301
|
Jeong TS, Bartlett JD, Joo CH, Louhelainen J, Close GL, Morton JP, Drust B. Acute simulated soccer-specific training increases PGC-1α mRNA expression in human skeletal muscle. J Sports Sci 2014; 33:1493-503. [DOI: 10.1080/02640414.2014.992937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
302
|
Sex differences in acute translational repressor 4E-BP1 activity and sprint performance in response to repeated-sprint exercise in team sport athletes. J Sci Med Sport 2014; 18:730-6. [PMID: 25455955 DOI: 10.1016/j.jsams.2014.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 09/01/2014] [Accepted: 10/10/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The physiological requirements underlying soccer-specific exercise are incomplete and sex-based comparisons are sparse. The aim of this study was to determine the effects of a repeated-sprint protocol on the translational repressor 4E-BP1 and sprint performance in male and female soccer players. DESIGN Cross-over design involving eight female and seven male university soccer players. METHODS Participants performed four bouts of 6 × 30-m maximal sprints spread equally over 40 min. Heart rate, sprint time and sprint decrement were measured for each sprint and during the course of each bout. Venous blood samples and muscle biopsies from the vastus lateralis were taken at rest, at 15 min and 2h post-exercise. RESULTS While males maintained a faster mean sprint time for each bout (P < 0.05) females exhibited a greater decrement in sprint performance for each bout (P < 0.05), indicating a superior maintenance of sprint performance in males, with no sex differences for heart rate or lactate. Muscle analyses revealed sex differences in resting total (P < 0.05) and phosphorylated (P < 0.05) 4E-BP1 Thr37/46, and 15 min post-exercise the 4E-BP1 Thr37/46 ratio decreased below resting levels in males only (P < 0.05), indicative of a decreased translation initiation following repeated sprints. CONCLUSIONS We show that females have a larger sprint decrement indicating that males have a superior ability to recover sprint performance. Sex differences in resting 4E-BP1 Thr37/46 suggest diversity in the training-induced phenotype of the muscle of males and females competing in equivalent levels of team-sport competition.
Collapse
|
303
|
de Souza EO, Tricoli V, Aoki MS, Roschel H, Brum PC, Bacurau AV, Silva-Batista C, Wilson JM, Neves M, Soares AG, Ugrinowitsch C. Effects of Concurrent Strength and Endurance Training on Genes Related to Myostatin Signaling Pathway and Muscle Fiber Responses. J Strength Cond Res 2014; 28:3215-23. [DOI: 10.1519/jsc.0000000000000525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
304
|
Rönn T, Ling C. Effect of exercise on DNA methylation and metabolism in human adipose tissue and skeletal muscle. Epigenomics 2014; 5:603-5. [PMID: 24283873 DOI: 10.2217/epi.13.61] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tina Rönn
- Epigenetics & Diabetes Unit, Lund University Diabetes Centre, Malmö, Sweden.
| | | |
Collapse
|
305
|
Golberg ND, Druzhevskaya AM, Rogozkin VA, Ahmetov II. Role of mTOR in the regulation of skeletal muscle metabolism. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s0362119714040070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
306
|
Lundberg TR, Fernandez-Gonzalo R, Norrbom J, Fischer H, Tesch PA, Gustafsson T. Truncated splice variant PGC-1α4 is not associated with exercise-induced human muscle hypertrophy. Acta Physiol (Oxf) 2014; 212:142-51. [PMID: 24800995 DOI: 10.1111/apha.12310] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/23/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION A truncated PGC-1α splice variant (PGC-1α4) has been implicated in the regulation of resistance exercise (RE)-induced muscle hypertrophy, and basal expression levels said to be augmented in response to concurrent aerobic (AE) and RE training. AIM The current study investigated human muscle truncated and non-truncated PGC-1α transcripts in response to both acute and chronic RE, and with or without preceding AE (AE+RE). METHODS Ten men performed 5 weeks of unilateral AE+RE and RE training. Before (untrained) and after (trained) this intervention, PGC-1α transcripts were assessed in vastus lateralis muscle biopsies obtained before and 3 h after acute RE, with or without preceding AE. Additionally, samples were collected 72 h after the last exercise bout of the training programme. RESULTS The truncated splice variant increased (P < 0.05) its expression after acute exercise regardless of mode. However, the expression was greater (P < 0.05) after AE+RE than RE. Other PGC-1α transcripts showed similar response. Truncated transcripts originated from both the alternative and proximal promoter, and AE+RE increased PGC-1α expression from both promoter sites. RE induced transcripts from the alternative promoter only. PGC-1α expressions after acute exercise were comparable across isoforms in both untrained and trained muscle. Steady-state levels of isoforms were unchanged after 5-week training (P > 0.05). Exercise-induced expression of PGC-1α variants did not correlate with changes in muscle size or strength (P > 0.05). CONCLUSION Our results do not support the view that truncated PGC-1α coordinates exercise-induced hypertrophy in human skeletal muscle. Rather, all PGC-1α isoforms appear to be regulated transiently in response to acute exercise and regardless of mode.
Collapse
Affiliation(s)
- T. R. Lundberg
- Department of Health Sciences; Mid Sweden University; Östersund Sweden
| | - R. Fernandez-Gonzalo
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. Norrbom
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - H. Fischer
- Department of Laboratory Medicine; Section for Clinical Physiology; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - P. A. Tesch
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - T. Gustafsson
- Department of Laboratory Medicine; Section for Clinical Physiology; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
307
|
Zarebska A, Jastrzebski Z, Kaczmarczyk M, Ficek K, Maciejewska-Karlowska A, Sawczuk M, Leońska-Duniec A, Krol P, Cieszczyk P, Zmijewski P, Eynon N. THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING. Biol Sport 2014; 31:261-6. [PMID: 25435667 PMCID: PMC4203841 DOI: 10.5604/20831862.1120932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 11/29/2022] Open
Abstract
The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes.
Collapse
Affiliation(s)
- A Zarebska
- Academy of Physical Education and Sport, Department of Tourism and Recreation, Gdansk, Poland
| | - Z Jastrzebski
- Academy of Physical Education and Sport, Department of Tourism and Recreation, Gdansk, Poland
| | - M Kaczmarczyk
- Academy of Physical Education and Sport, Department of Tourism and Recreation, Gdansk, Poland ; Pomeranian Medical University, Department of Clinical and Molecular Biochemistry, Szczecin, Poland
| | - K Ficek
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - A Maciejewska-Karlowska
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - M Sawczuk
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - A Leońska-Duniec
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - P Krol
- University of Rzeszów, Department of Physical Culture, Rzeszow, Poland
| | - P Cieszczyk
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - P Zmijewski
- Institute of Sport, Department of Physiology, Institute of Sport, Warsaw, Poland
| | - N Eynon
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Australia
| |
Collapse
|
308
|
Skovgaard C, Christensen PM, Larsen S, Andersen TR, Thomassen M, Bangsbo J. Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners. J Appl Physiol (1985) 2014; 117:1097-109. [PMID: 25190744 DOI: 10.1152/japplphysiol.01226.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to examine whether speed endurance training (SET, repeated 30-s sprints) and heavy resistance training (HRT, 80-90% of 1 repetition maximum) performed in succession are compatible and lead to performance improvements in moderately trained endurance runners. For an 8-wk intervention period (INT) 23 male runners [maximum oxygen uptake (V̇O(2max)) 59 ± 1 ml·min(-1)·kg(-1); values are means ± SE] either maintained their training (CON, n = 11) or performed high-intensity concurrent training (HICT, n = 12) consisting of two weekly sessions of SET followed by HRT and two weekly sessions of aerobic training with an average reduction in running distance of 42%. After 4 wk of HICT, performance was improved (P < 0.05) in a 10-km run (42:30 ± 1:07 vs. 44:11 ± 1:08 min:s) with no further improvement during the last 4 wk. Performance in a 1,500-m run (5:10 ± 0:05 vs. 5:27 ± 0:08 min:s) and in the Yo-Yo IR2 test (706 ± 97 vs. 491 ± 65 m) improved (P < 0.001) only following 8 wk of INT. In HICT, running economy (189 ± 4 vs. 195 ± 4 ml·kg(-1)·km(-1)), muscle content of NHE1 (35%) and dynamic muscle strength was augmented (P < 0.01) after compared with before INT, whereas V̇O(2max), muscle morphology, capillarization, content of muscle Na(+)/K(+) pump subunits, and MCT4 were unaltered. No changes were observed in CON. The present study demonstrates that SET and HRT, when performed in succession, lead to improvements in both short- and long-term running performance together with improved running economy as well as increased dynamic muscle strength and capacity for muscular H(+) transport in moderately trained endurance runners.
