351
|
Medeiros R, Baglietto-Vargas D, LaFerla FM. The role of tau in Alzheimer's disease and related disorders. CNS Neurosci Ther 2010; 17:514-24. [PMID: 20553310 DOI: 10.1111/j.1755-5949.2010.00177.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tau, the microtubule-associated protein, forms insoluble filaments that accumulate as neurofibrillary tangles in Alzheimer's disease (AD) and related tauopathies. Under physiological conditions, tau regulates the assembly and maintenance of the structural stability of microtubules. In the diseased brain, however, tau becomes abnormally hyperphosphorylated, which ultimately causes the microtubules to disassemble, and the free tau molecules aggregate into paired helical filaments. A large body of evidence suggests that tau hyperphosphorylation results from perturbation of cellular signaling, mainly through imbalance in the activities of different protein kinases and phosphatases. In AD, it appears that ß-amyloid peptide (Aß) plays a pivotal role in triggering this imbalance. In this review, we summarize our current understanding of the role of tau in AD and other tauopathies, and highlight key issues that need to be addressed to improve the success of developing novel therapies.
Collapse
Affiliation(s)
- Rodrigo Medeiros
- Department of Neurobiology and Behavior and Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
352
|
Gozes I. Tau pathology: predictive diagnostics, targeted preventive and personalized medicine and application of advanced research in medical practice. EPMA J 2010. [PMID: 23199066 PMCID: PMC3405325 DOI: 10.1007/s13167-010-0029-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microtubules are key cytoskeletal elements found in all eukaryotic cells. The microtubule shaft is composed of the heterodimer protein, tubulin and decorated with multiple microtubule associated protein, regulating microtubule function. Tau (tubulin associated unit) or MAPT (microtubule associated protein tau), among the first microtubule associated proteins to be identified, was implicated in microtubule initiation as well as assembly, with increased expression in neurons and specific association with axonal microtubules. Alzheimer’s disease (AD) is the most prevalent tauopathy, exhibiting tau-neurofibrillary tangles associated with cognitive dysfunction. AD is also characterized by β-amyloid plaques. An abundance of tau inclusions, in the absence of β-amyloid deposits, can be found in Pick’s disease, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and other diseases, collectively described as tauopathies. The increase in tau pathology in AD correlates with the associated cognitive decline. The current manuscript touches on the variability as well as common denominators of the various tau pathologies coupled to new approaches/current innovation in treatment of tauopathies in favor of advanced technologies in predictive diagnostics, targeted preventive and personalized medicine (PPPM).
Collapse
Affiliation(s)
- Illana Gozes
- Department of Human Molecular Genetics and Biochemistry The Lily and Avraham Gildor Chair for the Investigation of Growth Factors and The Adams Super Center for Brain Studies Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
353
|
Golde TE, Petrucelli L, Lewis J. Targeting Abeta and tau in Alzheimer's disease, an early interim report. Exp Neurol 2010; 223:252-66. [PMID: 19716367 PMCID: PMC2864363 DOI: 10.1016/j.expneurol.2009.07.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/25/2009] [Accepted: 07/23/2009] [Indexed: 12/28/2022]
Abstract
The amyloid beta (Abeta) and tau proteins, which misfold, aggregate, and accumulate in the Alzheimer's disease (AD) brain, are implicated as central factors in a complex neurodegenerative cascade. Studies of mutations that cause early onset AD and promote Abeta accumulation in the brain strongly support the notion that inhibiting Abeta aggregation will prevent AD. Similarly, genetic studies of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17 MAPT) showing that mutations in the MAPT gene encoding tau lead to abnormal tau accumulation and neurodegeneration. Such genetic studies clearly show that tau dysfunction and aggregation can be central to neurodegeneration, however, most likely in a secondary fashion in relation to AD. Additional pathologic, biochemical, and modeling studies further support the concept that Abeta and tau are prime targets for disease modifying therapies in AD. Treatment strategies aimed at preventing the aggregation and accumulation of Abeta, tau, or both proteins should therefore be theoretically possible, assuming that treatment can be initiated before either irreversible damage is present or downstream, self-sustaining, pathological cascades have been initiated. Herein, we will review recent advances and also potential setbacks with respect to the myriad of therapeutic strategies that are designed to slow down, prevent, or clear the accumulation of either "pathological" Abeta or tau. We will also discuss the need for thoughtful prioritization with respect to clinical development of the preclinically validated modifiers of Abeta and tau pathology. The current number of candidate therapies targeting Abeta is becoming so large that a triage process is clearly needed to insure that resources are invested in a way such that the best candidates for disease modifying therapy are rapidly moved toward clinical trials. Finally, we will discuss the challenges for an appropriate "triage" after potential disease modifying therapies targeting tau and Abeta have entered clinical trials.
Collapse
Affiliation(s)
- Todd E Golde
- Department of Neuroscience, College of Medicine, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
354
|
Brunden KR, Ballatore C, Crowe A, Smith AB, Lee VMY, Trojanowski JQ. Tau-directed drug discovery for Alzheimer's disease and related tauopathies: a focus on tau assembly inhibitors. Exp Neurol 2010; 223:304-10. [PMID: 19744482 PMCID: PMC2864354 DOI: 10.1016/j.expneurol.2009.08.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/21/2009] [Accepted: 08/27/2009] [Indexed: 12/26/2022]
Abstract
The microtubule-associated protein tau forms insoluble filaments that deposit as neurofibrillary tangles (NFTs) in the brains of those with Alzheimer's disease (AD) and other related neurodegenerative disorders. The presence of both NFTs and amyloid beta (Abeta)-containing senile plaques within the brain is required to confirm the diagnosis of AD. However, the demonstration that familial AD can be caused by mutations that result in increased Abeta production has resulted in AD drug discovery strategies that are largely focused on reducing brain Abeta levels, with substantially less emphasis on tau-directed approaches. This trend may be changing, as there are an increasing number of research programs that are exploring ways to reduce NFTs in AD and related tauopathies. We briefly review recent advances in tau-based drug discovery, with an emphasis on the identification of compounds that inhibit the assembly of tau into multimers and fibrils.
Collapse
Affiliation(s)
- Kurt R Brunden
- Center for Neurodegenerative Disease Research, Institute on Aging, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
355
|
Ballatore C, Brunden KR, Piscitelli F, James MJ, Crowe A, Yao Y, Hyde E, Trojanowski JQ, Lee VMY, Smith AB. Discovery of brain-penetrant, orally bioavailable aminothienopyridazine inhibitors of tau aggregation. J Med Chem 2010; 53:3739-47. [PMID: 20392114 PMCID: PMC2872922 DOI: 10.1021/jm100138f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Agents capable of preventing the misfolding and sequestration of the microtubule-stabilizing protein tau into insoluble fibrillar aggregates hold considerable promise for the prevention and/or treatment of neurodegenerative tauopathies such as Alzheimer's disease. Because tauopathies are characterized by amyloidosis that is restricted to the central nervous system (CNS), plausible candidate compounds for in vivo evaluation must both prevent tau fibrillization and achieve significant brain levels. Recently, we reported the discovery of the aminothienopyridazine (ATPZ) class of tau aggregation inhibitors and now describe a series of new analogues that are both effective inhibitors of tau fibrillization and display significant brain-to-plasma exposure ratios after administration to mice. Further, two of the most promising examples, 15 and 16, were found to reach significant brain exposure levels following oral administration. Taken together, these results suggest that examples from the ATPZ class hold promise as candidates for in vivo efficacy studies in animal models of neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Abstract
Alzheimer's disease is a progressive neurodegenerative disease for which no cure exists. There is a substantial need for new therapies that offer improved symptomatic benefit and disease-slowing capabilities. In recent decades there has been substantial progress in understanding the molecular and cellular changes associated with Alzheimer's disease pathology. This has resulted in identification of a large number of new drug targets. These targets include, but are not limited to, therapies that aim to prevent production of or remove the amyloid-beta protein that accumulates in neuritic plaques; to prevent the hyperphosphorylation and aggregation into paired helical filaments of the microtubule-associated protein tau; and to keep neurons alive and functioning normally in the face of these pathologic challenges. We provide a review of these targets for drug development.
