351
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
352
|
Schaffer AA, Kopel E, Hendel A, Picardi E, Levanon E, Eisenberg E. The cell line A-to-I RNA editing catalogue. Nucleic Acids Res 2020; 48:5849-5858. [PMID: 32383740 PMCID: PMC7293008 DOI: 10.1093/nar/gkaa305] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a common post transcriptional modification. It has a critical role in protecting against false activation of innate immunity by endogenous double stranded RNAs and has been associated with various regulatory processes and diseases such as autoimmune and cardiovascular diseases as well as cancer. In addition, the endogenous A-to-I editing machinery has been recently harnessed for RNA engineering. The study of RNA editing in humans relies heavily on the usage of cell lines as an important and commonly-used research tool. In particular, manipulations of the editing enzymes and their targets are often developed using cell line platforms. However, RNA editing in cell lines behaves very differently than in normal and diseased tissues, and most cell lines exhibit low editing levels, requiring over-expression of the enzymes. Here, we explore the A-to-I RNA editing landscape across over 1000 human cell lines types and show that for almost every editing target of interest a suitable cell line that mimics normal tissue condition may be found. We provide CLAIRE, a searchable catalogue of RNA editing levels across cell lines available at http://srv00.recas.ba.infn.it/atlas/claire.html, to facilitate rational choice of appropriate cell lines for future work on A-to-I RNA editing.
Collapse
Affiliation(s)
- Amos A Schaffer
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Kopel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ayal Hendel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, I-70126 Bari, Italy
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
353
|
Kimura S, Dedon PC, Waldor MK. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat Chem Biol 2020; 16:964-972. [PMID: 32514182 DOI: 10.1038/s41589-020-0558-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Chemical modifications of the nucleosides that comprise transfer RNAs are diverse. However, the structure, location and extent of modifications have been systematically charted in very few organisms. Here, we describe an approach in which rapid prediction of modified sites through reverse transcription-derived signatures in high-throughput transfer RNA-sequencing (tRNA-seq) data is coupled with identification of tRNA modifications through RNA mass spectrometry. Comparative tRNA-seq enabled prediction of several Vibrio cholerae modifications that are absent from Escherichia coli and also revealed the effects of various environmental conditions on V. cholerae tRNA modification. Through RNA mass spectrometric analyses, we showed that two of the V. cholerae-specific reverse transcription signatures reflected the presence of a new modification (acetylated acp3U (acacp3U)), while the other results from C-to-Ψ RNA editing, a process not described before. These findings demonstrate the utility of this approach for rapid surveillance of tRNA modification profiles and environmental control of tRNA modification.
Collapse
Affiliation(s)
- Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institution of Technology, Cambridge, MA, USA.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
354
|
Liu S, Li B, Liang Q, Liu A, Qu L, Yang J. Classification and function of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1601. [PMID: 32488992 DOI: 10.1002/wrna.1601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Almost all RNAs need to interact with proteins to fully exert their functions, and proteins also bind to RNAs to act as regulators. It has now become clear that RNA-protein interactions play important roles in many biological processes among organisms. Despite the great progress that has been made in the field, there is still no precise classification system for RNA-protein interactions, which makes it challenging to further decipher the functions and mechanisms of these interactions. In this review, we propose four different categories of RNA-protein interactions according to their basic characteristics: RNA motif-dependent RNA-protein interactions, RNA structure-dependent RNA-protein interactions, RNA modification-dependent RNA-protein interactions, and RNA guide-based RNA-protein interactions. Moreover, the integration of different types of RNA-protein interactions and the regulatory factors implicated in these interactions are discussed. Furthermore, we emphasize the functional diversity of these four types of interactions in biological processes and disease development and assess emerging trends in this exciting research field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaoxia Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anrui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
355
|
Di Giorgio S, Martignano F, Torcia MG, Mattiuz G, Conticello SG. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. SCIENCE ADVANCES 2020; 6:eabb5813. [PMID: 32596474 PMCID: PMC7299625 DOI: 10.1126/sciadv.abb5813] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/05/2020] [Indexed: 05/13/2023]
Abstract
The COVID-19 outbreak has become a global health risk, and understanding the response of the host to the SARS-CoV-2 virus will help to combat the disease. RNA editing by host deaminases is an innate restriction process to counter virus infection, but it is not yet known whether this process operates against coronaviruses. Here, we analyze RNA sequences from bronchoalveolar lavage fluids obtained from coronavirus-infected patients. We identify nucleotide changes that may be signatures of RNA editing: adenosine-to-inosine changes from ADAR deaminases and cytosine-to-uracil changes from APOBEC deaminases. Mutational analysis of genomes from different strains of Coronaviridae from human hosts reveals mutational patterns consistent with those observed in the transcriptomic data. However, the reduced ADAR signature in these data raises the possibility that ADARs might be more effective than APOBECs in restricting viral propagation. Our results thus suggest that both APOBECs and ADARs are involved in coronavirus genome editing, a process that may shape the fate of both virus and patient.
Collapse
Affiliation(s)
- Salvatore Di Giorgio
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Filippo Martignano
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50139, Italy
| | - Giorgio Mattiuz
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50139, Italy
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
356
|
Li C, Fu X, He H, Chen C, Wang Y, He L. The Biogenesis, Functions, and Roles of circRNAs in Bladder Cancer. Cancer Manag Res 2020; 12:3673-3689. [PMID: 32547204 PMCID: PMC7245432 DOI: 10.2147/cmar.s245233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/16/2020] [Indexed: 01/16/2023] Open
Abstract
Bladder cancer (BCa) is the 10th most prevalent malignancy worldwide and remains a crucial cause of cancer-related morbidity and mortality. Circular RNAs (circRNAs), a large class of endogenous non-coding RNAs, contain unique covalent closed structures and their biogenesis and turnover are regulated by multiple factors. Recently, multiple circRNAs have been found to serve as important factors in several biological processes such as tumorigenesis. An increasing amount of research discovered that circRNAs are dysregulated in multiple cancer tissues compared with matched normal tissues, especially in BCa, indicating that circRNAs can act as biomarkers for the diagnosis and prognosis of BCa. In this review, we focus on the biogenesis, properties, turnover, and functions of circRNAs, summarizing their potential functions and clinical implications in BCa.
