351
|
Mahdi A, Kövamees O, Pernow J. Improvement in endothelial function in cardiovascular disease - Is arginase the target? Int J Cardiol 2019; 301:207-214. [PMID: 31785959 DOI: 10.1016/j.ijcard.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
Abstract
Endothelial dysfunction represents an early change in the vascular wall in areas prone to atherosclerotic plaque formation and is present in association with several risk factors for cardiovascular disease. The underlying mechanisms behind endothelial dysfunction are multifactorial and complex. Arginase has emerged as a key player in the regulation of endothelial integrity by the ability of reciprocally inhibits nitric oxide formation and promoting oxidative stress. A chain of evidence suggest that arginase is implicated in the pathogenesis underlying endothelial dysfunction induced by several cardiovascular risk factors and established cardiovascular disease including diabetes, hypercholesteremia, ischemia/reperfusion, atherosclerosis, obesity, ageing and hypertension. Recent data has unveiled a key role of arginase as one of the key mechanisms underlying endothelial dysfunction in diabetes and may serve as a potential therapeutic target in previously overlooked compartments including red blood cells. The current review is devoted to discuss arginase as a key mediator in endothelial dysfunction and the potential for therapeutic possibilities to target this enzyme in various diseases, especially type 2 diabetes, atherosclerosis and ischemia/reperfusion with focus on translational and clinical aspects. Moreover, approaches of how and in which patient group(s) arginase may be targeted in future clinical trials are discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
352
|
Karimzad SE, Shokr H, Gherghel D. Retinal and peripheral vascular function in healthy individuals with low cardiovascular risk. Microvasc Res 2019; 126:103908. [DOI: 10.1016/j.mvr.2019.103908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 11/28/2022]
|
353
|
Gumanova NG. Analytical complex of biochemical markers for preclinical diagnosis and prevention of cardiovascular diseases. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-5-117-127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- N. G. Gumanova
- National Medical Research Center for Preventive Medicine
| |
Collapse
|
354
|
Jaramillo-Calle DA, Solano JM, Rabinstein AA, Bonkovsky HL. Porphyria-induced posterior reversible encephalopathy syndrome and central nervous system dysfunction. Mol Genet Metab 2019; 128:242-253. [PMID: 31706631 DOI: 10.1016/j.ymgme.2019.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM An association between neuropsychiatric manifestations and neuroimaging suggestive of posterior reversible encephalopathy syndrome (PRES) during porphyric attacks has been described in numerous case reports. We aimed to systematically review clinical-radiological features and likely pathogenic mechanisms of PRES in patients with acute hepatic porphyrias (AHP) and porphyric attacks. METHODS PubMed, Scopus, Ovid MEDLINE, and Google Scholar were searched (July 30, 2019). We included articles describing patients with convincing evidence of an AHP, confirmed porphyric attacks, and PRES in neuroimaging. RESULTS Forty-three out of 269 articles were included, which reported on 46 patients. Thirty-nine (84.8%) patients were women. The median age was 24 ± 13.8 years. 52.2% had unspecified AHP, 41.3% acute intermittent porphyria, 4.3% hereditary coproporphyria, and 2.2% variegate porphyria. 70.2% had systemic arterial hypertension. Seizures, mental changes, arterial hypertension, and hyponatremia occurred more frequently than expected for porphyric attacks (p < .001). Seizures and hyponatremia were also more frequent than expected for PRES. The most common distributions of brain lesions were occipital (81.4%), parietal (65.1%), frontal (60.5%), subcortical (40%), and cortical (32.5%). Cerebral vasoconstriction was demonstrated in 41.7% of the patients who underwent angiography. 19.6% of the patients had ischemic lesions, and 4.3% developed long-term sequelae (cognitive decline and focal neurological deficits). CONCLUSIONS Brain edema, vasoconstriction, and ischemia in the context of PRES likely account for central nervous symptoms in some porphyric attacks.
Collapse
Affiliation(s)
- Daniel A Jaramillo-Calle
- IPS Universitaria, Universidad de Antioquia, Medellin, Colombia; Institute of Medical Research, Universidad de Antioquia, School of Medicine, Medellin, Colombia.
| | - Juan M Solano
- Department of Neurology, Universidad de Antioquia, School of Medicine, Medellin, Colombia
| | | | - Herbert L Bonkovsky
- Section on Gastroenterology & Hepatology, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, United States of America..
| |
Collapse
|
355
|
Guizoni DM, Vettorazzi JF, Carneiro EM, Davel AP. Modulation of endothelium-derived nitric oxide production and activity by taurine and taurine-conjugated bile acids. Nitric Oxide 2019; 94:48-53. [PMID: 31669041 DOI: 10.1016/j.niox.2019.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Taurine is a semiessential amino acid found at high concentrations in mammalian plasma and cells, where it regulates cellular functions such as ion flux, controls cell volume and serves as a substrate for conjugated bile acids (BAs). Exogenous administration of both taurine and taurine-conjugated BAs have also been implicated in the modulation of cardiovascular functions. This brief review summarizes the role of taurine and taurine-conjugated BAs in vascular relaxation through the modulation of endothelium-derived nitric oxide (NO). The effects of taurine on vascular health are controversial. However, in the presence of cardiometabolic risk factors, it has been proposed that taurine can increase vascular NO levels by increasing eNOS expression, eNOS phosphorylation on Ser1177, NO bioavailability, the level of antioxidative defense, and the l-arginine/NOS inhibitor asymmetric dimethylarginine (ADMA) ratio. The taurine-conjugated BA-mediated activation of Farnesoid X receptor (FXR), G protein-coupled BA receptor (TGR5) and/or muscarinic 3 receptor (M3) was also reported to increase vascular NO production. FXR activation increases eNOS expression and may reduce ADMA formation, while TGR5 increases mobilization of Ca2+ and phosphorylation of eNOS and Akt in endothelial cells. Furthermore, taurine and taurine-conjugated BAs might regulate NO synthesis and activity by enhancing H2S generation. Several studies have demonstrated the beneficial effects of both taurine and taurine-conjugated BAs in reversing the endothelial dysfunction associated with diabetes, atherosclerosis, hypertension, obesity, malnutrition, and smoking. In addition, taurine-conjugated BAs have emerged as a potential treatment for portal hypertension. Despite these favorable findings, there is a need to further explore the mechanisms and signaling pathways underlying the endothelial effects of taurine and taurine-conjugated BAs. Here, we summarize the main findings regarding the effects of taurine and taurine-conjugated BAs on the endothelial dysfunction associated with altered NO metabolism in cardiovascular diseases.