Collapse
Affiliation(s)
- Joshua D Grill
- Mary S. Easton Center for Alzheimer's Disease Research, Deane F. Johnson Center for Neurotherapeutics, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | |
Collapse
|
357
|
Methylene blue fails to inhibit Tau and polyglutamine protein dependent toxicity in zebrafish. Neurobiol Dis 2010; 39:265-71. [PMID: 20381619 DOI: 10.1016/j.nbd.2010.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/24/2022] Open
Abstract
Methylene blue is an FDA approved compound with a variety of pharmacologic activities. It inhibits aggregation of several amyloidogenic proteins known to be deposited in neurodegenerative diseases. Recently, it has been proposed that methylene blue shows significant beneficial effects in a phase 2 clinical trial by slowing cognitive decline in Alzheimer's disease patients. To analyze its therapeutic potential, we investigated the effect of methylene blue on neurotoxicity in a zebrafish model for tauopathies. Transgenic expression of the frontotemporal dementia associated Tau-P301L mutation recapitulates a number of the pathological features observed in humans including abnormal phosphorylation and folding of Tau, tangle formation and Tau dependent neuronal loss. Upon incubation of zebrafish larvae with methylene blue, neither abnormal phosphorylation nor neuronal cell loss, reduced neurite outgrowth or a swimming defect were rescued. Methylene blue is biologically active in zebrafish since it reduced aggregation of a huntingtin variant containing a stretch of 102 glutamine residues. However, although huntingtin aggregation was largely prevented by methylene blue, huntingtin-dependent toxicity was unaffected. Our findings are consistent with the hypothesis that toxicity is not necessarily associated with deposition of insoluble amyloid proteins.
Collapse
|
358
|
Abstract
BACKGROUND Advances in health sciences during the last century have increased the average age in industrialized nations. Despite this progress, neurodegenerative diseases that affect higher order thinking and memory continue to increase in prevalence as they take a devastating toll on human productivity in the later years. There is an acute need for new drugs and therapeutic approaches for treating these severe diseases, and also for improving the quality of cognitive function associated with normal aging and in many other disorders and syndromes that present with cognitive dysfunction. OBJECTIVE The purpose of this review is to ascertain the pharmacological approaches being exploited to improve cognition and memory and to determine the most relevant and effective directions taken for new drug discovery. Limitations and difficulties encountered in this effort also are discussed. METHODS This review focuses primarily on compounds already undergoing clinical trials for improving cognition and memory with some discussion of rising new drug targets. RESULTS/CONCLUSION Compounds that act on allosteric sites on neurotransmitter receptors are expected to lead the field with new levels of specificity and reduced side effects. New multi-functional compounds can be designed that can both improve cognition and slow the process of disease.
Collapse
Affiliation(s)
- Jerry J Buccafusco
- Regents' Professor of Pharmacology and Toxicology, Alzheimer's Research Center, Medical College of Georgia, Department of Pharmacology and Toxicology, Augusta, Georgia 30912-2300, USA.
| |
Collapse
|
359
|
Bulic B, Pickhardt M, Mandelkow EM, Mandelkow E. Tau protein and tau aggregation inhibitors. Neuropharmacology 2010; 59:276-89. [PMID: 20149808 DOI: 10.1016/j.neuropharm.2010.01.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 12/13/2022]
Abstract
Alzheimer disease is characterized by pathological aggregation of two proteins, tau and Abeta-amyloid, both of which are considered to be toxic to neurons. In this review we summarize recent advances on small molecule inhibitors of protein aggregation with emphasis on tau, with activities mediated by the direct interference of self-assembly. The inhibitors can be clustered in several compound classes according to their chemical structure, with subsequent description of the structure-activity relationships, showing that hydrophobic interactions are prevailing. The description is extended to the pharmacological profile of the compounds in order to evaluate their drug-likeness, with special attention to toxicity and bioavailability. The collected data indicate that following the improvements of the in vitro inhibitory potencies, the consideration of the in vivo pharmacokinetics is an absolute prerequisite for the development of compounds suitable for a transfer from bench to bedside.
Collapse
Affiliation(s)
- Bruno Bulic
- Center for Advanced European Studies and Research, Bonn, Germany.
| | | | | | | |
Collapse
|
360
|
Arai T, Hasegawa M, Nonoka T, Kametani F, Yamashita M, Hosokawa M, Niizato K, Tsuchiya K, Kobayashi Z, Ikeda K, Yoshida M, Onaya M, Fujishiro H, Akiyama H. Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy. Neuropathology 2010; 30:170-81. [PMID: 20102522 DOI: 10.1111/j.1440-1789.2009.01089.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transactivation response (TAR) DNA-binding protein of Mr 43 kDa (TDP-43) is a major component of the tau-negative and ubiquitin-positive inclusions that characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration which is now referred to as FTLD-TDP. Concurrent TDP-43 pathology has been reported in a variety of other neurodegenerative disorders such as Alzheimer's disease, forming a group of TDP-43 proteinopathy. Accumulated TDP-43 is characterized by phosphorylation and fragmentation. There is a close relationship between the pathological subtypes of FTLD-TDP and the immunoblot pattern of the C-terminal fragments of phosphorylated TDP-43. These results suggest that proteolytic processing of accumulated TDP-43 may play an important role for the pathological process. In cultured cells, transfected C-terminal fragments of TDP-43 are more prone to form aggregates than full-length TDP-43. Transfecting the C-terminal fragment of TDP-43 harboring pathogenic mutations of TDP-43 gene identified in familial and sporadic ALS cases into cells enhanced the aggregate formation. Furthermore, we found that methylene blue and dimebon inhibit aggregation of TDP-43 in these cellular models. Understanding the mechanism of phosphorylation and truncation of TDP-43 and aggregate formation may be crucial for clarifying the pathogenesis of TDP-43 proteinopathy and for developing useful therapeutics.
Collapse
Affiliation(s)
- Tetsuaki Arai
- Department of Psychogeriatrics, Tokyo Institute of Psychiatry, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Neugroschl J, Sano M. Current treatment and recent clinical research in Alzheimer's disease. THE MOUNT SINAI JOURNAL OF MEDICINE, NEW YORK 2010; 77:3-16. [PMID: 20101716 PMCID: PMC2922037 DOI: 10.1002/msj.20165] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transition from either epidemiological observation or the bench to rigorously tested clinical trials in patients with Alzheimer's disease is crucial in understanding which treatments are beneficial to patients. The amyloid hypothesis has undergone scrutiny recently, as many trials aimed at reducing amyloid and plaque have been completed or are in the testing phase. Examples include modulation of the secretases involved in beta amyloid formation, anti-aggregation agents, and immunotherapeutic trials. Other therapies targeting hyperphosphorylated tau and novel targets such as enhancement of mitochondrial function, serotonin receptors, receptor for advanced glycation end products, and nerve growth factor, as well as other strategies, are discussed. A brief review of the current Food and Drug Administration-approved treatments is included.
