351
|
Martin P, Pognonec P. ERK and cell death: cadmium toxicity, sustained ERK activation and cell death. FEBS J 2009; 277:39-46. [DOI: 10.1111/j.1742-4658.2009.07369.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
352
|
Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J 2009; 277:2-21. [PMID: 19843174 DOI: 10.1111/j.1742-4658.2009.07366.x] [Citation(s) in RCA: 1028] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras/Raf/extracellular signal-regulated kinase (ERK) signaling pathway plays a crucial role in almost all cell functions and therefore requires exquisite control of its spatiotemporal activity. Depending on the cell type and stimulus, ERK activity will mediate different antiproliferative events, such as apoptosis, autophagy and senescence in vitro and in vivo. ERK activity can promote either intrinsic or extrinsic apoptotic pathways by induction of mitochondrial cytochrome c release or caspase-8 activation, permanent cell cycle arrest or autophagic vacuolization. These unusual effects require sustained ERK activity in specific subcellular compartments and could depend on the presence of reactive oxygen species. We will summarize the mechanisms involved in Ras/Raf/ERK antiproliferative functions.
Collapse
Affiliation(s)
- Sebastien Cagnol
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | |
Collapse
|
353
|
Solanas M, Grau L, Moral R, Vela E, Escrich R, Escrich E. Dietary olive oil and corn oil differentially affect experimental breast cancer through distinct modulation of the p21Ras signaling and the proliferation-apoptosis balance. Carcinogenesis 2009; 31:871-9. [DOI: 10.1093/carcin/bgp243] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
354
|
Bae GU, Yang YJ, Jiang G, Hong M, Lee HJ, Tessier-Lavigne M, Kang JS, Krauss RS. Neogenin regulates skeletal myofiber size and focal adhesion kinase and extracellular signal-regulated kinase activities in vivo and in vitro. Mol Biol Cell 2009; 20:4920-31. [PMID: 19812254 DOI: 10.1091/mbc.e09-06-0491] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of signaling pathways participate in the development of skeletal muscle, but the extracellular cues that regulate such pathways in myofiber formation are not well understood. Neogenin is a receptor for ligands of the netrin and repulsive guidance molecule (RGM) families involved in axon guidance. We reported previously that neogenin promoted myotube formation by C2C12 myoblasts in vitro and that the related protein Cdo (also Cdon) was a potential neogenin coreceptor in myoblasts. We report here that mice homozygous for a gene-trap mutation in the Neo1 locus (encoding neogenin) develop myotomes normally but have small myofibers at embryonic day 18.5 and at 3 wk of age. Similarly, cultured myoblasts derived from such animals form smaller myotubes with fewer nuclei than myoblasts from control animals. These in vivo and in vitro defects are associated with low levels of the activated forms of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), both known to be involved in myotube formation, and inefficient expression of certain muscle-specific proteins. Recombinant netrin-2 activates FAK and ERK in cultured myoblasts in a neogenin- and Cdo-dependent manner, whereas recombinant RGMc displays lesser ability to activate these kinases. Together, netrin-neogenin signaling is an important extracellular cue in regulation of myogenic differentiation and myofiber size.
Collapse
Affiliation(s)
- Gyu-Un Bae
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
355
|
Hughes PJ, Marcinkowska E, Gocek E, Studzinski GP, Brown G. Vitamin D3-driven signals for myeloid cell differentiation--implications for differentiation therapy. Leuk Res 2009; 34:553-65. [PMID: 19811822 DOI: 10.1016/j.leukres.2009.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/05/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Primitive myeloid leukemic cell lines can be driven to differentiate to monocyte-like cells by 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and, therefore, 1,25(OH)(2)D(3) may be useful in differentiation therapy of myeloid leukemia and myelodysplastic syndromes (MDS). Recent studies have provided important insights into the mechanism of 1,25(OH)(2)D(3)-stimulated differentiation. For myeloid progenitors to complete monocytic differentiation a complex network of intracellular signals has to be activated and/or inactivated in a precise temporal and spatial pattern. 1,25(OH)(2)D(3) achieves this change to the 'signaling landscape' by (i) direct genomic modulation of the level of expression of key regulators of cell signaling and differentiation pathways, and (ii) activation of intracellular signaling pathways. An improved understanding of the mode of action of 1,25(OH)(2)D(3) is facilitating the development of new therapeutic regimens.