Collapse
Affiliation(s)
- Daniele M Guizoni
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Jean F Vettorazzi
- Obesity and Comorbidities Research Center, São Paulo Research Foundation (FAPESP), Institute of Biology, Department of Structural and Functional Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Everardo M Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, São Paulo Research Foundation (FAPESP), Institute of Biology, Department of Structural and Functional Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
356
|
Zhang Z, Luo X, Lv Y, Yan L, Xu S, Wang Y, Zhong Y, Hang C, Jyotsnav J, Lai D, Shen Z, Xu X, Ma X, Chen Z, Pan Y, Du L. Intrauterine Growth Restriction Programs Intergenerational Transmission of Pulmonary Arterial Hypertension and Endothelial Dysfunction via Sperm Epigenetic Modifications. Hypertension 2019; 74:1160-1171. [PMID: 31596625 DOI: 10.1161/hypertensionaha.119.13634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrauterine life represents a window of phenotypic plasticity which carries consequences for later health in adulthood as well as health of subsequent generations. Intrauterine growth-restricted fetuses (intrauterine growth restriction [IUGR]) have a higher risk of pulmonary arterial hypertension in adulthood. Endothelial dysfunction, characterized by hyperproliferation, invasive migration, and disordered angiogenesis, is a hallmark of pulmonary arterial hypertension pathogenesis. Growing evidence suggests that intergenerational transmission of disease, including metabolic syndrome, can be induced by IUGR. Epigenetic modification of the paternal germline is implicated in this transmission. However, it is unclear whether offspring of individuals born with IUGR are also at risk of developing pulmonary arterial hypertension and endothelial dysfunction. Using a model of maternal caloric restriction to induce IUGR, we found that first and second generations of IUGR exhibited elevated pulmonary arterial pressure, myocardial, and vascular remodeling after prolonged exposure to hypoxia. Primary pulmonary vascular endothelial cells (PVECs) from both first and second generations of IUGR exhibited greater proliferation, migration, and angiogenesis. Moreover, in 2 generations, PVECs-derived ET-1 (endothelin-1) was activated by IUGR and hypoxia, and its knockdown mitigated PVECs dysregulation. Most interestingly, within ET-1 first intron, reduced DNA methylation and enhanced tri-methylation of lysine 4 on histone H3 were observed in PVECs and sperm of first generation of IUGR, with DNA demethylation in PVECs of second generation of IUGR. These results suggest that IUGR permanently altered epigenetic signatures of ET-1 from the sperm and PVECs in the first generation, which was subsequently transferred to PVECs of offspring. This mechanism would yield 2 generations with endothelial dysfunction and pulmonary arterial hypertension-like pathophysiological features in adulthood.
Collapse
Affiliation(s)
- Ziming Zhang
- From the Department of Pediatrics (Z.Z., X.L., L.Y., S.X., Y.W., Y.Z., C.H., J.J.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaofei Luo
- From the Department of Pediatrics (Z.Z., X.L., L.Y., S.X., Y.W., Y.Z., C.H., J.J.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ying Lv
- Department of Pediatric Health Care (Y.L.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lingling Yan
- From the Department of Pediatrics (Z.Z., X.L., L.Y., S.X., Y.W., Y.Z., C.H., J.J.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shanshan Xu
- From the Department of Pediatrics (Z.Z., X.L., L.Y., S.X., Y.W., Y.Z., C.H., J.J.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yu Wang
- From the Department of Pediatrics (Z.Z., X.L., L.Y., S.X., Y.W., Y.Z., C.H., J.J.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhong
- From the Department of Pediatrics (Z.Z., X.L., L.Y., S.X., Y.W., Y.Z., C.H., J.J.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chengcheng Hang
- From the Department of Pediatrics (Z.Z., X.L., L.Y., S.X., Y.W., Y.Z., C.H., J.J.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Joynauth Jyotsnav
- From the Department of Pediatrics (Z.Z., X.L., L.Y., S.X., Y.W., Y.Z., C.H., J.J.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Dengming Lai
- Department of Neonatal Surgery (D.L.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zheng Shen
- Laboratory Test Center (Z.S.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xuefeng Xu
- Department of Respiratory Medicine (X.X.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaolu Ma
- Department of Neonatology (X.M., Z.C., L.D.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zheng Chen
- Department of Neonatology (X.M., Z.C., L.D.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yun Pan
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China (Y.P.)