Collapse
|
362
|
Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer's disease. J Neurochem 2009; 112:1353-67. [PMID: 19943854 DOI: 10.1111/j.1471-4159.2009.06511.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We are analyzing the physiological function of Tau protein and its abnormal pathological behavior when this protein is self-assemble into pathological filaments. These aggregates of Tau protein are the main components in many diseases such as Alzheimer's disease (AD). Recent studies suggest that Tau acquires complex oligomeric conformations which may be toxic. In this review, we emphasized the possible phenomena implicated in the formation of these oligomers. Studies with chemical inductors indicates that the microtubule-binding domain is the most important region involved in Tau aggregation and showed the requirement of a pre-arrange Tau in abnormal conformation to promote self-assembly. Transgenic animal models and AD neuropathology studies showed that post-translational modifications are also implicated in Tau aggregation and neural cell death during AD development. Therefore, we analyzed some events that could be present during Tau aggregation. Finally, we included a brief discussion of the possible relation between glucose metabolism dysfunction in AD, and data of Tau aggregation by using aggregation inhibitors. In conclusion, the process Tau aggregation deserves further investigations to design possible therapeutic targets to inhibit the toxicity of these aggregates and it is possible that could be extended to other diseases with similar etiology.
Collapse
Affiliation(s)
- Marco A Meraz-Ríos
- Department of Molecular Biomedicine, Center of Research and Advanced Studies CINVESTAV-IPN, México DF, Mexico.
| | | | | | | | | |
Collapse
|
363
|
Abstract
Alzheimer's disease and other tauopathies have recently been clustered with a group of nervous system disorders termed protein misfolding diseases. The common element established between these disorders is their requirement for processing by the chaperone complex. It is now clear that the individual components of the chaperone system, such as Hsp70 and Hsp90, exist in an intricate signaling network that exerts pleiotropic effects on a host of substrates. Therefore, we have endeavored to identify new compounds that can specifically regulate individual components of the chaperone family. Here, we hypothesized that chemical manipulation of Hsp70 ATPase activity, a target that has not previously been pursued, could illuminate a new pathway toward chaperone-based therapies. Using a newly developed high-throughput screening system, we identified inhibitors and activators of Hsp70 enzymatic activity. Inhibitors led to rapid proteasome-dependent tau degradation in a cell-based model. Conversely, Hsp70 activators preserved tau levels in the same system. Hsp70 inhibition did not result in general protein degradation, nor did it induce a heat shock response. We also found that inhibiting Hsp70 ATPase activity after increasing its expression levels facilitated tau degradation at lower doses, suggesting that we can combine genetic and pharmacologic manipulation of Hsp70 to control the fate of bound substrates. Disease relevance of this strategy was further established when tau levels were rapidly and substantially reduced in brain tissue from tau transgenic mice. These findings reveal an entirely novel path toward therapeutic intervention of tauopathies by inhibition of the previously untargeted ATPase activity of Hsp70.
Collapse
|
364
|
Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 2009; 8:783-93. [PMID: 19794442 DOI: 10.1038/nrd2959] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuronal inclusions comprised of the microtubule-associated protein tau are found in numerous neurodegenerative diseases, commonly known as tauopathies. In Alzheimer's disease - the most prevalent tauopathy - misfolded tau is probably a key pathological agent. The recent failure of amyloid-beta-targeted therapeutics in Phase III clinical trials suggests that it is timely and prudent to consider alternative drug discovery strategies for Alzheimer's disease. Here, we focus on strategies directed at reducing misfolded tau and compensating for the loss of normal tau function.
Collapse
|
365
|
Methylene blue and Alzheimer's disease. Biochem Pharmacol 2009; 78:927-32. [DOI: 10.1016/j.bcp.2009.04.034] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 03/23/2009] [Accepted: 04/27/2009] [Indexed: 01/05/2023]
|
366
|
Neugroschl J, Sano M. An update on treatment and prevention strategies for Alzheimer's disease. Curr Neurol Neurosci Rep 2009; 9:368-76. [PMID: 19664366 PMCID: PMC6485240 DOI: 10.1007/s11910-009-0054-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aging of the population, the incidence and prevalence of Alzheimer's disease will grow, increasing the burden on individuals and society. While ameliorating symptoms, the currently available treatments approved by the US Food and Drug Administration do not halt progression or cure the illness. This article discusses recent data on treatment strategies targeting amyloid and tau pathology. Novel therapeutic strategies such as inhibitors of receptors for advanced glycation end products (RAGE), potential mitochondrial modification with Dimebon, anti-inflammatory approaches, and cholesterol-lowering agents are also reviewed. An update on results from pharmacologic and nonpharmacologic prevention trials is provided.
Collapse
Affiliation(s)
- Judith Neugroschl
- James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | | |
Collapse
|
367
|
Korenova M, Stozicka Z. Improved behavioral response as a valid biomarker for drug screening program in transgenic rodent models of tauopathies. Cell Mol Neurobiol 2009; 29:937-44. [PMID: 19283467 PMCID: PMC11505800 DOI: 10.1007/s10571-009-9378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/24/2009] [Indexed: 11/25/2022]
Abstract
Neurodegenerative tauopathies are defined as a group of dementia and movement disorders characterized by prominent filamentous tau inclusions and degeneration located within certain brain regions. Their common sign is a presence of proteinaceous aggregates composed of hyperphosphorylated and truncated tau proteins. The molecular mechanisms of the disease still remain unresolved, therefore transgenic organisms displaying tau-related neurodegenerative cascade have been created to allow decoding of individual pathways involved in human pathological conditions. Moreover, use of transgenic model organisms enables the application of potential therapeutic approaches. The expression of mutated or misfolded tau as a transgene in vivo leads to significant alteration of neurobehavioral features of experimental animal, therefore detailed classification of behavioral phenotype become one of the first crucial analyses, while it functionally correlates with central nervous system impairment. Currently, two major types of behavioral impairment have been described in transgenic rodent models of tauopathies, (1) progressive motor impairment associated with muscular weakness and premature death and (2) age-related impairment of cognitive functions attended with unaffected motor status. Up to the present, only transgenic models displaying motor impairment were successfully applied into the drug trials targeting misfolded tau protein, despite their behavioral inconsistence with clinical profile of progressive human tauopathy. The aim of this study was, therefore, to summarize the pros and cons of used transgenic rodent models mimicking human tauopathies in connection with development of therapeutic strategies.
Collapse
Affiliation(s)
- Miroslava Korenova
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava 845 10, Slovak Republic.
| | | |
Collapse
|
368
|
Kontsekova E, Ivanovova N, Handzusova M, Novak M. Chaperone-like antibodies in neurodegenerative tauopathies: implication for immunotherapy. Cell Mol Neurobiol 2009; 29:793-8. [PMID: 19214739 PMCID: PMC11506202 DOI: 10.1007/s10571-009-9355-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 01/22/2009] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) belongs to the category of neurodegenerative tauopathies, which are characterized by intracellular and extracellular accumulation of misfolded tau. Structurally, tau belongs to the family of the intrinsically disordered proteins that are characterized by the absence of well-defined three-dimensional structure of the free protein. In the course of neurodegeneration, intrinsically disordered tau protein gains highly ordered misfolded structure. Currently it is widely accepted that misfolded tau proteins represent viable drug target for prospective therapeutic development. Until now several therapeutic approaches targeting misfolded tau were developed. Monoclonal antibodies with chaperone-like activities that would be able to neutralize the toxic gain of function of misfolded tau represent novel promising immunological concept in the treatment of AD. We suggest that antibodies as specific chaperones targeting misfolded proteins may serve as potent therapeutic drugs of AD as well as others conformational diseases.