Collapse
Affiliation(s)
- Philip J Hughes
- School of Immunity and Infection, College of Medical and Dental Sciences, The University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | | | | | | | | |
Collapse
|
356
|
Brandt S, Wessler S, Hartig R, Backert S. Helicobacter pyloriactivates protein kinase C delta to control Raf in MAP kinase signalling: Role in AGS epithelial cell scattering and elongation. ACTA ACUST UNITED AC 2009; 66:874-92. [DOI: 10.1002/cm.20373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
357
|
Molecular mechanisms underlying the pro-inflammatory synergistic effect of tumor necrosis factor alpha and interferon gamma in human microvascular endothelium. Eur J Cell Biol 2009; 88:731-42. [PMID: 19782427 DOI: 10.1016/j.ejcb.2009.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/14/2009] [Accepted: 07/14/2009] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor alpha (TNFalpha) and interferon gamma (IFNgamma) are among the most potent cytokines involved in orchestrating the inflammation response. The molecular mechanisms implicated in the synergism between cytokines are still poorly characterized. We demonstrate that both cytokines dose-dependently stimulate IFNgamma-inducible-protein-of-10-kDa (IP-10) secretion in human microvascular endothelial cells (HMEC-1), showing a potent synergism which is not restricted to IP-10, but is also evident for monokine-induced-by-IFNgamma (MIG) and IL-6 secretion. Immunofluorescence analysis reveals that TNFalpha and IFNgamma converge on a rapid phosphorylation of ERK, which however results in a different subcellular compartmentalization of the activated enzyme in response to the two cytokines. Differences in the subcellular recruitment of ERK in response to IFNgamma and TNFalpha are responsible for generating different ERK downstream signaling, which can thus synergize on the secretion of IP-10 as well as of other cytokines/chemokines. The importance of ERK activation in mediating the synergism of the two cytokines is further confirmed by the inhibitory effect of the anti-diabetic drug rosiglitazone and ERK blockers on IP-10, MIG and IL-6 secretion. A further mechanism of synergism involving the reciprocal upregulation of TNFalpha-RII and of IFNgamma-R, in response to IFNgamma and TNFalpha, respectively, was revealed by flow cytometry and quantitative real time RT-PCR analysis.
Collapse
|
358
|
Shinjyo N, Ståhlberg A, Dragunow M, Pekny M, Pekna M. Complement-Derived Anaphylatoxin C3a Regulates In Vitro Differentiation and Migration of Neural Progenitor Cells. Stem Cells 2009; 27:2824-32. [DOI: 10.1002/stem.225] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
359
|
Rajasagi M, von Au A, Singh R, Hartmann N, Zöller M, Marhaba R. Anti-CD44 induces apoptosis in T lymphoma via mitochondrial depolarization. J Cell Mol Med 2009; 14:1453-67. [PMID: 19765170 PMCID: PMC3829012 DOI: 10.1111/j.1582-4934.2009.00909.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A blockade of CD44 can interfere with haematopoietic and leukemic stem cell homing, the latter being considered as a therapeutic option in haematological malignancies. We here aimed to explore the molecular mechanism underlying the therapeutic efficacy of anti-CD44. We noted that in irradiated mice reconstituted with a bone marrow cell transplant, anti-CD44 exerts a stronger effect on haematopoietic reconstitution than on T lymphoma (EL4) growth. Nonetheless, in the non-reconstituted mouse anti-CD44 suffices for a prolonged survival of EL4-bearing mice, where anti-CD44-prohibited homing actively drives EL4 cells into apoptosis. In vitro, a CD44 occupancy results in a 2–4-fold increase in apoptotic EL4 cells. Death receptor expression (CD95, TRAIL, TNFRI) remains unaltered and CD95 cross-linking-mediated apoptosis is not affected. Instead, CD44 ligation promotes mitochondrial depolarization that is accompanied by caspase-9 cleavage and is inhibited in the presence of a caspase-9 inhibitor. Apoptosis becomes initiated by activation of CD44-associated phosphatase 2A (PP2A) and proceeds via ERK1/2 dephosphorylation without ERK1/2 degradation. Accordingly, CD44-induced apoptosis could be mimicked by ERK1/2 inhibition, that also promotes EL4 cell apoptosis through the mitochondrial pathway. Thus, during haematopoietic stem cell reconstitution care should be taken not to interfere by a blockade of CD44 with haematopoiesis, which could be circumvented by selectively targeting leukemic CD44 isoforms. Beyond homing/settlement in the bone marrow niche, anti-CD44 drives leukemic T cells into apoptosis via the mitochondrial death pathway by CD44 associating with PP2A. Uncovering this new pathway of CD44-induced leukemic cell death provides new options of therapeutic interference.
