351
|
You Q, Zhong Z, Ren Q, Hassan F, Zhang Y, Zhang T. CRISPRMatch: An Automatic Calculation and Visualization Tool for High-throughput CRISPR Genome-editing Data Analysis. Int J Biol Sci 2018; 14:858-862. [PMID: 29989077 PMCID: PMC6036748 DOI: 10.7150/ijbs.24581] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/28/2018] [Indexed: 01/05/2023] Open
Abstract
Custom-designed nucleases, including CRISPR-Cas9 and CRISPR-Cpf1, are widely used to realize the precise genome editing. The high-coverage, low-cost and quantifiability make high-throughput sequencing (NGS) to be an effective method to assess the efficiency of custom-designed nucleases. However, contrast to standardized transcriptome protocol, the NGS data lacks a user-friendly pipeline connecting different tools that can automatically calculate mutation, evaluate editing efficiency and realize in a more comprehensive dataset that can be visualized. Here, we have developed an automatic stand-alone toolkit based on python script, namely CRISPRMatch, to process the high-throughput genome-editing data of CRISPR nuclease transformed protoplasts by integrating analysis steps like mapping reads and normalizing reads count, calculating mutation frequency (deletion and insertion), evaluating efficiency and accuracy of genome-editing, and visualizing the results (tables and figures). Both of CRISPR-Cas9 and CRISPR-Cpf1 nucleases are supported by CRISPRMatch toolkit and the integrated code has been released on GitHub (https://github.com/zhangtaolab/CRISPRMatch).
Collapse
Affiliation(s)
- Qi You
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiurong Ren
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fakhrul Hassan
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yong Zhang
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
352
|
Wolter F, Klemm J, Puchta H. Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:735-746. [PMID: 29573495 DOI: 10.1111/tpj.13893] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/17/2018] [Accepted: 02/21/2018] [Indexed: 05/22/2023]
Abstract
Gene targeting (GT), the programmed change of genomic sequences by homologous recombination (HR), is still a major challenge in plants. We previously developed an in planta GT strategy by simultaneously releasing from the genome a dsDNA donor molecule and creating a double-stranded break (DSB) at a specific site within the targeted gene. Using Cas9 form Streptococcus pyogenes (SpCas9) under the control of a ubiquitin gene promoter, we obtained seeds harbouring GT events, although at a low frequency. In the present research we tested different developmentally controlled promotors and different kinds of DNA lesions for their ability to enhance GT of the acetolactate synthase (ALS) gene of Arabidopsis. For this purpose, we used Staphylococcus aureus Cas9 (SaCas9) nuclease and the SpCas9 nickase in various combinations. Thus, we analysed the effect of single-stranded break (SSB) activation of a targeted gene and/or the HR donor region. Moreover, we tested whether DSBs with 5' or 3' overhangs can improve in planta GT. Interestingly, the use of the SaCas9 nuclease controlled by an egg cell-specific promoter was the most efficient: depending on the line, in the very best case 6% of all seeds carried GT events. In a third of all lines, the targeting occurred around the 1% range of the tested seeds. Molecular analysis revealed that in about half of the cases perfect HR of both DSB ends occurred. Thus, using the improved technology, it should now be feasible to introduce any directed change into the Arabidopsis genome at will.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Jeannette Klemm
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
353
|
Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 2018; 8:6502. [PMID: 29695804 PMCID: PMC5916876 DOI: 10.1038/s41598-018-24690-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 genome editing is a transformative technology that will facilitate the development of crops to meet future demands. However, application of gene editing is hindered by the long life cycle of many crop species and because desired genotypes generally require multiple generations to achieve. Single-celled microspores are haploid cells that can develop into double haploid plants and have been widely used as a breeding tool to generate homozygous plants within a generation. In this study, we combined the CRISPR/Cas9 system with microspore technology and developed an optimized haploid mutagenesis system to induce genetic modifications in the wheat genome. We investigated a number of factors that may affect the delivery of CRISPR/Cas9 reagents into microspores and found that electroporation of a minimum of 75,000 cells using 10–20 µg DNA and a pulsing voltage of 500 V is optimal for microspore transfection using the Neon transfection system. Using multiple Cas9 and sgRNA constructs, we present evidence for the seamless introduction of targeted modifications in an exogenous DsRed gene and two endogenous wheat genes, including TaLox2 and TaUbiL1. This study demonstrates the value and feasibility of combining microspore technology and CRISPR/Cas9-based gene editing for trait discovery and improvement in plants.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| | - Evan Ellison
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Brittany Polley
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Venkatesh Bollina
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Manoj Kulkarni
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Kaveh Ghanbarnia
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Halim Song
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daniel F Voytas
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Sateesh Kagale
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| |
Collapse
|
354
|
Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 2018. [PMID: 29695804 DOI: 10.1038/s41598-018-24690-8v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