Collapse
Affiliation(s)
- Eva Kontsekova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10 Slovak Republic
| | - Natalia Ivanovova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10 Slovak Republic
| | - Martina Handzusova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10 Slovak Republic
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10 Slovak Republic
- Axon Neuroscience, Renweg 95b, Vienna, 1030 Austria
| |
Collapse
|
369
|
Crowe A, Huang W, Ballatore C, Johnson RL, Hogan AML, Huang R, Wichterman J, McCoy J, Huryn D, Auld DS, Smith AB, Inglese J, Trojanowski JQ, Austin CP, Brunden KR, Lee VMY. Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry 2009; 48:7732-45. [PMID: 19580328 PMCID: PMC2773749 DOI: 10.1021/bi9006435] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inclusions comprised of fibrils of the microtubule- (MT-) associated protein tau are found in the brains of those with Alzheimer's disease (AD) and other neurodegenerative tauopathies. The pathology that is observed in these diseases is believed to result from the formation of toxic tau oligomers or fibrils and/or from the loss of normal tau function due to its sequestration into insoluble deposits. Hence, small molecules that prevent tau oligomerization and/or fibrillization might have therapeutic value. Indeed, examples of such compounds have been published, but nearly all have properties that render them unsuitable as drug candidates. For these reasons, we conducted quantitative high-throughput screening (qHTS) of approximately 292000 compounds to identify drug-like inhibitors of tau assembly. The fibrillization of a truncated tau fragment that contains four MT-binding domains was monitored in an assay that employed complementary thioflavin T fluorescence and fluorescence polarization methods. Previously described classes of inhibitors as well as new scaffolds were identified, including novel aminothienopyridazines (ATPZs). A number of ATPZ analogues were synthesized, and structure-activity relationships were defined. Further characterization of representative ATPZ compounds showed they do not interfere with tau-mediated MT assembly, and they are significantly more effective at preventing the fibrillization of tau than the Abeta(1-42) peptide which forms AD senile plaques. Thus, the ATPZ molecules described here represent a novel class of tau assembly inhibitors that merit further development for testing in animal models of AD-like tau pathology.
Collapse
Affiliation(s)
- Alex Crowe
- Center for Neurodegenerative Disease Research, Institute on Aging, and Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Wenwei Huang
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892
| | - Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Ronald L. Johnson
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892
| | - Anne-Marie L. Hogan
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruili Huang
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer Wichterman
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892
| | - Joshua McCoy
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892
| | - Donna Huryn
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Douglas S. Auld
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - James Inglese
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging, and Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Kurt R. Brunden
- Center for Neurodegenerative Disease Research, Institute on Aging, and Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, and Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
370
|
Congdon EE, Figueroa YH, Wang L, Toneva G, Chang E, Kuret J, Conrad C, Duff KE. Inhibition of tau polymerization with a cyanine dye in two distinct model systems. J Biol Chem 2009; 284:20830-9. [PMID: 19478088 PMCID: PMC2742848 DOI: 10.1074/jbc.m109.016089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/22/2009] [Indexed: 01/02/2023] Open
Abstract
In a host of neurodegenerative diseases Tau, a microtubule-associated protein, aggregates into insoluble lesions within neurons. Previous studies have utilized cyanine dyes as Tau aggregation inhibitors in vitro. Herein we utilize cyanine dye 3,3'-diethyl-9-methyl-thiacarbocyanine iodide (C11) to modulate Tau polymerization in two model systems, an organotypic slice culture model derived from Tau transgenic mice and a split green fluorescent protein complementation assay in Tau-expressing cells. In slice cultures, submicromolar concentrations (0.001 microm) of C11 produced a significant reduction of aggregated Tau and a corresponding increase in unpolymerized Tau. In contrast, treatment with a 1 microm dose promoted aggregation of Tau. These results were recapitulated in the complementation assay where administration of 1 microm C11 produced a significant increase in polymerized Tau relative to control, whereas treatment of cells with 0.01 microm C11 resulted in a marked reduction of aggregated Tau. In the organotypic slice cultures, modulation of Tau aggregation was independent of changes in phosphorylation at disease and microtubule binding relevant epitopes for both dosing regimes. Furthermore, treatment with 0.001 microm C11 resulted in a decrease in both total filament mass and number. There was no evidence of apoptosis or loss of synaptic integrity at either dose, however, whereas submicromolar concentrations of C11 did not interfere with microtubule binding, higher doses resulted in a decrease in the levels of microtubule-bound Tau. Overall, a cyanine dye can dissociate aggregated Tau in an ex vivo model of tauopathy with little toxicity and exploration of the use of these type of dyes as therapeutic agents is warranted.
Collapse
Affiliation(s)
- Erin E. Congdon
- From the Department of Pathology, Taub Institute, Columbia University and Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 and
| | - Yvette H. Figueroa
- From the Department of Pathology, Taub Institute, Columbia University and Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 and
| | - Lili Wang
- From the Department of Pathology, Taub Institute, Columbia University and Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 and
| | - Galina Toneva
- From the Department of Pathology, Taub Institute, Columbia University and Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 and
| | | | - Jeff Kuret
- Department of Cellular and Molecular Biology, Ohio State University, Columbus, Ohio 43210
| | - Christopher Conrad
- From the Department of Pathology, Taub Institute, Columbia University and Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 and
| | - Karen E. Duff
- From the Department of Pathology, Taub Institute, Columbia University and Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 and
| |
Collapse
|
371
|
Yamashita M, Nonaka T, Arai T, Kametani F, Buchman VL, Ninkina N, Bachurin SO, Akiyama H, Goedert M, Hasegawa M. Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett 2009; 583:2419-24. [PMID: 19560462 DOI: 10.1016/j.febslet.2009.06.042] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/10/2009] [Accepted: 06/22/2009] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) are major neurodegenerative diseases with TDP-43 pathology. Here we investigated the effects of methylene blue (MB) and dimebon, two compounds that have been reported to be beneficial in phase II clinical trials of Alzheimer's disease (AD), on the formation of TDP-43 aggregates in SH-SY5Y cells. Following treatment with 0.05 microM MB or 5 microM dimebon, the number of TDP-43 aggregates was reduced by 50% and 45%, respectively. The combined use of MB and dimebon resulted in a 80% reduction in the number. These findings were confirmed by immunoblot analysis. The results indicate that MB and dimebon may be useful for the treatment of ALS, FTLD-U and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Makiko Yamashita
- Department of Molecular Neurobiology, Tokyo Institute of Psychiatry, Tokyo Metropolitan Organization for Medical Reearch, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Chang E, Congdon EE, Honson NS, Duff KE, Kuret J. Structure-activity relationship of cyanine tau aggregation inhibitors. J Med Chem 2009; 52:3539-47. [PMID: 19432420 PMCID: PMC2745078 DOI: 10.1021/jm900116d] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A structure-activity relationship for symmetrical cyanine inhibitors of human tau aggregation was elaborated using a filter trap assay. Antagonist activity depended on cyanine heterocycle, polymethine bridge length, and the nature of meso- and N-substituents. One potent member of the series, 3,3'-diethyl-9-methylthiacarbocyanine iodide (compound 11), retained submicromolar potency and had calculated physical properties consistent with blood-brain barrier and cell membrane penetration. Exposure of organotypic slices prepared from JNPL3 transgenic mice (which express human tau harboring the aggregation prone P301L tauopathy mutation) to compound 11 for one week revealed a biphasic dose response relationship. Low nanomolar concentrations decreased insoluble tau aggregates to half those observed in slices treated with vehicle alone. In contrast, high concentrations (> or =300 nM) augmented tau aggregation and produced abnormalities in tissue tubulin levels. These data suggest that certain symmetrical carbocyanine dyes can modulate tau aggregation in the slice biological model at concentrations well below those associated with toxicity.
