351
|
Curtis C, Lynch AG, Dunning MJ, Spiteri I, Marioni JC, Hadfield J, Chin SF, Brenton JD, Tavaré S, Caldas C. The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genomics 2009; 10:588. [PMID: 19995423 PMCID: PMC2797821 DOI: 10.1186/1471-2164-10-588] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 12/08/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance. RESULTS By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms. CONCLUSION Although there are substantial differences in the design, density, and number of replicate probes, the comparison indicates a generally high level of concordance between platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific decisions the results described herein provide a guide for platform selection and study design, and the dataset a resource for more tailored comparisons.
Collapse
Affiliation(s)
- Christina Curtis
- Department of Oncology, University of Cambridge, Addenbrooke's Hopsital, Hills Road, Cambridge CB20XZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Archer KJ, Reese SE. Detection call algorithms for high-throughput gene expression microarray data. Brief Bioinform 2009; 11:244-52. [PMID: 19939941 DOI: 10.1093/bib/bbp055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extensive methodological research has been conducted to improve gene expression summary methods. However, in addition to quantitative gene expression summaries, most platforms, including all those examined in the MicroArray Quality Control project, provide a qualitative detection call result for each gene on the platform. These detection call algorithms are intended to render an assessment of whether or not each transcript is reliably measured. In this paper, we review uses of these qualitative detection call results in the analysis of microarray data. We also review the detection call algorithms for two widely used gene expression microarray platforms, Affymetrix GeneChips and Illumina BeadArrays, and more clearly formalize the mathematical notation for the Illumina BeadArray detection call algorithm. Both algorithms result in a P-value which is then used for determining the qualitative detection calls. We examined the performance of these detection call algorithms and default parameters by applying the methods to two spike-in datasets. We show that the default parameters for qualitative detection calls yield few absent calls for high spike-in concentrations. When genes of interest are expected to be present at very low concentrations, spike-in datasets can be useful for appropriately adjusting the tuning parameters for qualitative detection calls.
Collapse
Affiliation(s)
- Kellie J Archer
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298-0032, USA.
| | | |
Collapse
|
353
|
Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 2009; 10:556. [PMID: 19930720 PMCID: PMC2788585 DOI: 10.1186/1471-2164-10-556] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/25/2009] [Indexed: 12/13/2022] Open
Abstract
Background Various cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells. Results We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles. Conclusion Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.
Collapse
Affiliation(s)
- Bok Sil Hong
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Avril-Sassen S, Goldstein LD, Stingl J, Blenkiron C, Le Quesne J, Spiteri I, Karagavriilidou K, Watson CJ, Tavaré S, Miska EA, Caldas C. Characterisation of microRNA expression in post-natal mouse mammary gland development. BMC Genomics 2009; 10:548. [PMID: 19930549 PMCID: PMC2784809 DOI: 10.1186/1471-2164-10-548] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The differential expression pattern of microRNAs (miRNAs) during mammary gland development might provide insights into their role in regulating the homeostasis of the mammary epithelium. Our aim was to analyse these regulatory functions by deriving a comprehensive tissue-specific combined miRNA and mRNA expression profile of post-natal mouse mammary gland development.We measured the expression of 318 individual murine miRNAs by bead-based flow-cytometric profiling of whole mouse mammary glands throughout a 16-point developmental time course, including juvenile, puberty, mature virgin, gestation, lactation, and involution stages. In parallel whole-genome mRNA expression data were obtained. RESULTS One third (n = 102) of all murine miRNAs analysed were detected during mammary gland development. MicroRNAs were represented in seven temporally co-expressed clusters, which were enriched for both miRNAs belonging to the same family and breast cancer-associated miRNAs. Global miRNA and mRNA expression was significantly reduced during lactation and the early stages of involution after weaning. For most detected miRNA families we did not observe systematic changes in the expression of predicted targets. For miRNA families whose targets did show changes, we observed inverse patterns of miRNA and target expression. The data sets are made publicly available and the combined expression profiles represent an important community resource for mammary gland biology research. CONCLUSION MicroRNAs were expressed in likely co-regulated clusters during mammary gland development. Breast cancer-associated miRNAs were significantly enriched in these clusters. The mechanism and functional consequences of this miRNA co-regulation provide new avenues for research into mammary gland biology and generate candidates for functional validation.
