351
|
|
352
|
Freedman SJ, Sun ZYJ, Kung AL, France DS, Wagner G, Eck MJ. Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Mol Biol 2003; 10:504-12. [PMID: 12778114 DOI: 10.1038/nsb936] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 05/07/2003] [Indexed: 02/06/2023]
Abstract
Expression of hypoxia-responsive genes is mediated by the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1) in complex with the p300/CREB-binding protein (p300/CBP) transcriptional coactivator. The protein CITED2, which binds p300/CBP, is thought to be a negative regulator of HIF-1 transactivation. We show that the CITED2 transactivation domain (TAD) disrupts a complex of the HIF-1alpha C-terminal TAD (C-TAD) and the cysteine-histidine-rich 1 (CH1) domain of p300/CBP by binding CH1 with high affinity. The high-resolution solution structure of the CITED2 TAD-p300 CH1 complex shows that the CITED2 TAD, like the HIF-1alpha C-TAD, folds on a helical, Zn2+-containing CH1 scaffold. The CITED2 TAD binds a different, more extensive surface of CH1 than does the HIF-1alpha C-TAD. However, a conserved 'LPXL' sequence motif in CITED2 and HIF-1alpha interacts with an overlapping binding site on CH1. Mutation of the LPEL sequence in full-length CITED2 abolishes p300 binding in vivo. These findings reveal that CITED2 regulates HIF-1 by competing for a hot spot on the p300 CH1 domain.
Collapse
Affiliation(s)
- Steven J Freedman
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, 41 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
353
|
Affiliation(s)
- L Eric Huang
- Laboratory of Human Carcinogenesis, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
354
|
Abstract
The tumour suppressor activity of p53 in vivo can be subject to pressure from the physiological stress of hypoxia and we report on the development of a cell system to define the p53-dependent stages in the adaptation of cells to hypoxia. p53(+/+) cells exposed to hypoxia exhibited a transient arrest in G2/M, but escaped from this checkpoint and entered a long-term G(0)/G(1) arrest. By contrast, isogenic p53-null cells exposed to hypoxic conditions exhibited a 6-10-fold higher level of apoptosis, suggesting that p53 acts as a survival factor under limiting oxygen concentrations. Surprisingly, hypoxia-dependent growth arrest in p53(+/+) cells did not result in either p21(WAF1) or HIF-1 protein stabilization, but rather promoted a significant decrease in Ser(392)-site phosphorylation at the CK2/FACT site. However, chemically induced anoxia induced Ser(392)-site phosphorylation as well as stabilization of both p53 and HIF-1 proteins. In contrast to hypoxia, 5-flourouracil (5-FU)-induced p53-dependent cell death correlated with enhanced Ser(392) phosphorylation of p53 and elevated p21(WAF1) protein levels. Hypoxia inhibited 5-FU-induced p53-dependent cell death and attenuated p53 phosphorylation at the ATM and CK2/FACT phosphorylation sites. Although anoxia activates the p53 response, hypoxia silences the p53 transactivation pathway and identifies a physiological signalling model to study mechanisms of p53 inactivation under hypoxic conditions.
Collapse
Affiliation(s)
- Marcus Achison
- The Cancer Research UK Laboratories, Department of Molecular and Cellular Pathology, The University of Dundee, Dundee, DD1 9SY, UK
| | | |
Collapse
|
355
|
Nguyen BD, Abbott KL, Potempa K, Kobor MS, Archambault J, Greenblatt J, Legault P, Omichinski JG. NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1. Proc Natl Acad Sci U S A 2003; 100:5688-93. [PMID: 12732728 PMCID: PMC156262 DOI: 10.1073/pnas.1031524100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 03/14/2003] [Indexed: 11/18/2022] Open
Abstract
FCP1 [transcription factor IIF (TFIIF)-associated carboxyl-terminal domain (CTD) phosphatase] is the only identified phosphatase specific for the phosphorylated CTD of RNA polymerase II (RNAP II). The phosphatase activity of FCP1 is enhanced in the presence of the large subunit of TFIIF (RAP74 in humans). It has been demonstrated that the CTD of RAP74 (cterRAP74; residues 436-517) directly interacts with the highly acidic CTD of FCP1 (cterFCP; residues 879-961 in human). In this manuscript, we have determined a high-resolution solution structure of a cterRAP74cterFCP complex by NMR spectroscopy. Interestingly, the cterFCP protein is completely disordered in the unbound state, but forms an alpha-helix (H1'; E945-M961) in the complex. The cterRAP74cterFCP binding interface relies extensively on van der Waals contacts between hydrophobic residues from the H2 and H3 helices of cterRAP74 and hydrophobic residues from the H1' helix of cterFCP. The binding interface also contains two critical electrostatic interactions involving aspartic acid residues from H1' of cterFCP and lysine residues from both H2 and H3 of cterRAP74. There are also three additional polar interactions involving highly conserved acidic residues from the H1' helix. The cterRAP74cterFCP complex is the first high-resolution structure between an acidic residue-rich domain from a holoenzyme-associated regulatory protein and a general transcription factor. The structure defines a clear role for both hydrophobic and acidic residues in proteinprotein complexes involving acidic residue-rich domains in transcription regulatory proteins.