Collapse
Affiliation(s)
- Casper Skovgaard
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark; and Team Danmark (Danish Elite Sport Organization), Copenhagen, Denmark
| | - Peter M Christensen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark; and Team Danmark (Danish Elite Sport Organization), Copenhagen, Denmark
| | - Sonni Larsen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark; and
| | - Thomas Rostgaard Andersen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark; and
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark; and
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
309
|
Verlengia R, Rebelo AC, Crisp AH, Kunz VC, dos Santos Carneiro Cordeiro MA, Hirata MH, Crespo Hirata RD, Silva E. Lack of Association Between ACE Indel Polymorphism and Cardiorespiratory Fitness in Physically Active and Sedentary Young Women. Asian J Sports Med 2014; 5:e22768. [PMID: 25520764 PMCID: PMC4267487 DOI: 10.5812/asjsm.22768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 04/04/2014] [Indexed: 11/22/2022] Open
Abstract
Background: Polymorphisms at the angiotensin-converting enzyme gene (ACE), such as the indel [rs1799752] variant in intron 16, have been shown to be associated with aerobic performance of athletes and non-athletes. However, the relationship between ACE indel polymorphism and cardiorespiratory fitness has not been always demonstrated. Objectives: The relationship between ACE indel polymorphism and cardiorespiratory fitness was investigated in a sample of young Caucasian Brazilian women. Patients and Methods: This study investigated 117 healthy women (aged 18 to 30 years) who were grouped as physically active (n = 59) or sedentary (n = 58). All subjects performed an incremental exercise test (ramp protocol) on a cycle-ergometer with 20-25 W/min increments. Blood samples were obtained for DNA extraction and to analyze metabolic and hormonal profiles. ACE indel polymorphism was determined by polymerase chain reaction (PCR) and fragment size analysis. Results: The physically active group had higher values of peak oxygen uptake (VO2 peak), carbon dioxide output (VCO2), ventilation (VE) and power output than the sedentary group (P < 0.05) at the peak of the exercise test. However, heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) did not differ between groups. There was no relationship between ACE indel polymorphism and cardiorespiratory variables during the test in both the physically active and sedentary groups, even when the dominant (DD vs. D1 + 2) and recessive (2 vs. DI + DD) models of inheritance were tested. Conclusions: These results do not support the concept that the genetic variation at the ACE locus contributes to the cardiorespiratory responses at the peak of exercise test in physically active or sedentary healthy women. This indicates that other factors might mediate these responses, including the physical training level of the women.
Collapse
Affiliation(s)
- Rozangela Verlengia
- College of Health Sciences, Methodist University of Piracicaba, Piracicaba, Brazil
- Corresponding author: Rozangela Verlengia, College of Health Sciences, Methodist University of Piracicaba, Piracicaba, Sao Paulo, Brazil. Tel: +55-151931241558, Fax: +55-151931241659, E-mail:, E-mail:
| | - Ana C. Rebelo
- Department of Morphology, Federal University of Goias, Goiania, Brazil
| | - Alex H. Crisp
- College of Health Sciences, Methodist University of Piracicaba, Piracicaba, Brazil
| | - Vandeni C. Kunz
- Adventist University of Sao Paulo, Engenheiro Coellho, Sao Paulo, Brazil
| | | | - Mario H. Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ester Silva
- Department of Physiotherapy, Federal University of Sao Carlos, Sao Carlos, Brazil
| |
Collapse
|
310
|
Kunert-Keil C, Botzenhart U, Gedrange T, Gredes T. Interrelationship between bone substitution materials and skeletal muscle tissue. Ann Anat 2014; 199:73-8. [PMID: 25159858 DOI: 10.1016/j.aanat.2014.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 01/25/2023]
Abstract
Bone density and quantity are primary conditions for the insertion and stability of dental implants. In cases of a lack of adequate maxillary or mandibulary bone, bone augmentation will be necessary. The use of synthetic bioactive bone substitution materials is of increasing importance as alternatives to autogenously bone grafts. It is well known that bone can influence muscle function and muscle function can influence bone structures. Muscles have a considerable potential of adaptation and muscle tissue surrounding an inserted implant or bone surrogate can integrate changes in mechanical load of the muscle and hereupon induce signaling cascades with protein synthesis and arrangement of the cytoskeleton. The Musculus latissimus dorsi is very often used for the analyses of the in vivo biocompatibility of newly designed biomaterials. Beside macroscopically and histologically examination, biocompatibility can be assessed by analyses of the biomaterial influence of gene expression. This review discusses changes in the fiber type distribution, myosin heavy chain isoform composition, histological appearance and vascularization of the skeletal muscle after implantation of bone substitution materials. Especially, the effects of bone surrogates should be described at the molecular-biological and cellular level.
Collapse
Affiliation(s)
- Christiane Kunert-Keil
- Department of Orthodontics, Carl Gustav Carus Campus, Technische Universität Dresden, Fetscherstr. 74, Haus 28, D-01307 Dresden, Germany.
| | - Ute Botzenhart
- Department of Orthodontics, Carl Gustav Carus Campus, Technische Universität Dresden, Fetscherstr. 74, Haus 28, D-01307 Dresden, Germany
| | - Tomasz Gedrange
- Department of Orthodontics, Carl Gustav Carus Campus, Technische Universität Dresden, Fetscherstr. 74, Haus 28, D-01307 Dresden, Germany
| | - Tomasz Gredes
- Department of Orthodontics, Carl Gustav Carus Campus, Technische Universität Dresden, Fetscherstr. 74, Haus 28, D-01307 Dresden, Germany
| |
Collapse
|
311
|
Wahl P, Hein M, Achtzehn S, Bloch W, Mester J. Acute metabolic, hormonal and psychological responses to cycling with superimposed electromyostimulation. Eur J Appl Physiol 2014; 114:2331-9. [PMID: 25059760 DOI: 10.1007/s00421-014-2952-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of the present study was to evaluate the effects of superimposed electromyostimulation (E) during cycling on the acute hormonal and metabolic response, as E might be a useful tool to intensify endurance training without performing high external workloads. METHODS Thirteen subjects participated in three experimental trials each lasting 60 min in a randomized order. (1) Cycling (C), (2) cycling with superimposed E (C + E) and (3) E. Human growth hormone (hGH), testosterone and cortisol were determined before (pre) and 0', 30', 60', 240' and 24 h after each intervention. Metabolic stimuli and perturbations were characterized by lactate and blood gas analysis (pH, base excess, bicarbonate, partial pressure of oxygen, partial pressure of carbon dioxide). Furthermore, changes of the person's perceived physical state were determined. RESULTS C + E caused the highest increases in cortisol and hGH, followed by C and E. Testosterone levels showed no significant differences between C + E and C. Metabolic stress was highest during C + E, followed by C and E. C + E was also the most demanding intervention from an athlete's point of view. CONCLUSION As cortisol and hGH are known to react in an intensity dependent manner, the present study showed that superimposed E is a useful method to intensify endurance training, even when performing low to moderate external workloads. Even at lower exercise intensities, additional E may allow one to induce a high (local) stimulus. It can be speculated, that these acute hormonal increases and metabolic perturbations, might play a positive role in optimizing long-term training adaptations, similar to those of intense training protocols.