Collapse
Affiliation(s)
- Stefanie Avril-Sassen
- Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Barbosa-Morais NL, Dunning MJ, Samarajiwa SA, Darot JFJ, Ritchie ME, Lynch AG, Tavaré S. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res 2009; 38:e17. [PMID: 19923232 PMCID: PMC2817484 DOI: 10.1093/nar/gkp942] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Illumina BeadArrays are among the most popular and reliable platforms for gene expression profiling. However, little external scrutiny has been given to the design, selection and annotation of BeadArray probes, which is a fundamental issue in data quality and interpretation. Here we present a pipeline for the complete genomic and transcriptomic re-annotation of Illumina probe sequences, also applicable to other platforms, with its output available through a Web interface and incorporated into Bioconductor packages. We have identified several problems with the design of individual probes and we show the benefits of probe re-annotation on the analysis of BeadArray gene expression data sets. We discuss the importance of aspects such as probe coverage of individual transcripts, alternative messenger RNA splicing, single-nucleotide polymorphisms, repeat sequences, RNA degradation biases and probes targeting genomic regions with no known transcription. We conclude that many of the Illumina probes have unreliable original annotation and that our re-annotation allows analyses to focus on the good quality probes, which form the majority, and also to expand the scope of biological information that can be extracted.
Collapse
|
356
|
Shi W, Banerjee A, Ritchie ME, Gerondakis S, Smyth GK. Illumina WG-6 BeadChip strips should be normalized separately. BMC Bioinformatics 2009; 10:372. [PMID: 19903361 PMCID: PMC2780421 DOI: 10.1186/1471-2105-10-372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 11/11/2009] [Indexed: 11/15/2022] Open
Abstract
Background Illumina Sentrix-6 Whole-Genome Expression BeadChips are relatively new microarray platforms which have been used in many microarray studies in the past few years. These Chips have a unique design in which each Chip contains six microarrays and each microarray consists of two separate physical strips, posing special challenges for precise between-array normalization of expression values. Results None of the normalization strategies proposed so far for this microarray platform allow for the possibility of systematic variation between the two strips comprising each array. That this variation can be substantial is illustrated by a data example. We demonstrate that normalizing at the strip-level rather than at the array-level can effectively remove this between-strip variation, improve the precision of gene expression measurements and discover more differentially expressed genes. The gain is substantial, yielding a 20% increase in statistical information and doubling the number of genes detected at a 5% false discovery rate. Functional analysis reveals that the extra genes found tend to have interesting biological meanings, dramatically strengthening the biological conclusions from the experiment. Strip-level normalization still outperforms array-level normalization when non-expressed probes are filtered out. Conclusion Plots are proposed which demonstrate how the need for strip-level normalization relates to inconsistent intensity range variation between the strips. Strip-level normalization is recommended for the preprocessing of Illumina Sentrix-6 BeadChips whenever the intensity range is seen to be inconsistent between the strips. R code is provided to implement the recommended plots and normalization algorithms.
Collapse
Affiliation(s)
- Wei Shi
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
| | | | | | | | | |
Collapse
|
357
|
Ritchie ME, Carvalho BS, Hetrick KN, Tavaré S, Irizarry RA. R/Bioconductor software for Illumina's Infinium whole-genome genotyping BeadChips. Bioinformatics 2009; 25:2621-3. [PMID: 19661241 PMCID: PMC2752620 DOI: 10.1093/bioinformatics/btp470] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/08/2009] [Accepted: 07/28/2009] [Indexed: 12/04/2022] Open
Abstract
UNLABELLED Illumina produces a number of microarray-based technologies for human genotyping. An Infinium BeadChip is a two-color platform that types between 10(5) and 10(6) single nucleotide polymorphisms (SNPs) per sample. Despite being widely used, there is a shortage of open source software to process the raw intensities from this platform into genotype calls. To this end, we have developed the R/Bioconductor package crlmm for analyzing BeadChip data. After careful preprocessing, our software applies the CRLMM algorithm to produce genotype calls, confidence scores and other quality metrics at both the SNP and sample levels. We provide access to the raw summary-level intensity data, allowing users to develop their own methods for genotype calling or copy number analysis if they wish. AVAILABILITY AND IMPLEMENTATION The crlmm Bioconductor package is available from http://www.bioconductor.org. Data packages and documentation are available from http://rafalab.jhsph.edu/software.html.