| | - Lizhong Du
- Department of Neonatology (X.M., Z.C., L.D.), the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
357
|
Han C, Han L, Huang P, Chen Y, Wang Y, Xue F. Syncytiotrophoblast-Derived Extracellular Vesicles in Pathophysiology of Preeclampsia. Front Physiol 2019; 10:1236. [PMID: 31632289 PMCID: PMC6779799 DOI: 10.3389/fphys.2019.01236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a common obstetric complication associated with pregnancy and it endangers lives of the mother and the infant. The histopathological changes associated with preeclampsia include systemic endothelial dysfunction, persistent inflammatory state, and coagulation and fibrinolysis dysregulations. Preeclampsia is considered to be caused by the systemic vasoconstriction of small arteries and disruption of the endothelial integrity, resulting in hypertension, proteinuria, and multiple organ dysfunction. However, mediators that trigger or propagate the pathology of preeclampsia remain poorly defined. Syncytiotrophoblast-derived extracellular vesicles (SDEVs) are increasingly recognized as a key mediator for the development of preeclampsia, but the underlying mechanisms through which these SDEVs are released and induce systemic responses are not fully understood. This review focuses on multiple roles of SDEVs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Cha Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lulu Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Pengzhu Huang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Chen
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
358
|
Taylor LE, Ramirez LA, Musall JB, Sullivan JC. Tipping the scales: Are females more at risk for obesity- and high-fat diet-induced hypertension and vascular dysfunction? Br J Pharmacol 2019; 176:4226-4242. [PMID: 31271650 DOI: 10.1111/bph.14783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity is a common metabolic disorder that has become a widespread epidemic in several countries. Sex and gender disparities in the prevalence of cardiovascular disease (CVD) have been well documented with premenopausal women having a lower incidence of CVD than age-matched men. However, women are more likely than men to suffer from obesity, which can predispose them to a greater risk of CVD. The mechanisms underlying high-fat diet (HFD)- or obesity-induced hypertension are not well defined, although immune system activation and inflammation have been implicated in several studies. Further, the sex of the subject can have a profound influence on the immune response to hypertensive stimuli. Therefore, the purpose of this review is to examine the effects of sex and gender on the role of the immune system in HFD-induced hypertension and vascular dysfunction. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Lia E Taylor
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Lindsey A Ramirez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jacqueline B Musall
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
359
|
Shafabakhsh R, Milajerdi A, Reiner Ž, Kolahdooz F, Amirani E, Mirzaei H, Barekat M, Asemi Z. The effects of catechin on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019; 60:2369-2378. [DOI: 10.1080/10408398.2019.1639037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Students’ Scientific Research Center, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Barekat
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
360
|
Bernardi L, Giampietro C, Marina V, Genta M, Mazza E, Ferrari A. Adaptive reorientation of endothelial collectives in response to strain. Integr Biol (Camb) 2019; 10:527-538. [PMID: 30112523 DOI: 10.1039/c8ib00092a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mature epithelial monolayers share the ability to coherently respond to external mechanical stimuli. Tissue remodeling requires cell shape changes and coordinated movements. Human endothelia provide an exquisite example of such emerging collective activities. As part of their function in maintaining body homeostasis under variable hemodynamic loadings, endothelial ensembles must dynamically adapt to wall shear stress and cyclic deformation. While the alignment of several types of cells, including fibroblasts, osteoblasts and epithelial tissues, in response to various flow conditions or wall shear stress levels has been described in detail, less is known about collective endothelial remodeling under pure wall deformation. Here, using a custom-developed bioreactor, we exposed mature human endothelia to two distinct physiological levels of cyclic loading, generating overlapping gradients of strain. Endothelial cells remodeled depending on the level of imposed strain yielding local variations of cell density. In particular, a collective cell orientation orthogonal to the main direction of strain was observed at low levels of wall deformation, while cells reoriented parallel to the main direction of strain at high levels of wall deformation. The tissue adaptation depended on the establishment of mature adherens junctions, which were reinforced by the polarized recruitment of the adaptor protein vinculin. The pivotal role of cell-to-cell junctions was confirmed by the biochemical inhibition of vascular endothelial cadherin homotypic contacts, which impaired the collective remodeling. Together, our data establish wall deformation as an independent determinant of endothelial architecture with direct implications in vascular physiopathology.
Collapse
Affiliation(s)
- Laura Bernardi
- ETH Zurich, Institute for Mechanical Systems, 8092 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
361
|
Molecular targets of fenofibrate in the cardiovascular-renal axis: A unifying perspective of its pleiotropic benefits. Pharmacol Res 2019; 144:132-141. [PMID: 30970278 DOI: 10.1016/j.phrs.2019.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
|
362
|
Costa-Vieira D, Monteiro R, Martins MJ. Metabolic Syndrome Features: Is There a Modulation Role by Mineral Water Consumption? A Review. Nutrients 2019; 11:E1141. [PMID: 31121885 PMCID: PMC6566252 DOI: 10.3390/nu11051141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Metabolic syndrome (MetSyn) promotes, among others, the development of atherosclerotic cardiovascular disease and diabetes. Its prevalence increases with age, highlighting the relevance of promoting precocious MetSyn primary prevention and treatment with easy-to-implement lifestyle interventions. MetSyn features modulation through mineral water consumption was reviewed on Pubmed, Scopus and Google Scholar databases, using the following keywords: metabolic syndrome, hypertension, blood pressure (BP), cholesterol, triglycerides, apolipoprotein, chylomicron, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein (HDL), glucose, insulin, body weight, body mass index, waist circumference (WC), obesity and mineral(-rich) water. Twenty studies were selected: 12 evaluated BP, 13 assessed total-triglycerides and/or HDL-cholesterol, 10 analysed glucose and/or 3 measured WC. Mineral waters were tested in diverse protocols regarding type and composition of water, amount consumed, diet and type and duration of the study. Human and animal studies were performed in populations with different sizes and characteristics. Distinct sets of five studies showed beneficial effects upon BP, total-triglycerides, HDL-cholesterol and glucose. WC modulation was not reported. Minerals/elements and active ions/molecules present in mineral waters (and their pH) are crucial to counterbalance their inadequate intake and body status as well as metabolic dysfunction and increased diet-induced acid-load observed in MetSyn. Study characteristics and molecular/physiologic mechanisms that could explain the different effects observed are discussed. Further studies are warranted for determining the mechanisms involved in the putative protective action of mineral water consumption against MetSyn features.