Collapse
Affiliation(s)
- Changjiu Li
- Department of Urology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, Zhejiang Province, People's Republic of China
| | - Xian Fu
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, People's Republic of China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, Zhejiang Province, People's Republic of China
| | - Chao Chen
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, People's Republic of China
| | - Yuyong Wang
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, People's Republic of China
| | - Lugeng He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, People's Republic of China
| |
Collapse
|
357
|
Wang Y, Chung DH, Monteleone LR, Li J, Chiang Y, Toney MD, Beal PA. RNA binding candidates for human ADAR3 from substrates of a gain of function mutant expressed in neuronal cells. Nucleic Acids Res 2020; 47:10801-10814. [PMID: 31552420 PMCID: PMC6846710 DOI: 10.1093/nar/gkz815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Human ADAR3 is a catalytically inactive member of the Adenosine Deaminase Acting on RNA (ADAR) protein family, whose active members catalyze A-to-I RNA editing in metazoans. Until now, the reasons for the catalytic incapability of ADAR3 has not been defined and its biological function rarely explored. Yet, its exclusive expression in the brain and involvement in learning and memory suggest a central role in the nervous system. Here we describe the engineering of a catalytically active ADAR3 enzyme using a combination of computational design and functional screening. Five mutations (A389V, V485I, E527Q, Q549R and Q733D) engender RNA deaminase in human ADAR3. By way of its catalytic activity, the ADAR3 pentamutant was used to identify potential binding targets for wild type ADAR3 in a human glioblastoma cell line. Novel ADAR3 binding sites discovered in this manner include the 3'-UTRs of the mRNAs encoding early growth response 1 (EGR1) and dual specificity phosphatase 1 (DUSP1); both known to be activity-dependent immediate early genes that respond to stimuli in the brain. Further studies reveal that the wild type ADAR3 protein can regulate transcript levels for DUSP1 and EGR1, suggesting a novel role ADAR3 may play in brain function.
Collapse
Affiliation(s)
- Yuru Wang
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Dong Hee Chung
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Leanna R Monteleone
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Jie Li
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Yao Chiang
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Michael D Toney
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
358
|
Teichert I. Fungal RNA editing: who, when, and why? Appl Microbiol Biotechnol 2020; 104:5689-5695. [PMID: 32382933 PMCID: PMC7306014 DOI: 10.1007/s00253-020-10631-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Abstract RNA editing occurs in all kingdoms of life and in various RNA species. The editing of nuclear protein-coding transcripts has long been known in metazoans, but was only recently detected in fungi. In contrast to many metazoan species, fungal editing sites occur mostly in coding regions, and therefore, fungal editing can change protein sequences and lead to modified or new functions of proteins. Indeed, mRNA editing is thought to be generally adaptive on fungi. Although RNA editing has been detected in both, Ascomycota and Basidiomycota, there seem to be considerable differences between these two classes of fungi concerning the types, the timing, and the purpose of editing. This review summarizes the characteristics of RNA editing in fungi and compares them to metazoan species and bacteria. In particular, it will review cellular processes affected by editing and speculate on the purpose of editing for fungal biology with a focus on the filamentous ascomycetes. Key Points • Fungi show various types of mRNA editing in nuclear transcripts. • Fungal editing leads to proteome diversification. • Filamentous ascomycetes may require editing for sexual sporulation. • Wood-degrading basidiomycetes may use editing for adaptation to different substrates.
Collapse
Affiliation(s)
- Ines Teichert
- General and Molecular Botany, Ruhr-University Bochum, 44780, Bochum, Germany. .,Arbeitskreis für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND6/166, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
359
|
Gassner FJ, Zaborsky N, Feldbacher D, Greil R, Geisberger R. RNA Editing Alters miRNA Function in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12051159. [PMID: 32380696 PMCID: PMC7280959 DOI: 10.3390/cancers12051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a high incidence B cell leukemia with a highly variable clinical course, leading to survival times ranging from months to several decades. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression levels of genes by binding to the untranslated regions of transcripts. Although miRNAs have been previously shown to play a crucial role in CLL development, progression and treatment resistance, their further processing and diversification by RNA editing (specifically adenosine to inosine or cytosine to uracil deamination) has not been addressed so far. In this study, we analyzed next generation sequencing data to provide a detailed map of adenosine to inosine and cytosine to uracil changes in miRNAs from CLL and normal B cells. Our results reveal that in addition to a CLL-specific expression pattern, there is also specific RNA editing of many miRNAs, particularly miR-3157 and miR-6503, in CLL. Our data draw further light on how miRNAs and miRNA editing might be implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Franz J. Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Daniel Feldbacher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Department of Biosciences, University of Salzburg, Hellbrunner Strasse, 34, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Correspondence: ; Tel.: +43-57255-25847; Fax: +43-57255-25998
| |
Collapse
|
360
|
Discovery of a novel deaminated metabolite of a single-stranded oligonucleotide in vivo by mass spectrometry. Bioanalysis 2020; 11:1955-1965. [PMID: 31829055 DOI: 10.4155/bio-2019-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: A novel single-stranded deaminated oligonucleotide metabolite resulting from a REVERSIR™ oligonucleotide was discovered and identified in monkey liver after subcutaneous administration. Results & methodology: REVERSIR-A and its metabolites were extracted from biological matrices by solid phase extraction and analyzed using LC coupled with high-resolution MS under negative ionization mode. A novel 9-mer metabolite of REVERSIR-A, resulting from deamination of the 3' terminal 2'-O-methyl-adenosine nucleotide to 2'-O-methyl-inosine, was discovered at significant levels in monkey liver. The metabolite's identity was confirmed by LC-MS/MS. Conclusion: This report describes the first observation of a long-chain deaminated metabolite of a single-stranded REVERSIR oligonucleotide in vivo in monkey liver.
Collapse
|
361
|
irCLASH reveals RNA substrates recognized by human ADARs. Nat Struct Mol Biol 2020; 27:351-362. [PMID: 32203492 DOI: 10.1038/s41594-020-0398-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Adenosine deaminases acting on RNA (ADARs) convert adenosines to inosines in double-stranded RNA (dsRNA) in animals. Despite their importance, ADAR RNA substrates have not been mapped extensively in vivo. Here we develop irCLASH to map RNA substrates recognized by human ADARs and uncover features that determine their binding affinity and editing efficiency. We also observe a dominance of long-range interactions within ADAR substrates and analyze differences between ADAR1 and ADAR2 editing substrates. Moreover, we unexpectedly discovered that ADAR proteins bind dsRNA substrates tandemly in vivo, each with a 50-bp footprint. Using RNA duplexes recognized by ADARs as readout of pre-messenger RNA structures, we reveal distinct higher-order architectures between pre-messenger RNAs and mRNAs. Our transcriptome-wide atlas of ADAR substrates and the features governing RNA editing observed in our study will assist in the rational design of guide RNAs for ADAR-mediated RNA base editing.
