351
|
Itzykson R, Kosmider O, Fenaux P. Somatic mutations and epigenetic abnormalities in myelodysplastic syndromes. Best Pract Res Clin Haematol 2014; 26:355-64. [PMID: 24507812 DOI: 10.1016/j.beha.2014.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During many years, very limited data had been available on specific gene mutations in MDS in particular due to the fact that balanced chromosomal translocations (which have allowed to discover many "leukemia" genes) are very rare in MDS, while chromosomal deletions are generally very large, making it difficult to identify genes of interest. Recently, the advent of next generation sequencing (NGS) techniques has helped identify somatic gene mutations in 75-80% of MDS, that cluster mainly in four functional groups, i.e. cytokine signaling (RAS genes), DNA methylation, (TET2, IDH1/2, DNMT3a genes) histone modifications (ASXL1 and EZH2 genes), and spliceosome (SF3B1 and SRSF2 genes) along with mutations of RUNX1 and TP 53 genes. Most of those mutations, except SF3B1 and TET2 mutations, are associated with an overall poorer prognosis, while some gene mutations (mainly TET2 mutation), may be associated to better response to hypomethylating agents. The frequent mutations of epigenetic modulators in MDS appear to largely contribute to the importance of epigenetic deregulation (in particular gene hypermethylation and histone deacetylation) in MDS progression, and may account at least partially for the efficacy of hypomethylating agents in the treatment of MDS.
Collapse
Affiliation(s)
- Raphael Itzykson
- Hematology Department, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 7, France; INSERM Unit U944, Hôpital St Louis, Paris, France
| | - Olivier Kosmider
- Laboratoire d'hématologie, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 5, France
| | - Pierre Fenaux
- Hematology Department, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 7, France; INSERM UMR-S-940, Hôpital St Louis, Paris, France.
| |
Collapse
|
352
|
Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 2013; 14:215. [PMID: 24286375 PMCID: PMC4053770 DOI: 10.1186/gb4143] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The post-transcriptional modification 5-methylcytosine (m5C) occurs in a wide range of coding and non-coding RNAs. We describe transcriptome-wide approaches to capture the global m5C RNA methylome. We also discuss the potential functions of m5C in RNA and compare them to 6-methyladenosine modifications.
Collapse
Affiliation(s)
- Shobbir Hussain
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jelena Aleksic
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sandra Blanco
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sabine Dietmann
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Michaela Frye
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
353
|
Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen TS, Satija R, Ruvkun G, Carr SA, Lander ES, Fink GR, Regev A. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013; 155:1409-21. [PMID: 24269006 DOI: 10.1016/j.cell.2013.10.047] [Citation(s) in RCA: 506] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 01/12/2023]
Abstract
N(6)-methyladenosine (m(6)A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m(6)A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.
Collapse
|
354
|
Itzykson R, Fenaux P. Epigenetics of myelodysplastic syndromes. Leukemia 2013; 28:497-506. [DOI: 10.1038/leu.2013.343] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
|
355
|
Liu J, Jia G. Methylation modifications in eukaryotic messenger RNA. J Genet Genomics 2013; 41:21-33. [PMID: 24480744 DOI: 10.1016/j.jgg.2013.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/09/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
Abstract
RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological functions. There are several identified methylation modifications in eukaryotic messenger RNA (mRNA), such as N(7)-methylguanosine (m(7)G) at the cap, N(6)-methyl-2'-O-methyladenosine (m(6)Am), 2'-O-methylation (Nm) within the cap and the internal positions, and internal N(6)-methyladenosine (m(6)A) and 5-methylcytosine (m(5)C). Among them, m(7)G cap was studied more clearly and found to have vital roles in several important mRNA processes like mRNA translation, stability and nuclear export. m(6)A as the most abundant modification in mRNA was found in the 1970s and has been proposed to function in mRNA splicing, translation, stability, transport and so on. m(6)A has been discovered as the first RNA reversible modification which is demethylated directly by human fat mass and obesity associated protein (FTO) and its homolog protein, alkylation repair homolog 5 (ALKBH5). FTO has a special demethylation mechanism that demethylases m(6)A to A through two over-oxidative intermediate states: N(6)-hydroxymethyladenosine (hm(6)A) and N(6)-formyladenosine (f(6)A). The two newly discovered m(6)A demethylases, FTO and ALKBH5, significantly control energy homeostasis and spermatogenesis, respectively, indicating that the dynamic and reversible m(6)A, analogous to DNA and histone modifications, plays broad roles in biological kingdoms and brings us an emerging field "RNA Epigenetics". 5-methylcytosine (5mC) as an epigenetic mark in DNA has been studied widely, but m(5)C in mRNA is seldom explored. The bisulfide sequencing showed m(5)C is another abundant modification in mRNA, suggesting that it might be another RNA epigenetic mark. This review focuses on the main methylation modifications in mRNA to describe their formation, distribution, function and demethylation from the current knowledge and to provide future perspectives on functional studies.
Collapse
Affiliation(s)
- Jun Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
356
|
Durdevic Z, Schaefer M. Dnmt2 methyltransferases and immunity: An ancient overlooked connection between nucleotide modification and host defense? Bioessays 2013; 35:1044-9. [DOI: 10.1002/bies.201300088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zeljko Durdevic
- Division of Epigenetics; DKFZ-ZMBH Alliance, German Cancer Research Center; Heidelberg Germany
| | - Matthias Schaefer
- Division of Epigenetics; DKFZ-ZMBH Alliance, German Cancer Research Center; Heidelberg Germany
| |
Collapse
|
357
|
Hussain S, Sajini A, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson J, Odom D, Ule J, Frye M. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 2013; 4:255-61. [PMID: 23871666 PMCID: PMC3730056 DOI: 10.1016/j.celrep.2013.06.029] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/20/2013] [Accepted: 06/21/2013] [Indexed: 02/03/2023] Open
Abstract
Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs), yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP) method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs). Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.
Collapse
Affiliation(s)
- Shobbir Hussain
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Abdulrahim A. Sajini
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Sandra Blanco
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Sabine Dietmann
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Patrick Lombard
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Yoichiro Sugimoto
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Maike Paramor
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Joseph G. Gleeson
- Howard Hughes Medical Institute, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Duncan T. Odom
- University of Cambridge, CR-UK, Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Jernej Ule
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michaela Frye
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| |
Collapse
|
358
|
Targets of RNA cytosine methyltransferases. Nat Methods 2013. [DOI: 10.1038/nmeth.2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
359
|
Basturea GN. Research Methods for Detection and Quantitation of RNA Modifications. ACTA ACUST UNITED AC 2013. [DOI: 10.13070/mm.en.3.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|