Collapse
Affiliation(s)
- Matthew E Ritchie
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|
358
|
Fernando H, Sewitz S, Darot J, Tavaré S, Huppert JL, Balasubramanian S. Genome-wide analysis of a G-quadruplex-specific single-chain antibody that regulates gene expression. Nucleic Acids Res 2009; 37:6716-22. [PMID: 19745055 PMCID: PMC2777450 DOI: 10.1093/nar/gkp740] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
G-quadruplex nucleic acids have been proposed to play a role in a number of fundamental biological processes that include transcription and translation. We have developed a single-chain antibody that is selective for G-quadruplex DNA over double-stranded DNA, and here show that when it is expressed in human cells, it significantly affects the expression of a wide variety of genes, in a manner that correlates with the presence of predicted G-quadruplexes. We observe cases where gene expression is increased or decreased, and that there are apparent interactions with G-quadruplex motifs at the beginning and end of the genes, and on either strand. The outcomes of this genome-wide study demonstrate that G-quadruplex recognition by the antibody has physiological consequences, and provides insights into some of the complexity associated with G-quadruplex-based regulation.
Collapse
Affiliation(s)
- Himesh Fernando
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | | | | | |
Collapse
|
359
|
Hardin J, Finnell RH, Wong D, Hogan ME, Horovitz J, Shu J, Shaw GM. Whole genome microarray analysis, from neonatal blood cards. BMC Genet 2009; 10:38. [PMID: 19624846 PMCID: PMC2722673 DOI: 10.1186/1471-2156-10-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 07/22/2009] [Indexed: 11/24/2022] Open
Abstract
Background Neonatal blood, obtained from a heel stick and stored dry on paper cards, has been the standard for birth defects screening for 50 years. Such dried blood samples are used, primarily, for analysis of small-molecule analytes. More recently, the DNA complement of such dried blood cards has been used for targeted genetic testing, such as for single nucleotide polymorphism in cystic fibrosis. Expansion of such testing to include polygenic traits, and perhaps whole genome scanning, has been discussed as a formal possibility. However, until now the amount of DNA that might be obtained from such dried blood cards has been limiting, due to inefficient DNA recovery technology. Results A new technology is employed for efficient DNA release from a standard neonatal blood card. Using standard Guthrie cards, stored an average of ten years post-collection, about 1/40th of the air-dried neonatal blood specimen (two 3 mm punches) was processed to obtain DNA that was sufficient in mass and quality for direct use in microarray-based whole genome scanning. Using that same DNA release technology, it is also shown that approximately 1/250th of the original purified DNA (about 1 ng) could be subjected to whole genome amplification, thus yielding an additional microgram of amplified DNA product. That amplified DNA product was then used in microarray analysis and yielded statistical concordance of 99% or greater to the primary, unamplified DNA sample. Conclusion Together, these data suggest that DNA obtained from less than 10% of a standard neonatal blood specimen, stored dry for several years on a Guthrie card, can support a program of genome-wide neonatal genetic testing.