Collapse
|
362
|
Vongpipatana T, Nakahama T, Shibuya T, Kato Y, Kawahara Y. ADAR1 Regulates Early T Cell Development via MDA5-Dependent and -Independent Pathways. THE JOURNAL OF IMMUNOLOGY 2020; 204:2156-2168. [DOI: 10.4049/jimmunol.1900929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/11/2020] [Indexed: 11/19/2022]
|
363
|
Lo Giudice C, Silvestris DA, Roth SH, Eisenberg E, Pesole G, Gallo A, Picardi E. Quantifying RNA Editing in Deep Transcriptome Datasets. Front Genet 2020; 11:194. [PMID: 32211029 PMCID: PMC7069340 DOI: 10.3389/fgene.2020.00194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Massive transcriptome sequencing through the RNAseq technology has enabled quantitative transcriptome-wide investigation of co-/post-transcriptional mechanisms such as alternative splicing and RNA editing. The latter is abundant in human transcriptomes in which million adenosines are deaminated into inosines by the ADAR enzymes. RNA editing modulates the innate immune response and its deregulation has been associated with different human diseases including autoimmune and inflammatory pathologies, neurodegenerative and psychiatric disorders, and tumors. Accurate profiling of RNA editing using deep transcriptome data is still a challenge, and the results depend strongly on processing and alignment steps taken. Accurate calling of the inosinome repertoire, however, is required to reliably quantify RNA editing and, in turn, investigate its biological and functional role across multiple samples. Using real RNAseq data, we demonstrate the impact of different bioinformatics steps on RNA editing detection and describe the main metrics to quantify its level of activity.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù," Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
364
|
Konen LM, Wright AL, Royle GA, Morris GP, Lau BK, Seow PW, Zinn R, Milham LT, Vaughan CW, Vissel B. A new mouse line with reduced GluA2 Q/R site RNA editing exhibits loss of dendritic spines, hippocampal CA1-neuron loss, learning and memory impairments and NMDA receptor-independent seizure vulnerability. Mol Brain 2020; 13:27. [PMID: 32102661 PMCID: PMC7045468 DOI: 10.1186/s13041-020-0545-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/05/2020] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington’s disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer’s disease.
Collapse
Affiliation(s)
- Lyndsey M Konen
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Amanda L Wright
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Gordon A Royle
- Middlemore Hospital, Counties Manukau DHB, Otahuhu, Auckland, 1062, New Zealand.,The University of Auckland, Faculty of Medical and Health Sciences, School of Medicine, Grafton, Auckland, 1023, New Zealand
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Benjamin K Lau
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Patrick W Seow
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Luke T Milham
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Christopher W Vaughan
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia. .,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia.
| |
Collapse
|
365
|
Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 2020; 10:3503-3517. [PMID: 32206104 PMCID: PMC7069073 DOI: 10.7150/thno.42174] [Citation(s) in RCA: 560] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed, endogenous RNAs with no 5' end caps or 3' poly(A) tails. These RNAs are expressed in tissue-specific, cell-specific, and developmental stage-specific patterns. The biogenesis of circRNAs is now known to be regulated by multiple specific factors; however, circRNAs were previously thought to be insignificant byproducts of splicing errors. Recent studies have demonstrated their activity as microRNA (miRNA) sponges as well as protein sponges, decoys, scaffolds, and recruiters, and some circRNAs even act as translation templates in multiple pathophysiological processes. CircRNAs bind and sequester specific proteins to appropriate subcellular positions, and they participate in modulating certain protein-protein and protein-RNA interactions. Conversely, several proteins play an indispensable role in the life cycle of circRNAs from biogenesis to degradation. However, the exact mechanisms of these interactions between proteins and circRNAs remain unknown. Here, we review the current knowledge regarding circRNA-protein interactions and the methods used to identify and characterize these interactions. We also summarize new insights into the potential mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Anqing Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Zhiye Wu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
- The George Institute for Global Health, NSW 2042 Australia
| |
Collapse
|
366
|
Barak M, Porath HT, Finkelstein G, Knisbacher BA, Buchumenski I, Roth SH, Levanon EY, Eisenberg E. Purifying selection of long dsRNA is the first line of defense against false activation of innate immunity. Genome Biol 2020; 21:26. [PMID: 32028986 PMCID: PMC7006430 DOI: 10.1186/s13059-020-1937-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mobile elements comprise a large fraction of metazoan genomes. Accumulation of mobile elements is bound to produce multiple putative double-stranded RNA (dsRNA) structures within the transcriptome. These endogenous dsRNA structures resemble viral RNA and may trigger false activation of the innate immune response, leading to severe damage to the host cell. Adenosine to inosine (A-to-I) RNA editing is a common post-transcriptional modification, abundant within repetitive elements of all metazoans. It was recently shown that a key function of A-to-I RNA editing by ADAR1 is to suppress the immunogenic response by endogenous dsRNAs. RESULTS Here, we analyze the transcriptomes of dozens of species across the Metazoa and identify a strong genomic selection against endogenous dsRNAs, resulting in their purification from the canonical transcriptome. This purifying selection is especially strong for long and nearly perfect dsRNAs. These are almost absent from mRNAs, but not pre-mRNAs, supporting the notion of selection due to cytoplasmic processes. The few long and nearly perfect structures found in human transcripts are weakly expressed and often heavily edited. CONCLUSION Purifying selection of long dsRNA is an important defense mechanism against false activation of innate immunity. This newly identified principle governs the integration of mobile elements into the genome, a major driving force of genome evolution. Furthermore, we find that most ADAR1 activity is not required to prevent an immune response to endogenous dsRNAs. The critical targets of ADAR1 editing are, likely, to be found mostly in non-canonical transcripts.
Collapse
Affiliation(s)
- Michal Barak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Hagit T Porath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Gilad Finkelstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Ilana Buchumenski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
367
|
Lo Giudice C, Tangaro MA, Pesole G, Picardi E. Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal. Nat Protoc 2020; 15:1098-1131. [PMID: 31996844 DOI: 10.1038/s41596-019-0279-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
RNA editing is a widespread post-transcriptional mechanism able to modify transcripts through insertions/deletions or base substitutions. It is prominent in mammals, in which millions of adenosines are deaminated to inosines by members of the ADAR family of enzymes. A-to-I RNA editing has a plethora of biological functions, but its detection in large-scale transcriptome datasets is still an unsolved computational task. To this aim, we developed REDItools, the first software package devoted to the RNA editing profiling in RNA-sequencing (RNAseq) data. It has been successfully used in human transcriptomes, proving the tissue and cell type specificity of RNA editing as well as its pervasive nature. Outcomes from large-scale REDItools analyses on human RNAseq data have been collected in our specialized REDIportal database, containing more than 4.5 million events. Here we describe in detail two bioinformatic procedures based on our computational resources, REDItools and REDIportal. In the first procedure, we outline a workflow to detect RNA editing in the human cell line NA12878, for which transcriptome and whole genome data are available. In the second procedure, we show how to identify dysregulated editing at specific recoding sites in post-mortem brain samples of Huntington disease donors. On a 64-bit computer running Linux with ≥32 GB of random-access memory (RAM), both procedures should take ~76 h, using 4 to 24 cores. Our protocols have been designed to investigate RNA editing in different organisms with available transcriptomic and/or genomic reads. Scripts to complete both procedures and a docker image are available at https://github.com/BioinfoUNIBA/REDItools.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Rome, Italy.
