301
|
Controlled accommodation of metal nanostructures within the matrices of polymer architectures through solution-based synthetic strategies. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
302
|
Cabral RM, Baptista PV. Anti-cancer precision theranostics: a focus on multifunctional gold nanoparticles. Expert Rev Mol Diagn 2014; 14:1041-52. [DOI: 10.1586/14737159.2014.965683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
303
|
Bai X, Shiu KK. Spontaneous Deposition of Prussian Blue on Reduced Graphene Oxide - Gold Nanoparticles Composites for the Fabrication of Electrochemical Biosensors. ELECTROANAL 2014. [DOI: 10.1002/elan.201400358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
304
|
Bao C, Conde J, Polo E, del Pino P, Moros M, Baptista PV, Grazu V, Cui D, de la Fuente JM. A promising road with challenges: where are gold nanoparticles in translational research? Nanomedicine (Lond) 2014; 9:2353-70. [DOI: 10.2217/nnm.14.155] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nanoenabled technology holds great potential for health issues and biological research. Among the numerous inorganic nanoparticles that are available today, gold nanoparticles are fully developed as therapeutic and diagnostic agents both in vitro and in vivo due to their physicochemical properties. Owing to this, substantial work has been conducted in terms of developing biosensors for noninvasive and targeted tumor diagnosis and treatment. Some studies have even expanded into clinical trials. This article focuses on the fundamentals and synthesis of gold nanoparticles, as well as the latest, most promising applications in cancer research, such as molecular diagnostics, immunosensors, surface-enhanced Raman spectroscopy and bioimaging. Challenges to their further translational development are also discussed.
Collapse
Affiliation(s)
- Chenchen Bao
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, People's Republic of China
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering & Science, Harvard–MIT Division for Health Sciences & Technology, E25-449 Cambridge, MA, USA
| | - Ester Polo
- Center for BionanoInteractions (CBNI), University College Dublin, Belfield, 4 Dublin, Ireland
| | - Pablo del Pino
- CIC BiomaGUNE, Paseo Miramon 182, 20009, San Sebastian, Spain
| | - Maria Moros
- Instituto de Nanociencia de Aragon-Universidad de Zaragoza, Edif I+D, C/ Mariano Esquillor s/n, Zaragoza, 50018, Spain
| | - Pedro V Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Valeria Grazu
- Instituto de Nanociencia de Aragon-Universidad de Zaragoza, Edif I+D, C/ Mariano Esquillor s/n, Zaragoza, 50018, Spain
| | - Daxiang Cui
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, People's Republic of China
| | - Jesus M de la Fuente
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, People's Republic of China
- Instituto de Nanociencia de Aragon-Universidad de Zaragoza, Edif I+D, C/ Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Instituto de Ciencia de Materiales de Aragón-CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
305
|
Adam T, U H. Novel Iron-oxide Catalyzed CNT Formation on Semiconductor Silicon Nanowire. CURRENT NANOSCIENCE 2014; 10:695-699. [PMID: 25237290 PMCID: PMC4161198 DOI: 10.2174/1573413710666140701184953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
An aqueous ferric nitrate nonahydrate (Fe(NO3)3.9H2O) and magnesium oxide (MgO) were mixed and deposited on silicon nanowires (SiNWs), the carbon nanotubes (CNTs) formed by the concentration of Fe3O4/MgO catalysts with the mole ratio set at 0.15:9.85 and 600°C had diameter between 15.23 to 90nm with high-density distribution of CNT while those with the mole ratio set at 0.45:9.55 and 730°C had diameter of 100 to 230nm. The UV/Vis/NIR and FT-IR spectroscopes clearly confirmed the presence of the silicon-CNTs hybrid structure. UV/Vis/NIR, FT-IR spectra and FESEM images confirmed the silicon-CNT structure exists with diameters ranging between 15-230nm. Thus, the study demonstrated cost effective method of silicon-CNT composite nanowire formation via Iron-oxide Catalyze synthesis.
Collapse
Affiliation(s)
- Tijjani Adam
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | | |
Collapse
|
306
|
Abstract
Nanobiotechnology is emerging as a field of applied biological science and nanotechnology. Synthesis of nanoparticles is done by various physical and chemical methods but the biological methods are relatively simple, cost-effective, nontoxic, and environmentally friendly methods. The present review focuses on the synthesis of nanoparticles with special emphasis on the use of plants parts for the synthesis process, its applications, and future prospectus.