Collapse
Affiliation(s)
- Jill Hardin
- University of California Berkeley, School of Public Health, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
360
|
Pearson RD, Liu X, Sanguinetti G, Milo M, Lawrence ND, Rattray M. puma: a Bioconductor package for propagating uncertainty in microarray analysis. BMC Bioinformatics 2009; 10:211. [PMID: 19589155 PMCID: PMC2714555 DOI: 10.1186/1471-2105-10-211] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Most analyses of microarray data are based on point estimates of expression levels and ignore the uncertainty of such estimates. By determining uncertainties from Affymetrix GeneChip data and propagating these uncertainties to downstream analyses it has been shown that we can improve results of differential expression detection, principal component analysis and clustering. Previously, implementations of these uncertainty propagation methods have only been available as separate packages, written in different languages. Previous implementations have also suffered from being very costly to compute, and in the case of differential expression detection, have been limited in the experimental designs to which they can be applied. RESULTS puma is a Bioconductor package incorporating a suite of analysis methods for use on Affymetrix GeneChip data. puma extends the differential expression detection methods of previous work from the 2-class case to the multi-factorial case. puma can be used to automatically create design and contrast matrices for typical experimental designs, which can be used both within the package itself but also in other Bioconductor packages. The implementation of differential expression detection methods has been parallelised leading to significant decreases in processing time on a range of computer architectures. puma incorporates the first R implementation of an uncertainty propagation version of principal component analysis, and an implementation of a clustering method based on uncertainty propagation. All of these techniques are brought together in a single, easy-to-use package with clear, task-based documentation. CONCLUSION For the first time, the puma package makes a suite of uncertainty propagation methods available to a general audience. These methods can be used to improve results from more traditional analyses of microarray data. puma also offers improvements in terms of scope and speed of execution over previously available methods. puma is recommended for anyone working with the Affymetrix GeneChip platform for gene expression analysis and can also be applied more generally.
Collapse
Affiliation(s)
- Richard D Pearson
- School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Xuejun Liu
- College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, PR China
| | - Guido Sanguinetti
- Department of Computer Science, University of Sheffield, Regent Court 211 Portobello Street, Sheffield, S1 4DP, UK
- ChELSI Institute, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Marta Milo
- NIHR Cardiovascular Biomedical Research Unit, Sheffield Teaching Hospitals NHS Trust, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Neil D Lawrence
- School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Magnus Rattray
- School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
361
|
Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AHC, Roder JC. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 2009; 18:3227-43. [PMID: 19483194 DOI: 10.1093/hmg/ddp261] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abnormal N-methyl-d-aspartate receptor (NMDAR) function has been implicated in the pathophysiology of schizophrenia. d-serine is an important NMDAR modulator, and to elucidate the role of the d-serine synthesis enzyme serine racemase (Srr) in schizophrenia, we identified and characterized mice with an ENU-induced mutation that results in a complete loss of Srr activity and dramatically reduced d-serine levels. Mutant mice displayed behaviors relevant to schizophrenia, including impairments in prepulse inhibition, sociability and spatial discrimination. Behavioral deficits were exacerbated by an NMDAR antagonist and ameliorated by d-serine or the atypical antipsychotic clozapine. Expression profiling revealed that the Srr mutation influenced several genes that have been linked to schizophrenia and cognitive ability. Transcript levels altered by the Srr mutation were also normalized by d-serine or clozapine treatment. Furthermore, analysis of SRR genetic variants in humans identified a robust association with schizophrenia. This study demonstrates that aberrant Srr function and diminished d-serine may contribute to schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Viviane Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JFJ, Tavaré S, Arakawa S, Shimizu S, Watt FM, Narita M. Autophagy mediates the mitotic senescence transition. Genes Dev 2009; 23:798-803. [PMID: 19279323 DOI: 10.1101/gad.519709] [Citation(s) in RCA: 831] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a stress response, senescence is a dynamic process involving multiple effector mechanisms whose combination determines the phenotypic quality. Here we identify autophagy as a new effector mechanism of senescence. Autophagy is activated during senescence and its activation is correlated with negative feedback in the PI3K-mammalian target of rapamycin (mTOR) pathway. A subset of autophagy-related genes are up-regulated during senescence: Overexpression of one of those genes, ULK3, induces autophagy and senescence. Furthermore, inhibition of autophagy delays the senescence phenotype, including senescence-associated secretion. Our data suggest that autophagy, and its consequent protein turnover, mediate the acquisition of the senescence phenotype.
