351
|
Schwartz MH, Wang H, Pan JN, Clark WC, Cui S, Eckwahl MJ, Pan DW, Parisien M, Owens SM, Cheng BL, Martinez K, Xu J, Chang EB, Pan T, Eren AM. Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis. Nat Commun 2018; 9:5353. [PMID: 30559359 PMCID: PMC6297222 DOI: 10.1038/s41467-018-07675-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Advances in high-throughput sequencing have facilitated remarkable insights into the diversity and functioning of naturally occurring microbes; however, current sequencing strategies are insufficient to reveal physiological states of microbial communities associated with protein translation dynamics. Transfer RNAs (tRNAs) are core components of protein synthesis machinery, present in all living cells, and are phylogenetically tractable, which make them ideal targets to gain physiological insights into environmental microbes. Here we report a direct sequencing approach, tRNA-seq, and a software suite, tRNA-seq-tools, to recover sequences, abundance profiles, and post-transcriptional modifications of microbial tRNA transcripts. Our analysis of cecal samples using tRNA-seq distinguishes high-fat- and low-fat-fed mice in a comparable fashion to 16S ribosomal RNA gene amplicons, and reveals taxon- and diet-dependent variations in tRNA modifications. Our results provide taxon-specific in situ insights into the dynamics of tRNA gene expression and post-transcriptional modifications within complex environmental microbiomes.
Collapse
Affiliation(s)
- Michael H Schwartz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.,Committee on Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Haipeng Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.,School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong, China.,Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Jessica N Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Wesley C Clark
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Steven Cui
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Matthew J Eckwahl
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - David W Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Marc Parisien
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Sarah M Owens
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.,Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Brian L Cheng
- Committee on Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Kristina Martinez
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA. .,Committee on Microbiology, University of Chicago, Chicago, IL, 60637, USA.
| | - A Murat Eren
- Committee on Microbiology, University of Chicago, Chicago, IL, 60637, USA. .,Department of Medicine, University of Chicago, Chicago, IL, 60637, USA. .,Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
352
|
Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D'Amore DV, Keeling PJ, Hallam SJ, Mohn WW. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO 2, and CH 4 fluxes in temperate rainforest soil. ISME JOURNAL 2018; 13:950-963. [PMID: 30538276 PMCID: PMC6461783 DOI: 10.1038/s41396-018-0334-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022]
Abstract
The Pacific coastal temperate rainforest (PCTR) is a global hot-spot for carbon cycling and export. Yet the influence of microorganisms on carbon cycling processes in PCTR soil is poorly characterized. We developed and tested a conceptual model of seasonal microbial carbon cycling in PCTR soil through integration of geochemistry, micro-meteorology, and eukaryotic and prokaryotic ribosomal amplicon (rRNA) sequencing from 216 soil DNA and RNA libraries. Soil moisture and pH increased during the wet season, with significant correlation to net CO2 flux in peat bog and net CH4 flux in bog forest soil. Fungal succession in these sites was characterized by the apparent turnover of Archaeorhizomycetes phylotypes accounting for 41% of ITS libraries. Anaerobic prokaryotes, including Syntrophobacteraceae and Methanomicrobia increased in rRNA libraries during the wet season. Putatively active populations of these phylotypes and their biogeochemical marker genes for sulfate and CH4 cycling, respectively, were positively correlated following rRNA and metatranscriptomic network analysis. The latter phylotype was positively correlated to CH4 fluxes (r = 0.46, p < 0.0001). Phylotype functional assignments were supported by metatranscriptomic analysis. We propose that active microbial populations respond primarily to changes in hydrology, pH, and nutrient availability. The increased microbial carbon export observed over winter may have ramifications for climate-soil feedbacks in the PCTR.
Collapse
Affiliation(s)
- David J Levy-Booth
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada
| | - Ian J W Giesbrecht
- Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada.,School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Colleen T E Kellogg
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada
| | - Thierry J Heger
- The University of Applied Sciences Western Switzerland, CHANGINS, Delémont, Switzerland
| | - David V D'Amore
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Juneau, Alaska, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
353
|
Ramírez GA, Jørgensen SL, Zhao R, D'Hondt S. Minimal Influence of Extracellular DNA on Molecular Surveys of Marine Sedimentary Communities. Front Microbiol 2018; 9:2969. [PMID: 30564217 PMCID: PMC6288230 DOI: 10.3389/fmicb.2018.02969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022] Open
Abstract
Extracellular DNA has been reported to comprise a large fraction of total DNA in near-seafloor sediment. However, the potential effect of extracellular DNA, arising from dead or moribund cells, on sequencing surveys is a critical concern that has largely not been addressed for marine sedimentary habitats. To address this concern, we interrogated freshly collected Arctic and Pacific sediment for extracellular 16S rRNA genes using the photoactive DNA-binding dye Propidium Monoazide. Significant differences between relative abundances of total (intracellular + extracellular) Bacterial 16S rRNA genes and relative abundances of intracellular Bacterial 16S rRNA genes are only detected in three of twelve shallow [10 cm below seafloor (cmbsf)] samples. Relative abundances of total Bacterial 16S rRNA genes are statistically indistinguishable from relative abundances of intracellular Bacterial 16S rRNA genes in all interrogated samples from depths greater than 10 cmbsf. 16S rRNA gene sequencing shows that even where significantly higher abundances of extracellular genes are detected, they have little or no influence on prokaryote community composition. Taxon-level analyses suggest that extracellular DNA, arising from in situ death, may be sourced from different organisms in sediment of different ages. However, the overall effect of extracellular genes on sequencing surveys of marine sedimentary prokaryotes is minimal.
Collapse
Affiliation(s)
- Gustavo A Ramírez
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
| | - Steffen L Jørgensen
- K.G. Jebsen Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen, Norway
| | - Rui Zhao
- K.G. Jebsen Centre for Deep Sea Research, Department of Biology, University of Bergen, Bergen, Norway
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
| |
Collapse
|
354
|
Smith HJ, Zelaya AJ, De León KB, Chakraborty R, Elias DA, Hazen TC, Arkin AP, Cunningham AB, Fields MW. Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiol Ecol 2018; 94:5107865. [PMID: 30265315 PMCID: PMC6192502 DOI: 10.1093/femsec/fiy191] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Subsurface environments contain a large proportion of planetary microbial biomass and harbor diverse communities responsible for mediating biogeochemical cycles important to groundwater used by human society for consumption, irrigation, agriculture and industry. Within the saturated zone, capillary fringe and vadose zones, microorganisms can reside in two distinct phases (planktonic or biofilm), and significant differences in community composition, structure and activity between free-living and attached communities are commonly accepted. However, largely due to sampling constraints and the challenges of working with solid substrata, the contribution of each phase to subsurface processes is largely unresolved. Here, we synthesize current information on the diversity and activity of shallow freshwater subsurface habitats, discuss the challenges associated with sampling planktonic and biofilm communities across spatial, temporal and geological gradients, and discuss how biofilms may be constrained within shallow terrestrial subsurface aquifers. We suggest that merging traditional activity measurements and sequencing/-omics technologies with hydrological parameters important to sediment biofilm assembly and stability will help delineate key system parameters. Ultimately, integration will enhance our understanding of shallow subsurface ecophysiology in terms of bulk-flow through porous media and distinguish the respective activities of sessile microbial communities from more transient planktonic communities to ecosystem service and maintenance.
Collapse
Affiliation(s)
- H J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A J Zelaya
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - K B De León
- Department of Biochemistry, University of Missouri, Columbia, MO
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - R Chakraborty
- Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - D A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - T C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A P Arkin
- Department of Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Civil Engineering, Montana State University, Montana State University, Bozeman, MT
| | - M W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| |
Collapse
|
355
|
Li Y, Wu Z, Dong X, Wang D, Qiu H, Jia Z, Sun Q. Glucose-induced changes in the bacterial communities of mine tailings at different acidification stages. Can J Microbiol 2018; 65:201-213. [PMID: 30452287 DOI: 10.1139/cjm-2017-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ecological restoration technologies applied to tailings can influence the associated bacterial communities. However, it is unknown if the shifts in these bacterial communities are caused by increased organic carbon. Glucose-induced respiration and high-throughput sequencing were used to assess the microbial activity and bacterial communities, respectively. Glucose addition increased the microbial activity, and glucose + ammonium nitrate addition resulted in slightly higher CO2 emission than did glucose addition alone, suggesting that carbon and nitrogen limited microbial community growth. In neutral pH tailings, the bacterial taxa that increased by glucose addition were assigned to the phyla Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Planctomycetes. However, the bacterial taxa that increased by glucose addition in acidic tailings only belonged to the phylum Actinobacteria (maximum increase of 43.78%). In addition, the abundances of the total nitrogen-fixing genera and of the genus Arthrobacter (representing approximately 97.89% of the total nitrogen-fixing genera) increased by glucose addition in acidic tailings (maximum increase of 46.98%). In contrast, the relative abundances of the total iron- and (or) sulfur-oxidizing bacteria decreased (maximum decrease of 10.41%) in response to the addition of glucose. These findings indicate that the addition of organic carbon is beneficial to the development of bacterial communities in mine tailings.