Collapse
Affiliation(s)
- Daniela Costa-Vieira
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Rosário Monteiro
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal.
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Administração Regional de Saúde do Norte, 4000-477 Porto, Portugal.
| | - Maria João Martins
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal.
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
363
|
Probiotics as Beneficial Dietary Supplements to Prevent and Treat Cardiovascular Diseases: Uncovering Their Impact on Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3086270. [PMID: 31205584 PMCID: PMC6530239 DOI: 10.1155/2019/3086270] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
Abstract
The gut microbiota, the ecosystem formed by a wide symbiotic community of nonpathogenic microorganisms that are present in the distal part of the human gut, plays a prominent role in the normal physiology of the organism. The gut microbiota's imbalance, gut dysbiosis, is directly related to the origin of various processes of acute or chronic dysfunction in the host. Therefore, the ability to intervene in the gut microbiota is now emerging as a possible tactic for therapeutic intervention in various diseases. From this perspective, evidence is growing that a functional dietary intervention with probiotics, which maintain or restore beneficial bacteria of the digestive tract, represents a promising therapeutic strategy for interventions in cardiovascular diseases and also reduces the risk of their occurrence. In the present work, we review the importance of maintaining the balance of the intestinal microbiota to prevent or combat such processes as arterial hypertension or endothelial dysfunction, which underlie many cardiovascular disorders. We also review how the consumption of probiotics can improve autonomic control of cardiovascular function and provide beneficial effects in patients with heart failure. Among the known effects of probiotics is their ability to decrease the generation of reactive oxygen species and, therefore, reduce oxidative stress. Therefore, in this review, we specifically focus on this antioxidant capacity and its relationship with the beneficial cardiovascular effects described for probiotics.
Collapse
|
364
|
Su E, Zhao L, Gao C, Zhao W, Wang X, Qi D, Zhu L, Yang X, Zhu B, Liu Y. Acute changes in morphology and renal vascular relaxation function after renal denervation using temperature-controlled radiofrequency catheter. BMC Cardiovasc Disord 2019; 19:67. [PMID: 30902047 PMCID: PMC6431051 DOI: 10.1186/s12872-019-1053-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistant hypertension and renal sympathetic hyperactivity are closely linked, and catheter-based renal denervation (RDN) is regarded as a new treatment strategy. However, the acute changes in vascular morphology and relaxation function have yet to be evaluated, and these may be important for the efficacy and safety of the procedure. In this study, we explored these questions by conventional temperature-controlled cardiac radiofrequency catheter-based RDN in a pig model. METHODS Six mini-pigs were randomly divided into the renal denervation (RDN) group (n = 3) and the Sham-RDN group (n = 3). Animals in the RDN group underwent unilateral radiofrequency ablation, and those in the Sham-RDN group underwent the same procedure except for the ablation. The pigs were examined by angiography pre- and post-RDN and were euthanized immediately thereafter. Renal arteries were processed for histological and molecular biology analyses as well as for in vitro vascular tension testing. RESULTS Compared with the Sham-RDN group, the RDN caused vascular intima and media injury, renal nerve vacuolization, mild collagen fiber hyperplasia and elastic fiber cleavage (all p < 0.05). The RDN group also significantly exhibited nitric oxide synthase pathway inhibition and decreased endothelium-independent vascular relaxation function Compared to the Sham-RDN group (all p < 0.05). CONCLUSIONS In this porcine model, renal artery denervation led to vascular wall injury and endothelial dysfunction in the acute phase, which negatively affected vascular relaxation function. Thus, this process may be detrimental to the prognosis and progress of hypertension patients.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Linwei Zhao
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China.
| | - Wen Zhao
- Zhengzhou University School of Pharmaceutical Sciences, Zhengzhou, 450003, Henan, China
| | - Xianpei Wang
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Datun Qi
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Lijie Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Xiaohang Yang
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Binbin Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Yahui Liu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| |
Collapse
|
365
|
Okoye HC, Madu AJ, Korubo K, Efobi C, Eze OE, Obodo O, Okereke K, Ilechukwu G. Correlates of neutrophil/lymphocyte, platelet/lymphocyte, and platelet/neutrophil ratios of neonates of women with hypertensive disease of pregnancy with neonatal birth outcomes. Hypertens Pregnancy 2019; 38:105-110. [DOI: 10.1080/10641955.2019.1584819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Helen Chioma Okoye
- Department of Haematology and Immunology, University of Nigeria Campus, Ituku-Ozalla, Enugu, Nigeria
| | - Anazoeze Jude Madu
- Department of Haematology and Immunology, University of Nigeria Campus, Ituku-Ozalla, Enugu, Nigeria
| | - Kaladada Korubo
- Department of Haematology, University of Port Harcourt, Port Harcourt Nigeria, Nigeria
| | - Chilota Efobi
- Department of Haematology and Immunology, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Onyinye Ezinne Eze
- Department of Haematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Onochie Obodo
- Department of Haematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Kelechi Okereke
- Department of Haematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Gladys Ilechukwu
- Department of Haematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|
366
|
Ma SM, Yang JW, Tu JF, Yang NN, Du YZ, Wang XR, Wang L, Huang J, Liu CZ. Gene-Level Regulation of Acupuncture Therapy in Spontaneously Hypertensive Rats: A Whole Transcriptome Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9541079. [PMID: 30906419 PMCID: PMC6398018 DOI: 10.1155/2019/9541079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/16/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Hypertension is a global health problem. It has been reported that acupuncture at Taichong acupoints (LR3) decreases high blood pressure in spontaneously hypertensive rats. A transcriptome analysis can profile gene expression and its relationship with acupuncture. In this study, rats were treated with 2 weeks of acupuncture followed by regular recording of blood pressure (BP). The mRNA changes in the rostral ventrolateral medulla (RVLM) were evaluated to uncover the genetic mechanisms of acupuncture by using a whole transcript array (Affymetrix Rat Gene 1.0 ST array). BP measurements showed that acupuncture significantly decreased systolic blood pressure (SBP), mean arterial pressure (MAP), and heart rate (HR). In the bioinformatics results, 2371 differentially expressed genes (DEGs) were identified, where 83 DEGs were overlapped among Wistar-Kyoto rats (WKYs), spontaneously hypertensive rats (SHRs), and SHRs + acupuncture rats (SHRs+Acu). Gene ontology (GO) and pathway analysis revealed that 279 GO terms and 20 pathways with significant differences were related to oxidative stress, inflammation, and vascular endothelial function. In addition, coexpressed DEGs networks indicated that Cd4 and Il-33 might mediate the cascade of inflammation and oxidative stress responses, which could serve as a potential target of acupuncture treatment. In conclusion, our study demonstrated that acupuncture is a promising therapy for treating hypertension and could regulate multiple biological processes mainly involving oxidative stress, inflammation, and vascular endothelial function.