Collapse
Affiliation(s)
- Edward Chang
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Erin E. Congdon
- Taub Institute / Department of Pathology, Columbia University and Dept of Integrative Neuroscience, New York State Psychiatric Institute, New York, USA
| | - Nicolette S. Honson
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Karen E. Duff
- Taub Institute / Department of Pathology, Columbia University and Dept of Integrative Neuroscience, New York State Psychiatric Institute, New York, USA
| | - Jeff Kuret
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
373
|
Bulic B, Pickhardt M, Schmidt B, Mandelkow EM, Waldmann H, Mandelkow E. Development of tau aggregation inhibitors for Alzheimer's disease. Angew Chem Int Ed Engl 2009; 48:1740-52. [PMID: 19189357 DOI: 10.1002/anie.200802621] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A variety of human diseases are suspected to be directly linked to protein misfolding. Highly organized protein aggregates, called amyloid fibrils, and aggregation intermediates are observed; these are considered to be mediators of cellular toxicity and thus attract a great deal of attention from investigators. Neurodegenerative pathologies such as Alzheimer's disease account for a major part of these protein misfolding diseases. The last decade has witnessed a renaissance of interest in inhibitors of tau aggregation as potential disease-modifying drugs for Alzheimer's disease and other "tauopathies". The recent report of a phase II clinical trial with the tau aggregation inhibitor MTC could hold promise for the validation of the concept. This Review summarizes the available data concerning small-molecule inhibitors of tau aggregation from a medicinal chemistry point of view.
Collapse
Affiliation(s)
- Bruno Bulic
- Max-Planck-Institute for Molecular Physiology, Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
374
|
Savage MJ, Gingrich DE. Advances in the development of kinase inhibitor therapeutics for Alzheimer's disease. Drug Dev Res 2009. [DOI: 10.1002/ddr.20287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
375
|
Methylene Blue Provides Behavioral and Metabolic Neuroprotection Against Optic Neuropathy. Neurotox Res 2009; 15:260-73. [DOI: 10.1007/s12640-009-9027-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/02/2008] [Accepted: 10/20/2008] [Indexed: 12/21/2022]
|
376
|
Bulic B, Pickhardt M, Schmidt B, Mandelkow EM, Waldmann H, Mandelkow E. Entwicklung von Inhibitoren der Tau-Aggregation bei Morbus Alzheimer. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802621] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
377
|
Rafii MS, Aisen PS. Recent developments in Alzheimer's disease therapeutics. BMC Med 2009; 7:7. [PMID: 19228370 PMCID: PMC2649159 DOI: 10.1186/1741-7015-7-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/19/2009] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive; in the United States alone, the estimated direct and indirect annual cost of patient care is at least $100 billion. Current FDA-approved drugs for Alzheimer's disease do not prevent or reverse the disease, and provide only modest symptomatic benefits. Driven by the clear unmet medical need and a growing understanding of the molecular pathophysiology of Alzheimer's disease, the number of agents in development has increased dramatically in recent years. Truly *'disease-modifying' therapies that target the underlying mechanisms of Alzheimer's disease have now reached late stages of human clinical trials. Primary targets include beta-amyloid, whose presence and accumulation in the brain is thought to contribute to the development of Alzheimer's disease, and tau protein which, when hyperphosphorylated, results in the self-assembly of tangles of paired helical filaments also believed to be involved in the pathogenesis of Alzheimer's disease. In this review, we briefly discuss the current status of Alzheimer's disease therapies under study, as well the scientific context in which they have been developed.
Collapse
Affiliation(s)
- Michael S Rafii
- Department of Neurosciences, University of California-San Diego, Gilman Drive M/C 0949, La Jolla, CA 92093, USA.
| | | |
Collapse
|
378
|
Deiana S, Harrington CR, Wischik CM, Riedel G. Methylthioninium chloride reverses cognitive deficits induced by scopolamine: comparison with rivastigmine. Psychopharmacology (Berl) 2009; 202:53-65. [PMID: 19005644 DOI: 10.1007/s00213-008-1394-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE The cholinergic system is involved in cognition as well as in age-related cognitive decline and Alzheimer disease (AD). Cholinergic enhancers ameliorate AD symptoms and represent the main current therapy for AD. MTC (Methylthioninium chloride), an antioxidant with metabolism-enhancing properties may be a novel candidate with pro-cognitive capacities. OBJECTIVES This study was performed: (1) to assess the pro-cognitive efficacy of MTC and establish its dose-response; (2) to compare the efficacy of MTC with rivastigmine and (3) to determine the potential for combination therapy by co-administration of MTC and rivastigmine. METHODS Spatial cognition of female NMRI mice was tested in a reference memory water maze task. Subjects received intra-peritoneal injections of scopolamine (0.5 mg/kg) followed by vehicle, and/or MTC and/or rivastigmine (0.15-4 mg/kg MTC; 0.1-0.5 mg/kg rivastigmine) in mono or combination treatment. RESULTS Scopolamine treatment prevented spatial learning in NMRI female mice and the deficit was reversed by both rivastigmine and MTC in a dose-dependent manner. Mono-therapy with high doses of rivastigmine (>0.5 mg/kg) caused severe side effects but MTC was safe up to 4 mg/kg. Co-administration of sub-effective doses of both drugs acted synergistically in reversing learning deficits and scopolamine-induced memory impairments. CONCLUSIONS In our model, MTC reversed the spatial learning impairment. When combined with the ChEI rivastigmine, the effect of MTC appeared to be amplified indicating that combination therapy could potentially improve not only symptoms but also contribute beneficially to neuronal metabolism by minimising side effects at lower doses.
Collapse
Affiliation(s)
- Serena Deiana
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, Scotland
| | | | | | | |
Collapse
|
379
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
380
|
|
381
|
Abstract
Neurofibrillary tangles are a characteristic hallmark of Alzheimer's and other neurodegenerative diseases, such as Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). These diseases are summarized as tauopathies, because neurofibrillary tangles are composed of intracellular aggregates of the microtubule-associated protein tau. The molecular mechanisms of tau-mediated neurotoxicity are not well understood; however, pathologic hyperphosphorylation and aggregation of tau play a central role in neurodegeneration and neuronal dysfunction. The present review, therefore, focuses on therapeutic approaches that aim to inhibit tau phosphorylation and aggregation or to dissolve preexisting tau aggregates. Further experimental therapy strategies include the enhancement of tau clearance by activation of proteolytic, proteasomal, or autophagosomal degradation pathways or anti-tau directed immunotherapy. Hyperphosphorylated tau does not bind microtubules, leading to microtubule instability and transport impairment. Pharmacological stabilization of microtubule networks might counteract this effect. In several tauopathies there is a shift toward four-repeat tau isoforms, and interference with the splicing machinery to decrease four-repeat splicing might be another therapeutic option.