Collapse
Affiliation(s)
- Patrick Wahl
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany,
| | | | | | | | | |
Collapse
|
312
|
Mendham AE, Duffield R, Marino F, Coutts AJ. Small-sided games training reduces CRP, IL-6 and leptin in sedentary, middle-aged men. Eur J Appl Physiol 2014; 114:2289-97. [DOI: 10.1007/s00421-014-2953-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022]
|
313
|
Rasmussen M, Zierath JR, Barrès R. Dynamic epigenetic responses to muscle contraction. Drug Discov Today 2014; 19:1010-4. [DOI: 10.1016/j.drudis.2014.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
|
314
|
Abstract
Synopsis Though our understanding of motor disorders and mechanical neck pain has advanced, the role of scapular dysfunction in mechanical neck pain remains enigmatic. The biomechanical interdependence between the neck and scapula and the potentially deleterious consequences of scapular dysfunction in the cervical region are biomechanically plausible. Yet the relevance of observed scapular dysfunction in patients with neck pain is still inadequately explained by research. However, studies investigating the association between scapular function and neck pain are beginning to emerge. The purpose of this paper was to review the current knowledge of this topic and consider the implications for clinical practice. Level of Evidence Therapy, level 5.
Collapse
|
315
|
Ogasawara R, Sato K, Matsutani K, Nakazato K, Fujita S. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am J Physiol Endocrinol Metab 2014; 306:E1155-62. [PMID: 24691029 DOI: 10.1152/ajpendo.00647.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Concurrent training, a combination of endurance (EE) and resistance exercise (RE) performed in succession, may compromise the muscle hypertrophic adaptations induced by RE alone. However, little is known about the molecular signaling interactions underlying the changes in skeletal muscle adaptation during concurrent training. Here, we used an animal model to investigate whether EE before or after RE affects the molecular signaling associated with muscle protein synthesis, specifically the interaction between RE-induced mammalian target of rapamycin complex 1 (mTORC1) signaling and EE-induced AMP-activated protein kinase (AMPK) signaling. Male Sprague-Dawley rats were divided into five groups: an EE group (treadmill, 25 m/min, 60 min), an RE group (maximum isometric contraction via percutaneous electrical stimulation for 3 × 10 s, 5 sets), an EE before RE group, an EE after RE group, and a nonexercise control group. Phosphorylation of p70S6K, a marker of mTORC1 activity, was significantly increased 3 h after RE in both the EE before RE and EE after RE groups, but the increase was smaller in latter. Furthermore, protein synthesis was greatly increased 6 h after RE in the EE before RE group. Increases in the phosphorylation of AMPK and Raptor were observed only in the EE after RE group. Akt and mTOR phosphorylation were increased in both groups, with no between-group differences. Our results suggest that the last bout of exercise dictates the molecular responses and that mTORC1 signaling induced by any prior bout of RE may be downregulated by a subsequent bout of EE.
Collapse
Affiliation(s)
- Riki Ogasawara
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan; The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan;
| | - Koji Sato
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan; Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, Japan; and
| | - Kenji Matsutani
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
316
|
Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med 2014; 43:927-54. [PMID: 23832851 DOI: 10.1007/s40279-013-0066-5] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-intensity interval training (HIT) is a well-known, time-efficient training method for improving cardiorespiratory and metabolic function and, in turn, physical performance in athletes. HIT involves repeated short (<45 s) to long (2-4 min) bouts of rather high-intensity exercise interspersed with recovery periods (refer to the previously published first part of this review). While athletes have used 'classical' HIT formats for nearly a century (e.g. repetitions of 30 s of exercise interspersed with 30 s of rest, or 2-4-min interval repetitions ran at high but still submaximal intensities), there is today a surge of research interest focused on examining the effects of short sprints and all-out efforts, both in the field and in the laboratory. Prescription of HIT consists of the manipulation of at least nine variables (e.g. work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, between-series recovery duration and intensity); any of which has a likely effect on the acute physiological response. Manipulating HIT appropriately is important, not only with respect to the expected middle- to long-term physiological and performance adaptations, but also to maximize daily and/or weekly training periodization. Cardiopulmonary responses are typically the first variables to consider when programming HIT (refer to Part I). However, anaerobic glycolytic energy contribution and neuromuscular load should also be considered to maximize the training outcome. Contrasting HIT formats that elicit similar (and maximal) cardiorespiratory responses have been associated with distinctly different anaerobic energy contributions. The high locomotor speed/power requirements of HIT (i.e. ≥95 % of the minimal velocity/power that elicits maximal oxygen uptake [v/p(·)VO(2max)] to 100 % of maximal sprinting speed or power) and the accumulation of high-training volumes at high-exercise intensity (runners can cover up to 6-8 km at v(·)VO(2max) per session) can cause significant strain on the neuromuscular/musculoskeletal system. For athletes training twice a day, and/or in team sport players training a number of metabolic and neuromuscular systems within a weekly microcycle, this added physiological strain should be considered in light of the other physical and technical/tactical sessions, so as to avoid overload and optimize adaptation (i.e. maximize a given training stimulus and minimize musculoskeletal pain and/or injury risk). In this part of the review, the different aspects of HIT programming are discussed, from work/relief interval manipulation to HIT periodization, using different examples of training cycles from different sports, with continued reference to the cardiorespiratory adaptations outlined in Part I, as well as to anaerobic glycolytic contribution and neuromuscular/musculoskeletal load.
Collapse
Affiliation(s)
- Martin Buchheit
- Physiology Unit, Football Performance and Science Department, ASPIRE, Academy for Sports Excellence, P.O. Box 22287, Doha, Qatar,
| | | |
Collapse
|
317
|
Cobley JN, Sakellariou GK, Owens DJ, Murray S, Waldron S, Gregson W, Fraser WD, Burniston JG, Iwanejko LA, McArdle A, Morton JP, Jackson MJ, Close GL. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radic Biol Med 2014; 70:23-32. [PMID: 24525000 DOI: 10.1016/j.freeradbiomed.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
Abstract
Several redox-regulated responses to an acute exercise bout fail in aged animal skeletal muscle, including the ability to upregulate the expression of antioxidant defense enzymes and heat shock proteins (HSPs). These findings are generally derived from studies on sedentary rodent models and thus may be related to reduced physical activity and/or intraspecies differences as opposed to aging per se. This study, therefore, aimed to determine the influence of age and training status on the expression of HSPs, antioxidant enzymes, and NO synthase isoenzymes in quiescent and exercised human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis before and 3 days after an acute high-intensity-interval exercise bout in young trained, young untrained, old trained, and old untrained subjects. Levels of HSP72, PRX5, and eNOS were significantly higher in quiescent muscle of older compared with younger subjects, irrespective of training status. 3-NT levels were elevated in muscles of the old untrained but not the old trained state, suggesting that lifelong training may reduce age-related macromolecule damage. SOD1, CAT, and HSP27 levels were not significantly different between groups. HSP27 content was upregulated in all groups studied postexercise. HSP72 content was upregulated to a greater extent in muscle of trained compared with untrained subjects postexercise, irrespective of age. In contrast to every other group, old untrained subjects failed to upregulate CAT postexercise. Aging was associated with a failure to upregulate SOD2 and a downregulation of PRX5 in muscle postexercise, irrespective of training status. In conclusion, lifelong training is unable to fully prevent the progression toward a more stressed muscular state as evidenced by increased HSP72, PRX5, and eNOS protein levels in quiescent muscle. Moreover, lifelong training preserves some (e.g., CAT) but not all (e.g., SOD2, HSP72, PRX5) of the adaptive redox-regulated responses after an acute exercise bout. Collectively, these data support many but not all of the findings from previous animal studies and suggest parallel aging effects in humans and mice at rest and after exercise that are not modulated by training status in human skeletal muscle.