Collapse
Affiliation(s)
- Yang Li
- a School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, P.R. China.,b State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, P.R. China
| | - Zhaojun Wu
- a School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, P.R. China
| | - Xingchen Dong
- c College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu Province, P.R. China
| | - Dongmei Wang
- b State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, P.R. China
| | - Huizhen Qiu
- c College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu Province, P.R. China
| | - Zhongjun Jia
- b State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, P.R. China
| | - Qingye Sun
- a School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
356
|
Schimel JP. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062614] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout Earth's history, drought has been a common crisis in terrestrial ecosystems; in human societies, it can cause famine, one of the Four Horsemen of the apocalypse. As the global hydrological cycle intensifies with global warming, deeper droughts and rewetting will alter, and possibly transform, ecosystems. Soil communities, however, seem more tolerant than plants or animals are to water stress—the main effects, in fact, on soil processes appear to be limited diffusion and the limited supply of resources to soil organisms. Thus, the rains that end a drought not only release soil microbes from stress but also create a resource pulse that fuels soil microbial activity. It remains unclear whether the effects of drought on soil processes result from drying or rewetting. It is also unclear whether the flush of activity on rewetting is driven by microbial growth or by the physical/chemical processes that mobilize organic matter. In this review, I discuss how soil water, and the lack of it, regulates microbial life and biogeochemical processes. I first focus on organismal-level responses and then consider how these influence whole-soil organic matter dynamics. A final focus is on how to incorporate these effects into Earth System models that can effectively capture dry–wet cycling.
Collapse
Affiliation(s)
- Joshua P. Schimel
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93108, USA
| |
Collapse
|
357
|
Hiller-Bittrolff K, Foreman K, Bulseco-McKim AN, Benoit J, Bowen JL. Effects of mercury addition on microbial community composition and nitrate removal inside permeable reactive barriers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:797-806. [PMID: 30032076 DOI: 10.1016/j.envpol.2018.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Permeable reactive barriers (PRBs) remove nitrogen from groundwater by enhancing microbial denitrification. The PRBs consist of woodchips that provide carbon for denitrifiers, but these woodchips also support other anaerobic microbes, including sulfate-reducing bacteria. Some of these anaerobes have the ability to methylate inorganic mercury present in groundwater. Methylmercury is hazardous to human health, so it is essential to understand whether PRBs promote mercury methylation. We examined microbial communities and geochemistry in fresh water and sulfate-enriched PRB flow-through columns by spiking replicates of both treatments with mercuric chloride. We hypothesized that mercury addition could alter bacterial community composition to favor higher abundances of genera containing known methylating taxa and that the sulfate-rich columns would produce more methylmercury after mercury addition, due mainly to an increase in abundance of sulfate reducing bacteria (SRB). However, methylmercury output at the end of the experiment was not different from output at the beginning, due in part to coupled Hg methylation and demethylation. There was a transient reduction in nitrate removal after mercury addition in the sulfate enriched columns, but nitrate removal returned to initial rates after two weeks, demonstrating resilience of the denitrifying community. Since methylmercury output did not increase and nitrate removal was not permanently affected, PRBs could be a low cost approach to combat eutrophication.
Collapse
Affiliation(s)
- Kenly Hiller-Bittrolff
- University of Massachusetts Boston Biology Department, 100 Morrissey Blvd, Boston, MA, USA.
| | - Kenneth Foreman
- Marine Biological Laboratory, Ecosystems Center, 7 MBL Street, Woods Hole, MA, USA.
| | - Ashley N Bulseco-McKim
- Northeastern University, Department of Marine and Environmental Sciences, Marine Science Center, 430 Nahant Road, Nahant, MA, USA.
| | - Janina Benoit
- Wheaton College, Chemistry Department, 26 E Main Street, Norton, MA, USA.
| | - Jennifer L Bowen
- Northeastern University, Department of Marine and Environmental Sciences, Marine Science Center, 430 Nahant Road, Nahant, MA, USA.
| |
Collapse
|
358
|
Bastida F, Crowther TW, Prieto I, Routh D, García C, Jehmlich N. Climate shapes the protein abundance of dominant soil bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:18-21. [PMID: 29852443 DOI: 10.1016/j.scitotenv.2018.05.288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Sensitive models of climate change impacts would require a better integration of multi-omics approaches that connect the abundance and activity of microbial populations. Here, we show that climate is a fundamental driver of the protein abundance of Actinobacteria, Planctomycetes and Proteobacteria, supporting the hypothesis that metabolic activity of some dominant phyla may be closely linked to climate. These results may improve our capacity to construct microbial models that better predict the impact of climate change in ecosystem processes.
Collapse
Affiliation(s)
- Felipe Bastida
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain.
| | - Tom W Crowther
- Institute of Integrative Biology, ETH Zürich, Univeritätstrasse 16, 8006 Zürich, Switzerland
| | - Iván Prieto
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Devin Routh
- Institute of Integrative Biology, ETH Zürich, Univeritätstrasse 16, 8006 Zürich, Switzerland
| | - Carlos García
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
359
|
Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment. Sci Rep 2018; 8:15500. [PMID: 30341362 PMCID: PMC6195585 DOI: 10.1038/s41598-018-33799-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/04/2018] [Indexed: 02/01/2023] Open
Abstract
One of the most common approaches for investigating the ecology of spatially complex environments is to examine a single biotic assemblage present, such as macroinvertebrates. Underlying this approach are assumptions that sampled and unsampled taxa respond similarly to environmental gradients and exhibit congruence across different sites. These assumptions were tested for five benthic groups of various sizes (archaea, bacteria, microbial eukaryotes/protists, meiofauna and macrofauna) in Plymouth Sound, a harbour with many different pollution sources. Sediments varied in granulometry, hydrocarbon and trace metal concentrations. Following variable reduction, canonical correspondence analysis did not identify any associations between sediment characteristics and assemblage composition of archaea or macrofauna. In contrast, variation in bacteria was associated with granulometry, trace metal variations and bioturbation (e.g. community bioturbation potential). Protists varied with granulometry, hydrocarbon and trace metal predictors. Meiofaunal variation was associated with hydrocarbon and bioturbation predictors. Taxon turnover between sites varied with only three out of 10 group pairs showing congruence (meiofauna-protists, meiofauna-macrofauna and protists-macrofauna). While our results support using eukaryotic taxa as proxies for others, the lack of congruence suggests caution should be applied to inferring wider indicator or functional interpretations from studies of a single biotic assemblage.
Collapse
|
360
|
Liu YR, Delgado-Baquerizo M, Bi L, Zhu J, He JZ. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. MICROBIOME 2018; 6:183. [PMID: 30336790 PMCID: PMC6194565 DOI: 10.1186/s40168-018-0572-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The ecological consequences of mercury (Hg) pollution-one of the major pollutants worldwide-on microbial taxonomic and functional attributes remain poorly understood and largely unexplored. Using soils from two typical Hg-impacted regions across China, here, we evaluated the role of Hg pollution in regulating bacterial abundance, diversity, and co-occurrence network. We also investigated the associations between Hg contents and the relative abundance of microbial functional genes by analyzing the soil metagenomes from a subset of those sites. RESULTS We found that soil Hg largely influenced the taxonomic and functional attributes of microbial communities in the two studied regions. In general, Hg pollution was negatively related to bacterial abundance, but positively related to the diversity of bacteria in two separate regions. We also found some consistent associations between soil Hg contents and the community composition of bacteria. For example, soil total Hg content was positively related to the relative abundance of Firmicutes and Bacteroidetes in both paddy and upland soils. In contrast, the methylmercury (MeHg) concentration was negatively correlated to the relative abundance of Nitrospirae in the two types of soils. Increases in soil Hg pollution correlated with drastic changes in the relative abundance of ecological clusters within the co-occurrence network of bacterial communities for the two regions. Using metagenomic data, we were also able to detect the effect of Hg pollution on multiple functional genes relevant to key soil processes such as element cycles and Hg transformations (e.g., methylation and reduction). CONCLUSIONS Together, our study provides solid evidence that Hg pollution has predictable and significant effects on multiple taxonomic and functional attributes including bacterial abundance, diversity, and the relative abundance of ecological clusters and functional genes. Our results suggest an increase in soil Hg pollution linked to human activities will lead to predictable shifts in the taxonomic and functional attributes in the Hg-impacted areas, with potential implications for sustainable management of agricultural ecosystems and elsewhere.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Manuel Delgado-Baquerizo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933, Móstoles, Spain
| | - Li Bi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jun Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
361
|
Fahimipour AK, Hartmann EM, Siemens A, Kline J, Levin DA, Wilson H, Betancourt-Román CM, Brown GZ, Fretz M, Northcutt D, Siemens KN, Huttenhower C, Green JL, Van Den Wymelenberg K. Daylight exposure modulates bacterial communities associated with household dust. MICROBIOME 2018; 6:175. [PMID: 30333051 PMCID: PMC6193304 DOI: 10.1186/s40168-018-0559-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 09/19/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microbial communities associated with indoor dust abound in the built environment. The transmission of sunlight through windows is a key building design consideration, but the effects of light exposure on dust communities remain unclear. We report results of an experiment and computational models designed to assess the effects of light exposure and wavelengths on the structure of the dust microbiome. Specifically, we placed household dust in replicate model "rooms" with windows that transmitted visible, ultraviolet, or no light and measured taxonomic compositions, absolute abundances, and viabilities of the resulting bacterial communities. RESULTS Light exposure per se led to lower abundances of viable bacteria and communities that were compositionally distinct from dark rooms, suggesting preferential inactivation of some microbes over others under daylighting conditions. Differences between communities experiencing visible and ultraviolet light wavelengths were relatively minor, manifesting primarily in abundances of dead human-derived taxa. Daylighting was associated with the loss of a few numerically dominant groups of related microorganisms and apparent increases in the abundances of some rare groups, suggesting that a small number of microorganisms may have exhibited modest population growth under lighting conditions. Although biological processes like population growth on dust could have generated these patterns, we also present an alternate statistical explanation using sampling models from ecology; simulations indicate that artefactual, apparent increases in the abundances of very rare taxa may be a null expectation following the selective inactivation of dominant microorganisms in a community. CONCLUSIONS Our experimental and simulation-based results indicate that dust contains living bacterial taxa that can be inactivated following changes in local abiotic conditions and suggest that the bactericidal potential of ordinary window-filtered sunlight may be similar to ultraviolet wavelengths across dosages that are relevant to real buildings.