Collapse
Affiliation(s)
- Anja Schneider
- grid.7450.60000000123644210Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Strasse 5, 37075 Goettingen, Germany
- grid.419522.90000000106686902Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| | - Eckhard Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
382
|
Gazova Z, Bellova A, Daxnerova Z, Imrich J, Kristian P, Tomascikova J, Bagelova J, Fedunova D, Antalik M. Acridine derivatives inhibit lysozyme aggregation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1261-70. [DOI: 10.1007/s00249-008-0313-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/11/2008] [Indexed: 01/21/2023]
|
383
|
Bulic B, Pickhardt M, Khlistunova I, Biernat J, Mandelkow EM, Mandelkow E, Waldmann H. Rhodanine-based tau aggregation inhibitors in cell models of tauopathy. Angew Chem Int Ed Engl 2008; 46:9215-9. [PMID: 17985339 DOI: 10.1002/anie.200704051] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bruno Bulic
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
384
|
Bruchey AK, Gonzalez-Lima F. Behavioral, Physiological and Biochemical Hormetic Responses to the Autoxidizable Dye Methylene Blue. AMERICAN JOURNAL OF PHARMACOLOGY AND TOXICOLOGY 2008; 3:72-79. [PMID: 20463863 PMCID: PMC2867617 DOI: 10.3844/ajptsp.2008.72.79] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The goals of this review were to identify methylene blue (MB) as a compound that follows hormetic behavior for a wide range of effects and to address the question of what is unique about MB that could account for its wide applicability and hormetic behavior as a drug. The MB hormetic dose-response relationship is exemplified by an increase in various behavioral, physiological and biochemical responses with increasing dose, followed by a decrease in the same responses with an even higher dose, until the responses are equal to control responses. With MB doses increasing beyond the hormetic zone, the responses decrease even further, until they are below the control responses. At doses spanning its hormetic zone, MB can increase select responses until they are 130-160% of control. For example, low doses of MB produce maximum behavioral and biochemical responses with averages of approximately 140% of control. As MB dose is raised outside the hormetic zone the response decreases below the control response, as exemplified by MB's ability to increase cytochrome oxidase activity at intermediate doses, while decreasing cytochrome oxidase activity at higher doses. It is proposed that MB's autoxidizable chemical property may be responsible for its unique biological action as both a metabolic energy enhancer and antioxidant that is frequently characterized by hormetic dose-response relationships.
Collapse
Affiliation(s)
- Aleksandra K Bruchey
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas 78712
| | | |
Collapse
|
385
|
Skovronsky DM, Lee VMY, Trojanowski JQ. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:151-70. [PMID: 18039111 DOI: 10.1146/annurev.pathol.1.110304.100113] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract Neurodegenerative diseases as diverse as Alzheimer's, Parkinson's, and Creutzfeldt-Jakob disease share a common pathogenetic mechanism involving aggregation and deposition of misfolded proteins, which leads to progressive central nervous system disease. Although the type of aggregated protein and the regional and cellular distribution of deposition vary from disease to disease, these disorders may all be linked by similar pathways of protein aggregation with fibril formation and amyloid deposition. This perspective on pathogenesis suggests that a wide variety of neurodegenerative diseases can be grouped mechanistically as brain amyloidoses, an outlook that yields novel insights into potential therapeutic approaches that may be applicable across the broad spectrum of neurodegenerative disease.
Collapse
|
386
|
Bulic B, Pickhardt M, Khlistunova I, Biernat J, Mandelkow EM, Mandelkow E, Waldmann H. Rhodanine-Based Tau Aggregation Inhibitors in Cell Models of Tauopathy. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200704051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
387
|
Ballatore C, Lee VMY, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 2007; 8:663-72. [PMID: 17684513 DOI: 10.1038/nrn2194] [Citation(s) in RCA: 1607] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Advances in our understanding of the mechanisms of tau-mediated neurodegeneration in Alzheimer's disease (AD) and related tauopathies, which are characterized by prominent CNS accumulations of fibrillar tau inclusions, are rapidly moving this previously underexplored disease pathway to centre stage for disease-modifying drug discovery efforts. However, controversies abound concerning whether or not the deleterious effects of tau pathologies result from toxic gains-of-function by pathological tau or from critical losses of normal tau function in the disease state. This Review summarizes the most recent advances in our knowledge of the mechanisms of tau-mediated neurodegeneration to forge an integrated concept of those tau-linked disease processes that drive the onset and progression of AD and related tauopathies.
Collapse
Affiliation(s)
- Carlo Ballatore
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, Pennsylvania 19104-4283, USA
| | | | | |
Collapse
|
388
|
Crowe A, Ballatore C, Hyde E, Trojanowski JQ, Lee VMY. High throughput screening for small molecule inhibitors of heparin-induced tau fibril formation. Biochem Biophys Res Commun 2007; 358:1-6. [PMID: 17482143 PMCID: PMC2646256 DOI: 10.1016/j.bbrc.2007.03.056] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/10/2007] [Indexed: 11/30/2022]
Abstract
A library of approximately 51,000 compounds was interrogated by high throughput screening (HTS) using a heparin-induced tau fibrillization assay. HTS was conducted with bacterially expressed recombinant tau fragment K18 and the reaction was monitored by thioflavine T fluorescence. Hits meeting criteria set for selection in HTS were further evaluated in a panel of assays designed (a) to confirm the initial results and (b) to identify possible false positives arising from non-specific mechanisms or assay-dependent artifacts. Two 2,3-di(furan-2-yl)-quinoxalines were confirmed as inhibitors of tau fibrillization with IC(50)s in the low micromolar range (l-3 microM). Among false positive hits, members of the pyrimidotriazines, benzofurans, porphyrins, and anthraquinone, inhibited tau fibrillization by generating peroxides via catalytic redox cycles due to the reducing agent dithiothreitol (DTT) in the assay. This study delineates focused strategies for HTS of tau fibrillization inhibitors that are relevant to drug discovery for Alzheimer's disease and related tauopathies.
Collapse
Affiliation(s)
- Alex Crowe
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA 19104
| | - Carlo Ballatore
- Department of Chemistry, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323
| | - Edward Hyde
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA 19104
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA 19104
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
389
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia in industrialized nations. If more effective therapies are not developed that either prevent AD or block progression of the disease in its very early stages, the economic and societal cost of caring for AD patients will be devastating. Only two types of drugs are currently approved for the treatment of AD: inhibitors of acetyl cholinesterase, which symptomatically enhance cognitive state to some degree but are not disease modifying; and the adamantane derivative, memantine. Memantine preferentially blocks excessive NMDA receptor activity without disrupting normal receptor activity and is thought to be a neuroprotective agent that blocks excitotoxicty. Memantine therefore may have a potentially disease modifying effect in multiple neurodegenerative conditions. An improved understanding of the pathogeneses of AD has now led to the identification of numerous therapeutic targets designed to alter amyloid beta protein (Abeta) or tau accumulation. Therapies that alter Abeta and tau through these various targets are likely to have significant disease modifying effects. Many of these targets have been validated in proof of concept studies in preclinical animal models, and some potentially disease modifying therapies targeting Abeta or tau are being tested in the clinic. This review will highlight both the promise of and the obstacles to developing such disease modifying AD therapies.