Collapse
Affiliation(s)
- Andrew R J Young
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Schulz LC, Widmaier EP, Qiu J, Roberts RM. Effect of leptin on mouse trophoblast giant cells. Biol Reprod 2009; 80:415-24. [PMID: 19038858 PMCID: PMC2805391 DOI: 10.1095/biolreprod.108.073130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 09/08/2008] [Accepted: 10/20/2008] [Indexed: 01/29/2023] Open
Abstract
Leptin plays a role in both energy homeostasis and reproduction, and it is required in early pregnancy. It stimulates metalloproteinase activity in cultured human trophoblasts and invasiveness of cultured mouse trophoblasts. Our goal has been to examine mechanisms that underpin the ability of leptin to promote trophoblast invasiveness in primary cultures of mouse trophoblasts. Leptin stimulated the phosphorylation of MEK (MAP2K1) but not signal transducer and activator of transcription 3 (STAT3) in the cultures, increased the concentration of the suppressor of cytokine signaling 3 (SOCS3) protein, and upregulated metalloproteinase activity. Microarray analysis revealed that leptin stimulated select genes with roles in cell motility, including Stmn, a gene linked to invasiveness in other cell types. There was also an increase in activity of several genes associated with MAPK and RhoGTPase signaling. In addition, leptin muted expression of genes correlated with terminal differentiation of trophoblast giant cells, including ones associated with the TGFbeta signaling pathway and endoreduplication of DNA, and upregulated selected prolactin-related family members. Feulgen staining of leptin-treated cells revealed a loss of cells with low ploidy. The data suggest that leptin accelerates disappearance of non-giant cells while inhibiting terminal differentiation of committed giant cells, possibly by maintaining cells in an intermediate stage of differentiation.
Collapse
Affiliation(s)
- L C Schulz
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
364
|
Sampson JN, Zhao H. Genotyping and inflated type I error rate in genome-wide association case/control studies. BMC Bioinformatics 2009; 10:68. [PMID: 19236714 PMCID: PMC2679732 DOI: 10.1186/1471-2105-10-68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 02/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One common goal of a case/control genome wide association study (GWAS) is to find SNPs associated with a disease. Traditionally, the first step in such studies is to assign a genotype to each SNP in each subject, based on a statistic summarizing fluorescence measurements. When the distributions of the summary statistics are not well separated by genotype, the act of genotype assignment can lead to more potential problems than acknowledged by the literature. RESULTS Specifically, we show that the proportions of each called genotype need not equal the true proportions in the population, even as the number of subjects grows infinitely large. The called genotypes for two subjects need not be independent, even when their true genotypes are independent. Consequently, p-values from tests of association can be anti-conservative, even when the distributions of the summary statistic for the cases and controls are identical. To address these problems, we propose two new tests designed to reduce the inflation in the type I error rate caused by these problems. The first algorithm, logiCALL, measures call quality by fully exploring the likelihood profile of intensity measurements, and the second algorithm avoids genotyping by using a likelihood ratio statistic. CONCLUSION Genotyping can introduce avoidable false positives in GWAS.
Collapse
Affiliation(s)
- Joshua N Sampson
- Department of Epidemiology and Public Health, Yale University School of Medicine, New haven, CT, USA
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, Yale University School of Medicine, New haven, CT, USA
| |
Collapse
|
365
|
Xie Y, Wang X, Story M. Statistical methods of background correction for Illumina BeadArray data. ACTA ACUST UNITED AC 2009; 25:751-7. [PMID: 19193732 DOI: 10.1093/bioinformatics/btp040] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Advances in technology have made different microarray platforms available. Among the many, Illumina BeadArrays are relatively new and have captured significant market share. With BeadArray technology, high data quality is generated from low sample input at reduced cost. However, the analysis methods for Illumina BeadArrays are far behind those for Affymetrix oligonucleotide arrays, and so need to be improved. RESULTS In this article, we consider the problem of background correction for BeadArray data. One distinct feature of BeadArrays is that for each array, the noise is controlled by over 1000 bead types conjugated with non-specific oligonucleotide sequences. We extend the robust multi-array analysis (RMA) background correction model to incorporate the information from negative control beads, and consider three commonly used approaches for parameter estimation, namely, non-parametric, maximum likelihood estimation (MLE) and Bayesian estimation. The proposed approaches, as well as the existing background correction methods, are compared through simulation studies and a data example. We find that the maximum likelihood and Bayes methods seem to be the most promising. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yang Xie
- Division of Biostatistics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, USA.