Collapse
Affiliation(s)
- Ashkaan K. Fahimipour
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
| | - Erica M. Hartmann
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
- Department of Civil and Environmental Engineering, Northwestern University, Chicago, IL USA
| | - Andrew Siemens
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
| | - Jeff Kline
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR USA
| | - David A. Levin
- Department of Mathematics, University of Oregon, Eugene, OR USA
| | - Hannah Wilson
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
| | | | - GZ Brown
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR USA
| | - Mark Fretz
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR USA
| | - Dale Northcutt
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR USA
| | - Kyla N. Siemens
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jessica L. Green
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
- Santa Fe Institute, Santa Fe, NM USA
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, 13th Ave, Eugene, OR USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR USA
| |
Collapse
|
362
|
Kulkarni P, Olson ND, Paulson JN, Pop M, Maddox C, Claye E, Rosenberg Goldstein RE, Sharma M, Gibbs SG, Mongodin EF, Sapkota AR. Conventional wastewater treatment and reuse site practices modify bacterial community structure but do not eliminate some opportunistic pathogens in reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1126-1137. [PMID: 29929281 PMCID: PMC8290890 DOI: 10.1016/j.scitotenv.2018.05.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 05/04/2023]
Abstract
Water recycling continues to expand across the United States, from areas that have access to advanced, potable-level treated reclaimed water, to those having access only to reclaimed water treated at conventional municipal wastewater treatment plants. This expansion makes it important to further characterize the microbial quality of these conventionally-treated water sources. Therefore, we used 16S rRNA gene sequencing to characterize total bacterial communities present in differentially-treated wastewater and reclaimed water (n = 67 samples) from four U.S. wastewater treatment plants and one associated spray irrigation site conducting on-site ultraviolet treatment and open-air storage. The number of observed operational taxonomic units was significantly lower (p < 0.01) in effluent, compared to influent, after conventional treatment. Effluent community structure was influenced more by treatment method than by influent community structure. The abundance of Legionella spp. increased as treatment progressed in one treatment plant that performed chlorination and in another that seasonally chlorinated. Overall, the alpha-diversity of bacterial communities in reclaimed water decreased (p < 0.01) during wastewater treatment and spray irrigation site ultraviolet treatment (p < 0.01), but increased (p < 0.01) after open-air storage at the spray irrigation site. The abundance of Legionella spp. was higher at the sprinkler system pumphouse at the spray irrigation site than in the influent from the treatment plant supplying the site. Legionella pneumophila was detected in conventionally treated effluent samples and in samples collected after ultraviolet treatment at the spray irrigation site, while Legionella feeleii persisted throughout on-site treatment at the spray irrigation site, and, along with Mycobacterium gordonae, was also detected at the sprinkler system pumphouse at the spray irrigation site. These data could inform the development of future treatment technologies and reuse guidelines that address a broader assemblage of the bacterial community of reclaimed water, resulting in reuse practices that may be more protective of public health.
Collapse
Affiliation(s)
- Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health 4200 Valley Drive, College Park, MD 20742, United States
| | - Nathan D Olson
- University of Maryland Institute for Advanced Computer Studies, 8223 Paint Branch Drive, College Park, MD 20740, United States; National Institute of Standards and Technology, Biosystems and Biomaterials Division, 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Joseph N Paulson
- Genentech, Department of Biostatistics, Product Development, 1 DNA Way, South San Francisco, CA 94080-4990, United States
| | - Mihai Pop
- University of Maryland Institute for Advanced Computer Studies, 8223 Paint Branch Drive, College Park, MD 20740, United States
| | - Cynthia Maddox
- Institute for Genome Sciences, University of Maryland School of Medicine 801 West Baltimore St., BioPark II, 6th floor, Baltimore, MD 21201, United States
| | - Emma Claye
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health 4200 Valley Drive, College Park, MD 20742, United States
| | - Rachel E Rosenberg Goldstein
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health 4200 Valley Drive, College Park, MD 20742, United States
| | - Manan Sharma
- USDA, Agricultural Research Service, Environmental and Microbial Food Safety Laboratory, 10300 Baltimore Avenue, BARC-East, Bldg. 201, Beltsville, MD 20705-2350, United States
| | - Shawn G Gibbs
- Indiana University Bloomington, School of Public Health 1025 E. 7th St, Bloomington, IN 47405, United States
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine 801 West Baltimore St., BioPark II, 6th floor, Baltimore, MD 21201, United States
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health 4200 Valley Drive, College Park, MD 20742, United States.
| |
Collapse
|
363
|
Purushotham N, Jones E, Monk J, Ridgway H. Community Structure of Endophytic Actinobacteria in a New Zealand Native Medicinal Plant Pseudowintera colorata (Horopito) and Their Influence on Plant Growth. MICROBIAL ECOLOGY 2018; 76:729-740. [PMID: 29435598 DOI: 10.1007/s00248-018-1153-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
The role of plant endophytic Actinobacteria remains poorly understood with no reports of these communities in New Zealand native plants. This first investigation of endophytic Actinobacteria in New Zealand targeted the culturally significant medicinal shrub Pseudowintera colorata (horopito) as a model plant. Community analysis in plant tissues collected from ten geographically distinct sites showed that tissue type had the strongest influence on diversity and richness of endophytic Actinobacteria. More denaturing gradient gel electrophoresis (DGGE) bands were obtained from stems (n = 18) compared to roots (n = 13). Sequencing analysis of the major bands (n = 20) identified them as uncultured bacteria, Streptomyces sp. and Angustibacter peucedani. Using two Actinobacteria-specific media, nine isolates were recovered from surface-sterilised P. colorata tissues. This was approximately 12% of the total taxa and correlated well with culturable numbers in international studies. In vitro analysis of the functionality of these strains showed that Streptomyces sp. PRY2RB2 inhibited all the tested phytopathogenic fungi (n = 4), Streptomyces sp. UKCW/B and Nocardia sp. TP1BA1B solubilised phosphate and produced siderophores. The functionality of the phosphate solubilising strains (n = 2) in vivo was investigated by inoculation of P. colorata seedlings. After 4 months, the mean shoot height of seedlings treated with Nocardia sp. TP1BA1B was 1.65× longer, had higher shoot dry weight (1.6×) and number of internodes (1.67×) compared to control. This study identified for the first time a key group of endophytic Actinobacteria that are likely to be important in the ecology of New Zealand flora.
Collapse
Affiliation(s)
- Neeraj Purushotham
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand.