| |
Collapse
|
368
|
Chalk AM, Taylor S, Heraud-Farlow JE, Walkley CR. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol 2019; 20:268. [PMID: 31815657 PMCID: PMC6900863 DOI: 10.1186/s13059-019-1873-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) RNA editing, mediated by ADAR1 and ADAR2, occurs at tens of thousands to millions of sites across mammalian transcriptomes. A-to-I editing can change the protein coding potential of a transcript and alter RNA splicing, miRNA biology, RNA secondary structure and formation of other RNA species. In vivo, the editing-dependent protein recoding of GRIA2 is the essential function of ADAR2, while ADAR1 editing prevents innate immune sensing of endogenous RNAs by MDA5 in both human and mouse. However, a significant proportion of A-to-I editing sites can be edited by both ADAR1 and ADAR2, particularly within the brain where both are highly expressed. The physiological function(s) of these shared sites, including those evolutionarily conserved, is largely unknown. RESULTS To generate completely A-to-I editing-deficient mammals, we crossed the viable rescued ADAR1-editing-deficient animals (Adar1E861A/E861AIfih1-/-) with rescued ADAR2-deficient (Adarb1-/-Gria2R/R) animals. Unexpectedly, the global absence of editing was well tolerated. Adar1E861A/E861AIfih1-/-Adarb1-/-Gria2R/R were recovered at Mendelian ratios and age normally. Detailed transcriptome analysis demonstrated that editing was absent in the brains of the compound mutants and that ADAR1 and ADAR2 have similar editing site preferences and patterns. CONCLUSIONS We conclude that ADAR1 and ADAR2 are non-redundant and do not compensate for each other's essential functions in vivo. Physiologically essential A-to-I editing comprises a small subset of the editome, and the majority of editing is dispensable for mammalian homeostasis. Moreover, in vivo biologically essential protein recoding mediated by A-to-I editing is an exception in mammals.
Collapse
Affiliation(s)
- Alistair M Chalk
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia
| | - Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
369
|
Wissink EM, Vihervaara A, Tippens ND, Lis JT. Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 2019; 20:705-723. [PMID: 31399713 PMCID: PMC6858503 DOI: 10.1038/s41576-019-0159-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
The programmes that direct an organism's development and maintenance are encoded in its genome. Decoding of this information begins with regulated transcription of genomic DNA into RNA. Although transcription and its control can be tracked indirectly by measuring stable RNAs, it is only by directly measuring nascent RNAs that the immediate regulatory changes in response to developmental, environmental, disease and metabolic signals are revealed. Multiple complementary methods have been developed to quantitatively track nascent transcription genome-wide at nucleotide resolution, all of which have contributed novel insights into the mechanisms of gene regulation and transcription-coupled RNA processing. Here we critically evaluate the array of strategies used for investigating nascent transcription and discuss the recent conceptual advances they have provided.
Collapse
Affiliation(s)
- Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Nathaniel D Tippens
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
370
|
Jiang D, Zhang J. The preponderance of nonsynonymous A-to-I RNA editing in coleoids is nonadaptive. Nat Commun 2019; 10:5411. [PMID: 31776345 PMCID: PMC6881472 DOI: 10.1038/s41467-019-13275-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/31/2019] [Indexed: 01/24/2023] Open
Abstract
A-to-I editing enzymatically converts the base adenosine (A) in RNA molecules to inosine (I), which is recognized as guanine (G) in translation. Exceptionally abundant A-to-I editing was recently discovered in the neural tissues of coleoids (octopuses, squids, and cuttlefishes), with a greater fraction of nonsynonymous sites than synonymous sites subject to high levels of editing. Although this phenomenon is thought to indicate widespread adaptive editing, its potential advantage is unknown. Here we propose an alternative, nonadaptive explanation. Specifically, increasing the cellular editing activity permits some otherwise harmful G-to-A nonsynonymous substitutions, because the As are edited to Is at sufficiently high levels. These high editing levels are constrained upon substitutions, resulting in the predominance of nonsynonymous editing at highly edited sites. Our evidence for this explanation suggests that the prevalent nonsynonymous editing in coleoids is generally nonadaptive, as in species with much lower editing activities. The neural tissues of coleoids have a greater fraction of nonsynonymous sites than synonymous sites subject to high levels of A-to-I RNA editing, a pattern thought to indicate widespread adaptive editing. Here the authors propose and provide evidence for an alternative, nonadaptive explanation.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
371
|
Mai TL, Chuang TJ. A-to-I RNA editing contributes to the persistence of predicted damaging mutations in populations. Genome Res 2019; 29:1766-1776. [PMID: 31515285 PMCID: PMC6836733 DOI: 10.1101/gr.246033.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a very common co-/posttranscriptional modification that can lead to A-to-G changes at the RNA level and compensate for G-to-A genomic changes to a certain extent. It has been shown that each healthy individual can carry dozens of missense variants predicted to be severely deleterious. Why strongly detrimental variants are preserved in a population and not eliminated by negative natural selection remains mostly unclear. Here, we ask if RNA editing correlates with the burden of deleterious A/G polymorphisms in a population. Integrating genome and transcriptome sequencing data from 447 human lymphoblastoid cell lines, we show that nonsynonymous editing activities (prevalence/level) are negatively correlated with the deleteriousness of A-to-G genomic changes and positively correlated with that of G-to-A genomic changes within the population. We find a significantly negative correlation between nonsynonymous editing activities and allele frequency of A within the population. This negative editing-allele frequency correlation is particularly strong when editing sites are located in highly important genes/loci. Examinations of deleterious missense variants from the 1000 Genomes Project further show a significantly higher proportion of rare missense mutations for G-to-A changes than for other types of changes. The proportion for G-to-A changes increases with increasing deleterious effects of the changes. Moreover, the deleteriousness of G-to-A changes is significantly positively correlated with the percentage of editing enzyme binding motifs at the variants. Overall, we show that nonsynonymous editing is associated with the increased burden of G-to-A missense mutations in healthy individuals, expanding RNA editing in pathogenomics studies.
Collapse
Affiliation(s)
- Te-Lun Mai
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
372
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20:675-691. [PMID: 31395983 DOI: 10.1038/s41576-019-0158-7] [Citation(s) in RCA: 3056] [Impact Index Per Article: 509.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed, endogenous biomolecules in eukaryotes with tissue-specific and cell-specific expression patterns, whose biogenesis is regulated by specific cis-acting elements and trans-acting factors. Some circRNAs are abundant and evolutionarily conserved, and many circRNAs exert important biological functions by acting as microRNA or protein inhibitors ('sponges'), by regulating protein function or by being translated themselves. Furthermore, circRNAs have been implicated in diseases such as diabetes mellitus, neurological disorders, cardiovascular diseases and cancer. Although the circular nature of these transcripts makes their detection, quantification and functional characterization challenging, recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.
Collapse
Affiliation(s)
- Lasse S Kristensen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark.
| | - Maria S Andersen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Lotte V W Stagsted
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
| | - Karoline K Ebbesen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
373
|
Xu B, Shi Y, Wu Y, Meng Y, Jin Y. Role of RNA secondary structures in regulating Dscam alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194381. [DOI: 10.1016/j.bbagrm.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
|
374
|
A-to-I RNA editing in leukemia stem cells - set ADAR1 on the radar. Oncotarget 2019; 10:6047-6048. [PMID: 31692993 PMCID: PMC6817451 DOI: 10.18632/oncotarget.27261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022] Open
|
375
|
Roth SH, Levanon EY, Eisenberg E. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat Methods 2019; 16:1131-1138. [PMID: 31636457 DOI: 10.1038/s41592-019-0610-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing by the adenosine deaminase that acts on RNA (ADAR) enzymes is a common RNA modification, preventing false activation of the innate immune system by endogenous double-stranded RNAs. Methods for quantification of ADAR activity are sought after, due to an increasing interest in the role of ADARs in cancer and autoimmune disorders, as well as attempts to harness the ADAR enzymes for RNA engineering. Here, we present the Alu editing index (AEI), a robust and simple-to-use computational tool devised for this purpose. We describe its properties and demonstrate its superiority to current quantification methods of ADAR activity. The AEI is used to map global editing across a large dataset of healthy human samples and identify putative regulators of ADAR, as well as previously unknown factors affecting the observed Alu editing levels. These should be taken into account in future comparative studies of ADAR activity. The AEI tool is available at https://github.com/a2iEditing/RNAEditingIndexer.