Collapse
|
307
|
Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem J 2014. [DOI: 10.1016/j.microc.2014.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
308
|
Adley CC. Past, Present and Future of Sensors in Food Production. Foods 2014; 3:491-510. [PMID: 28234333 PMCID: PMC5302250 DOI: 10.3390/foods3030491] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Microbial contamination management is a crucial task in the food industry. Undesirable microbial spoilage in a modern food processing plant poses a risk to consumers' health, causing severe economic losses to the manufacturers and retailers, contributing to wastage of food and a concern to the world's food supply. The main goal of the quality management is to reduce the time interval between the filling and the detection of a microorganism before release, from several days, to minutes or, at most, hours. This would allow the food company to stop the production, limiting the damage to just a part of the entire batch, with considerable savings in terms of product value, thereby avoiding the utilization of raw materials, packaging and strongly reducing food waste. Sensor systems offer major advantages over current systems as they are versatile and affordable but need to be integrated in the existing processing systems as a process analytical control (PAT) tool. The desire for good selectivity, low cost, portable and usable at working sites, sufficiently rapid to be used at-line or on-line, and no sample preparation devices are required. The application of biosensors in the food industry still has to compete with the standard analytical techniques in terms of cost, performance and reliability.
Collapse
Affiliation(s)
- Catherine C Adley
- Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
309
|
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2:48. [PMID: 25077142 PMCID: PMC4097105 DOI: 10.3389/fchem.2014.00048] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.
Collapse
Affiliation(s)
- João Conde
- Harvard-MIT Division for Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jorge T. Dias
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Valeria Grazú
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Maria Moros
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Pedro V. Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Jesus M. de la Fuente
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
- Fundacion ARAIDZaragoza, Spain
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Bio-Nano Science and Engineering, Institute of Nano Biomedicine and Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
310
|
Soliwoda K, Tomaszewska E, Tkacz-Szczesna B, Mackiewicz E, Rosowski M, Bald A, Blanck C, Schmutz M, Novák J, Schreiber F, Celichowski G, Grobelny J. Effect of the alkyl chain length of secondary amines on the phase transfer of gold nanoparticles from water to toluene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6684-6693. [PMID: 24893068 DOI: 10.1021/la501135q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the present paper we describe a phase transfer of aqueous synthesized gold nanoparticles (AuNPs) from water to toluene using secondary amines: dioctylamine, didodecylamine, and dioctadecylamine. The effect of the hydrocarbon chain length and amount of amines on the transfer efficiency were investigated in the case of nanoparticles (NPs) with three different sizes: 5, 9, and 13 nm. Aqueous colloids were precisely characterized before the transfer process using UV-vis spectroscopy, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). Nanoparticles were next transferred to toluene and characterized using UV-vis and DLS techniques. It was found that dioctadecylamine provides the most effective transfer of nanoparticles. No time-dependent changes in the NP size were observed after 12 days, showing that the dioctadecylamine-stabilized nanoparticles dispersed in toluene were stable. This indicates that long hydrocarbon chains of dioctadecylamine exhibit sufficiently hydrophobic properties of nanoparticles and consequently their good dispersibility in nonpolar solvent.
Collapse
Affiliation(s)
- Katarzyna Soliwoda
- Department of Materials Technology and Chemistry and ‡Department of Physical Chemistry of Solutions, Faculty of Chemistry, University of Lodz , Pomorska 163, 90-236 Lodz, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Kumar A, Kumar V. Biotemplated Inorganic Nanostructures: Supramolecular Directed Nanosystems of Semiconductor(s)/Metal(s) Mediated by Nucleic Acids and Their Properties. Chem Rev 2014; 114:7044-78. [DOI: 10.1021/cr4007285] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Vinit Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
312
|
Zare B, Sepehrizadeh Z, Faramarzi MA, Soltany-Rezaee-Rad M, Rezaie S, Shahverdi AR. Antifungal activity of biogenic tellurium nanoparticles againstCandida albicansand its effects onsqualene monooxygenasegene expression. Biotechnol Appl Biochem 2014; 61:395-400. [DOI: 10.1002/bab.1180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 10/28/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Bijan Zare
- Department of Pharmaceutical Biotechnology; Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences; Tehran Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology; Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology; Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Soltany-Rezaee-Rad
- Department of Pharmaceutical Biotechnology; Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences; Tehran Iran
| | - Sassan Rezaie
- Department of Medical Biotechnology; School of Advanced Medical Technologies, Tehran University of Medical Sciences; Tehran Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology; Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