Collapse
Affiliation(s)
- Bao D Nguyen
- Department of Biochemistry, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
356
|
Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 2003; 278:14013-9. [PMID: 12588875 PMCID: PMC4518846 DOI: 10.1074/jbc.m209702200] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hypoxia-inducible factors (HIF) are a family of heterodimeric transcriptional regulators that play pivotal roles in the regulation of cellular utilization of oxygen and glucose and are essential transcriptional regulators of angiogenesis in solid tumor and ischemic disorders. The transactivation activity of HIF complexes requires the recruitment of p300/CREB-binding protein (CBP) by HIF-1 alpha and HIF-2 alpha that undergo oxygen-dependent degradation. HIF activation in tumors is caused by several factors including mitogen-activated protein kinase (MAPK) signaling. Here we investigated the molecular basis for HIF activation by MAPK. We show that MAPK is required for the transactivation activity of HIF-1 alpha. Furthermore, inhibition of MAPK disrupts the HIF-p300 interaction and suppresses the transactivation activity of p300. Overexpression of MEK1, an upstream MAPK activator, stimulates the transactivation of both p300 and HIF-1 alpha. Interestingly, the C-terminal transactivation domain of HIF-1 alpha is not a direct substrate of MAPK, and HIF-1 alpha phosphorylation is not required for HIF-CAD/p300 interaction. Taken together, our data suggest that MAPK signaling facilitates HIF activation through p300/CBP.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaime Caro
- To whom correspondence may be addressed: Cardeza Foundation and Dept. of Medicine, Thomas Jefferson University, 1015 Walnut St., Curtis Bldg., Rm. 809, Philadelphia, PA 19107. Tel.: 215-955-5118; Fax: 215-923-3836;
| |
Collapse
|
357
|
Affiliation(s)
- Michal Safran
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
358
|
Safran M, Kaelin WG. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 2003; 111:779-83. [PMID: 12639980 PMCID: PMC153778 DOI: 10.1172/jci18181] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Michal Safran
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
359
|
Lando D, Gorman JJ, Whitelaw ML, Peet DJ. Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:781-90. [PMID: 12603311 DOI: 10.1046/j.1432-1033.2003.03445.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To sustain life mammals have an absolute and continual requirement for oxygen, which is necessary to produce energy for normal cell survival and growth. Hence, maintaining oxygen homeostasis is a critical requirement and mammals have evolved a wide range of cellular and physiological responses to adapt to changes in oxygen availability. In the past few years it has become evident that the transcriptional protein complex hypoxia-inducible factor (HIF) is a key regulator of these processes. In this review we will focus on the way oxygen availability regulates HIF proteins and in particular we will discuss the way oxygen-dependent hydroxylation of specific amino acid residues has been demonstrated to regulate HIF function at the level of both protein stability and transcriptional potency.
Collapse
Affiliation(s)
- David Lando
- Department of Molecular BioSciences (Biochemistry) and the Centre for Molecular Genetics of Development, University of Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
360
|
Lee C, Kim SJ, Jeong DG, Lee SM, Ryu SE. Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau. J Biol Chem 2003; 278:7558-63. [PMID: 12482756 DOI: 10.1074/jbc.m210385200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The master switch of cellular hypoxia responses, hypoxia-inducible factor 1 (HIF-1), is hydroxylated by factor inhibiting HIF-1 (FIH-1) at a conserved asparagine residue under normoxia, which suppresses transcriptional activity of HIF-1 by abrogating its interaction with transcription coactivators. Here we report the crystal structure of human FIH-1 at 2.8-A resolution. The structural core of FIH-1 consists of a jellyroll-like beta-barrel containing the conserved ferrous-binding triad residues, confirming that FIH-1 is a member of the 2-oxoglutarate-dependent dioxygenase family. Except for the core structure and triad residues, FIH-1 has many structural deviations from other family members including N- and C-terminal insertions and various deletions in the middle of the structure. The ferrous-binding triad region is highly exposed to the solvent, which is connected to a prominent groove that may bind to a helix near the hydroxylation site of HIF-1. The structure, which is in a dimeric state, also reveals the putative von Hippel-Lindau-binding site that is distinctive to the putative HIF-1-binding site, supporting the formation of the ternary complex by FIH-1, HIF-1, and von Hippel-Lindau. The unique environment of the active site and cofactor-binding region revealed in the structure should allow design of selective drugs that can be used in ischemic diseases to promote hypoxia responses.