| | - Eirian Jones
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Jana Monk
- AgResearch, Christchurch, New Zealand
- AsureQuality, Christchurch, New Zealand
| | - Hayley Ridgway
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Plant & Food Research Ltd, Christchurch, New Zealand
| |
Collapse
|
364
|
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1438. [PMID: 30255552 PMCID: PMC6586165 DOI: 10.1002/wsbm.1438] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Mammalian barrier surfaces are densely populated by symbiont fungi in much the same way the former are colonized by symbiont bacteria. The fungal microbiota, otherwise known as the mycobiota, is increasingly recognized as a critical player in the maintenance of health and homeostasis of the host. Here we discuss the impact of the mycobiota on host physiology and disease, the factors influencing mycobiota composition, and the current technologies used for identifying symbiont fungal species. Understanding the tripartite interactions among the host, mycobiota, and other members of the microbiota, will help to guide the development of novel prevention and therapeutic strategies for a variety of human diseases. This article is categorized under:
Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Organismal Models
Collapse
|
365
|
Otte JM, Blackwell N, Soos V, Rughöft S, Maisch M, Kappler A, Kleindienst S, Schmidt C. Sterilization impacts on marine sediment---Are we able to inactivate microorganisms in environmental samples? FEMS Microbiol Ecol 2018; 94:5104375. [DOI: 10.1093/femsec/fiy189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Julia M Otte
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
| | - Nia Blackwell
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
| | - Viktoria Soos
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
| | - Saskia Rughöft
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
| | - Markus Maisch
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
- Geomicrobiology, Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
| | - Caroline Schmidt
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
| |
Collapse
|
366
|
Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes. mSystems 2018; 3:e00055-18. [PMID: 30273414 PMCID: PMC6156271 DOI: 10.1128/msystems.00055-18] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
To describe a microbe's physiology, including its metabolism, environmental roles, and growth characteristics, it must be grown in a laboratory culture. Unfortunately, many phylogenetically novel groups have never been cultured, so their physiologies have only been inferred from genomics and environmental characteristics. Although the diversity, or number of different taxonomic groups, of uncultured clades has been studied well, their global abundances, or numbers of cells in any given environment, have not been assessed. We quantified the degree of similarity of 16S rRNA gene sequences from diverse environments in publicly available metagenome and metatranscriptome databases, which we show have far less of the culture bias present in primer-amplified 16S rRNA gene surveys, to those of their nearest cultured relatives. Whether normalized to scaffold read depths or not, the highest abundances of metagenomic 16S rRNA gene sequences belong to phylogenetically novel uncultured groups in seawater, freshwater, terrestrial subsurface, soil, hypersaline environments, marine sediment, hot springs, hydrothermal vents, nonhuman hosts, snow, and bioreactors (22% to 87% uncultured genera to classes and 0% to 64% uncultured phyla). The exceptions were human and human-associated environments, which were dominated by cultured genera (45% to 97%). We estimate that uncultured genera and phyla could comprise 7.3 × 1029 (81%) and 2.2 × 1029 (25%) of microbial cells, respectively. Uncultured phyla were overrepresented in metatranscriptomes relative to metagenomes (46% to 84% of sequences in a given environment), suggesting that they are viable. Therefore, uncultured microbes, often from deeply phylogenetically divergent groups, dominate nonhuman environments on Earth, and their undiscovered physiologies may matter for Earth systems. IMPORTANCE In the past few decades, it has become apparent that most of the microbial diversity on Earth has never been characterized in laboratory cultures. We show that these unknown microbes, sometimes called "microbial dark matter," are numerically dominant in all major environments on Earth, with the exception of the human body, where most of the microbes have been cultured. We also estimate that about one-quarter of the population of microbial cells on Earth belong to phyla with no cultured relatives, suggesting that these never-before-studied organisms may be important for ecosystem functions. Author Video: An author video summary of this article is available.
Collapse
Affiliation(s)
- Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew D. Steen
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Joshua Ladau
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, USA
| | - Junqi Yin
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Lonnie Crosby
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
367
|
Jia X, Dini-Andreote F, Falcão Salles J. Community Assembly Processes of the Microbial Rare Biosphere. Trends Microbiol 2018; 26:738-747. [DOI: 10.1016/j.tim.2018.02.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 01/19/2023]
|
368
|
Baveye PC, Otten W, Kravchenko A, Balseiro-Romero M, Beckers É, Chalhoub M, Darnault C, Eickhorst T, Garnier P, Hapca S, Kiranyaz S, Monga O, Mueller CW, Nunan N, Pot V, Schlüter S, Schmidt H, Vogel HJ. Emergent Properties of Microbial Activity in Heterogeneous Soil Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major Challenges Remain. Front Microbiol 2018; 9:1929. [PMID: 30210462 PMCID: PMC6119716 DOI: 10.3389/fmicb.2018.01929] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
Collapse
Affiliation(s)
- Philippe C. Baveye
- UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, rance
| | - Wilfred Otten
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Alexandra Kravchenko
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - María Balseiro-Romero
- UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, rance
- Department of Soil Science and Agricultural Chemistry, Centre for Research in Environmental Technologies, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Éléonore Beckers
- Soil–Water–Plant Exchanges, Terra Research Centre, BIOSE, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Maha Chalhoub
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christophe Darnault
- Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
| | - Thilo Eickhorst
- Faculty 2 Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Patricia Garnier
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Simona Hapca
- Dundee Epidemiology and Biostatistics Unit, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Serkan Kiranyaz
- Department of Electrical Engineering, Qatar University, Doha, Qatar
| | - Olivier Monga
- Institut de Recherche pour le Développement, Bondy, France
| | - Carsten W. Mueller
- Lehrstuhl für Bodenkunde, Technical University of Munich, Freising, Germany
| | - Naoise Nunan
- Institute of Ecology and Environmental Sciences – Paris, Sorbonne Universités, CNRS, IRD, INRA, P7, UPEC, Paris, France
| | - Valérie Pot
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Steffen Schlüter
- Soil System Science, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig, Germany
| | - Hannes Schmidt
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of Vienna, Vienna, Austria
| | - Hans-Jörg Vogel
- Soil System Science, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig, Germany
- Institute of Soil Science and Plant Nutrition, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
369
|
Structure and function of the global topsoil microbiome. Nature 2018; 560:233-237. [PMID: 30069051 DOI: 10.1038/s41586-018-0386-6] [Citation(s) in RCA: 982] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/13/2018] [Indexed: 01/25/2023]
Abstract
Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1-4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.
Collapse
|
370
|
Lopez-Fernandez M, Broman E, Turner S, Wu X, Bertilsson S, Dopson M. Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling. FEMS Microbiol Ecol 2018; 94:5040220. [PMID: 29931252 PMCID: PMC6030916 DOI: 10.1093/femsec/fiy121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/15/2018] [Indexed: 11/14/2022] Open
Abstract
The deep biosphere is the largest 'bioreactor' on earth, and microbes inhabiting this biome profoundly influence global nutrient and energy cycles. An important question for deep biosphere microbiology is whether or not specific populations are viable. To address this, we used quantitative PCR and high throughput 16S rRNA gene sequencing of total and viable cells (i.e. with an intact cellular membrane) from three groundwaters with different ages and chemical constituents. There were no statistically significant differences in 16S rRNA gene abundances and microbial diversity between total and viable communities. This suggests that populations were adapted to prevailing oligotrophic conditions and that non-viable cells are rapidly degraded and recycled into new biomass. With higher concentrations of organic carbon, the modern marine and undefined mixed waters hosted a community with a larger range of predicted growth strategies than the ultra-oligotrophic old saline water. These strategies included fermentative and potentially symbiotic lifestyles by candidate phyla that typically have streamlined genomes. In contrast, the old saline waters had more 16S rRNA gene sequences in previously cultured lineages able to oxidize hydrogen and fix carbon dioxide. This matches the paradigm of a hydrogen and carbon dioxide-fed chemolithoautotrophic deep biosphere.
Collapse
Affiliation(s)
- Margarita Lopez-Fernandez
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Xiaofen Wu
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| |
Collapse
|
371
|
Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol 2018; 102:6343-6356. [PMID: 29858957 PMCID: PMC6061472 DOI: 10.1007/s00253-018-9120-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 01/13/2023]
Abstract
Extracellular DNA (exDNA) is abundant in many habitats, including soil, sediments, oceans and freshwater as well as the intercellular milieu of metazoa. For a long time, its origin has been assumed to be mainly lysed cells. Nowadays, research is collecting evidence that exDNA is often secreted actively and is used to perform a number of tasks, thereby offering an attractive target or tool for biotechnological, medical, environmental and general microbiological applications. The present review gives an overview on the main research areas dealing with exDNA, depicts its inherent origins and functions and deduces the potential of existing and emerging exDNA-based applications. Furthermore, it provides an overview on existing extraction methods and indicates common pitfalls that should be avoided whilst working with exDNA.
Collapse
Affiliation(s)
- Magdalena Nagler
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria.
| | - Heribert Insam
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria
| | - Giacomo Pietramellara
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144, Florence, Italy
| | - Judith Ascher-Jenull
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144, Florence, Italy
| |
Collapse
|
372
|
Costa OYA, Raaijmakers JM, Kuramae EE. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front Microbiol 2018; 9:1636. [PMID: 30083145 PMCID: PMC6064872 DOI: 10.3389/fmicb.2018.01636] [Citation(s) in RCA: 454] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/30/2018] [Indexed: 11/15/2022] Open
Abstract
A wide range of microorganisms produce extracellular polymeric substances (EPS), highly hydrated polymers that are mainly composed of polysaccharides, proteins, and DNA. EPS are fundamental for microbial life and provide an ideal environment for chemical reactions, nutrient entrapment, and protection against environmental stresses such as salinity and drought. Microbial EPS can enhance the aggregation of soil particles and benefit plants by maintaining the moisture of the environment and trapping nutrients. In addition, EPS have unique characteristics, such as biocompatibility, gelling, and thickening capabilities, with industrial applications. However, despite decades of research on the industrial potential of EPS, only a few polymers are widely used in different areas, especially in agriculture. This review provides an overview of current knowledge on the ecological functions of microbial EPSs and their application in agricultural soils to improve soil particle aggregation, an important factor for soil structure, health, and fertility.