Collapse
Affiliation(s)
- Si-Ming Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Feng Tu
- Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, China
| | - Na-Na Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Zheng Du
- Acupuncture and Moxibustion Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue-Rui Wang
- Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jin Huang
- Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, China
| | - Cun-Zhi Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
367
|
Budzyń M, Gryszczyńska B, Boruczkowski M, Kaczmarek M, Begier-Krasińska B, Osińska A, Bukowska A, Iskra M, Kasprzak MP. The endothelial status reflected by circulating endothelial cells, circulating endothelial progenitor cells and soluble thrombomodulin in patients with mild and resistant hypertension. Vascul Pharmacol 2019; 113:77-85. [DOI: 10.1016/j.vph.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/21/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023]
|
368
|
Chronic remote ischemic preconditioning-induced increase of circulating hSDF-1α level and its relation with reduction of blood pressure and protection endothelial function in hypertension. J Hum Hypertens 2019; 33:856-862. [PMID: 30631131 DOI: 10.1038/s41371-018-0151-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023]
Abstract
Although previous data showed that remote ischemic preconditioning (RIPC) has beneficial effect on blood pressure (BP) reduction, the efficacy of RIPC-induced decline in BP and the favorable humoral factors in hypertension is elusive. This present study is performed to evaluate whether RIPC reduces BP, improves microvascular endothelial function and increases circulating hSDF-1α generation in hypertension. Fifteen hypertensive patients received 3 periods of 5-min inflation/deflation of the forearm with a cuff on the upper arm daily for 30 days. Clinic and 24-h ambulatory blood pressure monitoring (ABPM) were examined before and after the end of this procedure. Microvascular endothelial function was measured by finger reactive hyperemia index (RHI) using the Endo-PAT 2000 device. The circulating hSDF-1α level was tested by ELISA. RIPC significantly decreased systolic BP (139.13 ± 6.68 versus 131.45 ± 7.45 mmHg) and diastolic BP (89.67 ± 4.98 versus 83.83 ± 6.65 mmHg), meanwhile 24-h ambulatory systolic and diastolic BP dropped from 136.33 ± 9.10 mmHg to 131.33 ± 7.12 mmHg and 87.60 ± 6.22 mmHg to 82.47 ± 4.47 mmHg respectively. RHI was improved (1.95 ± 0.34 versus 2.47 ± 0.44). Plasma hSDF-1α level was markedly increased after RIPC (1585.86 ± 167.17 versus 1719.54 ± 211.17 pg/ml). The increase in hSDF-1α level was associated with the fall in clinic and 24-h ABPM and rise in RHI. The present data suggests that RIPC may be a novel alternative or complementary intervention means to treat hypertension and protect endothelial function.
Collapse
|
369
|
Zhu X, Du J, Yu J, Guo R, Feng Y, Qiao L, Xu Z, Yang F, Zhong G, Liu F, Cheng F, Chu M, Lin J. LncRNA NKILA regulates endothelium inflammation by controlling a NF-κB/KLF4 positive feedback loop. J Mol Cell Cardiol 2019; 126:60-69. [DOI: 10.1016/j.yjmcc.2018.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/22/2018] [Accepted: 11/01/2018] [Indexed: 12/23/2022]
|
370
|
Daly CJ. Examining Vascular Structure and Function Using Confocal Microscopy and 3D Imaging Techniques. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1120:97-106. [PMID: 30919297 DOI: 10.1007/978-3-030-06070-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The structure of the blood vessel wall has historically been studied using thin cut sections using standard histological stains. In the mid-80s laser scanning confocal microscopes became available and offered investigators the chance to examine the 3D structure of thicker sections (i.e. ~60 μm depth penetration for a typical vascular wall). Unfortunately, desktop computers lagged far behind in their capacity to process and display large 3D (confocal) data sets. Even extremely highly priced graphics workstations of the early to mid-90s offered little in the way of flexible 3D viewing. Today's gaming PCs provide the kind of processing power that 3D confocal users have been waiting for. Coupled with high end animation software, virtual reality and game design software, we now have the capacity to exploit the huge data sets that modern microscopes can produce. In this chapter, the vascular wall will be used as an example of a biological tissue that can benefit from these developments in imaging hardware and software.