Collapse
Affiliation(s)
- J N Cobley
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - G K Sakellariou
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - D J Owens
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - S Murray
- Cardiology Department, Liverpool Heart and Chest Hospital, Liverpool L14 3PE, UK
| | - S Waldron
- Stepping Hill Hospital, Stockport SK2 7JE, UK
| | - W Gregson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - W D Fraser
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - J G Burniston
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - L A Iwanejko
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - A McArdle
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - J P Morton
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - M J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - G L Close
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
318
|
Affiliation(s)
- Glenn C Rowe
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
319
|
Zarzeczny R, Podleśny M, Polak A. Anaerobic capacity of amateur mountain bikers during the first half of the competition season. Biol Sport 2014; 30:189-94. [PMID: 24744487 PMCID: PMC3944565 DOI: 10.5604/20831862.1059210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 02/05/2023] Open
Abstract
Sustained aerobic exercise not only affects the rate of force development but also decreases peak power development. The aim of this study was to investigate whether anaerobic power of amateur mountain bikers changes during the first half of the competition season. Eight trained cyclists (mean ± SE: age: 22.0 ±0.5 years; height: 174.6 ± 0.9 cm; weight: 70.7 ± 2.6 kg) were subjected to an ergocycle incremental exercise test and to the Wingate test on two occasions: before, and in the middle of the season. After the incremental exercise test the excess post-exercise oxygen consumption was measured during 5-min recovery. Blood lactate concentration was measured in the 4th min after the Wingate test. Maximum oxygen uptake increased from 60.0 ± 1.5 ml min-1 kg-1 at the beginning of the season to 65.2 ± 1.4 ml min-1 kg-1 (P < 0.05) in the season. Neither of the mechanical variables of the Wingate test nor excess post-exercise oxygen consumption values were significantly different in these two measurements. However, blood lactate concentration was significantly higher (P < 0.001) in season (11.0 ± 0.5 mM) than before the season (8.6 ± 0.4 mM). It is concluded that: 1) despite the increase of cyclists’ maximum oxygen uptake during the competition season their anaerobic power did not change; 2) blood lactate concentration measured at the 4th min after the Wingate test does not properly reflect training-induced changes in energy metabolism.
Collapse
Affiliation(s)
- R Zarzeczny
- Institute of Physical Culture and Tourism, Jan Długosz Academy in Częstochowa, Poland
| | - M Podleśny
- Chair of Physiotherapy Basics, The Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
| | - A Polak
- Chair of Physiotherapy Basics, The Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
| |
Collapse
|
320
|
Nader GA, von Walden F, Liu C, Lindvall J, Gutmann L, Pistilli EE, Gordon PM. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol (1985) 2014; 116:693-702. [DOI: 10.1152/japplphysiol.01366.2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to determine whether acute resistance exercise (RE)-induced gene expression is modified by RE training. We studied the expression patterns of a select group of genes following an acute bout of RE in naïve and hypertrophying muscle. Thirteen untrained subjects underwent supervised RE training for 12 wk of the nondominant arm and performed an acute bout of RE 1 wk after the last bout of the training program ( training+acute). The dominant arm was either unexercised ( control) or subjected to the same acute exercise bout as the trained arm ( acute RE). Following training, men (14.8 ± 2.8%; P < 0.05) and women (12.6 ± 2.4%; P < 0.05) underwent muscle hypertrophy with increases in dynamic strength in the trained arm (48.2 ± 5.4% and 72.1 ± 9.1%, respectively; P < 0.01). RE training resulted in attenuated anabolic signaling as reflected by a reduction in rpS6 phosphorylation following acute RE. Changes in mRNA levels of genes involved in hypertrophic growth, protein degradation, angiogenesis, and metabolism commonly expressed in both men and women was determined 4 h following acute RE. We show that RE training can modify acute RE-induced gene expression in a divergent and gene-specific manner even in genes belonging to the same ontology. Changes in gene expression following acute RE are multidimensional, and may not necessarily reflect the actual adaptive response taking place during the training process. Thus RE training can selectively modify the acute response to RE, thereby challenging the use of gene expression as a marker of exercise-induced adaptations.
Collapse
Affiliation(s)
- G. A. Nader
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - F. von Walden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - C. Liu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - J. Lindvall
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - L. Gutmann
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - E. E. Pistilli
- Byrd Health Science Center, West Virginia University, Morgantown, West Virginia; and
| | - P. M. Gordon
- School of Education, Health, Human Performance, and Recreation, Baylor University, Waco, Texas
| |
Collapse
|
321
|
Lundberg TR, Fernandez-Gonzalo R, Tesch PA. Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men. J Appl Physiol (1985) 2014; 116:611-20. [DOI: 10.1152/japplphysiol.01082.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As aerobic exercise (AE) may interfere with adaptations to resistance exercise (RE), this study explored acute and chronic responses to consecutive AE (∼45 min cycling) and RE (4 × 7 maximal knee extensions) vs. RE only. Ten men performed acute unilateral AE + RE interspersed by 15 min recovery. The contralateral leg was subjected to RE. This exercise paradigm was then implemented in a 5-wk training program. Protein phosphorylation, gene expression, and glycogen content were assessed in biopsies obtained from the vastus lateralis muscle of both legs immediately before and 3 h after acute RE. Quadriceps muscle size and in vivo torque were measured, and muscle samples were analyzed for citrate synthase activity and glycogen concentration, before and after training. Acute AE reduced glycogen content (32%; P < 0.05) and increased ( P < 0.05) phosphorylation of AMPK (1.5-fold) and rpS6 (1.3-fold). Phosphorylation of p70S6K and 4E-BP1 remained unchanged. Myostatin gene expression was downregulated after acute AE + RE but not RE. Muscle size showed greater ( P < 0.05) increase after AE + RE (6%) than RE (3%) training. Citrate synthase activity (18%) and endurance performance (22%) increased ( P < 0.05) after AE + RE but not RE. While training increased ( P < 0.05) in vivo muscle strength in both legs, normalized and concentric torque increased after RE only. Thus AE activates AMPK, reduces glycogen stores, and impairs the progression of concentric force, yet muscle hypertrophic responses to chronic RE training appear not to be compromised.
Collapse
Affiliation(s)
- Tommy R. Lundberg
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and
- Department of Laboratory Medicine, Section for Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per A. Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
322
|
Vissing K, McGee SL, Farup J, Kjølhede T, Vendelbo MH, Jessen N. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports 2014; 23:355-66. [PMID: 23802289 DOI: 10.1111/j.1600-0838.2011.01395.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The influence of adenosine mono phosphate (AMP)-activated protein kinase (AMPK) vs Akt-mammalian target of rapamycin C1 (mTORC1) protein signaling mechanisms on converting differentiated exercise into training specific adaptations is not well-established. To investigate this, human subjects were divided into endurance, strength, and non-exercise control groups. Data were obtained before and during post-exercise recovery from single-bout exercise, conducted with an exercise mode to which the exercise subjects were accustomed through 10 weeks of prior training. Blood and muscle samples were analyzed for plasma substrates and hormones and for muscle markers of AMPK and Akt-mTORC1 protein signaling. Increases in plasma glucose, insulin, growth hormone (GH), and insulin-like growth factor (IGF)-1, and in phosphorylated muscle phospho-Akt substrate (PAS) of 160 kDa, mTOR, 70 kDa ribosomal protein S6 kinase, eukaryotic initiation factor 4E, and glycogen synthase kinase 3a were observed after strength exercise. Increased phosphorylation of AMPK, histone deacetylase5 (HDAC5), cAMP response element-binding protein, and acetyl-CoA carboxylase (ACC) was observed after endurance exercise, but not differently from after strength exercise. No changes in protein phosphorylation were observed in non-exercise controls. Endurance training produced an increase in maximal oxygen uptake and a decrease in submaximal exercise heart rate, while strength training produced increases in muscle cross-sectional area and strength. No changes in basal levels of signaling proteins were observed in response to training. The results support that in training-accustomed individuals, mTORC1 signaling is preferentially activated after hypertrophy-inducing exercise, while AMPK signaling is less specific for differentiated exercise.