Collapse
Affiliation(s)
- Ohana Y. A. Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Eiko E. Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
373
|
Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 2018; 9:2738. [PMID: 30013066 PMCID: PMC6048113 DOI: 10.1038/s41467-018-05122-7] [Citation(s) in RCA: 637] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/14/2018] [Indexed: 01/16/2023] Open
Abstract
By changing soil properties, plants can modify their growth environment. Although the soil microbiota is known to play a key role in the resulting plant-soil feedbacks, the proximal mechanisms underlying this phenomenon remain unknown. We found that benzoxazinoids, a class of defensive secondary metabolites that are released by roots of cereals such as wheat and maize, alter root-associated fungal and bacterial communities, decrease plant growth, increase jasmonate signaling and plant defenses, and suppress herbivore performance in the next plant generation. Complementation experiments demonstrate that the benzoxazinoid breakdown product 6-methoxy-benzoxazolin-2-one (MBOA), which accumulates in the soil during the conditioning phase, is both sufficient and necessary to trigger the observed phenotypic changes. Sterilization, fungal and bacterial profiling and complementation experiments reveal that MBOA acts indirectly by altering root-associated microbiota. Our results reveal a mechanism by which plants determine the composition of rhizosphere microbiota, plant performance and plant-herbivore interactions of the next generation. Plants can modify soil microbiota through root exudation, but how this process influences plant health in turn is often unclear. Here, Hu et al. show that maize benzoxazinoids released into the soil modify root-associated microbiota and thereby increase leaf defenses of the next plant generation.
Collapse
|
374
|
Siebers M, Rohr T, Ventura M, Schütz V, Thies S, Kovacic F, Jaeger KE, Berg M, Dörmann P, Schulz M. Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PLoS One 2018; 13:e0200160. [PMID: 29969500 PMCID: PMC6029813 DOI: 10.1371/journal.pone.0200160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
Land plants are engaged in intricate communities with soil bacteria and fungi indispensable for plant survival and growth. The plant-microbial interactions are largely governed by specific metabolites. We employed a combination of lipid-fingerprinting, enzyme activity assays, high-throughput DNA sequencing and isolation of cultivable microorganisms to uncover the dynamics of the bacterial and fungal community structures in the soil after exposure to isothiocyanates (ITC) obtained from rapeseed glucosinolates. Rapeseed-derived ITCs, including the cyclic, stable goitrin, are secondary metabolites with strong allelopathic affects against other plants, fungi and nematodes, and in addition can represent a health risk for human and animals. However, the effects of ITC application on the different bacterial and fungal organisms in soil are not known in detail. ITCs diminished the diversity of bacteria and fungi. After exposure, only few bacterial taxa of the Gammaproteobacteria, Bacteriodetes and Acidobacteria proliferated while Trichosporon (Zygomycota) dominated the fungal soil community. Many surviving microorganisms in ITC-treated soil where previously shown to harbor plant growth promoting properties. Cultivable fungi and bacteria were isolated from treated soils. A large number of cultivable microbial strains was capable of mobilizing soluble phosphate from insoluble calcium phosphate, and their application to Arabidopsis plants resulted in increased biomass production, thus revealing growth promoting activities. Therefore, inclusion of rapeseed-derived glucosinolates during biofumigation causes losses of microbiota, but also results in enrichment with ITC-tolerant plant microorganisms, a number of which show growth promoting activities, suggesting that Brassicaceae plants can shape soil microbiota community structure favoring bacteria and fungi beneficial for Brassica plants.
Collapse
Affiliation(s)
- Meike Siebers
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Thomas Rohr
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Marina Ventura
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Vadim Schütz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Martin Berg
- Institute for Organic Agriculture, University of Bonn, Bonn, Germany
- Experimental Farm Wiesengut of University of Bonn, Hennef, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Margot Schulz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
375
|
Hynek BM, Rogers KL, Antunovich M, Avard G, Alvarado GE. Lack of Microbial Diversity in an Extreme Mars Analog Setting: Poás Volcano, Costa Rica. ASTROBIOLOGY 2018; 18:923-933. [PMID: 29688767 PMCID: PMC6067093 DOI: 10.1089/ast.2017.1719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Poás volcano in Costa Rica has been studied as a Mars geochemical analog environment, since both the style of hydrothermal alteration present and the alteration mineralogy are consistent with Mars' relict hydrothermal systems. The site hosts an active volcano, with high-temperature fumaroles (up to 980°C) and an ultra-acidic lake. This lake, Laguna Caliente, is one of the most dynamic environments on Earth, with frequent phreatic eruptions, temperatures ranging from near-ambient to almost boiling, a pH range of -1 to 1.5, and a wide range of chemistries and redox potential. Martian acid-sulfate hydrothermal systems were likely similarly dynamic and equally challenging to life. The microbiology existing within Laguna Caliente was characterized for the first time, with sampling taking place in November, 2013. The diversity of the microbial community was surveyed via extraction of environmental DNA from fluid and sediment samples followed by Illumina sequencing of the 16S rRNA gene. The microbial diversity was limited to a single species of the bacterial genus Acidiphilium. This organism likely gets its energy from oxidation of reduced sulfur in the lake, including elemental sulfur. Given Mars' propensity for sulfur and acid-sulfate environments, this type of organism is of significant interest to the search for past or present life on the Red Planet. Key Words: Mars astrobiology-Acid-sulfate hydrothermal systems-Extremophiles-Acidic-High temperature-Acidiphilium bacteria. Astrobiology 18, 923-933.
Collapse
Affiliation(s)
- Brian M. Hynek
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
- Address correspondence to:Brian M. HynekLaboratory for Atmospheric and Space PhysicsUniversity of Colorado3665 Discovery Dr.Boulder, CO 80303
| | - Karyn L. Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Monique Antunovich
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
| | - Geoffroy Avard
- OVSICORI, National University of Costa Rica, Heredia, Costa Rica
| | - Guillermo E. Alvarado
- Centro de Investigaciones Geológicas, Red Sismológica Nacional, Universidad de Costa Rica, Costa Rica
| |
Collapse
|
376
|
Agustí G, Codony F. Commentary: Reducing Viability Bias in Analysis of Gut Microbiota in Preterm Infants at Risk of NEC and Sepsis. Front Cell Infect Microbiol 2018; 8:212. [PMID: 29974038 PMCID: PMC6020329 DOI: 10.3389/fcimb.2018.00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Gemma Agustí
- Departament d'Òptica i Optometria, Universitat Politècnica de Catalunya-Barcelona Tech, Terrassa, Spain
| | | |
Collapse
|
377
|
Abstract
Extracellular or “relic” DNA is one of the largest pools of nucleic acids in the biosphere. Relic DNA can influence a number of important ecological and evolutionary processes, but it may also affect estimates of microbial abundance and diversity, which has implications for understanding environmental, engineered, and host-associated ecosystems. We developed models capturing the fundamental processes that regulate the size and composition of the relic DNA pools to identify scenarios leading to biased estimates of biodiversity. Our models predict that bias increases with relic DNA pool size, but only when the species abundance distributions (SADs) of relic and intact DNA are distinct from one another. We evaluated our model predictions by quantifying relic DNA and assessing its contribution to bacterial diversity using 16S rRNA gene sequences collected from different ecosystem types, including soil, sediment, water, and the mammalian gut. On average, relic DNA made up 33% of the total bacterial DNA pool but exceeded 80% in some samples. Despite its abundance, relic DNA had a minimal effect on estimates of taxonomic and phylogenetic diversity, even in ecosystems where processes such as the physical protection of relic DNA are common and predicted by our models to generate bias. Our findings are consistent with the expectation that relic DNA from different taxa degrades at a constant and equal rate, suggesting that it may not fundamentally alter estimates of microbial diversity. The ability to rapidly obtain millions of gene sequences and transcripts from a range of environments has greatly advanced understanding of the processes that regulate microbial communities. However, nucleic acids extracted from complex samples do not come only from viable microorganisms. Dead microorganisms can generate large pools of relic DNA that distort insight into the ecology and evolution of microbial systems. Here, we develop a conceptual and quantitative framework for understanding how relic DNA influences the structure of microbiomes. Our theoretical models and empirical results demonstrate that a large relic DNA pool does not automatically lead to biased estimates of microbial diversity. Rather, relic DNA effects emerge in combination with microscale processes that alter the commonness and rarity of sequences found in heterogeneous DNA pools.
Collapse
|
378
|
Tkacz A, Hortala M, Poole PS. Absolute quantitation of microbiota abundance in environmental samples. MICROBIOME 2018; 6:110. [PMID: 29921326 PMCID: PMC6009823 DOI: 10.1186/s40168-018-0491-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/30/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Microbial communities (microbiota) influence human and animal disease and immunity, geochemical nutrient cycling and plant productivity. Specific groups, including bacteria, archaea, eukaryotes or fungi, are amplified by PCR to assess the relative abundance of sub-groups (e.g. genera). However, neither the absolute abundance of sub-groups is revealed, nor can different amplicon families (i.e. OTUs derived from a specific pair of PCR primers such as bacterial 16S, eukaryotic 18S or fungi ITS) be compared. This prevents determination of the absolute abundance of a particular group and domain-level shifts in microbiota abundance can remain undetected. RESULTS We have developed absolute quantitation of amplicon families using synthetic chimeric DNA spikes. Synthetic spikes were added directly to environmental samples, co-isolated and PCR-amplified, allowing calculation of the absolute abundance of amplicon families (e.g. prokaryotic 16S, eukaryotic 18S and fungal ITS per unit mass of sample). CONCLUSIONS Spikes can be adapted to any amplicon-specific group including rhizobia from soils, Firmicutes and Bifidobacteria from human gut or Enterobacteriaceae from food samples. Crucially, using highly complex soil samples, we show that the absolute abundance of specific groups can remain steady or increase, even when their relative abundance decreases. Thus, without absolute quantitation, the underlying pathology, physiology and ecology of microbial groups may be masked by their relative abundance.
