically as subjects fatigued. Changes in MDF significantly preceded changes in mean trunk lean (p = 0.009) and hip angles (p = 0.025), and trunk lean range of motion ( p = 0.029). Fluctuations in MDF were positively correlated with fluctuations in mean trunk lean (p = 0.009) and knee splay angles (p = 0.011), and with trunk lean (p = 0.002) and ankle (p = 0.001) range of motion. These results therefore establish a direct link between changes in muscle fatigue state and subsequent changes in movement kinematics during cycling.
Collapse
|
305
|
Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr 2009; 6:13. [PMID: 19490606 PMCID: PMC2697134 DOI: 10.1186/1550-2783-6-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/02/2009] [Indexed: 11/23/2022] Open
Abstract
Background Eccentric exercise-induced damage leads to reductions in muscle force, increased soreness, and impaired muscle function. Creatine monohydrate's (Cr) ergogenic potential is well established; however few studies have directly examined the effects of Cr supplementation on recovery after damage. We examined the effects of Cr supplementation on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. Methods Fourteen untrained male participants (22.1 ± 2.3 yrs, 173 ± 7.7 cm, 76.2 ± 9.3 kg) were randomly separated into 2 supplement groups: i) Cr and carbohydrate (Cr-CHO; n = 7); or ii) carbohydrate (CHO; n = 7). Participants consumed their supplement for a period of 5 days prior to, and 14 days following a resistance exercise session. Participants performed 4 sets of 10 eccentric-only repetitions at 120% of their maximum concentric 1-RM on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activity were assessed as relevant blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. Results The Cr-supplemented group had significantly greater isokinetic (10% higher) and isometric (21% higher) knee extension strength during recovery from exercise-induced muscle damage. Furthermore, plasma CK activity was significantly lower (by an average of 84%) after 48 hrs (P < 0.01), 72 hrs (P < 0.001), 96 hrs (P < 0.0001), and 7 days (P < 0.001) recovery in the Cr-supplemented group. Conclusion The major finding of this investigation was a significant improvement in the rate of recovery of knee extensor muscle function after Cr supplementation following injury.
Collapse
|
306
|
Jakeman JR, Macrae R, Eston R. A single 10-min bout of cold-water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. ERGONOMICS 2009; 52:456-460. [PMID: 19401897 DOI: 10.1080/00140130802707733] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The purpose of this study was to examine the effectiveness of a single bout of cold-water immersion on recovery from exercise-induced muscle damage. Eighteen physically active female volunteers (age 19.9 (+/-0.97 years), height 1.66 (+/-0.05 m), mass 63.7 (+/-10 kg), completed 10 sets of 10 counter-movement jumps to induce muscle damage and were randomly allocated to a control or treatment group. The treatment group was given a single 10-min bout of lower limb cold-water immersion therapy at 10 degrees C immediately following damage-inducing exercise. Indicators of muscle damage (plasma creatine kinase activity, perceived soreness and maximal voluntary contraction of the quadriceps) were assessed immediately prior to counter-movement jumps, and at 1, 24, 48, 72 and 96 h, following the damaging exercise. Significant (p = 0.05) time effects were recorded on all indicators of muscle damage, but there were no significant group or group x time interaction effects found on any of the measured variables. The results indicate that a single bout of cold-water immersion after a damaging bout of exercise has no beneficial effects on the recovery from exercise-induced muscle damage.
Collapse
Affiliation(s)
- J R Jakeman
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, Devon, UK
| | | | | |
Collapse
|
307
|
Oliveira AS, Greco CC, Pereira MP, Figueira TR, Araújo Ruas VDD, Gonçalves M, Denadai BS. Physiological and Neuromuscular Profile During a Bodypump Session: Acute Responses During a High-Resistance Training Session. J Strength Cond Res 2009; 23:579-86. [DOI: 10.1519/jsc.0b013e318196b757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
308
|
Highton JM, Twist C, Eston RG. The Effects of Exercise-Induced Muscle Damage on Agility and Sprint Running Performance. J Exerc Sci Fit 2009. [DOI: 10.1016/s1728-869x(09)60004-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
309
|
Lin MJ, Chen TC, Chen HL, Wu CJ, Tseng WC. Effects of Gradient Variations on Physiological Responses to a 30-minute Run. J Exerc Sci Fit 2009. [DOI: 10.1016/s1728-869x(09)60010-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
310
|
Davies RC, Eston RG, Poole DC, Rowlands AV, DiMenna F, Wilkerson DP, Twist C, Jones AM. Effect of eccentric exercise-induced muscle damage on the dynamics of muscle oxygenation and pulmonary oxygen uptake. J Appl Physiol (1985) 2008; 105:1413-21. [DOI: 10.1152/japplphysiol.90743.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unaccustomed eccentric exercise has a profound impact on muscle structure and function. However, it is not known whether associated microvascular dysfunction disrupts the matching of O2delivery (Q̇o2) to O2utilization (V̇o2). Near-infrared spectroscopy (NIRS) was used to test the hypothesis that eccentric exercise-induced muscle damage would elevate the muscle Q̇o2:V̇o2ratio during severe-intensity exercise while preserving the speed of the V̇o2kinetics at exercise onset. Nine physically active men completed “step” tests to severe-intensity exercise from an unloaded baseline on a cycle ergometer before (Pre) and 48 h after (Post) eccentric exercise (100 squats with a load corresponding to 70% of body mass). NIRS and breath-by-breath pulmonary V̇o2were measured continuously during the exercise tests and subsequently modeled using standard nonlinear regression techniques. There were no changes in phase II pulmonary V̇o2kinetics following the onset of exercise (time constant: Pre, 25 ± 4 s; Post, 24 ± 2 s; amplitude: Pre, 2.36 ± 0.23 l/min; Post, 2.37 ± 0.23 l/min; all P > 0.05). However, the primary (Pre, 14 ± 3 s; Post, 19 ± 3 s) and overall (Pre, 16 ± 4 s; Post, 21 ± 4 s) mean response time of the [HHb] response was significantly slower following eccentric exercise ( P < 0.05). The slower [HHb] kinetics observed following eccentric exercise is consistent with an increased Q̇o2:V̇o2ratio during transitions to severe-intensity exercise. We propose that unchanged primary phase V̇o2kinetics are associated with an elevated Q̇o2:V̇o2ratio that preserves blood-myocyte O2flux.