Collapse
Affiliation(s)
- Cheolju Lee
- Center for Cellular Switch Protein Structure, Korea Research Institute of Bioscience and Biotechnology, 52 Euh-eun-dong, Yuseong-gu, Daejeon 305-806, Korea
| | | | | | | | | |
Collapse
|
361
|
Kim W, Kaelin WG. The von Hippel-Lindau tumor suppressor protein: new insights into oxygen sensing and cancer. Curr Opin Genet Dev 2003; 13:55-60. [PMID: 12573436 DOI: 10.1016/s0959-437x(02)00010-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The von Hippel-Lindau tumor suppressor protein (pVHL) is the substrate-recognition module of an E3 ubiquitin ligase that targets the alpha subunits of hypoxia-inducible factor (HIF) for degradation in the presence of oxygen. Recognition of HIF by pVHL is linked to enzymatic hydroxylation of conserved prolyl residues in the HIF alpha subunits by members of the EGLN family. Dysregulation of HIF-target genes such as vascular endothelial growth factor and transforming growth factor alpha has been implicated in the pathogenesis of renal cell carcinomas and of hemangioblastomas, both of which frequently lack pVHL function.
Collapse
Affiliation(s)
- William Kim
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
362
|
Elkins JM, Hewitson KS, McNeill LA, Seibel JF, Schlemminger I, Pugh CW, Ratcliffe PJ, Schofield CJ. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha. J Biol Chem 2003; 278:1802-6. [PMID: 12446723 DOI: 10.1074/jbc.c200644200] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the transcription factor hypoxia-inducible factor (HIF) is regulated by oxygen-dependent hydroxylation. Under normoxic conditions, hydroxylation of proline residues triggers destruction of its alpha-subunit while hydroxylation of Asn(803) in the C-terminal transactivation domain of HIF-1 alpha (CAD) prevents its interaction with p300. Here we report crystal structures of the asparagine hydroxylase (factor-inhibiting HIF, FIH) complexed with Fe((II)), 2-oxoglutarate cosubstrate, and CAD fragments, which reveal the structural basis of HIF modification. CAD binding to FIH occurs via an induced fit process at two distinct interaction sites. At the hydroxylation site CAD adopts a loop conformation, contrasting with a helical conformation for the same residues when bound to p300. Asn(803) of CAD is buried and precisely orientated in the active site such that hydroxylation occurs at its beta-carbon. Together with structures with the inhibitors Zn((II)) and N-oxaloylglycine, analysis of the FIH-CAD complexes will assist design of hydroxylase inhibitors with proangiogenic properties. Conserved structural motifs within FIH imply it is one of an extended family of Fe((II)) oxygenases involved in gene regulation.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Oxford Centre for Molecular Sciences and the Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
363
|
Höpfl G, Ogunshola O, Gassmann M. Hypoxia and High Altitude. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 543:89-115. [PMID: 14713116 DOI: 10.1007/978-1-4419-8997-0_7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased erythropoietin plasma levels and the consequent augmented production of red blood cells is the best known systemic adaptation to reduced oxygen partial pressure (pO2). Intensive research during the last years revealed that the molecular mechanism behind the regulation of erythropoietin is ubiquitous and has far more implications than first thought. Erythropoietin regulation results from the activation of the hypoxia-inducible factor-1 (HIF-1) pathway under hypoxic conditions. HIF-1 is a heterodimer consisting of an oxygen sensitive--HIF-1--and an oxygen-independent subunit--HIF-1beta (also known as the aryl hydrocarbon receptor nuclear translocator--ARNT). In addition to erythropoietin, more than 30 genes are now known to be up-regulated by HIF-1. Recently, the critical involvement of HIF-1alpha post-translational modifications in the cellular oxygen sensing mechanism was discovered. In this review we will focus on the regulation of the HIF-1 pathway and the cellular oxygen sensor and discuss their implications in high altitude hypoxia.