Collapse
Affiliation(s)
- Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
376
|
Desterro J, Bak-Gordon P, Carmo-Fonseca M. Targeting mRNA processing as an anticancer strategy. Nat Rev Drug Discov 2019; 19:112-129. [PMID: 31554928 DOI: 10.1038/s41573-019-0042-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Discoveries in the past decade have highlighted the potential of mRNA as a therapeutic target for cancer. Specifically, RNA sequencing revealed that, in addition to gene mutations, alterations in mRNA can contribute to the initiation and progression of cancer. Indeed, precursor mRNA processing, which includes the removal of introns by splicing and the formation of 3' ends by cleavage and polyadenylation, is frequently altered in tumours. These alterations result in numerous cancer-specific mRNAs that generate altered levels of normal proteins or proteins with new functions, leading to the activation of oncogenes or the inactivation of tumour-suppressor genes. Abnormally spliced and polyadenylated mRNAs are also associated with resistance to cancer treatment and, unexpectedly, certain cancers are highly sensitive to the pharmacological inhibition of splicing. This Review summarizes recent progress in our understanding of how splicing and polyadenylation are altered in cancer and highlights how this knowledge has been translated for drug discovery, resulting in the production of small molecules and oligonucleotides that modulate the spliceosome and are in clinical trials for the treatment of cancer.
Collapse
Affiliation(s)
- Joana Desterro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa, Serviço de Hematologia, Lisboa, Portugal
| | - Pedro Bak-Gordon
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
377
|
Toward in silico Identification of Tumor Neoantigens in Immunotherapy. Trends Mol Med 2019; 25:980-992. [PMID: 31494024 DOI: 10.1016/j.molmed.2019.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapy includes cancer vaccination, adoptive T cell transfer (ACT) with chimeric antigen receptor (CAR) T cells, and administration of tumor-infiltrating lymphocytes and immune-checkpoint blockade such as anti-CTLA4/anti-PD1 inhibitors that can directly or indirectly target tumor neoantigens and elicit a T cell response. Accurate, rapid, and cost-effective identification of neoantigens, however, is critical for successful immunotherapy. Here, we review computational issues for neoantigen identification by summarizing the various sources of neoantigens and their identification from high-throughput sequencing data. Several opinions are presented to inspire further discussions toward improving neoantigen identification. Continuing efforts are required to improve the sensitivity and specificity of bona fide neoantigens, taking advantage of the development of high-throughput sequencing techniques for effective and personalized cancer immunotherapy.
Collapse
|
378
|
Evolution of Inosine-Specific Endonuclease V from Bacterial DNase to Eukaryotic RNase. Mol Cell 2019; 76:44-56.e3. [PMID: 31444105 DOI: 10.1016/j.molcel.2019.06.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 06/27/2019] [Indexed: 02/01/2023]
Abstract
Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA). Inosine recognition is conserved, but changes in several connecting loops in eukaryotic EndoV confer recognition of 3 ribonucleotides upstream and 7 or 8 bp of dsRNA downstream of the cleavage site, and bacterial EndoV binds only 2 or 3 nt flanking the scissile phosphate. In addition to the two canonical metal ions in the active site, a third Mn2+ that coordinates the nucleophilic water appears necessary for product formation. Comparison of EndoV with its homologs RNase H1 and Argonaute reveals the principles by which these enzymes recognize RNA versus DNA.
Collapse
|
379
|
Licht K, Kapoor U, Amman F, Picardi E, Martin D, Bajad P, Jantsch MF. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res 2019; 29:1453-1463. [PMID: 31427386 PMCID: PMC6724681 DOI: 10.1101/gr.242636.118] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 07/25/2019] [Indexed: 11/25/2022]
Abstract
Pre-mRNA-splicing and adenosine to inosine (A-to-I) RNA-editing occur mostly cotranscriptionally. During A-to-I editing, a genomically encoded adenosine is deaminated to inosine by adenosine deaminases acting on RNA (ADARs). Editing-competent stems are frequently formed between exons and introns. Consistently, studies using reporter assays have shown that splicing efficiency can affect editing levels. Here, we use Nascent-seq and identify ∼90,000 novel A-to-I editing events in the mouse brain transcriptome. Most novel sites are located in intronic regions. Unlike previously assumed, we show that both ADAR (ADAR1) and ADARB1 (ADAR2) can edit repeat elements and regular transcripts to the same extent. We find that inhibition of splicing primarily increases editing levels at hundreds of sites, suggesting that reduced splicing efficiency extends the exposure of intronic and exonic sequences to ADAR enzymes. Lack of splicing factors NOVA1 or NOVA2 changes global editing levels, demonstrating that alternative splicing factors can modulate RNA editing. Finally, we show that intron retention rates correlate with editing levels across different brain tissues. We therefore demonstrate that splicing efficiency is a major factor controlling tissue-specific differences in editing levels.
Collapse
Affiliation(s)
- Konstantin Licht
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Utkarsh Kapoor
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Fabian Amman
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria.,Institute of Theoretical Biochemistry, University of Vienna, A-1090 Vienna, Austria
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, I-70126 Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - David Martin
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Prajakta Bajad
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
380
|
Bioinformatic methods for cancer neoantigen prediction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:25-60. [PMID: 31383407 DOI: 10.1016/bs.pmbts.2019.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor cells accumulate aberrations not present in normal cells, leading to presentation of neoantigens on MHC molecules on their surface. These non-self neoantigens distinguish tumor cells from normal cells to the immune system and are thus targets for cancer immunotherapy. The rapid development of molecular profiling platforms, such as next-generation sequencing, has enabled the generation of large datasets characterizing tumor cells. The simultaneous development of algorithms has enabled rapid and accurate processing of these data. Bioinformatic software tools encoding the algorithms can be strung together in a workflow to identify neoantigens. Here, with a focus on high-throughput sequencing, we review state-of-the art bioinformatic tools along with the steps and challenges involved in neoantigen identification and recognition.