| | | | | |
Collapse
|
366
|
Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics--a bioconductor package for quality assessment of microarray data. ACTA ACUST UNITED AC 2008; 25:415-6. [PMID: 19106121 PMCID: PMC2639074 DOI: 10.1093/bioinformatics/btn647] [Citation(s) in RCA: 678] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
SUMMARY The assessment of data quality is a major concern in microarray analysis. arrayQualityMetrics is a Bioconductor package that provides a report with diagnostic plots for one or two colour microarray data. The quality metrics assess reproducibility, identify apparent outlier arrays and compute measures of signal-to-noise ratio. The tool handles most current microarray technologies and is amenable to use in automated analysis pipelines or for automatic report generation, as well as for use by individuals. The diagnosis of quality remains, in principle, a context-dependent judgement, but our tool provides powerful, automated, objective and comprehensive instruments on which to base a decision. AVAILABILITY arrayQualityMetrics is a free and open source package, under LGPL license, available from the Bioconductor project at www.bioconductor.org. A users guide and examples are provided with the package. Some examples of HTML reports generated by arrayQualityMetrics can be found at http://www.microarray-quality.org
Collapse
Affiliation(s)
- Audrey Kauffmann
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | |
Collapse
|
367
|
Cairns JM, Dunning MJ, Ritchie ME, Russell R, Lynch AG. BASH: a tool for managing BeadArray spatial artefacts. Bioinformatics 2008; 24:2921-2. [PMID: 18953044 PMCID: PMC2639304 DOI: 10.1093/bioinformatics/btn557] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY With their many replicates and their random layouts, Illumina BeadArrays provide greater scope fordetecting spatial artefacts than do other microarray technologies. They are also robust to artefact exclusion, yet there is a lack of tools that can perform these tasks for Illumina. We present BASH, a tool for this purpose. BASH adopts the concepts of Harshlight, but implements them in a manner that utilizes the unique characteristics of the Illumina technology. Using bead-level data, spatial artefacts of various kinds can thus be identified and excluded from further analyses. AVAILABILITY The beadarray Bioconductor package (version 1.10 onwards), www.bioconductor.org
Collapse
Affiliation(s)
- J M Cairns
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB20RE, UK
| | | | | | | | | |
Collapse
|
368
|
Dimas AS, Stranger BE, Beazley C, Finn RD, Ingle CE, Forrest MS, Ritchie ME, Deloukas P, Tavaré S, Dermitzakis ET. Modifier effects between regulatory and protein-coding variation. PLoS Genet 2008; 4:e1000244. [PMID: 18974877 PMCID: PMC2570624 DOI: 10.1371/journal.pgen.1000244] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/29/2008] [Indexed: 01/28/2023] Open
Abstract
Genome-wide associations have shown a lot of promise in dissecting the genetics of complex traits in humans with single variants, yet a large fraction of the genetic effects is still unaccounted for. Analyzing genetic interactions between variants (epistasis) is one of the potential ways forward. We investigated the abundance and functional impact of a specific type of epistasis, namely the interaction between regulatory and protein-coding variants. Using genotype and gene expression data from the 210 unrelated individuals of the original four HapMap populations, we have explored the combined effects of regulatory and protein-coding single nucleotide polymorphisms (SNPs). We predict that about 18% (1,502 out of 8,233 nsSNPs) of protein-coding variants are differentially expressed among individuals and demonstrate that regulatory variants can modify the functional effect of a coding variant in cis. Furthermore, we show that such interactions in cis can affect the expression of downstream targets of the gene containing the protein-coding SNP. In this way, a cis interaction between regulatory and protein-coding variants has a trans impact on gene expression. Given the abundance of both types of variants in human populations, we propose that joint consideration of regulatory and protein-coding variants may reveal additional genetic effects underlying complex traits and disease and may shed light on causes of differential penetrance of known disease variants.