313
|
Mu B, Zhang J, McNicholas TP, Reuel NF, Kruss S, Strano MS. Recent advances in molecular recognition based on nanoengineered platforms. Acc Chem Res 2014; 47:979-88. [PMID: 24467652 DOI: 10.1021/ar400162w] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticles and nanoengineered platforms have great potential for technologies involving biomoleuclar detection or cell-related biosensing, and have provided effective chemical interfaces for molecular recognition. Typically, chemists work on the modification of synthetic polymers or macromolecules, which they link to the nanoparticles by covalent or noncovalent approaches. The motivation for chemical modification is to enhance the selectivity and sensitivity, and to improve the biocompatibility for the in vivo applications. In this Account, we present recent advances in the development and application of chemical interfaces for molecular recognition for nanoparticles and nanoengineered platforms, in particular single-walled carbon nanotubes (SWNTs). We discuss emerging approaches for recognizing small molecules, glycosylated proteins, and serum biomarkers. For example, we compare and discuss detection methods for ATP, NO, H2O2, and monosaccharides for recent nanomaterials. Fluorometric detection appears to have great potential for quantifying concentration gradients and determining their location in living cells. For macromolecular detection, new methods for glycoprofiling using such interfaces appear promising, and benefit specifically from the potential elimination of cumbersome labeling and liberation steps during conventional analysis of glycans, augmenting the currently used mass spectrometry (MS), capillary electrophoresis (CE), and liquid chromatography (LC) methods. In particular, we demonstrated the great potential of fluorescent SWNTs for glycan-lectin interactions sensing. In this case, SWNTs are noncovalently functionalized to introduce a chelated nickel group. This group provides a docking site for the His-tagged lectin and acts as the signal modulator. As the nickel proximity to the SWNT surface changes, the fluorescent signal is increased or attenuated. When a free glycan or glycosylated probe interacts with the lectin, the signal increases and they are able to obtain loading curves similar to surface plasmon resonance measurements. They demonstrate the sensitivity and specificity of this platform with two higher-affined glycan-lectin pairs: fucose (Fuc) to PA-IIL and N-acetylglucosamine (GlcNAc) to GafD. Lastly, we discuss how developments in protein biomarker detection in general are benefiting specifically from label-free molecular recognition. Electrical field effect transistors, chemi-resistive and fluorometric nanosensors based on various nanomaterials have demonstrated substantial progress in recent years in addressing this challenging problem. In this Account, we compare the balance between sensitivity, selectivity, and nonspecific adsorption for various applications. In particular, our group has utilized SWNTs as fluorescence sensors for label-free protein-protein interaction measurements. In this assay, we have encapsulated each nanotube in a biocompatible polymer, chitosan, which has been further modified to conjugate nitrilotriacetic acid (NTA) groups. After Ni(2+) chelation, NTA Ni(2+) complexes bind to his-tagged proteins, resulting in a local environment change of the SWNT array, leading to optical fluorescence modulation with detection limit down to 100 nM. We have further engineered the platform to monitor single protein binding events, with an even lower detection limit down to 10 pM.
Collapse
Affiliation(s)
- Bin Mu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jingqing Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas P. McNicholas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nigel F. Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sebastian Kruss
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
314
|
Ali ME, Asing, Hamid SBA, Hashim U. SERS-Active Nanomaterials: A New Dimension in Sensing Nucleic Acids. ADVANCED MATERIALS RESEARCH 2014; 925:490-494. [DOI: 10.4028/www.scientific.net/amr.925.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Detection of nucleic acids has wide ranging applications in biomedical, food, forensic and environmental sciences as well as in anti-bioterrorism. The development of highly sensitive, cost-effective and miniaturized biosensors and biochips requires advanced technology coupled with fundamental knowledge in chemistry, biology, and material sciences. In general, sensors and chips feature two functional components: a recognition element that provides selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two components for the recognition process in terms of response time, signal-to-noise ratio (S/N), selectivity, and limits of detection. Thus designing biosensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Surface enhanced Raman scattering (SERS)-active nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors, improving the S/N ratio by miniaturization of the sensor elements. The surface of SERS-active nanomaterials needs to be tailored and decorated for immobilizing marker biomolecules and integration with chromophores. This paper has extensively reviewed various SERS-active nanomaterials along with their synthesis, surface modification and characterization schemes for nucleic acid sensing applications with atomic precision.
Collapse
|
315
|
Mehrabani S, Maker AJ, Armani AM. Hybrid integrated label-free chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:5890-928. [PMID: 24675757 PMCID: PMC4029679 DOI: 10.3390/s140405890] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.