Collapse
Affiliation(s)
- K Vissing
- Department of Sport Science, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
323
|
Hodgson AB, Randell RK, Mahabir-Jagessar-T K, Lotito S, Mulder T, Mela DJ, Jeukendrup AE, Jacobs DM. Acute effects of green tea extract intake on exogenous and endogenous metabolites in human plasma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1198-1208. [PMID: 24400998 DOI: 10.1021/jf404872y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The acute effects of green tea extract (GTE) on plasma metabolites in vivo are largely unknown. In this parallel, double-blind study, the transient changes in total and free concentrations of catechins were measured in plasma from healthy males following the consumption of a single GTE dose (559.2 mg total catechins, 120.4 mg caffeine). Furthermore, the acute effects on endogenous metabolites were assessed 2 h after GTE intake using four-phase metabolite profiling. The ratios of the catechin concentrations in plasma to those in the GTE followed the order ECG/CG > EC > GCG > EGCG > EGC > C > GC. The gallated catechins EGCG, CG/ECG, GC, and GCG were also present in their free form. Sixteen out of 163 mostly endogenous metabolites were affected by acute GTE ingestion, when compared to placebo. These included caffeine, salicylate, hippurate, taurine, 3,4-dihydroxyphenylethylene-glycol, serotonin, some cholesterylesters, fatty acids, triglycerides, and sphingosines. Our results on the exogenous metabolites largely confirm previous studies, while our findings on the endogenous metabolites are novel and may suggest specific biological targets.
Collapse
Affiliation(s)
- Adrian B Hodgson
- School of Sport and Exercise Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Østgaard HN, Buer C, Midttun M, Freuchen F, Wiig H, Ulseth ET, Garthe I, Blomhoff R, Benestad HB, Raastad T. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol 2014; 592:1887-901. [PMID: 24492839 DOI: 10.1113/jphysiol.2013.267419] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (VO2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their VO2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: -13 ± 54%; PGC-1α: -13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
Collapse
Affiliation(s)
- Gøran Paulsen
- Norwegian School of Sport Sciences, PB 4014 Ullevål Stadion, 0806 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Immediate effects of active cranio-cervical flexion exercise versus passive mobilisation of the upper cervical spine on pain and performance on the cranio-cervical flexion test. ACTA ACUST UNITED AC 2014; 19:25-31. [DOI: 10.1016/j.math.2013.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 11/20/2022]
|
326
|
Mathias PCF, Elmhiri G, de Oliveira JC, Delayre-Orthez C, Barella LF, Tófolo LP, Fabricio GS, Chango A, Abdennebi-Najar L. Maternal diet, bioactive molecules, and exercising as reprogramming tools of metabolic programming. Eur J Nutr 2014; 53:711-22. [DOI: 10.1007/s00394-014-0654-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/12/2014] [Indexed: 12/21/2022]
|
327
|
Differential gene expression in high- and low-active inbred mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:361048. [PMID: 24551844 PMCID: PMC3914289 DOI: 10.1155/2014/361048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/15/2013] [Indexed: 12/26/2022]
Abstract
Numerous candidate genes have been suggested in the recent literature with proposed roles in regulation of voluntary physical activity, with little evidence of these genes' functional roles.
This study compared the haplotype structure and expression profile in skeletal muscle and brain of inherently high- (C57L/J) and low- (C3H/HeJ) active mice. Expression of nine candidate genes
[Actn2, Actn3, Casq1, Drd2, Lepr, Mc4r, Mstn, Papss2, and Glut4 (a.k.a. Slc2a4)] was evaluated via RT-qPCR. SNPs were observed in regions of
Actn2, Casq1, Drd2, Lepr,
and Papss2; however,
no SNPs were located in coding sequences or associated with any known regulatory sequences. In mice exposed to a running wheel, Casq1 (P = 0.0003) and Mstn (P = 0.002) transcript levels in the
soleus were higher in the low-active mice. However, when these genes were evaluated in naïve animals, differential expression was not observed, demonstrating a training effect. Among naïve mice,
no genes in either tissue exhibited differential expression between strains. Considering that no obvious SNP mechanisms were determined or differential expression was observed, our results indicate
that genomic structural variation or gene expression data alone is not adequate to establish any of these genes' candidacy or causality in relation to regulation of physical activity.
Collapse
|
328
|
Pesta D, Burtscher M. Does mild resistance training resemble a similar stimulus compared to aerobic training? Hepatology 2014; 59:351-2. [PMID: 23696196 DOI: 10.1002/hep.26477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/07/2022]
Affiliation(s)
- Dominik Pesta
- Howard Hughes Medical Institute, Chevy Chase, MD; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
329
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
330
|
Smrkolj L, Škof B. FACTORS OF SUCCESS IN ENDURANCE SPORTS; CHANGING OF MUSCLE FIBER TYPE. ACTA MEDICA MEDIANAE 2013. [DOI: 10.5633/amm.2013.0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
331
|
Pereira A, Costa AM, Leitão JC, Monteiro AM, Izquierdo M, Silva AJ, Bastos E, Marques MC. The influence of ACE ID and ACTN3 R577X polymorphisms on lower-extremity function in older women in response to high-speed power training. BMC Geriatr 2013; 13:131. [PMID: 24313907 PMCID: PMC4029788 DOI: 10.1186/1471-2318-13-131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background We studied the influence of the ACE I/D and ACTN3 R577X polymorphisms (single or combined) on lower-extremity function in older women in response to high-speed power training. Methods One hundred and thirty-nine healthy older Caucasian women participated in this study (age: 65.5 ± 8.2 years, body mass: 67.0 ± 10.0 kg and height: 1.57 ± 0.06 m). Walking speed (S10) performance and functional capacity assessed by the “get-up and go” (GUG) mobility test were measured at baseline (T1) and after a consecutive 12-week period of high-speed power training (40-75% of one repetition maximum in arm and leg extensor exercises; 3 sets 4–12 reps, and two power exercises for upper and lower extremity). Genomic DNA was extracted from blood samples, and genotyping analyses were performed by PCR methods. Genotype distributions between groups were compared by Chi-Square test and the gains in physical performance were analyzed by two-way, repeated-measures ANOVA. Results There were no significant differences between genotype groups in men or women for adjusted baseline phenotypes (P > 0.05). ACE I/D and ACTN3 polymorphisms showed a significant interaction genotype-training only in S10 (P = 0.012 and P = 0.044, respectively) and not in the GUG test (P = 0.311 and P = 0.477, respectively). Analyses of the combined effects between genotypes showed no other significant differences in all phenotypes (P < 0.05) at baseline. However, in response to high-speed power training, a significant interaction on walking speed (P = 0.048) was observed between the “power” (ACTN3 RR + RX & ACE DD) versus “non-power” muscularity-oriented genotypes (ACTN3 XX & ACE II + ID)]. Conclusions Thus, ACE I/D and ACTN3 R577X polymorphisms are likely candidates in the modulation of exercise-related gait speed phenotype in older women but not a significant influence in mobility traits.
Collapse
Affiliation(s)
| | | | | | | | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarra, Campus of Tudela, Av, de Tarazona s/n,, 31500 Tudela, Navarra, Spain.
| | | | | | | |
Collapse
|
332
|
Neubauer O, Sabapathy S, Ashton KJ, Desbrow B, Peake JM, Lazarus R, Wessner B, Cameron-Smith D, Wagner KH, Haseler LJ, Bulmer AC. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling. J Appl Physiol (1985) 2013; 116:274-87. [PMID: 24311745 DOI: 10.1152/japplphysiol.00909.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reprogramming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time course-dependent changes in the muscular transcriptome after an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h postexercise from eight healthy, endurance-trained men. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three hours postexercise, 102 gene sets were upregulated [family wise error rate (FWER), P < 0.05], including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1 signaling. Forty-eight hours postexercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were upregulated. Ninety-six hours postexercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were upregulated, including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h postexercise transcriptome indicates substantial transcriptional activity potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.