Collapse
Affiliation(s)
- Antigone S. Dimas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Barbara E. Stranger
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Claude Beazley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Robert D. Finn
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Catherine E. Ingle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Matthew S. Forrest
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Matthew E. Ritchie
- Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Simon Tavaré
- Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | | |
Collapse
|
369
|
Abstract
UNLABELLED Illumina microarray is becoming a popular microarray platform. The BeadArray technology from Illumina makes its preprocessing and quality control different from other microarray technologies. Unfortunately, most other analyses have not taken advantage of the unique properties of the BeadArray system, and have just incorporated preprocessing methods originally designed for Affymetrix microarrays. lumi is a Bioconductor package especially designed to process the Illumina microarray data. It includes data input, quality control, variance stabilization, normalization and gene annotation portions. In specific, the lumi package includes a variance-stabilizing transformation (VST) algorithm that takes advantage of the technical replicates available on every Illumina microarray. Different normalization method options and multiple quality control plots are provided in the package. To better annotate the Illumina data, a vendor independent nucleotide universal identifier (nuID) was devised to identify the probes of Illumina microarray. The nuID annotation packages and output of lumi processed results can be easily integrated with other Bioconductor packages to construct a statistical data analysis pipeline for Illumina data. AVAILABILITY The lumi Bioconductor package, www.bioconductor.org
Collapse
Affiliation(s)
- Pan Du
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
370
|
Git A, Spiteri I, Blenkiron C, Dunning MJ, Pole JCM, Chin SF, Wang Y, Smith J, Livesey FJ, Caldas C. PMC42, a breast progenitor cancer cell line, has normal-like mRNA and microRNA transcriptomes. Breast Cancer Res 2008; 10:R54. [PMID: 18588681 PMCID: PMC2481505 DOI: 10.1186/bcr2109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 06/02/2008] [Accepted: 06/27/2008] [Indexed: 11/16/2022] Open
Abstract
Introduction The use of cultured cell lines as model systems for normal tissue is limited by the molecular alterations accompanying the immortalisation process, including changes in the mRNA and microRNA (miRNA) repertoire. Therefore, identification of cell lines with normal-like expression profiles is of paramount importance in studies of normal gene regulation. Methods The mRNA and miRNA expression profiles of several breast cell lines of cancerous or normal origin were measured using printed slide arrays, Luminex bead arrays, and real-time reverse transcription-polymerase chain reaction. Results We demonstrate that the mRNA expression profiles of two breast cell lines are similar to that of normal breast tissue: HB4a, immortalised normal breast epithelium, and PMC42, a breast cancer cell line that retains progenitor pluripotency allowing in-culture differentiation to both secretory and myoepithelial fates. In contrast, only PMC42 exhibits a normal-like miRNA expression profile. We identified a group of miRNAs that are highly expressed in normal breast tissue and PMC42 but are lost in all other cancerous and normal-origin breast cell lines and observed a similar loss in immortalised lymphoblastoid cell lines compared with healthy uncultured B cells. Moreover, like tumour suppressor genes, these miRNAs are lost in a variety of tumours. We show that the mechanism leading to the loss of these miRNAs in breast cancer cell lines has genomic, transcriptional, and post-transcriptional components. Conclusion We propose that, despite its neoplastic origin, PMC42 is an excellent molecular model for normal breast epithelium, providing a unique tool to study breast differentiation and the function of key miRNAs that are typically lost in cancer.
Collapse
Affiliation(s)
- Anna Git
- Department of Oncology, Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Dunning MJ, Ritchie ME, Barbosa-Morais NL, Tavaré S, Lynch AG. Spike-in validation of an Illumina-specific variance-stabilizing transformation. BMC Res Notes 2008; 1:18. [PMID: 18710543 PMCID: PMC2518281 DOI: 10.1186/1756-0500-1-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 06/04/2008] [Indexed: 12/01/2022] Open
Abstract
Background Variance-stabilizing techniques have been used for some time in the analysis of gene expression microarray data. A new adaptation, the variance-stabilizing transformation (VST), has recently been developed to take advantage of the unique features of Illumina BeadArrays. VST has been shown to perform well in comparison with the widely-used approach of taking a log2 transformation, but has not been validated on a spike-in experiment. We apply VST to the data from a recently published spike-in experiment and compare it both to a regular log2 analysis and a recently recommended analysis that can be applied if all raw data are available. Findings VST provides more power to detect differentially expressed genes than a log2 transformation. However, the gain in power is roughly the same as utilizing the raw data from an experiment and weighting observations accordingly. VST is still advantageous when large changes in expression are anticipated, while a weighted log2 approach performs better for smaller changes. Conclusion VST can be recommended for summarized Illumina data regardless of which Illumina pre-processing options have been used. However, using the raw data is still encouraged whenever possible.
Collapse
Affiliation(s)
- Mark J Dunning
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | | | | | | | | |
Collapse
|