Collapse
Affiliation(s)
- Simin Mehrabani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ashley J Maker
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrea M Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
316
|
Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:631-45. [PMID: 24106015 PMCID: PMC3960363 DOI: 10.1002/smll.201301174] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/04/2013] [Indexed: 05/12/2023]
Abstract
Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science Program, University of Wisconsin - Madison, WI, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin - Madison, WI, USA
| | - Weibo Cai
- Materials Science Program, University of Wisconsin - Madison, WI, USA
- Department of Radiology, University of Wisconsin - Madison, WI, USA
- Department of Medical Physics, University of Wisconsin - Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Requests for reprints: Weibo Cai, PhD, Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI 53705-2275, USA, ; Phone: 608-262-1749; Fax: 608- 265-0614
| |
Collapse
|
317
|
Highly electrostatically-induced detection selectivity and sensitivity for a colloidal biosensor made of chitosan nanoparticle decorated with a few bare-surfaced gold nanorods. Biosens Bioelectron 2014; 52:111-7. [DOI: 10.1016/j.bios.2013.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
|
318
|
Zhou Z, Huang H, Chen Y, Liu F, Huang CZ, Li N. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design. Biosens Bioelectron 2014; 52:367-73. [DOI: 10.1016/j.bios.2013.09.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023]
|
319
|
Boudebbouze S, Coleman AW, Tauran Y, Mkaouar H, Perret F, Garnier A, Brioude A, Kim B, Maguin E, Rhimi M. Discriminatory antibacterial effects of calix[n]arene capped silver nanoparticles with regard to gram positive and gram negative bacteria. Chem Commun (Camb) 2014; 49:7150-2. [PMID: 23831853 DOI: 10.1039/c3cc42838a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Silver nanoparticles capped with nine different sulphonated calix[n]arenes were tested for their anti-bacterial effects against B. subtilis and E. coli at an apparent concentration of 100 nM in calix[n]arene. The results show the para-sulphonato-calix[n]arenes are active against Gram positive bacteria and the derivatives having sulphonate groups at both para and alkyl terminal positions are active against Gram negative bacteria. The calix[6]arene derivative with only O-alkyl sulphonate groups shows bactericidal activity.
Collapse
|
320
|
Baptista PV. Could gold nanoprobes be an important tool in cancer diagnostics? Expert Rev Mol Diagn 2014; 12:541-3. [DOI: 10.1586/erm.12.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
321
|
Conde J, Tian F, Baptista PV, de la Fuente JM. Multifunctional Gold Nanocarriers for Cancer Theranostics: From Bench to Bedside and Back Again? NANO-ONCOLOGICALS 2014. [DOI: 10.1007/978-3-319-08084-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
322
|
Peixoto de Almeida M, Pereira E, Baptista P, Gomes I, Figueiredo S, Soares L, Franco R. Gold Nanoparticles as (Bio)Chemical Sensors. GOLD NANOPARTICLES IN ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63285-2.00013-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
323
|
Syed MA. Advances in nanodiagnostic techniques for microbial agents. Biosens Bioelectron 2014; 51:391-400. [DOI: 10.1016/j.bios.2013.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/12/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022]
|
324
|
Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS. Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 2013; 65:1933-50. [PMID: 23906934 DOI: 10.1016/j.addr.2013.07.015] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/11/2023]
Abstract
Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.
Collapse
Affiliation(s)
- Sebastian Kruss
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | | | | | | | |
Collapse
|
325
|
Veigas B, Pedrosa P, Couto I, Viveiros M, Baptista PV. Isothermal DNA amplification coupled to Au-nanoprobes for detection of mutations associated to Rifampicin resistance in Mycobacterium tuberculosis. J Nanobiotechnology 2013; 11:38. [PMID: 24274610 PMCID: PMC4222569 DOI: 10.1186/1477-3155-11-38] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/22/2013] [Indexed: 11/17/2022] Open
Abstract
Background Tuberculosis accounted for 8.7 million new cases in 2011 and continues to be one of the leading human infectious diseases. Burdensome is the increasing rate of multi-drug resistant tuberculosis (MDRTB) and the difficulties created for treatment and public health control programs, especially in developing countries. Resistance to rifampicin (RIF), a first line antibiotic, is commonly associated with point mutations within the rpoB gene of Mycobacterium tuberculosis (Mtb) whose detection is considered the best early molecular predictor for MDRTB. Gold nanoparticles functionalized with thiol-modified oligonucleotides (Au-nanoprobes) have shown the potential to provide a rapid and sensitive detection method for Mtb and single base alterations associated with antibiotic resistance, namely in rpoB gene associated to RIF resistance. Results We developed a strategy based on the isothermal amplification of sample DNA (LAMP) coupled to specific Au-nanoprobes capable of identifying members of the Mtb complex (MTBC) and discriminating specific mutations within the rpoB gene. Integration of LAMP and Au-nanoprobe assay allowed to detect MTBC member and identify mutations linked to RIF resistance. A total of 12 biological samples were tested and a 100% specificity and sensitivity was attained. Conclusions There is an increasing demand for simple, fast and cheap methods for the molecular identification of Mtb and for the detection of molecular tags associated to drug resistance suitable for use at point-of-need. Here we describe such a method, that as the potential to get molecular diagnostic of tuberculosis to remote environments.