Collapse
|
381
|
Bradley CC, Gordon AJE, Halliday JA, Herman C. Transcription fidelity: New paradigms in epigenetic inheritance, genome instability and disease. DNA Repair (Amst) 2019; 81:102652. [PMID: 31326363 DOI: 10.1016/j.dnarep.2019.102652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA transcription errors are transient, yet frequent, events that do have consequences for the cell. However, until recently we lacked the tools to empirically measure and study these errors. Advances in RNA library preparation and next generation sequencing (NGS) have allowed the spectrum of transcription errors to be empirically measured over the entire transcriptome and in nascent transcripts. Combining these powerful methods with forward and reverse genetic strategies has refined our understanding of transcription factors known to enhance RNA accuracy and will enable the discovery of new candidates. Furthermore, these approaches will shed additional light on the complex interplay between transcription fidelity and other DNA transactions, such as replication and repair, and explore a role for transcription errors in cellular evolution and disease.
Collapse
Affiliation(s)
- Catherine C Bradley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA; Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
382
|
Kim S, Ku Y, Ku J, Kim Y. Evidence of Aberrant Immune Response by Endogenous Double-Stranded RNAs: Attack from Within. Bioessays 2019; 41:e1900023. [PMID: 31099409 DOI: 10.1002/bies.201900023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Many innate immune response proteins recognize foreign nucleic acids from invading pathogens to initiate antiviral signaling. These proteins mostly rely on structural characteristics of the nucleic acids rather than their specific sequences to distinguish self and nonself. One feature utilized by RNA sensors is the extended stretch of double-stranded RNA (dsRNA) base pairs. However, the criteria for recognizing nonself dsRNAs are rather lenient, and hairpin structure of self-RNAs can also trigger an immune response. Consequently, aberrant activation of RNA sensors has been reported in numerous human diseases. Yet, in most cases, the activating antigens remain unknown. Recent studies have developed sequencing techniques tailored to specifically capture dsRNAs and identified that various noncoding elements in the nuclear and the mitochondrial genome can generate dsRNAs. Here, the identity of endogenous dsRNAs, their recognition by dsRNA sensors, and their implications in the pathogenesis of human diseases ranging from inflammatory to degenerative are presented.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongsuk Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
383
|
Herbert A. ADAR and Immune Silencing in Cancer. Trends Cancer 2019; 5:272-282. [DOI: 10.1016/j.trecan.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023]
|
384
|
Rees HA, Wilson C, Doman JL, Liu DR. Analysis and minimization of cellular RNA editing by DNA adenine base editors. SCIENCE ADVANCES 2019; 5:eaax5717. [PMID: 31086823 PMCID: PMC6506237 DOI: 10.1126/sciadv.aax5717] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 05/17/2023]
Abstract
Adenine base editors (ABEs) enable precise and efficient conversion of target A•T base pairs to G•C base pairs in genomic DNA with a minimum of by-products. While ABEs have been reported to exhibit minimal off-target DNA editing, off-target editing of cellular RNA by ABEs has not been examined in depth. Here, we demonstrate that a current ABE generates low but detectable levels of widespread adenosine-to-inosine editing in cellular RNAs. Using structure-guided principles to design mutations in both deaminase domains, we developed new ABE variants that retain their ability to edit DNA efficiently but show greatly reduced RNA editing activity, as well as lower off-target DNA editing activity and reduced indel by-product formation, in three mammalian cell lines. By decoupling DNA and RNA editing activities, these ABE variants increase the precision of adenine base editing by minimizing both RNA and DNA off-target editing activity.
Collapse
Affiliation(s)
- Holly A. Rees
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Christopher Wilson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jordan L. Doman
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
385
|
Abstract
PURPOSE OF REVIEW The direct modification of RNA is now understood to be widespread, evolutionarily conserved and of consequence to cellular and organismal homeostasis. adenosine-to-inosine (A-to-I) RNA editing is one of the most common mammalian RNA modifications. Transcriptome-wide maps of the A-to-I editing exist, yet functions for the majority of editing sites remain opaque. Herein we discuss how hematology has been applied to determine physiological and malignant functions of A-to-I editing. RECENT FINDINGS Functional studies have established that A-to-I editing and ADAR1, responsible for the majority of editing in blood cells, are essential for normal blood cell homeostasis. ADAR1 edits endogenous RNA and reshapes its secondary structure, preventing MDA5 from perceiving the cells own RNA as pathogenic. Roles for ADAR1 in human leukaemia, and most recently, cancer cell intrinsic and extrinsic functions of ADAR1 have been identified that highlight ADAR1 as a therapeutic target in cancer. SUMMARY The studies reviewed have identified the key physiological function of ADAR1 and mechanistic basis for A-to-I editing in normal physiology and have now been extended to cancer. As our understanding of the biology and consequences of A-to-I editing evolve, it may be possible to target ADAR1 function advantageously in a number of settings.
Collapse
|
386
|
RNA editing is abundant and correlates with task performance in a social bumblebee. Nat Commun 2019; 10:1605. [PMID: 30962428 PMCID: PMC6453909 DOI: 10.1038/s41467-019-09543-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Colonies of the bumblebee Bombus terrestris are characterized by wide phenotypic variability among genetically similar full-sister workers, suggesting a major role for epigenetic processes. Here, we report a high level of ADAR-mediated RNA editing in the bumblebee, despite the lack of an ADAR1-homolog. We identify 1.15 million unique genomic sites, and 164 recoding sites residing in 100 protein coding genes, including ion channels, transporters, and receptors predicted to affect brain function and behavior. Some edited sites are similarly edited in other insects, cephalopods and even mammals. The global editing level of protein coding and non-coding transcripts weakly correlates with task performance (brood care vs. foraging), but not affected by dominance rank or juvenile hormone known to influence physiology and behavior. Taken together, our findings show that brain editing levels are high in naturally behaving bees, and may be regulated by relatively short-term effects associated with brood care or foraging activities.