Collapse
|
311
|
Skurvydas A, Kamandulis S, Stanislovaitis A, Streckis V, Mamkus G, Drazdauskas A. Leg immersion in warm water, stretch-shortening exercise, and exercise-induced muscle damage. J Athl Train 2008; 43:592-9. [PMID: 19030137 PMCID: PMC2582551 DOI: 10.4085/1062-6050-43.6.592] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Whether muscle warming protects against exercise-induced muscle damage is unknown. OBJECTIVE To determine the effect of leg immersion in warm water before stretch-shortening exercise on the time course of indirect markers of exercise-induced muscle damage. DESIGN Crossover trial. SETTING Human kinetics laboratory. PATIENTS OR OTHER PARTICIPANTS Eleven healthy, untrained men (age = 21.5 +/- 1.7 years). INTERVENTION(S) Participants' legs were immersed in a water bath at 44 +/- 1 degrees C for 45 minutes. MAIN OUTCOME MEASURE(S) Creatine kinase changes in the blood, muscle soreness, prolonged (within 72 hours) impairment in maximal voluntary contraction force and height of drop jump, and electrically evoked muscle force at low and high stimulation frequencies at short and long muscle lengths. RESULTS Leg immersion in warm water before stretch-shortening exercise reduced most of the indirect markers of exercise-induced muscle damage, including creatine kinase activity in the blood, muscle soreness, maximal voluntary contraction force, and jump height. The values for maximal voluntary contraction force and jump height, however, were higher during prewarming than for the control condition at 48 hours after stretch-shortening exercise, but this difference was only minor at other time points. Muscle prewarming did not bring about any changes in the dynamics of low-frequency fatigue, registered at either short or long muscle length, within 72 hours of stretch-shortening exercise. CONCLUSIONS Leg immersion in warm water before stretch-shortening exercise reduced most of the indirect markers of exercise-induced muscle damage. However, the clinical application of muscle prewarming may be limited, because decreasing muscle damage did not necessarily lead to improved voluntary performance.
Collapse
|
312
|
Buckley JD, Thomson RL, Coates AM, Howe PRC, DeNichilo MO, Rowney MK. Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. J Sci Med Sport 2008; 13:178-81. [PMID: 18768358 DOI: 10.1016/j.jsams.2008.06.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 06/06/2008] [Accepted: 06/18/2008] [Indexed: 11/25/2022]
Abstract
There is evidence that protein hydrolysates can speed tissue repair following damage and may therefore be useful for accelerating recovery from exercise induced muscle damage. The potential for a hydrolysate (WPI(HD)) of whey protein isolate (WPI) to speed recovery following eccentric exercise was evaluated by assessing effects on recovery of peak isometric torque (PIT). In a double-blind randomised parallel trial, 28 sedentary males had muscle soreness (MS), serum creatine kinase (CK) activity, plasma TNFalpha, and PIT assessed at baseline and after 100 maximal eccentric contractions (ECC) of their knee extensors. Participants then consumed 250 ml of flavoured water (FW; n=11), or FW containing 25 g WPI (n=11) or 25 g WPI(HD) (n=6) and the assessments were repeated 1, 2, 6 and 24h later. PIT decreased approximately 23% following ECC, remained suppressed in FW and WPI, but recovered fully in WPI(HD) by 6h (P=0.006, treatment x time interaction). MS increased following ECC (P<0.001 for time), and remained elevated with no difference between groups (P=0.61). TNFalpha and CK did not change (P>0.45). WPI(HD) may be a useful supplement for assisting athletes to recover from fatiguing eccentric exercise.
Collapse
Affiliation(s)
- Jonathan D Buckley
- Australian Technology Network Centre for Metabolic Fitness and Nutritional Physiology Research Centre, University of South Australia, Adelaide, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
313
|
Twist C, Gleeson N, Eston R. The effects of plyometric exercise on unilateral balance performance. J Sports Sci 2008; 26:1073-80. [DOI: 10.1080/02640410801930168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
314
|
Abstract
Exercise-induced muscle damage (EIMD) is commonly experienced following either a bout of unaccustomed physical activity or following physical activity of greater than normal duration or intensity. The mechanistic factor responsible for the initiation of EIMD is not known; however, it is hypothesised to be either mechanical or metabolic in nature. The mechanical stress hypothesis states that EIMD is the result of physical stress upon the muscle fibre. In contrast, the metabolic stress model predicts that EIMD is the result of metabolic deficiencies, possibly through the decreased action of Ca(2+)-adenosine triphosphatase. Irrespective of the cause of the damage, EIMD has a number of profound metabolic effects. The most notable metabolic effects of EIMD are decreased insulin sensitivity, prolonged glycogen depletion and an increase in metabolic rate both at rest and during exercise. Based on current knowledge regarding the effects that various types of damaging exercise have on muscle metabolism, a new model for the initiation of EIMD is proposed. This model states that damage initiation may be either metabolic or mechanical, or a combination of both, depending on the mode, intensity and duration of exercise and the training status of the individual.
Collapse
Affiliation(s)
- Jason C Tee
- MRC/UCT Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
315
|
Mendez-Villanueva A, Fernandez-Fernandez J, Bishop D. Exercise-induced homeostatic perturbations provoked by singles tennis match play with reference to development of fatigue. Br J Sports Med 2008; 41:717-22; discussion 722. [PMID: 17957005 DOI: 10.1136/bjsm.2007.037259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review addresses metabolic, neural, mechanical and thermal alterations during tennis match play with special focus on associations with fatigue. Several studies have provided a link between fatigue and the impairment of tennis skills proficiency. A tennis player's ability to maintain skilled on-court performance and/or optimal muscle function during a demanding match can be compromised as a result of several homeostatic perturbations, for example hypoglycaemia, muscle damage and hyperthermia. Accordingly, an important physiological requirement to succeed at competitive level might be the player's ability to resist fatigue. However, research evidence on this topic is limited and it is unclear to what extent players experience fatigue during high-level tennis match play and what the physiological mechanisms are that are likely to contribute to the deterioration in performance.