Collapse
Affiliation(s)
- Bruno Veigas
- Nanotheranostics@CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829-516, Caparica, Portugal.
| | | | | | | | | |
Collapse
|
326
|
Hartman MR, Ruiz RCH, Hamada S, Xu C, Yancey KG, Yu Y, Han W, Luo D. Point-of-care nucleic acid detection using nanotechnology. NANOSCALE 2013; 5:10141-54. [PMID: 24057263 DOI: 10.1039/c3nr04015a] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent developments in nanotechnology have led to significant advancements in point-of-care (POC) nucleic acid detection. The ability to sense DNA and RNA in a portable format leads to important applications for a range of settings, from on-site detection in the field to bedside diagnostics, in both developing and developed countries. We review recent innovations in three key process components for nucleic acid detection: sample preparation, target amplification, and read-out modalities. We discuss how the advancements realized by nanotechnology are making POC nucleic acid detection increasingly applicable for decentralized and accessible testing, in particular for the developing world.
Collapse
Affiliation(s)
- Mark R Hartman
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Nanoparticles as Drug Delivery Systems in Cancer Medicine: Emphasis on RNAi-Containing Nanoliposomes. Pharmaceuticals (Basel) 2013; 6:1361-80. [PMID: 24287462 PMCID: PMC3854016 DOI: 10.3390/ph6111361] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/11/2023] Open
Abstract
Nanomedicine is a growing research field dealing with the creation and manipulation of materials at a nanometer scale for the better treatment, diagnosis and imaging of diseases. In cancer medicine, the use of nanoparticles as drug delivery systems has advanced the bioavailability, in vivo stability, intestinal absorption, solubility, sustained and targeted delivery, and therapeutic effectiveness of several anticancer agents. The expansion of novel nanoparticles for drug delivery is an exciting and challenging research filed, in particular for the delivery of emerging cancer therapies, including small interference RNA (siRNA) and microRNA (miRNAs)-based molecules. In this review, we focus on the currently available drug delivery systems for anticancer agents. In addition, we will discuss the promising use of nanoparticles for novel cancer treatment strategies.
Collapse
|
328
|
Attri A, Kumar A, Verma S, Ojha S, Asokan K, Nair L. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation. NANOSCALE RESEARCH LETTERS 2013; 8:433. [PMID: 24138985 PMCID: PMC3853973 DOI: 10.1186/1556-276x-8-433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer.
Collapse
Affiliation(s)
- Asha Attri
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Ajit Kumar
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Shammi Verma
- Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 India
| | - Sunil Ojha
- Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 India
| | - Kandasami Asokan
- Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 India
| | - Lekha Nair
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
329
|
Im AR, Kim JY, Kim HS, Cho S, Park Y, Kim YS. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. NANOTECHNOLOGY 2013; 24:395102. [PMID: 24008263 DOI: 10.1088/0957-4484/24/39/395102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.
Collapse
Affiliation(s)
- A-Rang Im
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
330
|
CABRAL RITAM, BAPTISTA PEDROV. THE CHEMISTRY AND BIOLOGY OF GOLD NANOPARTICLE-MEDIATED PHOTOTHERMAL THERAPY: PROMISES AND CHALLENGES. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s179398441330001x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Under laser radiation, cells labeled with gold nanoparticles (AuNPs) are believed to suffer thermal damage due to the transfer of the absorbed light from the AuNPs to the cells. This process, which involves complex mechanisms such as the rapid electron–phonon decay in the AuNPs , followed by phonon–phonon relaxation, culminates in the localized heating of both the AuNPs and the cells, setting the rational for the use of these nanostructures, under laser light, in cancer photothermal therapy (PTT). Here, we discuss the chemical and biological aspects of this promising new therapeutic approach, including the advantages over conventional cancer therapies and the challenges that scientists still need to overcome to progress toward translation research.