Collapse
Affiliation(s)
- Craig J Daly
- College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
371
|
Pharmacological Effect of Quercetin in Hypertension and Its Potential Application in Pregnancy-Induced Hypertension: Review of In Vitro, In Vivo, and Clinical Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7421489. [PMID: 30622610 PMCID: PMC6304490 DOI: 10.1155/2018/7421489] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
Since improving maternal and child health is a public health priority worldwide, the main aim of treatment of hypertension in pregnant women is to prevent complications during pregnancy, labor, and postpartum. In consequence, much attention is paid to the use of antihypertensive drugs that can be used safely during pregnancy. Several side effects of methyldopa, which is currently the most commonly used antihypertensive drug in pregnant women, mean that the search for an effective and safe alternative still continues. Flavonoid compounds present in medicinal plants, vegetables, and fruits may be a promising source of new drugs. In this aspect, quercetin, a well-known flavonoid due to its antihypertensive action, may be considered a prototype for safe antihypertensive drugs. This review focuses on the selective activity of quercetin. Based on recent studies, a few problems were discussed, including (1) pathology of pregnancy-induced hypertension; (2) search for new pharmacological treatments of pregnancy-induced hypertension; (3) issues with the use of herbal extracts during pregnancy; (4) flavonoids as natural active chemical compounds; (5) quercetin: its action during pregnancy, in vitro and in vivo pharmacological activities, clinical trials, and meta-analysis; (6) quercetin intake during pregnancy; (7) other natural compounds tested during pregnancy; (8) potential problems with the use of quercetin; (9) safety profile of quercetin. Various studies have shown a beneficial effect of quercetin on vascular endothelial function and its antioxidative and anti-inflammatory activity on cellular and tissue level. It is known that in animal models quercetin affects positively the development of embryo, fetus, and placenta. Because this flavonoid did not have teratogenic and abortive effect, it is generally recognized as safe. For this reason it should be appreciated and studied in the aspect of its potential use in the prevention and treatment of pregnancy-induced hypertension among women in this risk group.
Collapse
|
372
|
Li T, Zhong Y, Tang T, Luo J, Cui H, Fan R, Wang Y, Wang D. Formononetin induces vasorelaxation in rat thoracic aorta via regulation of the PI3K/PTEN/Akt signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3675-3684. [PMID: 30464399 PMCID: PMC6219413 DOI: 10.2147/dddt.s180837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Formononetin (FMN) is an isoflavone that produces arterial vasodilation. However, the underlying molecular mechanisms are unclear. Purpose The purpose of this study was to explore the vasorelaxant effect and the potential mechanism of FMN in vascular endothelium in isolated rat aorta. Methods The thoracic aortas of Sprague Dawley rats were isolated to test the arterial reactivity in the presence of FMN with or without inhibitors. Bioinformatics analyses, including a Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine and molecular docking methods, were performed to predict therapeutic targets responsible for the vascular protection produced by FMN. We used rat aortic endothelial cells (RAOECs) as an in vitro model to verify the potential mechanism through molecular biological analyses. The production of nitric oxide (NO) metabolites were evaluated via an NO assay kit according to the manufacturer's instruction. The mRNA expression of eNOS was analyzed by polymerase chain reaction, and the protein levels of PTEN, phosphorylated Akt, and eNOS were measured by Western blot. Results We found that FMN dilated rat aortic rings in a concentration-dependent manner, which was reduced by endothelium denudation and eNOS inhibition. The bioinformatics analyses indicated that FMN activity was associated with the PI3K/PTEN/Akt signaling pathway. Molecular biological studies demonstrated that FMN significantly elevated the levels of NO and eNOS mRNA and markedly increased the protein expression of phosphorylated Akt and eNOS in RAOECs, and decreased PTEN compared with a dimethyl sulfoxide group. Conclusion FMN performs vasorelaxation of the thoracic aorta through activating the PI3K/PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Teng Li
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China, ;
| | - Yuanyuan Zhong
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China, ;
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China, ;
| | - Jiekun Luo
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China, ;
| | - Hanjin Cui
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China, ;
| | - Rong Fan
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China, ;
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China, ;
| | - Dongsheng Wang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China, ;
| |
Collapse
|
373
|
Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med 2018; 7:E400. [PMID: 30380785 PMCID: PMC6262336 DOI: 10.3390/jcm7110400] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Acute vascular endothelial dysfunction is a central event in the pathogenesis of sepsis, increasing vascular permeability, promoting activation of the coagulation cascade, tissue edema and compromising perfusion of vital organs. Aging and chronic diseases (hypertension, dyslipidaemia, diabetes mellitus, chronic kidney disease, cardiovascular disease, cerebrovascular disease, chronic pulmonary disease, liver disease, or cancer) are recognized risk factors for sepsis. In this article we review the features of endothelial dysfunction shared by sepsis, aging and the chronic conditions preceding this disease. Clinical studies and review articles on endothelial dysfunction in sepsis, aging and chronic diseases available in PubMed were considered. The main features of endothelial dysfunction shared by sepsis, aging and chronic diseases were: (1) increased oxidative stress and systemic inflammation, (2) glycocalyx degradation and shedding, (3) disassembly of intercellular junctions, endothelial cell death, blood-tissue barrier disruption, (4) enhanced leukocyte adhesion and extravasation, (5) induction of a pro-coagulant and anti-fibrinolytic state. In addition, chronic diseases impair the mechanisms of endothelial reparation. In conclusion, sepsis, aging and chronic diseases induce similar features of endothelial dysfunction. The potential contribution of pre-existent endothelial dysfunction to sepsis pathogenesis deserves to be further investigated.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| | - Marta Martín-Fernandez
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Cristina López-Mestanza
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Patricia Duque
- Anesthesiology and Reanimation Service, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain.