Collapse
|
316
|
Jaskólski A, Andrzejewska R, Marusiak J, Kisiel-Sajewicz K, Jaskólska A. Similar response of agonist and antagonist muscles after eccentric exercise revealed by electromyography and mechanomyography. J Electromyogr Kinesiol 2007; 17:568-77. [PMID: 16890456 DOI: 10.1016/j.jelekin.2006.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/18/2006] [Accepted: 05/31/2006] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to investigate the influence of eccentric contractions (ECC) on the biceps (BB) and triceps brachii (TB) muscles during maximal voluntary contraction (MVC) of elbow flexors using electrical (EMG) and mechanomyographical activities (MMG). Each of 18 male students performed 25 submaximal contractions (50% MVC) of the elbow flexors. Root mean square amplitude (RMS) and median frequency (MDF) were calculated for the EMG and MMG signals recorded during MVC. All measurements were taken before, immediately after, 24, 48, 72, and 120 h post-ECC from the BB and TB muscles. MVC was reduced by 34% immediately after exercise and did not return to the resting value within 120 h (P0.05). The EMG MDF decreased significantly (P< or =0.05) in both muscles after ECC. The MMG RMS at 24h, 48, 72 and 120 h post-ECC was significantly lower compared to that recorded immediately after ECC in both muscles (P< or =0.05). The present research showed that (i) there were similar changes in electrical and mechanical activities during MVC after submaximal ECC in agonist and antagonist muscles suggesting a common drive controlling the agonist and antagonist motoneuron pool, (ii) the ECC induced different changes in EMG than in MMG immediately after ECC and during 120 h of recovery that suggested an increased tremor and contractile impairments, i.e., reduced rate of calcium release from the sarcoplasmic reticulum (acute effect), and changes in motor control mechanisms of agonist and antagonist muscles, and increased muscle stiffness (chronic effect).
Collapse
Affiliation(s)
- Artur Jaskólski
- Department of Kinesiology, University School of Physical Education, ul. Rzeźbiarska 4, 51-629 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
317
|
Bailey DM, Erith SJ, Griffin PJ, Dowson A, Brewer DS, Gant N, Williams C. Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci 2007; 25:1163-70. [PMID: 17654228 DOI: 10.1080/02640410600982659] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The aim of this study was to assess the effects of cold-water immersion (cryotherapy) on indices of muscle damage following a bout of prolonged intermittent exercise. Twenty males (mean age 22.3 years, s = 3.3; height 1.80 m, s = 0.05; body mass 83.7 kg, s = 11.9) completed a 90-min intermittent shuttle run previously shown to result in marked muscle damage and soreness. After exercise, participants were randomly assigned to either 10 min cold-water immersion (mean 10 degrees C, s = 0.5) or a non-immersion control group. Ratings of perceived soreness, changes in muscular function and efflux of intracellular proteins were monitored before exercise, during treatment, and at regular intervals up to 7 days post-exercise. Exercise resulted in severe muscle soreness, temporary muscular dysfunction, and elevated serum markers of muscle damage, all peaking within 48 h after exercise. Cryotherapy administered immediately after exercise reduced muscle soreness at 1, 24, and 48 h (P < 0.05). Decrements in isometric maximal voluntary contraction of the knee flexors were reduced after cryotherapy treatment at 24 (mean 12%, s(x) = 4) and 48 h (mean 3%, s(x) = 3) compared with the control group (mean 21%, s(x) = 5 and mean 14%, s(x) = 5 respectively; P < 0.05). Exercise-induced increases in serum myoglobin concentration and creatine kinase activity peaked at 1 and 24 h, respectively (P < 0.05). Cryotherapy had no effect on the creatine kinase response, but reduced myoglobin 1 h after exercise (P < 0.05). The results suggest that cold-water immersion immediately after prolonged intermittent shuttle running reduces some indices of exercise-induced muscle damage.
Collapse
Affiliation(s)
- D M Bailey
- Human Muscle Metabolism Research Group, English Institute of Sport, Loughborough University, Loughborough, UK.
| | | | | | | | | | | | | |
Collapse
|
318
|
Bloomer RJ. The role of nutritional supplements in the prevention and treatment of resistance exercise-induced skeletal muscle injury. Sports Med 2007; 37:519-32. [PMID: 17503877 DOI: 10.2165/00007256-200737060-00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The topic of exercise-induced skeletal muscle injury has received considerable attention in recent years. Likewise, strategies to minimise the injury resulting from heavy resistance exercise have been studied. Over the past 15 years, several investigations have been performed focused on the role of nutritional supplements to attenuate signs and symptoms of muscle injury. Of these, some have reported favourable results, while many others have reported no benefit of the selected nutrient. Despite these mixed findings, recommendations for the use of nutritional supplements for the purposes of attenuating muscle injury are rampant within the popular fitness media and athletic world, largely without scientific support. Those nutrients include the antioxidant vitamin C (ascorbic acid) and vitamin E (tocopherol), N-acetyl-cysteine, flavonoids, L-carnitine, astaxanthin, beta-hydroxy-beta-methylbutyrate, creatine monohydrate, essential fatty acids, branched-chain amino acids, bromelain, proteins and carbohydrates. A discussion of all published peer-reviewed articles in reference to these nutrients and their impact on resistance exercise-induced skeletal muscle injury is presented, in addition to a brief view into the potential mechanism of action for each nutrient.Based on the current state of knowledge, the following conclusions can be made with regard to nutritional supplements and their role in attenuating signs and symptoms of skeletal muscle injury occurring as a consequence of heavy resistance exercise: (i) there appears to be a potential role for certain supplements (vitamin C, vitamin E, flavonoids, and L-carnitine); (ii) these supplements cannot effectively eliminate muscle injury, only attenuate certain signs and symptoms; (iii) it is presently unclear what the optimal dosage of these nutrients is (whether used alone or in combination); (iv) it is unclear what the optimal pretreatment period is; and (v) the effectiveness is largely specific to non-resistance trained individuals.Ultimately, because so few studies have been conducted in this area, it is difficult to recommend with confidence the use of selected nutrients for the sole purpose of minimising signs and symptoms of resistance exercise-induced muscle injury, in particular with regard to resistance-trained individuals.