Collapse
Affiliation(s)
- RITA M. CABRAL
- Departamento de Ciências da Vida, CIGMH, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - PEDRO V. BAPTISTA
- Departamento de Ciências da Vida, CIGMH, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
331
|
Pereira SO, Barros-Timmons A, Trindade T. Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3037-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
332
|
Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B. Molecular recognition by gold, silver and copper nanoparticles. World J Biol Chem 2013; 4:35-63. [PMID: 23977421 PMCID: PMC3746278 DOI: 10.4331/wjbc.v4.i3.35] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023] Open
Abstract
The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health.
Collapse
|
333
|
Ebeling B, Vana P. RAFT-Polymers with Single and Multiple Trithiocarbonate Groups as Uniform Gold-Nanoparticle Coatings. Macromolecules 2013. [DOI: 10.1021/ma4008626] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bastian Ebeling
- Institut für Physikalische
Chemie, Georg-August-Universität, Tammannstr. 6, D-37077,
Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische
Chemie, Georg-August-Universität, Tammannstr. 6, D-37077,
Göttingen, Germany
| |
Collapse
|
334
|
Conde J, Larguinho M, Cordeiro A, Raposo LR, Costa PM, Santos S, Diniz MS, Fernandes AR, Baptista PV. Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology 2013; 8:521-32. [PMID: 23642008 DOI: 10.3109/17435390.2013.802821] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3'-Cy3 and 5'-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.
Collapse
Affiliation(s)
- João Conde
- CIGMH, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Caparica , Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Martinez JO, Boada C, Yazdi IK, Evangelopoulous M, Brown BS, Liu X, Ferrari M, Tasciotti E. Short and long term, in vitro and in vivo correlations of cellular and tissue responses to mesoporous silicon nanovectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1722-1733. [PMID: 23255523 PMCID: PMC3707147 DOI: 10.1002/smll.201201939] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/26/2012] [Indexed: 05/31/2023]
Abstract
The characterization of nanomaterials and their influence on and interactions with the biology of cells and tissues are still partially unknown. Multistage nanovectors based on mesoporous silicon have been extensively studied for drug delivery, thermal heating, and improved diagnostic imaging. Here, the short- and long-term changes occurring in human cells upon the internalization of mesoporous silicon nanovectors (MSV) are analyzed. Using qualitative and quantitative techniques as well as in vitro and in vivo biochemical, cellular, and functional assays, it is demonstrated that MSV do not cause any significant acute or chronic effects on cells and tissues. In vitro cell toxicity and viability are analyzed, as well as the maintenance of cell phase cycling and the architecture upon the internalization of MSV. In addition, it is evaluated whether MSV produce any pro-inflammatory responses and its biocompatibility in vivo is studied. The biodistribution of MSV is followed using longitudinal in vivo imaging and organ accumulation is assessed using quantitative elemental and fluorescent techniques. Finally, a thorough pathological analysis of collected tissues demonstrates a mild transient systemic response in the liver that dissipates upon the clearance of particles. It is proposed that future endeavors aimed at understanding the toxicology of naked drug carriers should be designed to address their impact using in vitro and in vivo short- and long-term evaluations of systemic response.