Collapse
|
387
|
Morgantini C, Jager J, Li X, Levi L, Azzimato V, Sulen A, Barreby E, Xu C, Tencerova M, Näslund E, Kumar C, Verdeguer F, Straniero S, Hultenby K, Björkström NK, Ellis E, Rydén M, Kutter C, Hurrell T, Lauschke VM, Boucher J, Tomčala A, Krejčová G, Bajgar A, Aouadi M. Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nat Metab 2019; 1:445-459. [PMID: 32694874 DOI: 10.1038/s42255-019-0044-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022]
Abstract
Liver macrophages (LMs) have been proposed to contribute to metabolic disease through secretion of inflammatory cytokines. However, anti-inflammatory drugs lead to only modest improvements in systemic metabolism. Here we show that LMs do not undergo a proinflammatory phenotypic switch in obesity-induced insulin resistance in flies, mice and humans. Instead, we find that LMs produce non-inflammatory factors, such as insulin-like growth factor-binding protein 7 (IGFBP7), that directly regulate liver metabolism. IGFBP7 binds to the insulin receptor and induces lipogenesis and gluconeogenesis via activation of extracellular-signal-regulated kinase (ERK) signalling. We further show that IGFBP7 is subject to RNA editing at a higher frequency in insulin-resistant than in insulin-sensitive obese patients (90% versus 30%, respectively), resulting in an IGFBP7 isoform with potentially higher capacity to bind to the insulin receptor. Our study demonstrates that LMs can contribute to insulin resistance independently of their inflammatory status and indicates that non-inflammatory factors produced by macrophages might represent new drug targets for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Cecilia Morgantini
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jennifer Jager
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
- Université Nice Côte d'Azur, INSERM U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Xidan Li
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Laura Levi
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Valerio Azzimato
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - André Sulen
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Emelie Barreby
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Connie Xu
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark, Odense University Hospital and Danish Diabetes Academy, Odense, Denmark
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Chanchal Kumar
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
- Translational Sciences, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Francisco Verdeguer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Sara Straniero
- Metabolism Unit C2:94, Department of Medicine, and Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ellis
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Mikael Rydén
- Unit of Endocrinology, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Tracey Hurrell
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Jeremie Boucher
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
| | - Aleš Tomčala
- Laboratory of Evolutionary Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Gabriela Krejčová
- Faculty of Science, University of South Bohemia, and Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Faculty of Science, University of South Bohemia, and Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Myriam Aouadi
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
388
|
Sharma S, Wang J, Alqassim E, Portwood S, Cortes Gomez E, Maguire O, Basse PH, Wang ES, Segal BH, Baysal BE. Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in natural killer cells. Genome Biol 2019; 20:37. [PMID: 30791937 PMCID: PMC6383285 DOI: 10.1186/s13059-019-1651-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Background Protein recoding by RNA editing is required for normal health and evolutionary adaptation. However, de novo induction of RNA editing in response to environmental factors is an uncommon phenomenon. While APOBEC3A edits many mRNAs in monocytes and macrophages in response to hypoxia and interferons, the physiological significance of such editing is unclear. Results Here, we show that the related cytidine deaminase, APOBEC3G, induces site-specific C-to-U RNA editing in natural killer cells, lymphoma cell lines, and, to a lesser extent, CD8-positive T cells upon cellular crowding and hypoxia. In contrast to expectations from its anti-HIV-1 function, the highest expression of APOBEC3G is shown to be in cytotoxic lymphocytes. RNA-seq analysis of natural killer cells subjected to cellular crowding and hypoxia reveals widespread C-to-U mRNA editing that is enriched for genes involved in mRNA translation and ribosome function. APOBEC3G promotes Warburg-like metabolic remodeling in HuT78 T cells under similar conditions. Hypoxia-induced RNA editing by APOBEC3G can be mimicked by the inhibition of mitochondrial respiration and occurs independently of HIF-1α. Conclusions APOBEC3G is an endogenous RNA editing enzyme in primary natural killer cells and lymphoma cell lines. This RNA editing is induced by cellular crowding and mitochondrial respiratory inhibition to promote adaptation to hypoxic stress. Electronic supplementary material The online version of this article (10.1186/s13059-019-1651-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shraddha Sharma
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.,Present Address: Translate Bio, Lexington, MA, 02421, USA
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Emad Alqassim
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott Portwood
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Orla Maguire
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Per H Basse
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Eunice S Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Bora E Baysal
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
389
|
Chimienti F, Cavarec L, Vincent L, Salvetat N, Arango V, Underwood MD, Mann JJ, Pujol JF, Weissmann D. Brain region-specific alterations of RNA editing in PDE8A mRNA in suicide decedents. Transl Psychiatry 2019; 9:91. [PMID: 30770787 PMCID: PMC6377659 DOI: 10.1038/s41398-018-0331-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Phosphodiesterases (PDE) are key modulators of signal transduction and are involved in inflammatory cell activation, memory and cognition. There is a two-fold decrease in the expression of phosphodiesterase 8A (PDE8A) in the temporal cortex of major depressive disorder (MDD) patients. Here, we studied PDE8A mRNA-editing profile in two architectonically distinct neocortical regions in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicide decedents. By using capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), a previously validated technique to identify A-to-I RNA modifications, we report the full editing profile of PDE8A in the brain, including identification of two novel editing sites. Editing of PDE8A mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Furthermore, we report significant intra-regional differences between non-psychiatric control individuals and depressed suicide decedents, which could discriminate the two populations. Taken together, our results (i) highlight the importance of immune/inflammatory markers in major depressive disorder and suicide and (ii) establish a direct relationship between A-to-I RNA modifications of peripheral markers and A-to-I RNA editing-related modifications in brain. This work provides the first immune response-related brain marker for suicide and could pave the way for the identification of a blood-based biomarker that predicts suicidal behavior.
Collapse
Affiliation(s)
- Fabrice Chimienti
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France.
| | - Laurent Cavarec
- grid.465535.4Genomic Vision, Green Square, 80-84 rue des Meuniers, 92220 Bagneux, France
| | - Laurent Vincent
- grid.457349.8Commissariat à l’Energie Atomique, Fontenay aux Roses, France
| | - Nicolas Salvetat
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Victoria Arango
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Mark D. Underwood
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - J. John Mann
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | | | - Dinah Weissmann
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| |
Collapse
|
390
|
Samuel CE. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem 2019; 294:1710-1720. [PMID: 30710018 PMCID: PMC6364763 DOI: 10.1074/jbc.tm118.004166] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herbert "Herb" Tabor, who celebrated his 100th birthday this past year, served the Journal of Biological Chemistry as a member of the Editorial Board beginning in 1961, as an Associate Editor, and as Editor-in-Chief for 40 years, from 1971 until 2010. Among the many discoveries in biological chemistry during this period was the identification of RNA modification by C6 deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA. This posttranscriptional RNA modification by adenosine deamination, known as A-to-I RNA editing, diversifies the transcriptome and modulates the innate immune interferon response. A-to-I editing is catalyzed by a family of enzymes, adenosine deaminases acting on dsRNA (ADARs). The roles of A-to-I editing are varied and include effects on mRNA translation, pre-mRNA splicing, and micro-RNA silencing. Suppression of dsRNA-triggered induction and action of interferon, the cornerstone of innate immunity, has emerged as a key function of ADAR1 editing of self (cellular) and nonself (viral) dsRNAs. A-to-I modification of RNA is essential for the normal regulation of cellular processes. Dysregulation of A-to-I editing by ADAR1 can have profound consequences, ranging from effects on cell growth and development to autoimmune disorders.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106.
| |
Collapse
|
391
|
RNA Modifications Modulate Activation of Innate Toll-Like Receptors. Genes (Basel) 2019; 10:genes10020092. [PMID: 30699960 PMCID: PMC6410116 DOI: 10.3390/genes10020092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.