Collapse
Affiliation(s)
- Richard J Bloomer
- Department of Health and Sport Sciences, The University of Memphis, Memphis, Tennessee 38152-3480, USA.
| |
Collapse
|
319
|
Petersen K, Hansen CB, Aagaard P, Madsen K. Muscle mechanical characteristics in fatigue and recovery from a marathon race in highly trained runners. Eur J Appl Physiol 2007; 101:385-96. [PMID: 17661071 DOI: 10.1007/s00421-007-0504-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2007] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to examine muscle mechanical characteristics before and after a marathon race. Eight elite runners underwent a pre-test 1 week before the marathon and post-tests 30 min, two and five-day-post-marathon. Actual marathon race performance was 2:34:40 +/- 0:04:13. Energy expenditure at marathon pace (EE(Mpace)) was elevated 4% post-marathon (pre: 4,465 +/- 91 vs. post 4,638 +/- 91 J kg bodyweight(-1) km(-1), P < 0.05), but was lowered by 6 and 9.5% two- and five-day-post-marathon compared to EE(Mpace) pre-marathon. Countermovement jump (CMJ) power decreased 13% post-marathon (pre: 21.5 +/- 0.9 vs. post: 18.9 +/- 1.2 W kg(-1); P < 0.05) and remained depressed two- (18%) and five-day (12%) post-marathon. CMJ force was unaltered across all four tests occasions. Knee extensor and plantar flexor maximal voluntary contraction (MVC) decreased from 176.6 +/- 9.5 to 136.7 +/- 16.8 Nm and 144.9 +/- 8.7 to 119.2 +/- 15.1 Nm post-marathon corresponding to 22 and 17%, respectively (P < 0.05). No significant changes were detected in evoked contractile parameters, except a 25% increase in force at 5 Hz, and low frequency fatigue was not observed. In conclusion, leg muscle power decreased acutely post-marathon race and recovered very slowly. The post-marathon increase in EE(Mpace) might be attributed to a reduction in stretch shortening cycle efficiency. Finally, since MVC was reduced after the marathon race without any marked changes in evoked muscle contractile properties, the strength fatigue experienced by the subjects in this study seems to be related to central rather than peripheral mechanisms.
Collapse
Affiliation(s)
- Kim Petersen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | | | | |
Collapse
|
320
|
Chen TC, Nosaka K, Wu CC. Effects of a 30-min running performed daily after downhill running on recovery of muscle function and running economy. J Sci Med Sport 2007; 11:271-9. [PMID: 17543583 DOI: 10.1016/j.jsams.2007.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 02/22/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
This study investigated the effects of a 30-min level running performed daily for 6 days after downhill running (DHR) on indicators of muscle damage and running economy (RE). Fifty men were placed into five groups - control (CON), 40%, 50%, 60% and 70% (10 subjects per group) - by matching the baseline maximal oxygen consumption (V O(2max)) among the groups. Subjects in the 40%, 50%, 60% and 70% groups had a treadmill (0 degrees ) run for 30min at 40%, 50%, 60% and 70% of the pre-determined V O(2max), respectively, at 1-6 days after a bout of 30-min DHR at -15% (-8.5 degrees ). Maximal voluntary isometric strength of the knee extensors, muscle soreness, plasma creatine kinase and lactate dehydrogenase activities were measured before, immediately after and every day for 7 days after DHR. RE was assessed by oxygen consumption, minute ventilation, respiratory exchange ratio, lactate, heart rate and rating of perceived exertion during a 5-min level running at 85% V O(2max) performed before and at 2, 5 and 7 days after DHR. All muscle damage markers changed significantly (P<0.05) after DHR without significant differences among the groups. The RE parameters showed a significant decrease in RE for 7 days after DHR, but no significant differences in the changes were evident among the groups. These results suggest that the daily running performed after DHR did not have any beneficial or adverse effects on recovery of muscle damage and RE regardless of the intensity.
Collapse
Affiliation(s)
- Trevor C Chen
- Department of Physical Education, National Chiayi University, Taiwan.
| | | | | |
Collapse
|
321
|
Roig Pull M, Ranson C. Eccentric muscle actions: Implications for injury prevention and rehabilitation. Phys Ther Sport 2007. [DOI: 10.1016/j.ptsp.2006.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
322
|
Moncayo R, Moncayo H. A musculoskeletal model of low grade connective tissue inflammation in patients with thyroid associated ophthalmopathy (TAO): the WOMED concept of lateral tension and its general implications in disease. BMC Musculoskelet Disord 2007; 8:17. [PMID: 17319961 PMCID: PMC1820789 DOI: 10.1186/1471-2474-8-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 02/23/2007] [Indexed: 12/16/2022] Open
Abstract
Background Low level connective tissue inflammation has been proposed to play a role in thyroid associated ophthalmopathy (TAO). The aim of this study was to investigate this postulate by a musculoskeletal approach together with biochemical parameters. Methods 13 patients with TAO and 16 controls were examined. Erythrocyte levels of Zn, Cu, Ca2+, Mg, and Fe were determined. The musculoskeletal evaluation included observational data on body posture with emphasis on the orbit-head region. The angular foot position in the frontal plane was quantified following gait observation. The axial orientation of the legs and feet was evaluated in an unloaded supine position. Functional propioceptive tests based on stretch stimuli were done by using foot inversion and foot rotation. Results Alterations in the control group included neck tilt in 3 cases, asymmetrical foot angle during gait in 2, and a reaction to foot inversion in 5 cases. TAO patients presented facial asymmetry with displaced eye fissure inclination (mean 9.1°) as well as tilted head-on-neck position (mean 5.7°). A further asymmetry feature was external rotation of the legs and feet (mean 27°). Both foot inversion as well as foot rotation induced a condition of neuromuscular deficit. This condition could be regulated by gentle acupressure either on the lateral abdomen or the lateral ankle at the acupuncture points gall bladder 26 or bladder 62, respectively. In 5 patients, foot rotation produced a phenomenon of moving toes in the contra lateral foot. In addition foot rotation was accompanied by an audible tendon snapping. Lower erythrocyte Zn levels and altered correlations between Ca2+, Mg, and Fe were found in TAO. Conclusion This whole body observational study has revealed axial deviations and body asymmetry as well as the phenomenon of moving toes in TAO. The most common finding was an arch-like displacement of the body, i.e. eccentric position, with foot inversion and head tilt to the contra lateral side and tendon snapping. We propose that eccentric muscle action over time can be the basis for a low grade inflammatory condition. The general implications of this model and its relations to Zn and Se will be discussed.