Collapse
Affiliation(s)
- Todd E Golde
- Mayo Clinic College of Medicine, Department of Neuroscience, Mayo Clinic Jacksonville 4500 San Pablo Road., Jacksonville, Florida 32224, USA.
| |
Collapse
|
390
|
Mosnaim AD, Ranade VV, Wolf ME, Puente J, Antonieta Valenzuela M. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am J Ther 2006; 13:261-73. [PMID: 16772768 DOI: 10.1097/01.mjt.0000212897.20458.63] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The chemical structure of phenothiazine provides a most valuable molecular template for the development of agents able to interact with a wide variety of biological processes. Synthetic phenothiazines (with aliphatic, methylpiperazine, piperazine-ethanol, piperazine-ethyl, or piperidine side-chain) and/or phenothiazine-derived agents e.g., thioxanthenes, benzepines, imonostilbenes, tricyclic antidepressants, dimetothiazine, and cyproheptadine have been effective in the treatment of a number of medical conditions with widely different etiology. These include various currently clinically used drugs for their significant antihistamic, antipsychotic, anticholinergic (antiparkinson), antipruritic, and/or antiemetic properties. They are also employed, although to a minor extent, as antidepressants, antispasmodics, analgesics, and antiarrhythemics. Some of these agents are also useful as anti-inflammatory, coronary vasodilator, radioprotective, sedative, antitussive, and skeletal muscle-relaxing medication. Still, others show different degrees of effectiveness as antibacterials, anthelmintics, antimalarials, or local anesthetics; a few are valuable in the control of acute migraine attacks and intractable hiccough. Adding to the seemingly ever-expanding therapeutic use of phenothiazine derivatives, a number of "old" and newly synthesized compounds e.g., "half-mustard-type" and benzo[alpha]phenothiazines, appear to be helpful as multidrug resistance modifiers, a property of particular importance in cancer chemotherapy. Some phenothiazines inhibit human plasmatic leucine-enkephalin aminopeptidase(s), enzymes known to regulate the turnover rate of a wide range of bioactive substances. These findings could lead to the design of new therapeutic treatment modalities for conditions such as Alzeimer's and Creutzfeldt-Jakob disease. Hopefully, this work will help to the rational design of new and improved pharmacological approaches based on a better understanding of the correlation between chemical structure, pharmacodynamic properties, and pharmacological activity of various phenothiazines and phenothiazine-derived classes of drugs.
Collapse
Affiliation(s)
- Aron D Mosnaim
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, N. Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
391
|
von Bergen M, Barghorn S, Jeganathan S, Mandelkow EM, Mandelkow E. Spectroscopic Approaches to the Conformation of Tau Protein in Solution and in Paired Helical Filaments. NEURODEGENER DIS 2006; 3:197-206. [PMID: 17047358 DOI: 10.1159/000095257] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The abnormal aggregation of the microtubule-associated protein tau into paired helical filaments is one the hallmarks of Alzheimer's disease. This aggregation is based in the partial formation of beta-structure. In contrast, the soluble protein shows a mostly random coil structure, as judged by circular dichroism, Fourier transform infrared, X-ray scattering and biochemical assays. Here, we review the basis of the natively unstructured character of tau, as well as recent studies of residual structure and long-range interactions between different domains of the protein. Analysis of the primary structure reveals a very low content of hydrophobic amino acids and a high content of charged residues, both of which tend to counteract a well-folded globular state of proteins. In the case of tau, the low overall hydrophobicity is sufficient to explain the lack of folding. This is in contrast to other proteins which also carry an excess charge at physiological pH. By tryptophan scanning mutagenesis and fluorimetry we found that most of the sequence is solvent exposed. Analysis of the hydrodynamic radii confirms a mostly random coil structure of various tau isoforms and tau domains. The proteins can be further expanded by denaturation with GdHCl which indicates some global folding. This was substantiated by a FRET-based approach where the distances between different domains of tau were determined. The combined data show that tau is mostly disordered and flexible but tends to assume a hairpin-like overall fold which may be important in the transition to a pathological aggregate.
Collapse
Affiliation(s)
- M von Bergen
- Max Planck Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
392
|
Skrabana R, Sevcik J, Novak M. Intrinsically disordered proteins in the neurodegenerative processes: formation of tau protein paired helical filaments and their analysis. Cell Mol Neurobiol 2006; 26:1085-97. [PMID: 16779670 PMCID: PMC11731881 DOI: 10.1007/s10571-006-9083-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 05/01/2006] [Indexed: 01/24/2023]
Abstract
1. Several intrinsically disordered proteins (IDPs) play principal role in the neurodegenerative processes of various types. Among them, alpha-synuclein is involved in Parkinson's disease, prion protein in transmissible spongiform encephalopathies, and tau protein in Alzheimer's disease (AD) and related tauopathies. Neuronal damage in AD is accompanied by the presence of tau protein fibrils composed of paired helical filaments (PHF). 2. Tau protein represents a typical IDP. IDPs do not exhibit any stable secondary structure in the free form, but they are able to fold after binding to targets and contain regions with large propensity to adopt a defined type of secondary structure. Binding-folding event at tau protein leading to PHF generation is believed to happen in the course of tauopathies. 3. Detailed molecular topology of PHF formation is unknown. There are evidences about the cross-beta structure in PHF core; however the precise arrangement of the tau polypeptide chain is unclear. In this review we summarize current attempts at in vitro PHF reconstruction and the development of methods for PHF structure determination. The emphasis is put on the monoclonal antibodies used as structural molecular probes for research on the role of IDPs in pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Axon Neuroscience Ltd., Vienna, Austria
| | - Jozef Sevcik
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
393
|
Dickey CA, Petrucelli L. Current strategies for the treatment of Alzheimer’s disease and other tauopathies. Expert Opin Ther Targets 2006; 10:665-76. [PMID: 16981824 DOI: 10.1517/14728222.10.5.665] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathological hallmarks of Alzheimer's disease (AD) include abnormal intra- and extraneuronal tau and amyloid accumulation, respectively, accompanied by gliosis, oxidative stress and neuron loss. The discovery of mutations within the tau gene itself that cause clinical dementia (i.e., fronto-temporal dementia with Parkinsonism linked to chromosome 17 [FTDP17]) demonstrated that disruption of normal tau function independent of amyloidogenesis was sufficient to cause neuronal loss and clinical dementia. These studies demonstrate the need for therapeutics that either decrease the total pool of tau or selectively reduce aberrant forms of tau (i.e., hyperphosphorylated, misfolded etc.). To this point, therapeutic development for tauopathies, including AD, have primarily focused on either the phosphorylation of tau, as it is a downstream target for many kinases and signalling cascades, or inhibition of tau aggregation. Recent developments, however, suggest that pharmacological targeting of other mechanisms may hold therapeutic promise for the treatment of tauopathies.
Collapse
Affiliation(s)
- Chad A Dickey
- Mayo Clinic Jacksonville, Department of Neuroscience, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | |
Collapse
|
394
|
Niewiadomska G, Baksalerska-Pazera M, Lenarcik I, Riedel G. Compartmental protein expression of Tau, GSK-3beta and TrkA in cholinergic neurons of aged rats. J Neural Transm (Vienna) 2006; 113:1733-46. [PMID: 16736240 DOI: 10.1007/s00702-006-0488-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/28/2006] [Indexed: 01/02/2023]
Abstract
During aging basal forebrain cholinergic neurons (BFCNs) degenerate, and we hypothesize this to be the result of a degeneration of the cytoskeleton. As a corollary, retrograde transport of the complex of nerve growth factor (NGF) and its activated receptor phospho-TrkA (P-TrkA) is impaired. Using immunocytochemistry, we here compare young and aged rat brains in their subcellular localization of NGF and P-TrkA in relation to the compartmentalization of phosphorylation-dependent tau protein isoforms. Despite lower P-TrkA immunoreactivity in cortex and hippocampus of aged rats, NGF immunoreactivity was not altered in these areas, but was significantly lower in aged basal forebrain. In young animals, expression of tau isoforms and glycogen synthase kinase-3beta (GSK-3beta) was restricted to neuritic structures in cortex, hippocampus, and basal forebrain. In contrast, tau and GSK-3beta labeling was confined to cell bodies in aged rats. Since a somatic localization of phospho-tau is indicative of cytoskeletal breakdown, we suggest this to be the mechanism the breakdown of trophic support in aging BFCNs.