Collapse
Affiliation(s)
- Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Marion Hortala
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
379
|
Diversity of key genes for carbon and nitrogen fixation in soils from the Sør Rondane Mountains, East Antarctica. Polar Biol 2018. [DOI: 10.1007/s00300-018-2353-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
380
|
An accurate bacterial DNA quantification assay for HTS library preparation of human biological samples. Electrophoresis 2018; 39:2824-2832. [DOI: 10.1002/elps.201800127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 11/07/2022]
|
381
|
Ruuskanen MO, St Pierre KA, St Louis VL, Aris-Brosou S, Poulain AJ. Physicochemical Drivers of Microbial Community Structure in Sediments of Lake Hazen, Nunavut, Canada. Front Microbiol 2018; 9:1138. [PMID: 29922252 PMCID: PMC5996194 DOI: 10.3389/fmicb.2018.01138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
The Arctic is undergoing rapid environmental change, potentially affecting the physicochemical constraints of microbial communities that play a large role in both carbon and nutrient cycling in lacustrine environments. However, the microbial communities in such Arctic environments have seldom been studied, and the drivers of their composition are poorly characterized. To address these gaps, we surveyed the biologically active surface sediments in Lake Hazen, the largest lake by volume north of the Arctic Circle, and a small lake and shoreline pond in its watershed. High-throughput amplicon sequencing of the 16S rRNA gene uncovered a community dominated by Proteobacteria, Bacteroidetes, and Chloroflexi, similar to those found in other cold and oligotrophic lake sediments. We also show that the microbial community structure in this Arctic polar desert is shaped by pH and redox gradients. This study lays the groundwork for predicting how sediment microbial communities in the Arctic could respond as climate change proceeds to alter their physicochemical constraints.
Collapse
Affiliation(s)
| | - Kyra A St Pierre
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vincent L St Louis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
382
|
Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S, Mason KE, Ostle NJ, Johnson D, Baggs EM, Fierer N. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. THE ISME JOURNAL 2018; 12:1794-1805. [PMID: 29523892 PMCID: PMC6004312 DOI: 10.1038/s41396-018-0089-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/14/2018] [Accepted: 01/20/2018] [Indexed: 01/01/2023]
Abstract
There are numerous ways in which plants can influence the composition of soil communities. However, it remains unclear whether information on plant community attributes, including taxonomic, phylogenetic, or trait-based composition, can be used to predict the structure of soil communities. We tested, in both monocultures and field-grown mixed temperate grassland communities, whether plant attributes predict soil communities including taxonomic groups from across the tree of life (fungi, bacteria, protists, and metazoa). The composition of all soil community groups was affected by plant species identity, both in monocultures and in mixed communities. Moreover, plant community composition predicted additional variation in soil community composition beyond what could be predicted from soil abiotic characteristics. In addition, analysis of the field aboveground plant community composition and the composition of plant roots suggests that plant community attributes are better predictors of soil communities than root distributions. However, neither plant phylogeny nor plant traits were strong predictors of soil communities in either experiment. Our results demonstrate that grassland plant species form specific associations with soil community members and that information on plant species distributions can improve predictions of soil community composition. These results indicate that specific associations between plant species and complex soil communities are key determinants of biodiversity patterns in grassland soils.
Collapse
Affiliation(s)
- Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Richard D Bardgett
- School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Anna Wilkinson
- School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Benjamin G Jackson
- School of Geosciences, Grant Institute, The King's Buildings, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - William J Pritchard
- School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jonathan R De Long
- School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Simon Oakley
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Kelly E Mason
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Nicholas J Ostle
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - David Johnson
- School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Elizabeth M Baggs
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus Buildings, Midlothian, EH25 9RG, UK
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
383
|
Iebba V, Guerrieri F, Di Gregorio V, Levrero M, Gagliardi A, Santangelo F, Sobolev AP, Circi S, Giannelli V, Mannina L, Schippa S, Merli M. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy. Sci Rep 2018; 8:8210. [PMID: 29844325 PMCID: PMC5974022 DOI: 10.1038/s41598-018-26509-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
In liver cirrhosis (LC), impaired intestinal functions lead to dysbiosis and possible bacterial translocation (BT). Bacteria or their byproducts within the bloodstream can thus play a role in systemic inflammation and hepatic encephalopathy (HE). We combined 16S sequencing, NMR metabolomics and network analysis to describe the interrelationships of members of the microbiota in LC biopsies, faeces, peripheral/portal blood and faecal metabolites with clinical parameters. LC faeces and biopsies showed marked dysbiosis with a heightened proportion of Enterobacteriaceae. Our approach showed impaired faecal bacterial metabolism of short-chain fatty acids (SCFAs) and carbon/methane sources in LC, along with an enhanced stress-related response. Sixteen species, mainly belonging to the Proteobacteria phylum, were shared between LC peripheral and portal blood and were functionally linked to iron metabolism. Faecal Enterobacteriaceae and trimethylamine were positively correlated with blood proinflammatory cytokines, while Ruminococcaceae and SCFAs played a protective role. Within the peripheral blood and faeces, certain species (Stenotrophomonas pavanii, Methylobacterium extorquens) and metabolites (methanol, threonine) were positively related to HE. Cirrhotic patients thus harbour a 'functional dysbiosis' in the faeces and peripheral/portal blood, with specific keystone species and metabolites related to clinical markers of systemic inflammation and HE.
Collapse
Affiliation(s)
- Valerio Iebba
- Istituto Pasteur Cenci Bolognetti Foundation, Public Health and Infectious Diseases Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Guerrieri
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Vincenza Di Gregorio
- Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Massimo Levrero
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), Centre Léon Bérard, Lyon, France
| | - Antonella Gagliardi
- Public Health and Infectious Diseases Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Floriana Santangelo
- Public Health and Infectious Diseases Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anatoly P Sobolev
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, CNR, via Salaria km 29.300, 00015, Monterotondo, (RM), Italy
| | - Simone Circi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| | - Valerio Giannelli
- Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Luisa Mannina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, CNR, via Salaria km 29.300, 00015, Monterotondo, (RM), Italy
| | - Serena Schippa
- Public Health and Infectious Diseases Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Manuela Merli
- Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy.
| |
Collapse
|
384
|
Sosa-Hernández MA, Roy J, Hempel S, Rillig MC. Evidence for Subsoil Specialization in Arbuscular Mycorrhizal Fungi. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
385
|
|
386
|
Wang YF, Zhu HW, Wang Y, Zhang XL, Tam NFY. Diversity and Dynamics of Microbial Community Structure in Different Mangrove, Marine and Freshwater Sediments During Anaerobic Debromination of PBDEs. Front Microbiol 2018; 9:952. [PMID: 29867858 PMCID: PMC5962692 DOI: 10.3389/fmicb.2018.00952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/24/2018] [Indexed: 01/11/2023] Open
Abstract
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination.
Collapse
Affiliation(s)
- Ya Fen Wang
- Laboratory of Basin Hydrology and Wetland Eco-restoration, School of Environmental Studies, China University of Geosciences, Wuhan, China.,Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Hao Wen Zhu
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ying Wang
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xiang Ling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Nora Fung Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
387
|
Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities. FEMS Microbiol Ecol 2018; 94:4992300. [DOI: 10.1093/femsec/fiy080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
|
388
|
Schlatter DC, Burke I, Paulitz TC. Succession of Fungal and Oomycete Communities in Glyphosate-Killed Wheat Roots. PHYTOPATHOLOGY 2018; 108:582-594. [PMID: 29256828 DOI: 10.1094/phyto-06-17-0212-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The successional dynamics of root-colonizing microbes are hypothesized to be critical to displacing fungal pathogens that can proliferate after the use of some herbicides. Applications of glyphosate in particular, which compromises the plant defense system by interfering with the production of aromatic amino acids, are thought to promote a buildup of root pathogens and can result in a "greenbridge" between weeds or volunteers and crop hosts. By planting 2 to 3 weeks after spraying, growers can avoid most negative impacts of the greenbridge by allowing pathogen populations to decline, but with the added cost of delayed planting dates. However, the specific changes in microbial communities during this period of root death and the microbial taxa likely to be involved in displacing pathogens are poorly characterized. Using high-throughput sequencing, we characterized fungal and oomycete communities in roots after applications of herbicides with different modes of action (glyphosate or clethodim) and tracked their dynamics over 3 weeks in both naturally infested soil and soil inoculated with Rhizoctonia solani AG-8. We found that many unexpected taxa were present at high relative abundance (e.g., Pythium volutum and Myrmecridium species) in live and dying wheat roots and may play an under-recognized role in greenbridge dynamics. Moreover, communities were highly dynamic over time and had herbicide-specific successional patterns, but became relatively stable by 2 weeks after herbicide application. Network analysis of communities over time revealed patterns of interactions among taxa that were both common and unique to each herbicide treatment and identified two primary groups of taxa with many positive associations within-groups but negative associations between-groups, suggesting that these groups are antagonistic to one another in dying roots and may play a role in displacing pathogen populations during greenbridge dynamics.