Collapse
Affiliation(s)
- Roy Moncayo
- WOMED, Karl-Kapferer-Strasse 5, A-6020 Innsbruck, Austria
| | - Helga Moncayo
- WOMED, Karl-Kapferer-Strasse 5, A-6020 Innsbruck, Austria
| |
Collapse
|
323
|
Cannon DT, Kolkhorst FW, Cipriani DJ. Effect of pedaling technique on muscle activity and cycling efficiency. Eur J Appl Physiol 2007; 99:659-64. [PMID: 17226060 DOI: 10.1007/s00421-006-0391-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2006] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to examine the acute effect of talocrural joint position on muscle activity and gross mechanical efficiency (GE). Eleven trained cyclists participated in three randomized 6-min cycling bouts at approximately 80% of maximal aerobic capacity on an electromagnetically braked cycle ergometer while oxygen consumption and muscle activity (EMG) were monitored during the subject's self-selected pedaling technique (control) and while using a dorsi- and plantarflexed pedaling technique. The mean differences in range of motion of the dorsi- and plantarflexed technique from the control position were 7.1 +/- 4.4 and 6.9 +/- 5.4 degrees , respectively. Gastrocnemius EMG activity was higher with the dorsiflexion technique than when using the self-selected control position (33.2 +/- 13.0 and 24.2 +/- 8.4 microV s, respectively; P < 0.05). Moreover, GE was 2.6% lower while riding with the dorsiflexion technique than the control position (19.0 +/- 1.2 and 19.5 +/- 1.3%, respectively; P < 0.05). The data suggested that introducing more dorsiflexion into the pedal stroke of a trained cyclist increases muscle activity of the gastrocnemius lateralis and decreased GE when compared to the self-selected pedal stroke.
Collapse
Affiliation(s)
- Daniel T Cannon
- Department of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7251, USA.
| | | | | |
Collapse
|
324
|
Abstract
In this study, we examined the time course of changes in running economy following a 30-min downhill (-15%) run at 70% peak aerobic power (VO2peak). Ten young men performed level running at 65, 75, and 85% VO2peak (5 min for each intensity) before, immediately after, and 1 - 5 days after the downhill run, at which times oxygen consumption (VO2), minute ventilation, the respiratory exchange ratio (RER), heart rate, ratings of perceived exertion (RPE), and blood lactate concentration were measured. Stride length, stride frequency, and range of motion of the ankle, knee, and hip joints during the level runs were analysed using high-speed (120-Hz) video images. Downhill running induced reductions (7 - 21%, P < 0.05) in maximal isometric strength of the knee extensors, three- to six-fold increases in plasma creatine kinase activity and myoglobin concentration, and muscle soreness for 4 days after the downhill run. Oxygen consumption increased (4 - 7%, P < 0.05) immediately to 3 days after downhill running. There were also increases (P < 0.05) in heart rate, minute ventilation, RER, RPE, blood lactate concentration, and stride frequency, as well as reductions in stride length and range of motion of the ankle and knee. The results suggest that changes in running form and compromised muscle function due to muscle damage contribute to the reduction in running economy for 3 days after downhill running.
Collapse
Affiliation(s)
- Trevor C Chen
- Department of Physical Education, National Chiayi University, Chiayi County, Taiwan.
| | | | | |
Collapse
|
325
|
Skurvydas A, Sipaviciene S, Krutulyte G, Gailiuniene A, Stasiulis A, Mamkus G, Stanislovaitis A. Dynamics of indirect symptoms of skeletal muscle damage after stretch-shortening exercise. J Electromyogr Kinesiol 2006; 16:629-36. [PMID: 16377212 DOI: 10.1016/j.jelekin.2005.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/15/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022] Open
Abstract
Healthy untrained men (age 20.4+/-1.7 years, n=20) volunteered to participate in an experiment in order to establish dynamics of indirect symptoms of skeletal muscle damage (ISMD) (decrease in maximal isometric voluntary contraction torque (MVCT) and torque evoked by electrostimulation at different frequencies and at different quadriceps muscle length, height (H) of drop jump (DJ), muscle soreness and creatine kinase (CK) activity in the blood) after 100 DJs from 0.75 m height performed with maximal intensity with an interval of 20s between the jumps (stretch-shortening exercise, SSE). All ISMDs remained even 72 h after SSE (P<0.01-0.001). The muscle experienced greater decrease (P<0.01) in torque evoked by electrostimulation (at low stimulation frequencies and at short muscle length in particular) after SSE than neuromuscular performance (MVCT and H of DJ) which demonstrated secondary decrease (P<0.01) in neuromuscular performance during the first 48 h after SSE. Within 24-72 h after the SSE the subjects felt an acute muscle pain (5-7 points approximately) and the CK activity in the blood was significantly increased up to 1200 IU/L (P<0.001). A significant correlation between decrease in MVCT and H of DJ 24-48 h after SSE on the one hand and muscle soreness registered within 24-48 h after SSE on the other was observed, whereas correlation between the other indirect symptoms of skeletal muscle damage was not significant.