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
374
|
Horn J, Tanz LJ, Stuart JJ, Markovitz AR, Skurnik G, Rimm EB, Missmer SA, Rich-Edwards JW. Early or late pregnancy loss and development of clinical cardiovascular disease risk factors: a prospective cohort study. BJOG 2018; 126:33-42. [PMID: 30144277 DOI: 10.1111/1471-0528.15452] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the association between the outcome of a woman's first pregnancy and risk of clinical cardiovascular disease risk factors. DESIGN Prospective cohort study. SETTING AND POPULATION Nurses' Health Study II. METHODS Multivariable-adjusted Cox proportional hazards models were used to compute hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between first pregnancy outcome and hypertension, type 2 diabetes, and hypercholesterolemia. MAIN OUTCOME MEASURES Hypertension, type 2 diabetes, and hypercholesterolemia. RESULTS Compared to women who reported a singleton live first birth, women with early spontaneous abortion (<12 weeks) had a greater rate of type 2 diabetes (HR: 1.20; 95% CI: 1.07-1.34) and hypercholesterolemia (HR: 1.06; 95% CI: 1.02-1.10), and a marginally increased rate of hypertension (HR: 1.05, 95% CI: 1.00-1.11). Late spontaneous abortion (12-19 weeks) was associated with an increased rate of type 2 diabetes (HR: 1.38; 95% CI: 1.14-1.65), hypercholesterolemia (HR: 1.11; 95% CI: 1.03-1.19), and hypertension (HR: 1.15; 95% CI: 1.05-1.25). The rates of type 2 diabetes (HR: 1.45; 95% CI: 1.13-1.87) and hypertension (HR: 1.15; 95% CI: 1.01-1.30) were higher in women who delivered stillbirth. In contrast, women whose first pregnancy ended in an induced abortion had lower rates of hypertension (HR: 0.87; 95% CI: 0.84-0.91) and type 2 diabetes (HR: 0.89; 95% CI: 0.79-0.99) than women with a singleton live birth. CONCLUSIONS Several types of pregnancy loss were associated with an increased rate of hypertension, type 2 diabetes, and hypercholesterolemia, which may provide novel insight into the pathways through which pregnancy outcomes and CVD are linked. TWEETABLE ABSTRACT Pregnancy loss is associated with later maternal risk of hypertension, type 2 diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- J Horn
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Obstetrics and Gynecology, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - L J Tanz
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - J J Stuart
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - A R Markovitz
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - G Skurnik
- Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - E B Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S A Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - J W Rich-Edwards
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
375
|
Jekell A, Kalani M, Kahan T. The interrelation of endothelial function and microvascular reactivity in different vascular beds, and risk assessment in hypertension: results from the Doxazosin-ramipril study. Heart Vessels 2018; 34:484-495. [PMID: 30244381 PMCID: PMC6373355 DOI: 10.1007/s00380-018-1265-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
There are several non-invasive methods to study endothelial function, but their interrelation and association to cardiovascular risk have not been well evaluated. We studied macrovascular and microvascular endothelial function simultaneously in different vascular beds in relation to cardiovascular mortality risk (Systematic Coronary Risk Evaluation, SCORE) and hypertension induced cardiac organ damage, and their interrelationship. The study investigated 71 hypertensive patients by forearm post-ischemic flow-mediated vasodilation, pulse wave analysis (applanation tonometry) and beta 2-adrenoceptor agonist stimulation for changes in reflection index, skin microvascular reactivity by laser Doppler fluxmetry with iontophoresis and heat-induced hyperaemia, and coronary microvascular function by subendocardial viability ratio (derived from pulse wave analysis). Flow mediated vasodilation related inversely to SCORE (r = 0.34, P = 0.011). Adding microalbuminuria and pulse wave velocity strengthened the associations. Pulse wave reflection changes did not relate to SCORE. Skin microvascular reactivity related inversely to SCORE (peak flux change to sodium nitroprusside r = 0.29, P = 0.033, and to heating r = 0.31, P = 0.018). Subendocardial viability ratio did not relate to SCORE. Endothelial function indices showed no consistent relation to cardiac target organ damage. The agreement between the different methods for evaluating indices of macrovascular and microvascular endothelial function was weak. In conclusion, indices of macrovascular and microvascular endothelial function relate to cardiovascular mortality risk. Their use may improve cardiovascular risk prediction in hypertension. However, methods representing different vascular beds show little interrelationship and are not interchangeable, which may depend on different pathogenetic mechanisms representing different aspects of future cardiovascular risk. Trial registry: NCT02901977
Collapse
Affiliation(s)
- Andreas Jekell
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 182 88, Stockholm, Sweden. .,Department of Cardiology, Danderyd University Hospital Corp, Stockholm, Sweden.