Collapse
Affiliation(s)
- Oliver Neubauer
- Emerging Field Oxidative Stress and DNA Stability, Research Platform Active Aging, and Department of Nutritional Sciences, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol (Oxf) 2013; 209:283-94. [PMID: 24112827 DOI: 10.1111/apha.12174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/22/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
Abstract
AIM This study assessed and compared acute muscle molecular responses before and after 5-week training, employing either aerobic (AE) and resistance exercise (RE) or RE only. METHODS Ten men performed one-legged RE, while the contralateral limb performed AE followed by RE 6 h later (AE+RE). Before (untrained) and after (trained) the intervention, acute bouts of RE were performed with or without preceding AE. Biopsies were obtained from m. vastus lateralis of each leg pre- and 3 h post-RE to determine mRNA levels of VEGF, PGC-1α, MuRF-1, atrogin-1, myostatin and phosphorylation of mTOR, p70S6K, rpS6 and eEF2. RESULTS PGC-1α and VEGF expression increased (P < 0.05) after acute RE in the untrained, but not the trained state. These markers showed greater response after AE+RE than RE in either condition. Myostatin was lower after AE+RE than RE, both before and after training. AE+RE showed higher MuRF-1 and atrogin-1 expression than RE in the untrained, not the trained state. Exercise increased (P < 0.05) p70S6K phosphorylation both before and after training, yet this increase tended to be more prominent for AE+RE than RE before training. Phosphorylation of p70S6K was greater in trained muscle. Changes in these markers did not correlate with exercise-induced alterations in strength or muscle size. CONCLUSION Concurrent exercise in untrained skeletal muscle prompts global molecular responses consistent with resulting whole muscle adaptations. Yet, training blunts the more robust anabolic response shown after AE+RE compared with RE. This study challenges the concept that single molecular markers could predict training-induced changes in muscle size or strength.
Collapse
Affiliation(s)
- R. Fernandez-Gonzalo
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Laboratory Medicine; Division of Clinical Physiology; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - T. R. Lundberg
- Department of Health Sciences; Mid Sweden University; Östersund Sweden
| | - P. A. Tesch
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Health Sciences; Mid Sweden University; Östersund Sweden
| |
Collapse
|
334
|
Bartlett JD, Close GL, Drust B, Morton JP. The Emerging Role of p53 in Exercise Metabolism. Sports Med 2013; 44:303-9. [DOI: 10.1007/s40279-013-0127-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
335
|
Sellar CM, Bell GJ, Haennel RG, Au HJ, Chua N, Courneya KS. Feasibility and efficacy of a 12-week supervised exercise intervention for colorectal cancer survivors. Appl Physiol Nutr Metab 2013; 39:715-23. [PMID: 24869975 DOI: 10.1139/apnm-2013-0367] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exercise training improves health-related physical fitness and patient-reported outcomes in cancer survivors, but few interventions have targeted colorectal cancer (CRC) survivors. This investigation aimed to determine the feasibility and efficacy of a 12-week supervised exercise training program for CRC survivors. Feasibility was assessed by tracking participant recruitment, loss to follow-up, assessment completion rates, participant evaluation, and adherence to the intervention. Efficacy was determined by changes in health-related physical fitness. Over a 1-year period, 72 of 351 (21%) CRC survivors screened were eligible for the study and 29 of the 72 (40%) were enrolled. Two participants were lost to follow-up (7%) and the completion rate for all study assessments was ≥93%. Mean adherence to the exercise intervention was 91% (standard deviation = ±18%), with a median of 98%. Participants rated the intervention positively (all items ≥ 6.6/7) and burden of testing low (all tests ≤ 2.4/7). Compared with baseline, CRC survivors showed improvements in peak oxygen uptake (mean change (MC) = +0.24 L·min(-1), p < 0.001), upper (MC = +7.0 kg, p < 0.001) and lower (MC = +26.5 kg, p < 0.001) body strength, waist circumference (MC = -2.1 cm, p = 0.005), sum of skinfolds (MC = -7.9 mm, p = 0.006), and trunk forward flexion (MC = +2.5 cm, p = 0.019). Exercise training was found to be feasible and improved many aspects of health-related physical fitness in CRC survivors that may be associated with improved quality of life and survival in these individuals.
Collapse
Affiliation(s)
- Christopher M Sellar
- a Faculty of Physical Education and Recreation, E459 Van Vliet Center, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | | | | | | | | | | |
Collapse
|
336
|
Wahl P, Zinner C, Grosskopf C, Rossmann R, Bloch W, Mester J. Passive recovery is superior to active recovery during a high-intensity shock microcycle. J Strength Cond Res 2013; 27:1384-93. [PMID: 22744298 DOI: 10.1519/jsc.0b013e3182653cfa] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose was to examine the effects of a 2-week high-intensity shock microcycle on maximal oxygen consumption and parameters of exercise performance in junior triathletes on the one hand and to evaluate the long-term effects of active (A) vs. passive (P) recovery on the other hand. Sixteen healthy junior triathletes participated in the study. For the assignment to the A or P group, the subjects were matched according to age and performance. Within 2 weeks, a total of 15 high-intensity interval sessions within three 3-day training blocks were performed. Before and 1 week after the last training session, the athletes performed a ramp test to determine V[Combining Dot Above]O2max, a time trial (TT) and a Wingate test. Furthermore, total hemoglobin (Hb) mass was determined. The results of the whole group, independent of the arrangement of recovery, were analyzed at first; second, the A and P groups were analyzed separately. Peak power output (PPO) during the ramp test and TT performance significantly increased in the whole group. The comparison of the 2 groups revealed increases for the mentioned parameters and for V[Combining Dot Above]O2 and power output at VT2 for the P group only. The V[Combining Dot Above]O2max did not change. Wingate performance increased in the A group only. The tHb mass slightly decreased. The main finding of this study was that a 14-day shock microcycle is able to improve TT performance and PPO in junior triathletes in a short period of time. Furthermore, not only the intensity but also the arrangement of interval training seems to be important as well, because only the P group showed improvements in endurance performance, despite a slightly lower training volume. These findings might be relevant for future arrangements of high-intensity interval training.