Collapse
Affiliation(s)
- Albertas Skurvydas
- Laboratory of Human Motorics, Lithuanian Academy of Physical Education, Sporto 6, LT 44221 Kaunas, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
326
|
Sotiriadou S, Kyparos A, Albani M, Arsos G, Clarke MSF, Sidiras G, Angelopoulou N, Matziari C. Soleus muscle force following downhill running in ovariectomized rats treated with estrogen. Appl Physiol Nutr Metab 2006; 31:449-59. [PMID: 16900235 DOI: 10.1139/h06-008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ovariectomized (OVX) rat model was used to investigate the effects of estrogen treatment on soleus muscle functionality in situ following muscle injury induced by downhill running. Fifty immature, 24- to 26-d-old, OVX rats were randomly assigned to 5 separate experimental groups: sedentary controls (OVX-Sed), placebo-treated and studied immediately after exercise (OVX-Pb0), placebo-treated and studied 72 h after exercise (OVX-Pb72), estradiol-treated and studied immediately after exercise (OVX-Ed0), and estradiol-treated and studied 72 h after exercise (OVX-Ed72). At the age of 9 weeks, under ketamine and xylazine anesthesia i.p., the rats were subcutaneously implanted with either placebo or 17beta-estradiol-impregnated pellets (0.05 mg/pellet, 3 week release). Treatment with 17beta-estradiol increased the estradiol plasma levels in OVX animals to those normally seen during the proestrous cycle of normal animals. Three weeks after the implantation the rats were subjected to a 90 min intermittent downhill running protocol. Our results indicate that the exercise protocol used in the study induced injury in the soleus muscle, as it was detected by the significant reduction in unfused (stimulation at 10, 20, and 40 Hz) and maximal (Po) tetanic force, as well as the decreased ability of the soleus muscle to maintain tension (stimulation at 40 Hz for 3 min) in OVX-Pb0 and OVX-Pb72 placebo-treated animals subjected to downhill running (injured muscles) as compared with OVX-Sed control rats (uninjured muscle). Estradiol replacement in OVX rats partially protected the soleus muscle from the injury normally induced by downhill running. As compared with the OVX-Pb0 and OVX-Pb72 placebo-treated groups, the soleus muscles of OVX-Ed0 and OVX-Ed72 estradiol-treated rats were capable of producing significantly greater unfused tetanic force and had an increased ability to maintain tension after fatigue. However, estrogen at the dose administered did not prevent the decrease in maximal tetanic force. We postulate that the protective effect of estrogens on muscle strength may be related to the ability of estrogen hormones to attenuate the E--C coupling failure and (or) the disorganization of the contractile apparatus associated with eccentric exercise through a mechanism or mechanisms yet to be fully understood.
Collapse
Affiliation(s)
- Sofia Sotiriadou
- Laboratory of Physiology, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Suzuki K, Peake J, Nosaka K, Okutsu M, Abbiss CR, Surriano R, Bishop D, Quod MJ, Lee H, Martin DT, Laursen PB. Changes in markers of muscle damage, inflammation and HSP70 after an Ironman triathlon race. Eur J Appl Physiol 2006; 98:525-34. [PMID: 17031693 DOI: 10.1007/s00421-006-0296-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
We investigated the effects of an Ironman triathlon race on markers of muscle damage, inflammation and heat shock protein 70 (HSP70). Nine well-trained male triathletes (mean +/- SD age 34 +/- 5 years; VO(2peak) 66.4 ml kg(-1) min(-1)) participated in the 2004 Western Australia Ironman triathlon race (3.8 km swim, 180 km cycle, 42.2 km run). We assessed jump height, muscle strength and soreness, and collected venous blood samples 2 days before the race, within 30 min and 14-20 h after the race. Plasma samples were analysed for muscle proteins, acute phase proteins, cytokines, heat shock protein 70 (HSP70), and clinical biochemical variables related to dehydration, haemolysis, liver and renal functions. Muscular strength and jump height decreased significantly (P < 0.05) after the race, whereas muscle soreness and the plasma concentrations of muscle proteins increased. The cytokines interleukin (IL)-1 receptor antagonist, IL-6 and IL-10, and HSP70 increased markedly after the race, while IL-12p40 and granulocyte colony-stimulating factor (G-CSF) were also elevated. IL-4, IL-1beta and tumour necrosis factor-alpha did not change significantly, despite elevated C-reactive protein and serum amyloid protein A on the day after the race. Plasma creatinine, uric acid and total bilirubin concentrations and gamma-glutamyl transferase activity also changed after the race. In conclusion, despite evidence of muscle damage and an acute phase response after the race, the pro-inflammatory cytokine response was minimal and anti-inflammatory cytokines were induced. HSP70 is released into the circulation as a function of exercise duration.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima Saitama, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Kellis E, Katis A, Vrabas IS. Effects of an intermittent exercise fatigue protocol on biomechanics of soccer kick performance. Scand J Med Sci Sports 2006; 16:334-44. [PMID: 16978253 DOI: 10.1111/j.1600-0838.2005.00496.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to examine the effects of fatigue on biomechanical indices of soccer kick performance. Ten male amateur soccer players performed maximal instep kicks prior to, in the middle and after the implementation of a 90 min intermittent exercise protocol. Three-dimensional data, ground reaction forces (GRFs) and segmental moments were measured during the kick while blood lactate and ammonia concentrations were monitored throughout the protocol. Analysis of variance designs with repeated measures indicated a significant increase in ammonia (P<0.01) and lactate levels (P<0.01) following fatigue. The GRFs and joint displacement curves during the kick remained unaltered after fatigue (P>0.01). However, post-fatigue maximum angular velocity of the shank, the net moments acting on the shank and the resultant joint moments were significantly lower compared with the corresponding pre-exercise values (P<0.01). The velocity of the ball was 24.69 m/s prior to the protocol and significantly decreased to 21.78 m/s after (P<0.01). Similarly, the ball/foot speed ratio significantly (P<0.01) declined from 1.40+/-0.12 (pre-fatigue) to 1.33+/-0.18 (post-fatigue). The present results suggest that an exercise protocol that simulates soccer game conditions results in significant impairment of soccer kick performance. This could be attributed to alterations of the function of the neuromuscular system and force generation capacity, which may have altered the mechanics of soccer kick performance.