| | - Majid Kalani
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 182 88, Stockholm, Sweden
| | - Thomas Kahan
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 182 88, Stockholm, Sweden.,Department of Cardiology, Danderyd University Hospital Corp, Stockholm, Sweden
| |
Collapse
|
376
|
Gu Y, Zheng L, Zhang Q, Liu L, Meng G, Yao Z, Wu H, Xia Y, Bao X, Shi H, Wang H, Xu H, Sun S, Wang X, Zhou M, Jia Q, Song K, Niu K. Relationship between thyroid function and elevated blood pressure in euthyroid adults. J Clin Hypertens (Greenwich) 2018; 20:1541-1549. [PMID: 30260550 DOI: 10.1111/jch.13369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yeqing Gu
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
| | - Lixiao Zheng
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
| | - Qing Zhang
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| | - Li Liu
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
| | - Zhanxin Yao
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
- Tianjin Institute of Health and Environmental Medicine Tianjin China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
| | - Yang Xia
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
| | - Xue Bao
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
| | - Hongbin Shi
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| | - Honglei Wang
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
| | - Haiyan Xu
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
| | - Shaomei Sun
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| | - Xing Wang
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| | - Ming Zhou
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| | - Qiyu Jia
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| | - Kun Song
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health Tianjin Medical University Tianjin China
- Health Management Centre Tianjin Medical University General Hospital Tianjin China
| |
Collapse
|
377
|
Li JR, Zhao YS, Chang Y, Yang SC, Guo YJ, Ji ES. Fasudil improves endothelial dysfunction in rats exposed to chronic intermittent hypoxia through RhoA/ROCK/NFATc3 pathway. PLoS One 2018; 13:e0195604. [PMID: 29641598 PMCID: PMC5895022 DOI: 10.1371/journal.pone.0195604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial dysfunction is one of the main pathological changes in Obstructive sleep apnoea (OSA). The Rho kinase (ROCK) pathway is associated with endothelial dysfunction. However, the interaction between ROCK and nuclear factor of activated T cells isoform c3 (NFATc3) in the development of this pathological response under chronic intermittent hypoxia (CIH) is unclear. To simulate the OSA model, we established a moderate CIH rat model by administering the fraction of inspired O2 (FiO2) from 21% to 9%, 20 times/h, 8 h/day for 3 weeks. Fasudil (ROCK inhibitor, 8 mg/kg/d, i.p.) was administrated in the rats exposed to CIH for 3 weeks. Our results demonstrated that CIH caused significantly endothelial dysfunction, accompanying with increased ET-1 level, decreased eNOS expression and NO production, which reduced ACh-induced vascular relaxation responses. Moreover, RhoA/ROCK-2/NFATc3 expressions were up-regulated. Fasudil significantly improved CIH induced endothelial dysfunction. Data suggested that the ROCK activation is necessary for endothelial dysfunction during CIH.
Collapse
Affiliation(s)
- Jie-Ru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Ya-Shuo Zhao
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Yue Chang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Sheng-Chang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Ya-Jing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
- * E-mail:
| |
Collapse
|
378
|
Fenugreek (Trigonella Foenum-Graecum) Seed Flour and Diosgenin Preserve Endothelium-Dependent Arterial Relaxation in a Rat Model of Early-Stage Metabolic Syndrome. Int J Mol Sci 2018. [PMID: 29534453 PMCID: PMC5877659 DOI: 10.3390/ijms19030798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fenugreek is a common herb possessing several bioactive components including diosgenin. Here, dietary fenugreek seed flour and diosgenin were evaluated on a model of endothelium-dependent vasorelaxation by abdominal aortas isolated from rats receiving high-fat, high-sugar diet (HFHSD). 60 male Wistar rats were randomized into six groups: (i) negative control getting conventional rat feed regimen; (ii) positive control receiving HFHSD; (iii) a test group fed 2 g/kg bw/day fenugreek seed flour (containing 10 mg/kg bw/day diosgenin) + HFHSD; (iv) three test groups fed 1, 10 and 50 mg/kg bw/day diosgenin + HFHSD. Alimentary treatments were carried out for six weeks. The abdominal aortas were isolated, and 2 mm wide rings were sectioned off and mounted at a resting tension of 10 mN in organ baths containing Krebs solution (36 °C) exposed to 95% O2 and 5% CO2. After 60-min incubation, a norepinephrine concentration-response (E/c) curve was generated to determine their half-maximal effective concentration (EC50) value. After 60-min wash-out, a pre-contraction with norepinephrine EC50 was made, followed by an acetylcholine E/c curve. Plasma glutathione levels, glutathione-handling enzyme activities and blood antioxidant capacities were also determined. HFHSD significantly decreased the dilatory response to acetylcholine and increased plasma glutathione levels and these effects were significantly reversed by fenugreek seed flour, 10 and 50 mg/kg bw/day diosgenin. Both fenugreek and diosgenin treatments prevent HFHSD-induced endothelial dysfunction and redox changes. As fenugreek treatment was more effective at lower acetylcholine concentrations than diosgenin treatments, components of fenugreek other than diosgenin may contribute to the beneficial effects of dietary fenugreek seed flour.
Collapse
|
379
|
Kim HJ, Noh JS, Song YO. Beneficial Effects of Kimchi, a Korean Fermented Vegetable Food, on Pathophysiological Factors Related to Atherosclerosis. J Med Food 2017; 21:127-135. [PMID: 29271694 DOI: 10.1089/jmf.2017.3946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis is a progressive disease that is characterized by accumulation of lipids and fibrous elements in large arteries. Its etiology is involved with pathophysiological factors such as lipoprotein oxidation, inflammation, and dyslipidemia. Kimchi is a Korean fermented vegetable side dish made with vegetables and kimchi condiments. To date, numerous in vitro, in vivo, and human studies have cited the health benefits of kimchi. 3-(4'-Hydroxyl-3',5'-dimethoxyphenyl)propionic acid is one of the active compounds of kimchi, and its antioxidant and anti-atherosclerosclerotic effects have been reported. This review presents the laboratory and clinical evidence of the anti-atherosclerotic effects of kimchi based on its lipid-lowering, antioxidant, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Hyun Ju Kim
- 1 Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi , Gwangju, Korea
| | - Jeong Sook Noh
- 2 Department of Food Science and Nutrition, Tongmyong University , Busan, Korea
| | - Yeong Ok Song
- 3 Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University , Busan, Korea
| |
Collapse
|
380
|
Xu J, Chen L, Li L. Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases. J Cell Physiol 2017; 233:2075-2090. [PMID: 28295275 DOI: 10.1002/jcp.25906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Pannexins, which contain three subtypes: pannexin-1, -2, and -3, are vertebrate glycoproteins that form non-junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
Collapse
Affiliation(s)
- Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|