Collapse
Affiliation(s)
- Daniel C Schlatter
- First and third authors: U.S. Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420
| | - Ian Burke
- First and third authors: U.S. Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420
| | - Timothy C Paulitz
- First and third authors: U.S. Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman 99164-6430; and second author: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420
| |
Collapse
|
389
|
Gomez-Silvan C, Leung MHY, Grue KA, Kaur R, Tong X, Lee PKH, Andersen GL. A comparison of methods used to unveil the genetic and metabolic pool in the built environment. MICROBIOME 2018; 6:71. [PMID: 29661230 PMCID: PMC5902888 DOI: 10.1186/s40168-018-0453-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/28/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND A majority of indoor residential microbes originate from humans, pets, and outdoor air and are not adapted to the built environment (BE). Consequently, a large portion of the microbes identified by DNA-based methods are either dead or metabolically inactive. Although many exceptions have been noted, the ribosomal RNA fraction of the sample is more likely to represent either viable or metabolically active cells. We examined methodological variations in sample processing using a defined, mock BE microbial community to better understand the scope of technique-based vs. biological-based differences in both ribosomal transcript (rRNA) and gene (DNA) sequence community analysis. Based on in vitro tests, a protocol was adopted for the analysis of the genetic and metabolic pool (DNA vs. rRNA) of air and surface microbiomes within a residential setting. RESULTS We observed differences in DNA/RNA co-extraction efficiency for individual microbes, but overall, a greater recovery of rRNA using FastPrep (> 50%). Samples stored with various preservation methods at - 80°C experienced a rapid decline in nucleic acid recovery starting within the first week, although post-extraction rRNA had no significant degradation when treated with RNAStable. We recommend that co-extraction samples be processed as quickly as possible after collection. The in vivo analysis revealed significant differences in the two components (genetic and metabolic pool) in terms of taxonomy, community structure, and microbial association networks. Rare taxa present in the genetic pool showed higher metabolic potential (RNA:DNA ratio), whereas commonly detected taxa of outdoor origins based on DNA sequencing, especially taxa of the Sphingomonadales order, were present in lower relative abundances in the viable community. CONCLUSIONS Although methodological variations in sample preparations are high, large differences between the DNA and RNA fractions of the total microbial community demonstrate that direct examination of rRNA isolated from a residential BE microbiome has the potential to identify the more likely viable or active portion of the microbial community. In an environment that has primarily dead and metabolically inactive cells, we suggest that the rRNA fraction of BE samples is capable of providing a more ecologically relevant insight into the factors that drive indoor microbial community dynamics.
Collapse
Affiliation(s)
- Cinta Gomez-Silvan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Marcus H. Y. Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Katherine A. Grue
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Current affiliation: Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA USA
| | - Randeep Kaur
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Gary L. Andersen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
390
|
Pjevac P, Meier DV, Markert S, Hentschker C, Schweder T, Becher D, Gruber-Vodicka HR, Richter M, Bach W, Amann R, Meyerdierks A. Metaproteogenomic Profiling of Microbial Communities Colonizing Actively Venting Hydrothermal Chimneys. Front Microbiol 2018; 9:680. [PMID: 29696004 PMCID: PMC5904459 DOI: 10.3389/fmicb.2018.00680] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/22/2018] [Indexed: 11/15/2022] Open
Abstract
At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys.
Collapse
Affiliation(s)
- Petra Pjevac
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Dimitri V Meier
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Harald R Gruber-Vodicka
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael Richter
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Ribocon GmbH, Bremen, Germany
| | - Wolfgang Bach
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anke Meyerdierks
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
391
|
Kalenitchenko D, Le Bris N, Peru E, Galand PE. Ultrarare marine microbes contribute to key sulphur-related ecosystem functions. Mol Ecol 2018; 27:1494-1504. [DOI: 10.1111/mec.14513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Dimitri Kalenitchenko
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB); UPMC Univ Paris 06; CNRS; Sorbonne Universités; Observatoire Océanologique; Banyuls sur Mer France
| | - Nadine Le Bris
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB); UPMC Univ Paris 06; CNRS; Sorbonne Universités; Observatoire Océanologique; Banyuls sur Mer France
| | - Erwan Peru
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB); UPMC Univ Paris 06; CNRS; Sorbonne Universités; Observatoire Océanologique; Banyuls sur Mer France
| | - Pierre E. Galand
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB); UPMC Univ Paris 06; CNRS; Sorbonne Universités; Observatoire Océanologique; Banyuls sur Mer France
| |
Collapse
|
392
|
Ren M, Zhang Z, Wang X, Zhou Z, Chen D, Zeng H, Zhao S, Chen L, Hu Y, Zhang C, Liang Y, She Q, Zhang Y, Peng N. Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin. Front Microbiol 2018; 9:431. [PMID: 29593680 PMCID: PMC5855357 DOI: 10.3389/fmicb.2018.00431] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/26/2018] [Indexed: 11/14/2022] Open
Abstract
Arid and semi-arid regions comprise nearly one-fifth of the earth's terrestrial surface. However, the diversities and functions of their soil microbial communities are not well understood, despite microbial ecological importance in driving biogeochemical cycling. Here, we analyzed the geochemistry and microbial communities of the desert soils from Tarim Basin, northwestern China. Our geochemical data indicated half of these soils are saline. Metagenomic analysis showed that bacterial phylotypes (89.72% on average) dominated the community, with relatively small proportions of Archaea (7.36%) and Eukaryota (2.21%). Proteobacteria, Firmicutes, Actinobacteria, and Euryarchaeota were most abundant based on metagenomic data, whereas genes attributed to Proteobacteria, Actinobacteria, Euryarchaeota, and Thaumarchaeota most actively transcribed. The most abundant phylotypes (Halobacterium, Halomonas, Burkholderia, Lactococcus, Clavibacter, Cellulomonas, Actinomycetospora, Beutenbergia, Pseudomonas, and Marinobacter) in each soil sample, based on metagenomic data, contributed marginally to the population of all microbial communities, whereas the putative halophiles, which contributed the most abundant transcripts, were in the majority of the active microbial population and is consistent with the soil salinity. Sample correlation analyses according to the detected and active genotypes showed significant differences, indicating high diversity of microbial communities among the Tarim soil samples. Regarding ecological functions based on the metatranscriptomic data, transcription of genes involved in various steps of nitrogen cycling, as well as carbon fixation, were observed in the tested soil samples. Metatranscriptomic data also indicated that Thaumarchaeota are crucial for ammonia oxidation and Proteobacteria play the most important role in other steps of nitrogen cycle. The reductive TCA pathway and dicarboxylate-hydroxybutyrate cycle attributed to Proteobacteria and Crenarchaeota, respectively, were highly represented in carbon fixation. Our study reveals that the microbial communities could provide carbon and nitrogen nutrients for higher plants in the sandy saline soils of Tarim Basin.
Collapse
Affiliation(s)
- Min Ren
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhufeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuelian Wang
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Zhiwei Zhou
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Hui Zeng
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingling Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yuanliang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qunxin She
- Department of Biology, Archaeal Centre, University of Copenhagen, Copenhagen, Denmark
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
393
|
Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K. Improving saliva shotgun metagenomics by chemical host DNA depletion. MICROBIOME 2018; 6:42. [PMID: 29482639 PMCID: PMC5827986 DOI: 10.1186/s40168-018-0426-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Shotgun sequencing of microbial communities provides in-depth knowledge of the microbiome by cataloging bacterial, fungal, and viral gene content within a sample, providing an advantage over amplicon sequencing approaches that assess taxonomy but not function and are taxonomically limited. However, mammalian DNA can dominate host-derived samples, obscuring changes in microbial populations because few DNA sequence reads are from the microbial component. We developed and optimized a novel method for enriching microbial DNA from human oral samples and compared its efficiency and potential taxonomic bias with commercially available kits. RESULTS Three commercially available host depletion kits were directly compared with size filtration and a novel method involving osmotic lysis and treatment with propidium monoazide (lyPMA) in human saliva samples. We evaluated the percentage of shotgun metagenomic sequencing reads aligning to the human genome, and taxonomic biases of those not aligning, compared to untreated samples. lyPMA was the most efficient method of removing host-derived sequencing reads compared to untreated sample (8.53 ± 0.10% versus 89.29 ± 0.03%). Furthermore, lyPMA-treated samples exhibit the lowest taxonomic bias compared to untreated samples. CONCLUSION Osmotic lysis followed by PMA treatment is a cost-effective, rapid, and robust method for enriching microbial sequence data in shotgun metagenomics from fresh and frozen saliva samples and may be extensible to other host-derived sample types.