Collapse
Affiliation(s)
- E Kellis
- Department of Physical Education and Sports Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
329
|
Falvo MJ, Bloomer RJ. Review of exercise-induced muscle injury: relevance for athletic populations. Res Sports Med 2006; 14:65-82. [PMID: 16700405 DOI: 10.1080/15438620500528380] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Exercise-induced skeletal muscle injury is well understood as the product of unfamiliar or strenuous physical activity. Eccentric or lengthening actions are primarily responsible for inducing injury, which subsequently leads to a variety of signs and symptoms. Although significant research supports this finding, most observations are specific to untrained individuals. In addition, many protocols designed both to induce muscle injury and assess performance following the injury are dissimilar from those utilized by physically trained individuals or are impractical in relation to athletic performance or both. Therefore, difficulty may arise when extrapolating information, from the available literature and applying the findings to athletic populations. This review addresses the efficacy of applying our current understanding of exercise-induced skeletal muscle injury to a physically trained population as well as highlights concerns that require future investigation.
Collapse
Affiliation(s)
- Michael J Falvo
- Department of Health and Sport Sciences, The University of Memphis, Memphis, Tennessee 38152, USA
| | | |
Collapse
|
330
|
Girard O, Lattier G, Micallef JP, Millet GP. Changes in exercise characteristics, maximal voluntary contraction, and explosive strength during prolonged tennis playing. Br J Sports Med 2006; 40:521-6. [PMID: 16720888 PMCID: PMC2465109 DOI: 10.1136/bjsm.2005.023754] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2005] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To examine changes in exercise characteristics, maximal voluntary contraction, and explosive strength during prolonged tennis playing. METHODS Maximal isometric voluntary contraction (MVC), leg stiffness (hopping), and peak power in squat (SJ) and countermovement (CMJ) jumps were measured before, every 30 minutes during, and 30 minutes after a three hour tennis match in 12 well trained players. Heart rate (HR), the effective playing time (EPT), rating of perceived exertion (RPE), and muscle soreness of knee extensors were also measured. RESULTS Decreases in MVC (-9%; p < 0.05) and leg stiffness (-9%; p = 0.17) were observed after the match and were significantly correlated (r = 0.66; p = 0.05). Peak power in SJ and CMJ tests was maintained during the match but was lower (p < 0.001) 30 minutes after. Average HR and EPT were 144 (8) beats/min and 21 (4)% respectively. A strong correlation was found between EPT and HR (r = 0.93; p < 0.05). RPE and muscle soreness increased linearly during the exercise and were significantly correlated (r = 0.99; p < 0.001). CONCLUSIONS Progressive reductions in maximal voluntary strength and leg stiffness highly correlated with increases in perceived exertion and muscle soreness were observed throughout a three hour tennis match, whereas explosive strength was maintained and decreased only after the match. These alterations may result in less efficient on-court movement and stroke production. They are, however, lower than those reported during continuous exercise of the same duration. The intermittent pattern of tennis and the numerous stretch-shortening cycle movements partly explain these results.
Collapse
Affiliation(s)
- O Girard
- Faculty of Sport Sciences, University of Montpellier, Montpellier, France.
| | | | | | | |
Collapse
|
331
|
Abstract
OBJECTIVES To examine the effectiveness of four interventions on the rate and magnitude of muscle damage recovery, as measured by creatine kinase (CK). METHODS 23 elite male rugby players were monitored transdermally before, immediately after, 36 hours after, and 84 hours after competitive rugby matches. Players were randomly assigned to complete one of four post-match strategies: contrast water therapy (CWT), compression garment (GAR), low intensity active exercise (ACT), and passive recovery (PAS). RESULTS Significant increases in CK activity in transdermal exudate were observed as a result of the rugby match (p<0.01). The magnitude of recovery in the PAS intervention was significantly worse than in the ACT, CWT, and GAR interventions at the 36 and 84 hour time points (p<0.05). CONCLUSIONS An enhanced rate and magnitude of recovery was observed in the ACT, CWT, and GAR treatment groups when compared with the PAS group. Low impact exercise immediately post-competition, wearing compression garments, or carrying out contrast water therapy enhanced CK clearance more than passive recovery in young male athletes.
Collapse
Affiliation(s)
- N D Gill
- Waikato Institute of Technology, School of Sport and Exercise Science, Hamilton, New Zealand.
| | | | | |
Collapse
|
332
|
Abstract
In the right hands, the golf swing is a motion that inspires looks of awe from the public. It is a complex movement of the whole body to generate power to a golf ball to propel the ball great distances with accuracy. This movement relies on the coordinated sequence of muscle activation to produce a fluid and reproducible movement. This paper reviews the literature on golf swing related muscle activity. The phases of this activity are discussed with a view to assisting the practitioner in understanding the swing. Such understanding may help in the management of the injured golfer.
Collapse
Affiliation(s)
- A McHardy
- Macquarie Injury Management Group, Macquarie University, Sydney, NSW, Australia.
| | | |
Collapse
|
333
|
Marginson V, Rowlands AV, Gleeson NP, Eston RG. Comparison of the symptoms of exercise-induced muscle damage after an initial and repeated bout of plyometric exercise in men and boys. J Appl Physiol (1985) 2005; 99:1174-81. [PMID: 15817716 DOI: 10.1152/japplphysiol.01193.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to compare symptoms of exercise-induced muscle damage after an initial and repeated bout of plyometric exercise in men and boys. Ten boys (9–10 yr) and 10 men (20–29 yr) completed two bouts of eight sets of 10 plyometric jumps, 2 wk apart. Perceived soreness (0–10, visual analog scale), isometric strength of the quadriceps at six knee flexion angles, and countermovement jump and squat jump height were assessed before and at 30 min, 24 h, 48 h, and 72 h after each bout. All variables followed the expected patterns of change in men, with soreness peaking at 24–48 h (5.8 ± 1.7) and decrements in muscle function peaking at 30 min after the first bout (73–85% of baseline scores). Symptoms remained for 72 h after the first bout in men. In boys, symptoms were much less severe and peaked at 30 min (visual analog scale = 2.1 ± 1.8, functional decrements 87–92% of baseline) and, with the exception of soreness, returned to baseline after 24 h. After the second bout of plyometric exercise, the level of soreness and decrements in countermovement jump, squat jump, and isometric strength were lower, although the effect was stronger in men, in all cases. The results of this study suggest that although children may experience symptoms of muscle damage after intensive plyometric exercise, they are much less severe. A prior bout of plyometric exercise also appears to provide children with some protection from soreness after a subsequent bout of plyometric exercise. Explanations for milder symptoms of exercise-induced muscle damage in children include greater flexibility leading to less overextension of sarcomeres during eccentric exercise, fewer fast-twitch muscle fibers, and greater and perhaps more varied habitual physical activity patterns.