Collapse
Affiliation(s)
- Mohini Rajasagi
- Department of Tumor Cell Biology, University Hospital of Surgery and German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
360
|
Rivera C, Yamben IF, Shatadal S, Waldof M, Robinson ML, Griep AE. Cell-autonomous requirements for Dlg-1 for lens epithelial cell structure and fiber cell morphogenesis. Dev Dyn 2009; 238:2292-308. [PMID: 19623611 PMCID: PMC3016059 DOI: 10.1002/dvdy.22036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cell polarity and adhesion are thought to be key determinants in organismal development. In Drosophila, discs large (dlg) has emerged as an important regulator of epithelial cell proliferation, adhesion, and polarity. Herein, we investigated the role of the mouse homolog of dlg (Dlg-1) in the development of the mouse ocular lens. Tissue-specific ablation of Dlg-1 throughout the lens early in lens development led to an expansion and disorganization of the epithelium that correlated with changes in the distribution of adhesion and polarity factors. In the fiber cells, differentiation defects were observed. These included alterations in cell structure and the disposition of cell adhesion/cytoskeletal factors, delay in denucleation, and reduced levels of alpha-catenin, pERK1/2, and MIP26. These fiber cell defects were recapitulated when Dlg-1 was disrupted only in fiber cells. These results suggest that Dlg-1 acts in a cell autonomous manner to regulate epithelial cell structure and fiber cell differentiation.
Collapse
Affiliation(s)
- Charlene Rivera
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| | - Idella F. Yamben
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| | - Shalini Shatadal
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| | - Malinda Waldof
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| | | | - Anne E. Griep
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| |
Collapse
|
361
|
Westhoff MA, Fulda S. Adhesion-mediated apoptosis resistance in cancer. Drug Resist Updat 2009; 12:127-36. [PMID: 19726220 DOI: 10.1016/j.drup.2009.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/14/2009] [Accepted: 08/03/2009] [Indexed: 01/06/2023]
Abstract
Adhesion-mediated apoptosis resistance (AMAR) is an emerging concept that may explain the observed differences in survival between cells within the three-dimensional structure of a tumor and the standard monolayer culture conditions in the laboratory. Not only the cancer cells' motility and invasiveness are different in a three-dimensional tumor, but - crucially - the cells' sensitivity towards apoptosis, a form of programmed cell death, varies widely between the in vivo and in vitro situation. Tumor cells interacting either with a specific extracellular matrix protein substrate or with each other or with non-transformed cells, such as fibroblasts, exhibit increased resistance towards a wide variety of therapeutic approaches. In this review we discuss the molecular basis of these interactions and the main downstream effectors that are involved in the enhancement of the tumor cells' survival. In particular, we show that the pathways activated by adhesion are not unique, but involve the MAPK/ERK and PI3K/Akt pathways, which are reused between different forms of AMAR and are also found in adhesion-independent modes of resistance. Thus, the tools to overcome AMAR are already at our disposal and using them in this novel context of AMAR should lead to significant therapeutic benefit.
Collapse
|
362
|
Malik AI, Storey KB. Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis. J Exp Biol 2009; 212:2595-603. [DOI: 10.1242/jeb.030627] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In its native environment the African clawed frog, Xenopus laevis,can experience seasonally arid conditions that impose dehydration stress. Activation of intracellular signal transduction cascades can mediate and coordinate biochemical responses to ameliorate dehydration stress. This study examines the extracellular signal-regulated kinase (ERK) signaling cascade,analyzing responses of both upstream and downstream components in six tissues of X. laevis experiencing medium and high levels of dehydration,16.6±1.59 and 28.0±1.6% of total body water lost, respectively. Immunoblotting was used to assess the three tiers in this mitogen-activated protein kinase (MAPK) cascade: the initiating MAPK kinase kinases (c-Raf,MEKK), the MAPK kinase (MEK1/2), and finally the MAPK (ERK1/2). The amount of active phosphorylated c-RafSer338 rose by 2- to 2.5-fold under high dehydration in muscle, lung and skin whereas MEKK protein levels rose in these organs and also increased 4-fold in liver. As a result, phosphorylated active MEK1/2Ser217/221 increased significantly by 2- to 6-fold during dehydration which, in turn, led to 2- to 6-fold increases in phospho-ERKThr202/Tyr204 content in all tissues except skin. Given this clear demonstration of ERK cascade activation, two downstream targets of ERK2 were then evaluated. The amount of phosphorylated active transcription factor, STAT3Ser727 and p90 ribosomal S6 kinase(RSKSer380) increased particularly in muscle, lung and kidney. Furthermore, RSK activation was correlated with a 5- to 8-fold increase in phosphorylation of its target, S6 ribosomal protein. Overall, the results show a strong conserved activation of the ERK cascade in X. laevis tissues in response to dehydration.