Collapse
Affiliation(s)
- Patrick Wahl
- Institute of Training Science and Sport Informatics, German Sport University, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
337
|
Christensen B, Nellemann B, Larsen MS, Thams L, Sieljacks P, Vestergaard PF, Bibby BM, Vissing K, Stødkilde-Jørgensen H, Pedersen SB, Møller N, Nielsen S, Jessen N, Jørgensen JOL. Whole body metabolic effects of prolonged endurance training in combination with erythropoietin treatment in humans: a randomized placebo controlled trial. Am J Physiol Endocrinol Metab 2013; 305:E879-89. [PMID: 23921143 DOI: 10.1152/ajpendo.00269.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED Erythropoietin (Epo) administration improves aerobic exercise capacity and insulin sensitivity in renal patients and also increases resting energy expenditure (REE). Similar effects are observed in response to endurance training. The aim was to compare the effects of endurance training with erythropoiesis-stimulating agent (ESA) treatment in healthy humans. Thirty-six healthy untrained men were randomized to 10 wk of either: 1) placebo (n = 9), 2) ESA (n = 9), 3) endurance training (n = 10), or 4) ESA and endurance training (n = 8). In a single-blinded design, ESA/placebo was injected one time weekly. Training consisted of biking for 1 h at 65% of wattmax three times per week. Measurements performed before and after the intervention were as follows: body composition, maximal oxygen uptake, insulin sensitivity, REE, and palmitate turnover. Uncoupling protein 2 (UCP2) mRNA levels were assessed in skeletal muscle. Fat mass decreased after training (P = 0.003), whereas ESA induced a small but significant increase in intrahepatic fat (P = 0.025). Serum free fatty acid (FFA) levels and palmitate turnover decreased significantly in response to training, whereas the opposite pattern was found after ESA. REE corrected for lean body mass increased in response to ESA and training, and muscle UCP2 mRNA levels increased after ESA (P = 0.035). Insulin sensitivity increased only after training (P = 0.011). IN CONCLUSION 1) insulin sensitivity is not improved after ESA treatment despite improved exercise capacity, 2) the calorigenic effects of ESA may be related to increased UCP2 gene expression in skeletal muscle, and 3) training and ESA exert opposite effects on lipolysis under basal conditions, increased FFA levels and liver fat fraction was observed after ESA treatment.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Martin LJ, Wong M. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms. Neurotherapeutics 2013; 10:722-33. [PMID: 23900692 PMCID: PMC3805862 DOI: 10.1007/s13311-013-0205-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. A diagnosis is fatal owing to degeneration of motor neurons in brain and spinal cord that control swallowing, breathing, and movement. ALS can be inherited, but most cases are not associated with a family history of the disease. The mechanisms causing motor neuron death in ALS are still unknown. Given the suspected complex interplay between multiple genes, the environment, metabolism, and lifestyle in the pathogenesis of ALS, we have hypothesized that the mechanisms of disease in ALS involve epigenetic contributions that can drive motor neuron degeneration. DNA methylation is an epigenetic mechanism for gene regulation engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to carbon-5 in cytosine residues in gene regulatory promoter and nonpromoter regions. Recent genome-wide analyses have found differential gene methylation in human ALS. Neuropathologic assessments have revealed that motor neurons in human ALS show significant abnormalities in Dnmt1, Dnmt3a, and 5-methylcytosine. Similar changes are seen in mice with motor neuron degeneration, and Dnmt3a was found abundantly at synapses and in mitochondria. During apoptosis of cultured motor neuron-like cells, Dnmt1 and Dnmt3a protein levels increase, and 5-methylcytosine accumulates. Enforced expression of Dnmt3a, but not Dnmt1, induces degeneration of cultured neurons. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocks apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with small molecules RG108 and procainamide protects motor neurons from excessive DNA methylation and apoptosis in cell culture and in a mouse model of ALS. Thus, motor neurons can engage epigenetic mechanisms to cause their degeneration, involving Dnmts and increased DNA methylation. Aberrant DNA methylation in vulnerable cells is a new direction for discovering mechanisms of ALS pathogenesis that could be relevant to new disease target identification and therapies for ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA,
| | | |
Collapse
|
339
|
Pereira A, Costa AM, Izquierdo M, Silva AJ, Bastos E, Marques MC. ACE I/D and ACTN3 R/X polymorphisms as potential factors in modulating exercise-related phenotypes in older women in response to a muscle power training stimuli. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1949-1959. [PMID: 22855367 PMCID: PMC3776118 DOI: 10.1007/s11357-012-9461-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/13/2012] [Indexed: 06/01/2023]
Abstract
Genetic variation of the human ACE I/D and ACTN3 R577X polymorphisms subsequent to 12 weeks of high-speed power training on maximal strength (1RM) of the arm and leg muscles, muscle power performance (counter-movement jump), and functional capacity (sit-to-stand test) was examined in older Caucasian women [n = 139; mean age 65.5 (8.2) years; 67.0 (10.0) kg and 1.57 (0.06) m]. Chelex 100 was used for DNA extraction, and genotype was determined by PCR-RFLP methods. Muscular strength, power, and functional testing were conducted at baseline (T1) and after 12 weeks (T2) of high-speed power training. At baseline, the ACE I/D and ACTN3 R/X polymorphisms were not associated with muscle function or muscularity phenotypes in older Caucasian women. After the 12-week high-speed training program, subjects significantly increased their muscular and functional capacity performance (p < 0.05). For both polymorphisms, significant genotype-training interaction (p < 0.05) was found in all muscular performance indices, except for 1RM leg extension in the ACE I/D (p = 0.187). Analyses of the combined effects between genotypes showed significant differences in all parameters (p < 0.05) in response to high-speed power training between the power (ACTN3 RR + RX & ACE DD) versus "non-power" muscularity-oriented genotypes (ACTN3 XX & ACE II + ID)]. Our data suggest that the ACE and ACTN3 genotypes (single or combined) exert a significant influence in the muscle phenotypes of older Caucasian women in response to high-speed power training. Thus, the ACE I/D and ACTN3 R/X polymorphisms are likely factors in modulating exercise-related phenotypes in older women, particularly in response to a resistance training stimuli.
Collapse
Affiliation(s)
- Ana Pereira
- />Department of Sport Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- />Research Centre in Sports, Health and Human Development, Vila Real, Portugal
| | - Aldo M. Costa
- />Research Centre in Sports, Health and Human Development, Vila Real, Portugal
- />Department of Sport Sciences, University of Beira Interior, Covilhã, Portugal
| | - Mikel Izquierdo
- />Department of Health Sciences, Public University of Navarre, Av. de Tarazona s/n, 31500 Tudela, Spain
| | - António J. Silva
- />Department of Sport Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- />Research Centre in Sports, Health and Human Development, Vila Real, Portugal
| | - Estela Bastos
- />Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Mário C. Marques
- />Research Centre in Sports, Health and Human Development, Vila Real, Portugal
- />Department of Sport Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
340
|
Zarebska A, Ahmetov II, Sawczyn S, Weiner AS, Kaczmarczyk M, Ficek K, Maciejewska-Karlowska A, Sawczuk M, Leonska-Duniec A, Klocek T, Voronina EN, Boyarskikh UA, Filipenko ML, Cieszczyk P. Association of theMTHFR1298A>C (rs1801131) polymorphism with speed and strength sports in Russian and Polish athletes. J Sports Sci 2013; 32:375-82. [DOI: 10.1080/02640414.2013.825731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
341
|
FURRER REGULA, DE HAAN ARNOLD, BRAVENBOER NATHALIE, KOS DORIEN, LIPS PAUL, JASPERS RICHARDT. Effects of Concurrent Training on Oxidative Capacity in Rat Gastrocnemius Muscle. Med Sci Sports Exerc 2013; 45:1674-83. [DOI: 10.1249/mss.0b013e31828fc65f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
342
|
HODY STEPHANIE, LACROSSE ZOE, LEPRINCE PIERRE, COLLODORO MIKE, CROISIER JEANLOUIS, ROGISTER BERNARD. Effects of Eccentrically and Concentrically Biased Training on Mouse Muscle Phenotype. Med Sci Sports Exerc 2013; 45:1460-8. [DOI: 10.1249/mss.0b013e3182894a33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
343
|
Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals. Pflugers Arch 2013; 465:1785-95. [PMID: 23838844 DOI: 10.1007/s00424-013-1318-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation following exercise. Previously, we demonstrated that mTOR is preferentially activated in response to resistance exercise compared to endurance exercise in trained individuals without concomitant activation of Akt. In the present study, we extended this investigation by examining IκB kinase complex (IKK), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major finding was that IKKβ phosphorylation increased exclusively after resistance exercise. No changes in TSC1, Erk1/2, insulin receptor, or insulin receptor substrate 1 phosphorylation were observed in any of the groups, while p38 phosphorylation was higher in the resistance exercise group compared to both other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect of repeated biopsy sampling on protein expression and phosphorylation was observed. In conclusion, resistance exercise, but not endurance exercise, increases IKKβ phosphorylation in trained human subjects, which support the idea that IKKβ can influence the activation of mTORC1 in human skeletal muscle.
Collapse
|
344
|
Methods of Prescribing Relative Exercise Intensity: Physiological and Practical Considerations. Sports Med 2013; 43:613-25. [DOI: 10.1007/s40279-013-0045-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
345
|
de Souza EO, Tricoli V, Bueno Junior C, Pereira MG, Brum PC, Oliveira EM, Roschel H, Aoki MS, Urginowitsch C. The acute effects of strength, endurance and concurrent exercises on the Akt/mTOR/p70(S6K1) and AMPK signaling pathway responses in rat skeletal muscle. Braz J Med Biol Res 2013; 46:343-7. [PMID: 23598645 PMCID: PMC3854410 DOI: 10.1590/1414-431x20132557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/20/2013] [Indexed: 11/23/2022] Open
Abstract
The activation of competing intracellular pathways has been proposed to explain the
reduced training adaptations after concurrent strength and endurance exercises (CE).