Collapse
Affiliation(s)
- Vicky Marginson
- Cardiac Rehabilitation Department, Glan Clwyd Hospital, Rhyl, United Kingdom
| | | | | | | |
Collapse
|
334
|
Morton JP, Atkinson G, MacLaren DP, Cable NT, Gilbert G, Broome C, McArdle A, Drust B. Reliability of maximal muscle force and voluntary activation as markers of exercise-induced muscle damage. Eur J Appl Physiol 2005; 94:541-8. [PMID: 15928932 DOI: 10.1007/s00421-005-1373-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
The loss of the ability of skeletal muscle to generate force is one of the most appropriate and valid means to quantify muscle damage. Routine measurements of maximal muscle force, however, include many potential sources of error, the most important of which may be a possible lack of central drive to the muscles. The aim of the present study was to determine the reliability of maximal isometric quadriceps muscle force and voluntary activation over a time scale that is typically employed to examine the aetiology of exercise-induced muscle damage. We also attempted to characterise the reliability of several twitch interpolation variables including the size of the interpolated twitch and the state (i.e. un-potentiated vs potentiated) and size of the resting twitch. Over a 7-day period, eight healthy active males performed repeated maximal voluntary isometric contractions (MVC) of the quadriceps (baseline and 2 h, 6 h, 24 h, 48 h, 72 h and 7 days post). Systematic variations in maximal muscle force, voluntary activation, interpolated twitch, un-potentiated twitch and potentiated twitch were not statistically significant (P>0.05) and 95% repeatability coefficients of +/-76.03 N, +/-4.42%, +/- 8.44 N, +/-25.92 N and +/-43.58 N were observed, respectively. These data indicate that young healthy well-familiarized male subjects can reproduce their perceived maximal efforts both within and between days where activation levels of >90% are routinely achieved. Providing activation remains within these limits in the 7 days following an acute bout of exercise, the researcher would be 95% certain that exercise-induced muscle damage is present in individual subjects (taken from similar subject populations) if MVC force falls outside these limits.
Collapse
Affiliation(s)
- James Peter Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, 15-21 Webster Street, Liverpool, L3 2ET, UK.
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Twist C, Eston R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol 2005; 94:652-8. [PMID: 15887020 DOI: 10.1007/s00421-005-1357-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Exercise-induced muscle damage (EIMD) is a common occurrence following activities with a high eccentric component. Alterations to the torque-velocity relationship following EIMD would appear to have serious implications for athletic performance, particularly as they relate to impairment of maximal intensity exercise. However, this has been studied infrequently. The purpose of this study was to assess the effects of EIMD on maximal intermittent sprint performance. Ten male participants (age 22.4 +/- 3.2 years, height 178.6 +/- 5.2 cm, mass 80.6 +/- 10.7 kg) performed 10 x 6 s cycle ergometer sprints, interspersed with 24 s recovery against a load corresponding to 0.10 kp/kg and 10 x 10 m sprints from a standing start, each with 12 s active (walking) recovery. All variables were measured immediately before and at 30 min, 24, 48 and 72 h following a plyometric exercise protocol comprising of 10 x 10 maximal counter movement jumps. Repeated measures ANOVA showed significant changes over time (all P<0.05) for perceived soreness, plasma creatine kinase activity (CK), peak power output (PPO), sprint time and rate of fatigue. Soreness was significantly higher (P<0.01) than baseline values at all time intervals (3.1, 4.9, 5.5 and 3.2 at 30 min, 24, 48 and 72 h, respectively). CK was significantly elevated (P<0.05) at 24 h (239 IU/l) and 48 h (245 IU/l) compared to baseline (151 IU/l). PPO was significantly lower (P<0.05) than baseline (1,054 W) at all time intervals (888, 946, 852 and 895 W, at 30 min, 24, 48 and 72 h, respectively). The rate of fatigue over the ten cycling sprints was reduced compared to baseline, with the greatest reduction of 48% occurring at 48 h (P<0.01). This was largely attributed to the lower PPO in the initial repetitions, resulting in a lower starting point for the rate of fatigue. Values returned to normal at 72 h. Sprint times over 10 m were higher (P<0.05) at 30 min, 24 h and 48 h compared to baseline (1.96 s) with values corresponding to 2.01, 2.02 and 2.01 at 30 min, 24 h and 48 h, respectively. Values returned to baseline by 72 h. The results provide further evidence that, following a plyometric, muscle-damaging exercise protocol, the ability of the muscle to generate power is reduced for at least 3 days. This is also manifested by a small, but statistically significant reduction in very short-term (approximately 2 s) intermittent sprint running performance. These findings have implications for appropriate training strategies in multiple sprint sports.
Collapse
Affiliation(s)
- Craig Twist
- Department of Sport and Exercise Sciences, University College Chester, Chester, UK.
| | | |
Collapse
|
336
|
Gerwin RD, Dommerholt J, Shah JP. An expansion of Simons' integrated hypothesis of trigger point formation. Curr Pain Headache Rep 2005; 8:468-75. [PMID: 15509461 DOI: 10.1007/s11916-004-0069-x] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simons' integrated hypothesis proposed a model of trigger point (TrP) activation to explain known TrP phenomena, particularly endplate noise. We propose an expansion of this hypothesis to account for new experimental data and established muscle pathophysiology.
Collapse
Affiliation(s)
- Robert D Gerwin
- Johns Hopkins University Pain and Rehabilitation Medicine, Bethesda, MD 20814-2432, USA.
| | | | | |
Collapse
|