Collapse
Affiliation(s)
- G Niewiadomska
- Department of Neurophysiology, Nencki Institute, Warsaw, Poland.
| | | | | | | |
Collapse
|
395
|
Niewiadomska G, Baksalerska-Pazera M, Riedel G. Cytoskeletal Transport in the Aging Brain: Focus on the Cholinergic System. Rev Neurosci 2006; 17:581-618. [PMID: 17283606 DOI: 10.1515/revneuro.2006.17.6.581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is now compelling evidence for the aging-related breakdown of cytoskeletal support in neurons. Similarly affected are the principal components of the intracellular microtubule system, the transport units involved in active shuttle of organelles and molecules in an antero- and retrograde manner, and the proteins stabilizing the cytoskeleton and providing trophic support. Here, we review the basic organization of the cytoskeleton, and describe its elements and their interactions. We then critically assess the role of these cytoskeletal proteins in physiological aging and aging-related malfunction. Our focus is on the microtubule-associated protein tau, for which comprehensive investigations suggest a critical role in neurodegenerative diseases, for instance tauopathies. These diseases frequently lead to cognitive decline and are often paralleled by reductions in cholinergic neurotransmission. We propose this reduction to be due to destabilization of the cytoskeleton and protein transport mechanisms in these neurons. Therefore, maintenance of the neuronal cytoskeleton during aging may prevent or delay neurodegeneration as well as cognitive decline during physiological aging.
Collapse
Affiliation(s)
- Grazyna Niewiadomska
- Nencki Institute for Experimental Biology, Department of Neurophysiology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
396
|
Kuret J, Chirita CN, Congdon EE, Kannanayakal T, Li G, Necula M, Yin H, Zhong Q. Pathways of tau fibrillization. Biochim Biophys Acta Mol Basis Dis 2005; 1739:167-78. [PMID: 15615636 DOI: 10.1016/j.bbadis.2004.06.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 06/02/2004] [Indexed: 11/22/2022]
Abstract
New methods for analyzing tau fibrillization have yielded insights into the biochemical transitions involved in the process. Here we review the parallels between the sequential progression of tau fibrillization observed macroscopically in Alzheimer's disease (AD) lesions and the pathway of tau aggregation observed in vitro with purified tau preparations. In addition, pharmacological agents for further dissection of fibrillization mechanism and lesion formation are discussed.
Collapse
Affiliation(s)
- Jeff Kuret
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, Ohio St. University College of Medicine and Public Health, 1060 Carmack Rd., Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
397
|
Taniguchi S, Suzuki N, Masuda M, Hisanaga SI, Iwatsubo T, Goedert M, Hasegawa M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 2004; 280:7614-23. [PMID: 15611092 DOI: 10.1074/jbc.m408714200] [Citation(s) in RCA: 418] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tau protein is the major component of the intraneuronal filamentous inclusions that constitute defining neuropathological characteristics of Alzheimer's disease and other tauopathies. The discovery of tau gene mutations in familial forms of frontotemporal dementia has established that dysfunction of the tau protein is sufficient to cause neurodegeneration and dementia. Here we have tested 42 compounds belonging to nine different chemical classes for their ability to inhibit heparin-induced assembly of tau into filaments in vitro. Several phenothiazines (methylene blue, azure A, azure B, and quinacrine mustard), polyphenols (myricetin, epicatechin 5-gallate, gossypetin, and 2,3,4,2',4'-pentahydroxybenzophenone), and the porphyrin ferric dehydroporphyrin IX inhibited tau filament formation with IC(50) values in the low micromolar range as assessed by thioflavin S fluorescence, electron microscopy, and Sarkosyl insolubility. Disassembly of tau filaments was observed in the presence of the porphyrin phthalocyanine. Compounds that inhibited tau filament assembly were also found to inhibit the formation of Abeta fibrils. Biochemical analysis revealed the formation of soluble oligomeric tau in the presence of the inhibitory compounds, suggesting that this may be the mechanism by which tau filament formation is inhibited. The compounds investigated did not affect the ability of tau to interact with microtubules. Identification of small molecule inhibitors of heparin-induced assembly of tau will form a starting point for the development of mechanism-based therapies for the tauopathies.
Collapse
Affiliation(s)
- Sayuri Taniguchi
- Department of Molecular Neurobiology, Tokyo Institute of Psychiatry, Tokyo Metropolitan Organization for Medical Research, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
398
|
Pickhardt M, Gazova Z, von Bergen M, Khlistunova I, Wang Y, Hascher A, Mandelkow EM, Biernat J, Mandelkow E. Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells. J Biol Chem 2004; 280:3628-35. [PMID: 15525637 DOI: 10.1074/jbc.m410984200] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.
Collapse
Affiliation(s)
- Marcus Pickhardt
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Zhong J, Qi Z, Dai H, Fan C, Li G, Matsuda N. Sensing phenothiazine drugs at a gold electrode co-modified with DNA and gold nanoparticles. ANAL SCI 2003; 19:653-7. [PMID: 12769359 DOI: 10.2116/analsci.19.653] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA and gold nanoparticles are co-immobilized at a gold electrode through elaborate self-assembly processes. This configuration has proven to be useful as a sensor for phenothiazine drugs, taking advantage of the well-known, relatively large surface area of gold nanoparticles and the strong intercalation between dsDNA and phenothiazine drugs. This modified electrode has demonstrated good sensitivity and stability towards the oxidation of two model phenothiazine drugs: promethazine and chlorpromazine. A linear dependence between the concentration of phenothiazine drugs and the peak current is observed, with a concentration range of 2.0 x 10(-5)-1.6 x 10(-4) M and 1.0 x 10(-5)-1.2 x 10(-4) M, and a detection limit of 1.0 x 10(-5) M and 7.0 x 10(-6) M, for promethazine and chlorpromazine, respectively.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Biochemistry and National Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
400
|
Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003. [PMID: 12629164 DOI: 10.1523/jneurosci.23-05-01605.2003] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of tangles of abnormally phosphorylated tau is a characteristic of Alzheimer's disease (AD), and the loss of synapses correlates with the degree of dementia. In addition, the overexpression of interleukin-1 (IL-1) has been implicated in tangle formation in AD. As a direct test of the requirement for IL-1 in tau phosphorylation and synaptophysin expression, IL-1 actions in neuron-microglia cocultures were manipulated. Activation of microglia with secreted beta-amyloid precursor protein or lipopolysaccharide elevated their expression of IL-1alpha, IL-1beta, and tumor necrosis factor alpha (TNFalpha) mRNA. When such activated microglia were placed in coculture with primary neocortical neurons, a significant increase in the phosphorylation of neuronal tau was accompanied by a decline in synaptophysin levels. Similar effects were evoked by treatment of neurons with recombinant IL-1beta. IL-1 receptor antagonist (IL-1ra) as well as anti-IL-1beta antibody attenuated the influence of activated microglia on neuronal tau and synaptophysin, but anti-TNFalpha antibody was ineffective. Some effects of microglial activation on neurons appear to be mediated by activation of p38 mitogen-activated protein kinase (p38-MAPK), because activated microglia stimulated p38-MAPK phosphorylation in neurons, and an inhibitor of p38-MAPK reversed the influence of IL-1beta on tau phosphorylation and synaptophysin levels. Our results, together with previous observations, suggest that activated microglia may contribute to neurofibrillary pathology in AD through their production of IL-1, activation of neuronal p38-MAPK, and resultant changes in neuronal cytoskeletal and synaptic elements.
Collapse
|