Collapse
Affiliation(s)
- Jonathan O Martinez
- Department of Nanomedicine The Methodist Hospital Research Institute 6670 Bertner Ave. MS R7-414 Houston, TX 77030 (USA); Graduate School of Biomedical Sciences University of Texas Health Science Center at Houston Houston, TX USA
| | - Christian Boada
- Department of Nanomedicine The Methodist Hospital Research Institute 6670 Bertner Ave. MS R7-414 Houston, TX 77030 (USA); Escuela de Medicina y Ciencias de la Salud TEC de Monterrery Monterrey, Mexico
| | - Iman K. Yazdi
- Department of Nanomedicine The Methodist Hospital Research Institute 6670 Bertner Ave. MS R7-414 Houston, TX 77030 (USA); Department of Biomedical Engineering University of Houston Houston, TX USA
| | - Michael Evangelopoulous
- Department of Nanomedicine The Methodist Hospital Research Institute 6670 Bertner Ave. MS R7-414 Houston, TX 77030 (USA)
| | - Brandon S Brown
- Department of Nanomedicine The Methodist Hospital Research Institute 6670 Bertner Ave. MS R7-414 Houston, TX 77030 (USA); Graduate School of Biomedical Sciences University of Texas Health Science Center at Houston Houston, TX USA
| | - Xuewu Liu
- Department of Nanomedicine The Methodist Hospital Research Institute 6670 Bertner Ave. MS R7-414 Houston, TX 77030 (USA)
| | - Mauro Ferrari
- Department of Nanomedicine The Methodist Hospital Research Institute 6670 Bertner Ave. MS R7-414 Houston, TX 77030 (USA)
| | | |
Collapse
|
336
|
Applications of Surface Modified Ionic Liquid/Nanomaterial Composite in Electrochemical Sensors and Biosensors. BIONANOSCIENCE 2013. [DOI: 10.1007/s12668-013-0094-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
337
|
Thakur M, Pandey S, Mewada A, Shah R, Oza G, Sharon M. Understanding the stability of silver nanoparticles bio-fabricated using Acacia arabica (Babool gum) and its hostile effect on microorganisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 109:344-347. [PMID: 23582910 DOI: 10.1016/j.saa.2013.03.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/20/2013] [Accepted: 03/10/2013] [Indexed: 06/02/2023]
Abstract
We report green synthesis of stable silver nanoparticles (SNPs) from Acacia arabica gum and its anti-bacterial activity against gram-positive and gram-negative bacteria. UV-Vis spectral analysis of synthesized SNPs showed maximum peak at 462 nm initially and 435 nm after 24 h. Using Transmission Electron microscopy (TEM), the average size of synthesised SNPs was found to be ~35 nm. X-ray diffraction (XRD) and Selective area electron diffraction (SAED) pattern confirmed the crystalline nature of SNPs. Percentage conversion of Ag(+) ions into Ag° was calculated using ICP-AES and was found to be 94%. By calculating flocculation parameter, we could see that these SNPs are extremely stable under the influence of very high NaCl concentration up to 4.16 M. These stable SNPs can be used in various industrial and medical applications.
Collapse
Affiliation(s)
- Mukeshchand Thakur
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, MS, India
| | | | | | | | | | | |
Collapse
|
338
|
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31:346-56. [DOI: 10.1016/j.biotechadv.2013.01.003] [Citation(s) in RCA: 1399] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 12/11/2022]
|
339
|
Lönne M, Zhu G, Stahl F, Walter JG. Aptamer-modified nanoparticles as biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:121-54. [PMID: 23824145 DOI: 10.1007/10_2013_231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are short oligonucleotides that are capable of selectively binding to their corresponding target. Therefore, they can be thought of as a nucleic acid-based alternative to antibodies and can substitute for their amino acid-based counterparts in analytical applications, including as receptors in biosensors. Here they offer several advantages because their nucleic acid nature and their binding via an induced fit mechanism enable novel sensing strategies. In this article, the utilization of aptamers as novel bio-receptors in combination with nanoparticles as transducer elements is reviewed. In addition to these analytical applications, the medical relevance of aptamer-modified nanoparticles is described.
Collapse
Affiliation(s)
- Maren Lönne
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 5, 30167, Hannover, Germany
| | | | | | | |
Collapse
|
340
|
Sharma P, Kukkar M, Ganguli AK, Bhasin A, Suri CR. Plasmon enhanced fluoro-immunoassay using egg yolk antibodies for ultra-sensitive detection of herbicide diuron. Analyst 2013; 138:4312-20. [DOI: 10.1039/c3an00505d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
341
|
Veigas B, Jacob JM, Costa MN, Santos DS, Viveiros M, Inácio J, Martins R, Barquinha P, Fortunato E, Baptista PV. Gold on paper-paper platform for Au-nanoprobe TB detection. LAB ON A CHIP 2012; 12:4802-8. [PMID: 23000923 DOI: 10.1039/c2lc40739f] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tuberculosis (TB) remains one of the most serious infectious diseases in the world and the rate of new cases continues to increase. The development of cheap and simple methodologies capable of identifying TB causing agents belonging to the Mycobacterium tuberculosis Complex (MTBC), at point-of-need, in particular in resource-poor countries where the main TB epidemics are observed, is of paramount relevance for the timely and effective diagnosis and management of patients. TB molecular diagnostics, aimed at reducing the time of laboratory diagnostics from weeks to days, still require specialised technical personnel and labour intensive methods. Recent nanotechnology-based systems have been proposed to circumvent these limitations. Here, we report on a paper-based platform capable of integrating a previously developed Au-nanoprobe based MTBC detection assay-we call it "Gold on Paper". The Au-nanoprobe assay is processed and developed on a wax-printed microplate paper platform, allowing unequivocal identification of MTBC members and can be performed without specialised laboratory equipment. Upon integration of this Au-nanoprobe colorimetric assay onto the 384-microplate, differential colour scrutiny may be captured and analysed with a generic "smartphone" device. This strategy uses the mobile device to digitalise the intensity of the colour associated with each colorimetric assay, perform a Red Green Blue (RGB) analysis and transfer relevant information to an off-site lab, thus allowing for efficient diagnostics. Integration of the GPS location metadata of every test image may add a new dimension of information, allowing for real-time epidemiologic data on MTBC identification.