Collapse
Affiliation(s)
- Clarisse A Marotz
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jon G Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Livia S Zaramela
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
394
|
van Veelen HPJ, Salles JF, Tieleman BI. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME JOURNAL 2018; 12:1375-1388. [PMID: 29445132 DOI: 10.1038/s41396-018-0067-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates.
Collapse
Affiliation(s)
- H Pieter J van Veelen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands.
| | - Joana Falcão Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
395
|
Microbial Diversity and Putative Opportunistic Pathogens in Dishwasher Biofilm Communities. Appl Environ Microbiol 2018; 84:AEM.02755-17. [PMID: 29330184 PMCID: PMC5812945 DOI: 10.1128/aem.02755-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Extreme habitats are not only limited to natural environments, but also exist in manmade systems, for instance, household appliances such as dishwashers. Limiting factors, such as high temperatures, high and low pHs, high NaCl concentrations, presence of detergents, and shear force from water during washing cycles, define microbial survival in this extreme system. Fungal and bacterial diversity in biofilms isolated from rubber seals of 24 different household dishwashers was investigated using next-generation sequencing. Bacterial genera such as Pseudomonas, Escherichia, and Acinetobacter, known to include opportunistic pathogens, were represented in most samples. The most frequently encountered fungal genera in these samples belonged to Candida, Cryptococcus, and Rhodotorula, also known to include opportunistic pathogenic representatives. This study showed how specific conditions of the dishwashers impact the abundance of microbial groups and investigated the interkingdom and intrakingdom interactions that shape these biofilms. The age, usage frequency, and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal community compositions. Representatives of Candida spp. were found at the highest prevalence (100%) in all dishwashers and are assumed to be one of the first colonizers in recently purchased dishwashers. Pairwise correlations in tested microbiomes showed that certain bacterial groups cooccur, as did the fungal groups. In mixed bacterial-fungal biofilms, early adhesion, contact, and interactions were vital in the process of biofilm formation, where mixed complexes of bacteria and fungi could provide a preliminary biogenic structure for the establishment of these biofilms. IMPORTANCE Worldwide demand for household appliances, such as dishwashers and washing machines, is increasing, as is the number of immunocompromised individuals. The harsh conditions in household dishwashers should prevent the growth of most microorganisms. However, our research shows that persisting polyextremotolerant groups of microorganisms in household appliances are well established under these unfavorable conditions and supported by the biofilm mode of growth. The significance of our research is in identifying the microbial composition of biofilms formed on dishwasher rubber seals, how diverse abiotic conditions affect microbiota, and which key microbial members were represented in early colonization and contamination of dishwashers, as these appliances can present a source of domestic cross-contamination that leads to broader medical impacts.
Collapse
|
396
|
Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Sci Rep 2018; 8:2004. [PMID: 29386563 PMCID: PMC5792604 DOI: 10.1038/s41598-018-20366-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/17/2018] [Indexed: 11/25/2022] Open
Abstract
We used complementary morphological and DNA metabarcoding approaches to characterize soil nematode communities in three cropping systems, conventional till (CT), no-till (NT) and organic (ORG), from a long-term field experiment. We hypothesized that organic inputs to the ORG system would promote a more abundant nematode community, and that the NT system would show a more structured trophic system (higher Bongers MI) than CT due to decreased soil disturbance. The abundance of Tylenchidae and Cephalobidae both showed positive correlations to soil organic carbon and nitrogen, which were highest in the ORG system. The density of omnivore-predator and bacterial-feeding nematodes was reduced in NT soils compared to CT, while some plant-parasitic taxa increased. NT soils had similar Bongers MI values to CT, suggesting they contained nematode communities associated with soils experiencing comparable levels of disturbance. Metabarcoding revealed within-family differences in nematode diversity. Shannon and Simpson’s index values for the Tylenchidae and Rhabditidae were higher in the ORG system than CT. Compared to morphological analysis, metabarcoding over- or underestimated the prevalence of several nematode families and detected some families not observed based on morphology. Discrepancies between the techniques require further investigation to establish the accuracy of metabarcoding for characterization of soil nematode communities.
Collapse
|
397
|
Edwardson CF, Hollibaugh JT. Composition and Activity of Microbial Communities along the Redox Gradient of an Alkaline, Hypersaline, Lake. Front Microbiol 2018; 9:14. [PMID: 29445359 PMCID: PMC5797777 DOI: 10.3389/fmicb.2018.00014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022] Open
Abstract
We compared the composition of microbial communities obtained by sequencing 16S rRNA gene amplicons with taxonomy derived from metatranscriptomes from the same samples. Samples were collected from alkaline, hypersaline Mono Lake, California, USA at five depths that captured the major redox zones of the lake during the onset of meromixis. The prokaryotic community was dominated by bacteria from the phyla Proteobacteria, Firmicutes, and Bacteroidetes, while the picoeukaryotic chlorophyte Picocystis dominated the eukaryotes. Most (80%) of the abundant (>1% relative abundance) OTUs recovered as amplicons of 16S rRNA genes have been reported in previous surveys, indicating that Mono Lake's microbial community has remained stable over 12 years that have included periods of regular, annual overturn interspersed by episodes of prolonged meromixis that result in extremely reducing conditions in bottom water. Metatranscriptomic sequences binned predominately to the Gammaproteobacteria genera Thioalkalivibrio (4–13%) and Thioalkalimicrobium (0–14%); and to the Firmicutes genera Dethiobacter (0–5%) and Clostridium (1–4%), which were also abundant in the 16S rRNA gene amplicon libraries. This study provides insight into the taxonomic affiliations of transcriptionally active communities of the lake's water column under different redox conditions.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, United States.,Department of Microbiology, University of Georgia, Athens, GA, United States
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
398
|
Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Sci Rep 2018; 8:1944. [PMID: 29386569 PMCID: PMC5792456 DOI: 10.1038/s41598-018-20393-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/16/2018] [Indexed: 11/08/2022] Open
Abstract
Microbial diversity in lava tubes from Canary Islands (Spain) has never been explored thus far offering a unique opportunity to study subsurface microbiology. Abundant yellow coloured mats developing on coralloid speleothems in a lava tube from La Palma Islands were studied by next-generation sequencing and DNA/RNA clone library analyses for investigating both total and metabolically active bacteria. In addition, morphological and mineralogical characterization was performed by field emission scanning electron microscopy (FESEM), micro-computed tomography, X-ray diffraction and infrared spectroscopy to contextualize sequence data. This approach showed that the coralloid speleothems consist of banded siliceous stalactites composed of opal-A and hydrated halloysite. Analytical pyrolysis was also conducted to infer the possible origin of cave wall pigmentation, revealing that lignin degradation compounds can contribute to speleothem colour. Our RNA-based study showed for the first time that members of the phylum Actinobacteria, with 55% of the clones belonging to Euzebyales order, were metabolically active components of yellow mats. In contrast, the DNA clone library revealed that around 45% of clones were affiliated to Proteobacteria. Composition of microbial phyla obtained by NGS reinforced the DNA clone library data at the phylum level, in which Proteobacteria was the most abundant phylum followed by Actinobacteria.
Collapse
|
399
|
Bartelme RP, Oyserman BO, Blom JE, Sepulveda-Villet OJ, Newton RJ. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics. Front Microbiol 2018; 9:8. [PMID: 29403461 PMCID: PMC5786511 DOI: 10.3389/fmicb.2018.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/04/2018] [Indexed: 12/29/2022] Open
Abstract
As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquaponics is a water-based agricultural system, in which production relies upon internal nutrient recycling to co-cultivate plants with fish. This arrangement has management benefits compared to soil-based agriculture, as system components may be designed to directly harness microbial processes that make nutrients bioavailable to plants in downstream components. However, aquaponic systems also present unique management challenges. Microbes may compete with plants for certain micronutrients, such as iron, which makes exogenous supplementation necessary, adding production cost and process complexity, and limiting profitability and system sustainability. Research on PGPMs in aquaponic systems currently lags behind traditional agricultural systems, however, it is clear that certain parallels in nutrient use and plant-microbe interactions are retained from soil-based agricultural systems.
Collapse
Affiliation(s)
- Ryan P Bartelme
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ben O Oyserman
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | - Jesse E Blom
- Johns Hopkins Center for a Livable Future, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | | | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
400
|
Luo G, Rensing C, Chen H, Liu M, Wang M, Guo S, Ling N, Shen Q. Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long‐term fertilization management. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13039] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gongwen Luo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste UtilizationNanjing Agricultural University Nanjing China
| | - Christopher Rensing
- Institute of Environmental MicrobiologyCollege of Resource and Environmental ScienceFujian Agriculture and Forestry University Fuzhou China
| | - Huan Chen
- Crop Research InstituteAnhui Academy of Agricultural Science Hefei China
| | - Manqiang Liu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste UtilizationNanjing Agricultural University Nanjing China
| | - Min Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste UtilizationNanjing Agricultural University Nanjing China
| | - Shiwei Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste UtilizationNanjing Agricultural University Nanjing China
| | - Ning Ling
- Jiangsu Provincial Key Laboratory for Solid Organic Waste UtilizationNanjing Agricultural University Nanjing China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste UtilizationNanjing Agricultural University Nanjing China
| |
Collapse
|