Collapse
Affiliation(s)
- Gisele Höpfl
- Institute of Veterinary Physiology, University of Zürich, Switzerland
| | | | | |
Collapse
|
364
|
Lee C, Chang JH, Lee HS, Cho Y. Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor. Genes Dev 2002; 16:3199-212. [PMID: 12502741 PMCID: PMC187509 DOI: 10.1101/gad.1046102] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Repression of E2F transcription activity by the retinoblastoma (Rb) tumor suppressor through its interaction with the transactivation domain of the E2F transcription factor is one of the central features of G1/S arrest in the mammalian cell cycle. Deregulation of the Rb-E2F interaction results in hyperproliferation, lack of differentiation, and apoptosis, and can lead to cancer. The 2.2-A crystal structure of the Rb pocket complexed with an 18-residue transactivation-domain peptide of E2F-2 reveals that the boomerang-shaped peptide binds to the highly conserved interface between the A-box and the B-box of the Rb pocket in a bipartite manner. The N-terminal segment of the E2F-2 peptide in an extended beta-strand-like structure interacts with helices from the conserved groove at the A-B interface, whereas the C-terminal segment, which contains one 3(10) helix, binds to a groove mainly formed by A-box helices. The flexibility in the middle of the E2F-2 peptide is essential for the tight association of E2F to the Rb pocket. The binding of Rb to the E2F-2 peptide conceals several conserved residues that are crucial for transcription activation of E2F. We provide the structural basis for the Rb-mediated repression of E2F transcription activity without the requirement of histone-modifying enzymes.
Collapse
Affiliation(s)
- Changwook Lee
- National Creative Research Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, San 31, KyungBook, South Korea
| | | | | | | |
Collapse
|
365
|
Huang LE, Pete EA, Schau M, Milligan J, Gu J. Leu-574 of HIF-1alpha is essential for the von Hippel-Lindau (VHL)-mediated degradation pathway. J Biol Chem 2002; 277:41750-5. [PMID: 12205091 DOI: 10.1074/jbc.m207280200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxygen homeostasis is crucial for a myriad of developmental, physiological, and pathophysiological processes. Hypoxia-inducible factor 1alpha (HIF-1alpha) plays a pivotal role in response to hypoxia by transcriptionally activating target genes involving oxygen uptake, transport, delivery, and consumption. HIF-1alpha activity is regulated primarily through the ubiquitin-proteasome degradation pathway, which targets the oxygen-dependent degradation domain (ODD) of HIF-1alpha. In particular, the von Hippel-Lindau (VHL) protein complex, an E3 ubiquitin ligase, binds to the ODD upon hydroxylation of HIF-1alpha Pro-564. Here, we show that in vivo VHL interacts with the N-terminal as well as the C-terminal ODD independently, supporting the notion of functional redundancy within the ODD. Moreover, we demonstrate that Leu-574 of HIF-1alpha is essential for VHL binding to the C-terminal ODD. Despite the presence of Pro-564, deletion or mutation of Leu-574 resulted in a loss of VHL binding and a gain of protein stability. Furthermore, the identification of Leu-574 redefines the N-terminal activation domain of HIF-1alpha to be constitutively active. Taken together, this study provides new insight into the mechanisms underlying VHL-mediated HIF-1alpha degradation and transcriptional activation, and a molecular basis for drug targeting.
Collapse
Affiliation(s)
- L Eric Huang
- Laboratory of Human Carcinogenesis, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
366
|
McNeill LA, Hewitson KS, Claridge TD, Seibel JF, Horsfall LE, Schofield CJ. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem J 2002; 367:571-5. [PMID: 12215170 PMCID: PMC1222951 DOI: 10.1042/bj20021162] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Revised: 08/29/2002] [Accepted: 09/05/2002] [Indexed: 01/12/2023]
Abstract
Asparagine-803 in the C-terminal transactivation domain of human hypoxia-inducible factor (HIF)-1 alpha-subunit is hydroxylated by factor inhibiting HIF-1 (FIH-1) under normoxic conditions causing abrogation of the HIF-1alpha/p300 interaction. NMR and other analyses of a hydroxylated HIF fragment produced in vitro demonstrate that hydroxylation occurs at the beta-carbon of Asn-803 and imply production of the threo -isomer, in contrast with other known aspartic acid/asparagine hydroxylases that produce the erythro -isomer.