Collapse
|
392
|
Dick ALW, Khermesh K, Paul E, Stamp F, Levanon EY, Chen A. Adenosine-to-Inosine RNA Editing Within Corticolimbic Brain Regions Is Regulated in Response to Chronic Social Defeat Stress in Mice. Front Psychiatry 2019; 10:277. [PMID: 31133890 PMCID: PMC6512728 DOI: 10.3389/fpsyt.2019.00277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a co-/posttranscriptional modification of double-stranded RNA, catalyzed by the adenosine deaminase acting on RNA (ADAR) family of enzymes, which results in recognition of inosine as guanosine by translational and splicing machinery causing potential recoding events in amino acid sequences. A-to-I editing is prominent within brain-specific transcripts, and dysregulation of editing at several well-studied loci (e.g., Gria2, Htr2c) has been implicated in acute and chronic stress in rodents as well as neurological (e.g., Alzheimer's) and psychopathological disorders such as schizophrenia and major depressive disorder. However, only a small fraction of recoding sites has been investigated within the brain following stress, and our understanding of the role of RNA editing in transcriptome regulation following environmental stimuli remains poorly understood. Thus, we aimed to investigate A-to-I editing at hundreds of loci following chronic social defeat stress (CSDS) in mice within corticolimbic regions responsive to chronic stress regulation. Adult male mice were subjected to CSDS or control conditions for 21 days and dynamic regulation of A-to-I editing was investigated 2 and 8 days following the final defeat within both the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). Employing a targeted resequencing approach, which utilizes microfluidics-based multiplex polymerase chain reaction (PCR) coupled with next-generation sequencing, we analyzed A-to-I editing at ∼100 high-confidence editing sites within the mouse brain. CSDS resulted in acute regulation of transcripts encoding several ADAR enzymes, which normalized 8 days following the final defeat and was specific for susceptible mice. In contrast, sequencing analysis revealed modest and dynamic regulation of A-to-I editing within numerous transcripts in both the mPFC and BLA of resilient and susceptible mice at both 2 and 8 days following CSDS with minimal overlap between regions and time points. Editing within the Htr2c transcript and relative abundance of Htr2c messenger RNA (mRNA)variants were also observed within the BLA of susceptible mice 2 days following CSDS. These results indicate dynamic RNA editing within discrete brain regions following CSDS in mice, further implicating A-to-I editing as a stress-sensitive molecular mechanism within the brain of potential relevance to resiliency and susceptibility to CSDS.
Collapse
Affiliation(s)
- Alec L W Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Evan Paul
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fabian Stamp
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of LifeSciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
393
|
Abstract
The central dogma of molecular biology introduced by Crick describes a linear flow of information from DNA to mRNA to protein. Since then it has become evident that RNA undergoes several maturation steps such as capping, splicing, 3'-end processing, and editing. Likewise, nucleotide modifications are common in mRNA and are present in all organisms impacting on the regulation of gene expression. The most abundant modification found in mRNA is N6-methyladenosine (m6A). Deposition of m6A is a nuclear process and is performed by a megadalton writer complex primarily on mRNAs, but also on microRNAs and lncRNAs. The m6A methylosome is composed of the enzymatic core components METTL3 and METTL14, and several auxiliary proteins necessary for its correct positioning and functioning, which are WTAP, VIRMA, FLACC, RBM15, and HAKAI. The m6A epimark is decoded by YTH domain-containing reader proteins YTHDC and YTHDF, but METTLs can act as "readers" as well. Eraser proteins, such as FTO and ALKBH5, can remove the methyl group. Here we review recent progress on the role of m6A in regulating gene expression in light of Crick's central dogma of molecular biology. In particular, we address the complexity of the writer complex from an evolutionary perspective to obtain insights into the mechanism of ancient m6A methylation and its regulation.
Collapse
Affiliation(s)
- Dario L Balacco
- School of Biosciences, College of Life and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham B15 2TT , United Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham B15 2TT , United Kingdom
| |
Collapse
|
394
|
RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nat Commun 2018; 9:3919. [PMID: 30254248 PMCID: PMC6156571 DOI: 10.1038/s41467-018-06405-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
In addition to genomic mutations, RNA editing is another major mechanism creating sequence variations in proteins by introducing nucleotide changes in mRNA sequences. Deregulated RNA editing contributes to different types of human diseases, including cancers. Here we report that peptides generated as a consequence of RNA editing are indeed naturally presented by human leukocyte antigen (HLA) molecules. We provide evidence that effector CD8+ T cells specific for edited peptides derived from cyclin I are present in human tumours and attack tumour cells that are presenting these epitopes. We show that subpopulations of cancer patients have increased peptide levels and that levels of edited RNA correlate with peptide copy numbers. These findings demonstrate that RNA editing extends the classes of HLA presented self-antigens and that these antigens can be recognised by the immune system. RNA editing is a biological process that creates sequence variation. Here the authors show that peptides generated as a consequence of RNA editing are naturally presented by human leukocyte antigen (HLA) and serve as antigens to elicit anti-tumour immune responses.
Collapse
|
395
|
Dias Junior AG, Sampaio NG, Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol 2018; 27:75-85. [PMID: 30201512 PMCID: PMC6319154 DOI: 10.1016/j.tim.2018.08.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/28/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Induction of interferons during viral infection is mediated by cellular proteins that recognise viral nucleic acids. MDA5 is one such sensor of virus presence and is activated by RNA. MDA5 is required for immunity against several classes of viruses, including picornaviruses. Recent work showed that mutations in the IFIH1 gene, encoding MDA5, lead to interferon-driven autoinflammatory diseases. Together with observations made in cancer cells, this suggests that MDA5 detects cellular RNAs in addition to viral RNAs. It is therefore important to understand the properties of the RNAs which activate MDA5. New data indicate that RNA length and secondary structure are features sensed by MDA5. We review these developments and discuss how MDA5 strikes a balance between antiviral immunity and autoinflammation. MDA5 is a pattern-recognition receptor for RNA and induces a type I interferon response. MDA5 is activated in a variety of clinically relevant settings. This includes infection with ssRNA, dsRNA, and dsDNA viruses; several autoimmune and autoinflammatory diseases, such as type 1 diabetes and Aicardi–Goutières syndrome; and some forms of cancer treatment. Synthetic, viral, and cellular RNAs can all activate MDA5. The latter may include transcripts from endogenous retroelements such as Alu repeats. Length and secondary structure are important features that determine whether an RNA molecule is detected by MDA5. Indeed, long, base-paired RNA molecules potently activate MDA5 in the test tube.
Collapse
Affiliation(s)
- Antonio Gregorio Dias Junior
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK. https://twitter.com/GregorioDias1
| | - Natalia G Sampaio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
396
|
Critical review on engineering deaminases for site-directed RNA editing. Curr Opin Biotechnol 2018; 55:74-80. [PMID: 30193161 DOI: 10.1016/j.copbio.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The game-changing role of CRISPR/Cas for genome editing draw interest to programmable RNA-guided tools in general. Currently, we see a wave of papers pioneering the CRISPR/Cas system for RNA targeting, and applying them for site-directed RNA editing. Here, we exemplarily compare three recent RNA editing strategies that rely on three distinct RNA targeting mechanisms. We conclude that the CRISPR/Cas system seems not generally superior to other RNA targeting strategies in solving the most pressing problem in the RNA editing field, which is to obtain high efficiency in combination with high specificity. However, once achieved, RNA editing promises to complement or even outcompete DNA editing approaches in therapy, and also in some fields of basic research.
Collapse
|
397
|
The State of Long Non-Coding RNA Biology. Noncoding RNA 2018; 4:ncrna4030017. [PMID: 30103474 PMCID: PMC6162524 DOI: 10.3390/ncrna4030017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure–function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.
Collapse
|