Collapse
Affiliation(s)
- Amal Idris Malik
- Institute of Biochemistry and Department of Biology, Carleton University,1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University,1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
363
|
Cakir M, Grossman AB. Targeting MAPK (Ras/ERK) and PI3K/Akt pathways in pituitary tumorigenesis. Expert Opin Ther Targets 2009; 13:1121-34. [DOI: 10.1517/14728220903170675] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
364
|
Akbulut T, Regner KR, Roman RJ, Avner ED, Falck JR, Park F. 20-HETE activates the Raf/MEK/ERK pathway in renal epithelial cells through an EGFR- and c-Src-dependent mechanism. Am J Physiol Renal Physiol 2009; 297:F662-70. [PMID: 19570883 DOI: 10.1152/ajprenal.00146.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) has been reported to promote mitogenicity in a variety of cell types, including renal epithelial cells. However, the signal transduction pathways activated by 20-HETE have not been fully defined. The present study evaluated the effects of 20-HETE and its more stable agonist analogs 20-hydroxyeicosa-5(Z),14(Z)-dienoic acid (5,14-20-HEDE) and N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-20-HEDGE) on the Raf/MEK/ERK and phosphatidylinositol 3-kinase (PI3K)-Akt pathway in LLC-PK(1) renal epithelial cells. 20-HETE (20 microM) increased phosphorylation of Raf-1 (2.5 +/- 0.2-fold), MEK1/2 (6.3 +/- 1.6-fold), and ERK1/2 (5.8 +/- 0.3-fold) compared with vehicle-treated cells. Similarly, the 20-HETE analogs also strongly activated ERK1/2 in a Raf-1- and MEK1/2-dependent manner. Moreover, 5,14-20-HEDE increased Akt phosphorylation by 2.2 +/- 0.3-fold. 20-HETE and 5,14-20-HEDE also promoted activation (Y1086) of epidermal growth factor receptor (EGFR; Y1086) by 1.9 +/- 0.2- and 2.5 +/- 0.2-fold, respectively. These effects were completely blocked by the EGFR inhibitor EKB-569 (0.1 microM). Moreover, EKB-569 (0.1 microM), as well as a c-Src inhibitor, SKI-606 (0.05 microM), completely abolished the 20-HETE-mediated activation of the Raf/MEK/ERK and PI3K-Akt pathways. Blockade of PKC with bisindolylmaleimide I had no effect on 20-HETE-induced ERK1/2 activation. This study demonstrated that 20-HETE activated the Raf/MEK/ERK and Akt pathways in renal epithelial cells secondary to the activation of c-Src and EGFR.
Collapse
Affiliation(s)
- Talha Akbulut
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
365
|
Dent P, Curiel DT, Fisher PB, Grant S. Synergistic combinations of signaling pathway inhibitors: mechanisms for improved cancer therapy. Drug Resist Updat 2009; 12:65-73. [PMID: 19395305 PMCID: PMC2696566 DOI: 10.1016/j.drup.2009.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
Abstract
Cancer cells contain multiple signal transduction pathways whose activities are frequently elevated due to their transformation, and that are often activated following exposure to established cytotoxic therapies including ionizing radiation and chemical DNA damaging agents. Many pathways activated in response to transformation or toxic stresses promote cell growth and invasion and counteract the processes of cell death. As a result of these findings many drugs, predominantly protein and lipid kinase inhibitors, of varying specificities, have been developed to block signaling by cell survival pathways in the hope of killing tumor cells and sensitizing them to toxic therapies. Unfortunately, due to the plasticity of signaling processes within a tumor cell, inhibition of any one growth factor receptor or signaling pathway frequently has only modest long-term effects on cancer cell viability, tumor growth, and patient survival. As a result of this realization, a greater emphasis has begun to be placed on rational combinations of drugs that simultaneously inhibit multiple inter-linked signal transduction/survival pathways. This, it is hoped, will limit the ability of tumor cells to adapt and survive because the activity within multiple parallel survival signaling pathways has been reduced. This review will discuss some of the approaches that have been taken to combine signal transduction modulatory agents to achieve enhanced tumor cell killing.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, 401 College St., Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
366
|
Miyamura N, Hirayama J, Sawanobori K, Tamaru T, Asaoka Y, Honda R, Yamamoto T, Uno H, Takamatsu K, Nishina H. CLOCK:BMAL-Independent Circadian Oscillation of Zebrafish Cryptochrome1a Gene. Biol Pharm Bull 2009; 32:1183-7. [DOI: 10.1248/bpb.32.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Norio Miyamura
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University
| | - Jun Hirayama
- Medical Top Track Program, Medical Research Institute, Tokyo Medical and Dental University
| | - Kenji Sawanobori
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Teruya Tamaru
- Department of Physiology, Toho University School of Medicine
| | - Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University
| | - Reiko Honda
- Medical Top Track Program, Medical Research Institute, Tokyo Medical and Dental University
| | - Takuro Yamamoto
- Life Science Laboratory, Advanced Materials Laboratories, Sony Corporation
| | - Hatsume Uno
- Life Science Laboratory, Advanced Materials Laboratories, Sony Corporation
| | - Ken Takamatsu
- Department of Physiology, Toho University School of Medicine
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University
| |
Collapse
|