The present study investigated the acute effects of CE, strength exercises (SE), and
endurance exercises (EE) on phosphorylated/total ratios of selected AMPK and
Akt/mTOR/p70S6K1 pathway proteins in rats. Six animals per exercise
group were killed immediately (0 h) and 2 h after each exercise mode. In addition, 6
animals in a non-exercised condition (NE) were killed on the same day and under the
same conditions. The levels of AMPK, phospho-Thr172AMPK (p-AMPK), Akt,
phospho-Ser473Akt (p-Akt), p70S6K1,
phospho-Thr389-p70S6K1 (p-p70S6K1), mTOR,
phospho-Ser2448mTOR (p-mTOR), and phospho-Thr1462-TSC2
(p-TSC2) expression were evaluated by immunoblotting in total plantaris muscle
extracts. The only significant difference detected was an increase (i.e., 87%) in Akt
phosphorylated/total ratio in the CE group 2 h after exercise compared to the NE
group (P = 0.002). There were no changes in AMPK, TSC2, mTOR, or p70S6K1
ratios when the exercise modes were compared to the NE condition (P ≥ 0.05). In
conclusion, our data suggest that low-intensity and low-volume CE might not blunt the
training-induced adaptations, since it did not activate competing intracellular
pathways in an acute bout of strength and endurance exercises in rat skeletal
muscle.
Collapse
Affiliation(s)
- E O de Souza
- Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Murach KA, Bagley JR, Pfeiffer CJ. Is Long Duration Aerobic Exercise Necessary for Anaerobic Athletes? Strength Cond J 2013. [DOI: 10.1519/ssc.0b013e31828b4fde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
347
|
Green HJ, Burnett M, Carter S, Jacobs I, Ranney D, Smith I, Tupling S. Role of exercise duration on metabolic adaptations in working muscle to short-term moderate-to-heavy aerobic-based cycle training. Eur J Appl Physiol 2013; 113:1965-78. [PMID: 23543067 DOI: 10.1007/s00421-013-2621-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/27/2013] [Indexed: 12/29/2022]
Abstract
This study aimed at investigating the relative roles of the duration versus intensity of exercise on the metabolic adaptations in vastus lateralis to short-term (10 day) aerobic-based cycle training. Healthy males with a peak aerobic power (VO2 peak) of 46.0 ± 2.0 ml kg(-1) min(-1) were assigned to either a 30-min (n = 7) or a 60-min (n = 8) duration performed at two different intensities (with order randomly assigned), namely moderate (M) and heavy (H), corresponding to 70 and 86 % VO2 peak, respectively. No change (P > 0.05) in VO2 peak was observed regardless of the training program. Based on the metabolic responses to prolonged exercise (60 % VO2 peak), both M and H and 30 and 60 min protocols displayed less of a decrease (P < 0.05) in phosphocreatine (PCr) and glycogen (Glyc) and less of an increase (P < 0.05) in free adenosine diphosphate (ADPf), free adenosine monophosphate (AMPf), inosine monophosphate (IMP) and lactate (La). Training for 60 min compared with 30 min resulted in a greater protection (P < 0.05) of ADPf, AMPf, PCr and Glyc during exercise, effects that were not displayed between M and H. The reduction in both VO2 and RER (P < 0.05) observed during submaximal exercise did not depend on training program specifics. These findings indicate that in conjunction with our earlier study (Green et al., Eur J Appl Physiol, 2012b), a threshold exists for duration rather than intensity of aerobic exercise to induce a greater training impact in reducing metabolic strain.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON , N2L3G1, Canada.
| | | | | | | | | | | | | |
Collapse
|
348
|
Williams AM, Paterson DH, Kowalchuk JM. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates. J Appl Physiol (1985) 2013; 114:1550-62. [PMID: 23519229 DOI: 10.1152/japplphysiol.00575.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During step transitions in work rate (WR) within the moderate-intensity (MOD) exercise domain, pulmonary O2 uptake (Vo2p) kinetics are slowed, and Vo2p gain (ΔVo2p/ΔWR) is greater when exercise is initiated from an elevated metabolic rate. High-intensity interval training (HIT) has been shown to speed Vo2p kinetics when step transitions to MOD exercise are initiated from light-intensity baseline metabolic rates. The effects of HIT on step transitions initiated from elevated metabolic rates have not been established. Therefore, this study investigated the effects of HIT on Vo2p kinetics during transitions from low and elevated metabolic rates, within the MOD domain. Eight young, untrained men completed 12 sessions of HIT (spanning 4 wk). HIT consisted of 8-12 1-min intervals, cycling at a WR corresponding to 110% of pretraining maximal WR (WRmax). Pre-, mid- and posttraining, subjects completed a ramp-incremental test to determine maximum O2 uptake, WRmax, and estimated lactate threshold (θL). Participants additionally completed double-step constant-load tests, consisting of step transitions from 20 W → Δ45% θL [lower step (LS)] and Δ45 → 90% θL [upper step (US)]. HIT led to increases in maximum O2 uptake (P < 0.05) and WRmax (P < 0.01), and τVo2p of both lower and upper MOD step transitions were reduced by ∼40% (LS: 24 s → 15 s; US: 45 s → 25 s) (P < 0.01). However, the time course of adjustment of local muscle deoxygenation was unchanged in the LS and US. These results suggest that speeding of Vo2p kinetics in both the LS and US may be due, in part, to an improved matching of muscle O2 utilization to microvascular O2 delivery within the working muscle following 12 sessions of HIT, although muscle metabolic adaptations cannot be discounted.
Collapse
Affiliation(s)
- Alexandra M Williams
- Canadian Centre for Activity and Aging and School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
349
|
Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. Adv Nutr 2013; 4:129-40. [PMID: 23493529 PMCID: PMC3649093 DOI: 10.3945/an.112.003269] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Green tea is made from the leaves of the Camellia sinensis L plant, which is rich in polyphenol catechins and caffeine. There is increasing interest in the potential role of green tea extract (GTE) in fat metabolism and its influence on health and exercise performance. A number of studies have observed positive effects of GTE on fat metabolism at rest and during exercise, following both shorter and longer term intake. However, overall, the literature is inconclusive. The fact that not all studies observed effects may be related to differences in study designs, GTE bioavailability, and variation of the measurement (fat oxidation). In addition, the precise mechanisms of GTE in the human body that increase fat oxidation are unclear. The often-cited in vitro catechol-O-methyltransferase mechanism is used to explain the changes in substrate metabolism with little in vivo evidence to support it. Also, changes in expression of fat metabolism genes with longer term GTE intake have been implicated at rest and with exercise training, including the upregulation of fat metabolism enzyme gene expression in the skeletal muscle and downregulation of adipogenic genes in the liver. The exact molecular signaling that activates changes to fat metabolism gene expression is unclear but may be driven by PPAR-γ coactivator 1-α and PPARs. However, to date, evidence from human studies to support these adaptations is lacking. Clearly, more studies have to be performed to elucidate the effects of GTE on fat metabolism as well as improve our understanding of the underlying mechanisms.
Collapse
|
350
|
Abstract
Preservation of aerobic fitness and skeletal muscle strength through exercise training can ameliorate metabolic dysfunction and prevent chronic disease. These benefits are mediated in part by extensive metabolic and molecular remodeling of skeletal muscle by exercise. Aerobic and resistance exercise represent extremes on the exercise continuum and elicit markedly different training responses that are mediated by a complex interplay between a myriad of signaling pathways coupled to downstream regulators of transcription and translation. Here, we review the metabolic responses and molecular mechanisms that underpin the adaptatation of skeletal muscle to acute exercise and exercise training.
Collapse
Affiliation(s)
- Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|