Collapse
Affiliation(s)
- Bruno Veigas
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Arunkumar P, Thanalakshmi M, Kumar P, Premkumar K. Micrococcus luteus mediated dual mode synthesis of gold nanoparticles: involvement of extracellular α-amylase and cell wall teichuronic acid. Colloids Surf B Biointerfaces 2012; 103:517-22. [PMID: 23261575 DOI: 10.1016/j.colsurfb.2012.10.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/22/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
In the present study we have utilized the bioreductive potential of Micrococcus luteus for the synthesis of gold nanoparticles. Biochemical and physiological analysis indicate that the biosynthesized GNPs were achieved by dual mode, involving extracellular α-amylase and cell wall teichuronic acid (TUA) of M. luteus. The biosynthetic potential of both α-amylase and TUA, after isolation from bacterium, was examined. Under optimum conditions, these biomolecules reduces Au(3+) into Au(0) and the resulting GNPs were found to be stable for 1 month. The synthesized GNPs were characterized by UV-VIS spectrometry, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). Results demonstrated that the synthesized GNPs were found to be monodispersive and spherical in shape with an average size of ∼6 nm and ∼50 nm for α-amylase and teichuronic acid, respectively. These findings suggest that M. luteus can be exploited as a potential biosource for the eco-friendly synthesis of gold nanoparticles.
Collapse
Affiliation(s)
- Pichaimani Arunkumar
- Cancer Genetics & Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | | | | | | |
Collapse
|
343
|
Vetrone SA, Huarng MC, Alocilja EC. Detection of non-PCR amplified S. enteritidis genomic DNA from food matrices using a gold-nanoparticle DNA biosensor: a proof-of-concept study. SENSORS 2012; 12:10487-99. [PMID: 23112611 PMCID: PMC3472839 DOI: 10.3390/s120810487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 01/10/2023]
Abstract
Bacterial pathogens pose an increasing food safety and bioterrorism concern. Current DNA detection methods utilizing sensitive nanotechnology and biosensors have shown excellent detection, but require expensive and time-consuming polymerase chain reaction (PCR) to amplify DNA targets; thus, a faster, more economical method is still essential. In this proof-of-concept study, we investigated the ability of a gold nanoparticle-DNA (AuNP-DNA) biosensor to detect non-PCR amplified genomic Salmonella enterica serovar Enteritidis (S. enteritidis) DNA, from pure or mixed bacterial culture and spiked liquid matrices. Non-PCR amplified DNA was hybridized into sandwich-like structures (magnetic nanoparticles/DNA/AuNPs) and analyzed through detection of gold voltammetric peaks using differential pulse voltammetry. Our preliminary data indicate that non-PCR amplified genomic DNA can be detected at a concentration as low as 100 ng/mL from bacterial cultures and spiked liquid matrices, similar to reported PCR amplified detection levels. These findings also suggest that AuNP-DNA biosensors are a first step towards a viable detection method of bacterial pathogens, in particular, for resource-limited settings, such as field-based or economically limited conditions. Future efforts will focus on further optimization of the DNA extraction method and AuNP-biosensors, to increase sensitivity at lower DNA target concentrations from food matrices comparable to PCR amplified DNA detection strategies.
Collapse
Affiliation(s)
- Sylvia A. Vetrone
- Department of Biology, Whittier College, 13406 E. Philadelphia St., Whittier, CA 90608, USA; E-Mail:
| | - Michael C. Huarng
- Department of Biosystems and Agricultural Engineering, 213 Farrall Hall, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C. Alocilja
- Department of Biosystems and Agricultural Engineering, 213 Farrall Hall, Michigan State University, East Lansing, MI 48824, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-517-355-0083; Fax: +1-517-432-2892
| |
Collapse
|