Collapse
Affiliation(s)
- Luke A McNeill
- Oxford Centre for Molecular Sciences, Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, U.K
| | | | | | | | | | | |
Collapse
|
367
|
Ruas JL, Poellinger L, Pereira T. Functional analysis of hypoxia-inducible factor-1 alpha-mediated transactivation. Identification of amino acid residues critical for transcriptional activation and/or interaction with CREB-binding protein. J Biol Chem 2002; 277:38723-30. [PMID: 12133832 DOI: 10.1074/jbc.m205051200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a key regulator of adaptive responses to hypoxia. HIF-1 alpha has two independent transactivation domains (TADs). Whereas the N-terminal TAD (N-TAD) also constitutes a degradation box, the C-terminal TAD (C-TAD) functions in a strictly hypoxia-inducible fashion. Oxygen-dependent hydroxylation of an asparagine residue has recently been reported to regulate C-TAD function by disrupting the interaction with the CH1 domain of the p300/CBP coactivator at normoxia. Here we have performed alanine-scanning mutagenesis of a predicted alpha-helix within the C-TAD of mouse HIF-1 alpha to identify residues important for transactivation and interaction of the C-TAD with transcriptional coactivators. We observed that several hydrophobic residues, Ile(802), Leu(808), Leu(814), Leu(815), and Leu(818), were critical for transactivation and binding to the CH1 domain of CBP in hypoxic cells. Moreover, E812A/E813A and D819A mutations impaired hypoxia-dependent transactivation without disrupting binding to CH1. In the context of full-length HIF-1 alpha, mutation of the leucine residues conferred conformational changes to the protein and significantly reduced the transactivation function as well as functional interaction with the transcriptional coactivators CBP and SRC-1. These mutations also affected intranuclear redistribution of HIF-1 alpha in the presence of CBP, indicating that the integrity of the C-TAD is critical for intracellular localization of mouse HIF-1 alpha.
Collapse
Affiliation(s)
- Jorge L Ruas
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
368
|
Semenza GL. Physiology meets biophysics: visualizing the interaction of hypoxia-inducible factor 1 alpha with p300 and CBP. Proc Natl Acad Sci U S A 2002; 99:11570-2. [PMID: 12186981 PMCID: PMC129309 DOI: 10.1073/pnas.192442299] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Gregg L Semenza
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-3914,USA.
| |
Collapse
|
369
|
Abstract
The von Hippel-Lindau hereditary cancer syndrome was first described about 100 years ago. The unusual clinical features of this disorder predicted a role for the von Hippel-Lindau gene (VHL) in the oxygen-sensing pathway. Indeed, recent studies of this gene have helped to decipher how cells sense changes in oxygen availability, and have revealed a previously unappreciated role of prolyl hydroxylation in intracellular signalling. These studies, in turn, are laying the foundation for the treatment of a diverse set of disorders, including cancer, myocardial infarction and stroke.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
370
|
Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, Elkins JM, Oldham NJ, Bhattacharya S, Gleadle JM, Ratcliffe PJ, Pugh CW, Schofield CJ. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 2002; 277:26351-5. [PMID: 12042299 DOI: 10.1074/jbc.c200273200] [Citation(s) in RCA: 566] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activity of the hypoxia-inducible factor (HIF) complex is controlled by oxygen-dependent hydroxylation of prolyl and asparaginyl residues. Hydroxylation of specific prolyl residues by 2-oxoglutarate (2-OG)-dependent oxygenases mediates ubiquitinylation and proteasomal destruction of HIF-alpha. Hydroxylation of an asparagine residue in the C-terminal transactivation domain (CAD) of HIF-alpha abrogates interaction with p300, preventing transcriptional activation. Yeast two-hybrid assays recently identified factor inhibiting HIF (FIH) as a protein that associates with the CAD region of HIF-alpha. Since FIH contains certain motifs present in iron- and 2-OG-dependent oxygenases we investigated whether FIH was the HIF asparaginyl hydroxylase. Assays using recombinant FIH and HIF-alpha fragments revealed that FIH is the enzyme that hydroxylates the CAD asparagine residue, that the activity is directly inhibited by cobalt(II) and limited by hypoxia, and that the oxygen in the alcohol of the hydroxyasparagine residue is directly derived from dioxygen. Sequence analyses involving FIH link the 2-OG oxygenases with members of the cupin superfamily, including Zn(II)-utilizing phosphomannose isomerase, revealing structural and evolutionary links between these metal-binding proteins that share common motifs.
Collapse
Affiliation(s)
- Kirsty S Hewitson
- Oxford Centre for Molecular Sciences, Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|