CRISPR/Cas9 genome editing is a transformative technology that will facilitate the development of crops to meet future demands. However, application of gene editing is hindered by the long life cycle of many crop species and because desired genotypes generally require multiple generations to achieve. Single-celled microspores are haploid cells that can develop into double haploid plants and have been widely used as a breeding tool to generate homozygous plants within a generation. In this study, we combined the CRISPR/Cas9 system with microspore technology and developed an optimized haploid mutagenesis system to induce genetic modifications in the wheat genome. We investigated a number of factors that may affect the delivery of CRISPR/Cas9 reagents into microspores and found that electroporation of a minimum of 75,000 cells using 10-20 µg DNA and a pulsing voltage of 500 V is optimal for microspore transfection using the Neon transfection system. Using multiple Cas9 and sgRNA constructs, we present evidence for the seamless introduction of targeted modifications in an exogenous DsRed gene and two endogenous wheat genes, including TaLox2 and TaUbiL1. This study demonstrates the value and feasibility of combining microspore technology and CRISPR/Cas9-based gene editing for trait discovery and improvement in plants.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| | - Evan Ellison
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Brittany Polley
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Venkatesh Bollina
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Manoj Kulkarni
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Kaveh Ghanbarnia
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Halim Song
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daniel F Voytas
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Sateesh Kagale
- Canadian Wheat Improvement Flagship Program, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| |
Collapse
|
355
|
Agrobacterium rhizogenes-mediated transformation of a dioecious plant model Silene latifolia. N Biotechnol 2018; 48:20-28. [PMID: 29656128 DOI: 10.1016/j.nbt.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/06/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Silene latifolia serves as a model species to study dioecy, the evolution of sex chromosomes, dosage compensation and sex-determination systems in plants. Currently, no protocol for genetic transformation is available for this species, mainly because S. latifolia is considered recalcitrant to in vitro regeneration and infection with Agrobacterium tumefaciens. Using cytokinins and their synthetic derivatives, we markedly improved the efficiency of regeneration. Several agrobacterial strains were tested for their ability to deliver DNA into S. latifolia tissues leading to transient and stable expression of the GUS reporter. The use of Agrobacterium rhizogenes strains resulted in the highest transformation efficiency (up to 4.7% of stable transformants) in hairy root cultures. Phenotypic and genotypic analyses of the T1 generation suggested that the majority of transformation events contain a small number of independent T-DNA insertions and the transgenes are transmitted to the progeny in a Mendelian pattern of inheritance. In short, we report an efficient and reproducible protocol for leaf disc transformation and subsequent plant regeneration in S. latifolia, based on the unique combination of infection with A. rhizogenes and plant regeneration from hairy root cultures using synthetic cytokinins. A protocol for the transient transformation of S.latifolia protoplasts was also developed and applied to demonstrate the possibility of targeted mutagenesis of the sex linked gene SlAP3 by TALENs and CRISPR/Cas9.
Collapse
|
356
|
Duba A, Goriewa-Duba K, Wachowska U. A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum. Int J Mol Sci 2018; 19:E1138. [PMID: 29642627 PMCID: PMC5979484 DOI: 10.3390/ijms19041138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Zymoseptoria tritici is a hemibiotrophic pathogen which causes Septoria leaf blotch in wheat. The pathogenesis of the disease consists of a biotrophic phase and a necrotrophic phase. The pathogen infects the host plant by suppressing its immune response in the first stage of infection. Hemibiotrophic pathogens of the genus Fusarium cause Fusarium head blight, and the necrotrophic Parastagonosporanodorum is responsible for Septoria nodorum blotch in wheat. Cell wall-degrading enzymes in plants promote infections by necrotrophic and hemibiotrophic pathogens, and trichothecenes, secondary fungal metabolites, facilitate infections caused by fungi of the genus Fusarium. There are no sources of complete resistance to the above pathogens in wheat. Defense mechanisms in wheat are controlled by many genes encoding resistance traits. In the wheat genome, the characteristic features of loci responsible for resistance to pathogenic infections indicate that at least several dozen genes encode resistance to pathogens. The molecular interactions between wheat and Z. tritici, P. nodorum and Fusarium spp. pathogens have been insufficiently investigated. Most studies focus on the mechanisms by which the hemibiotrophic Z. tritici suppresses immune responses in plants and the role of mycotoxins and effector proteins in infections caused by P. nodorum and Fusarium spp. fungi. Trichothecene glycosylation and effector proteins, which are involved in defense responses in wheat, have been described at the molecular level. Recent advances in molecular biology have produced interesting findings which should be further elucidated in studies of molecular interactions between wheat and fungal pathogens. The Clustered Regularly-Interspaced Short Palindromic Repeats/ CRISPR associated (CRISPR/Cas) system can be used to introduce targeted mutations into the wheat genome and confer resistance to selected fungal diseases. Host-induced gene silencing and spray-induced gene silencing are also useful tools for analyzing wheat-pathogens interactions which can be used to develop new strategies for controlling fungal diseases.
Collapse
Affiliation(s)
- Adrian Duba
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| | - Klaudia Goriewa-Duba
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-724 Olsztyn, Poland.
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| |
Collapse
|
357
|
Ding D, Chen K, Chen Y, Li H, Xie K. Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing. MOLECULAR PLANT 2018; 11:542-552. [PMID: 29462720 DOI: 10.1016/j.molp.2018.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/27/2018] [Accepted: 02/13/2018] [Indexed: 05/19/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) system has emerged as the revolutionary platform for DNA targeting. This system uses a site-specific RNA guide to direct a CRISPR effector (e.g., Cas9 and Cpf1) to a DNA target. Here, we elaborate a general strategy to simultaneously express multiple guide RNAs (gRNA) and CRISPR RNAs (crRNA) from introns of Cas9 and Cpf1. This method utilizes the endogenous tRNA processing system or crRNA processing activity of Cpf1 to cleave the spliced intron that contains tRNA-gRNA polycistron or crRNA-crRNA array. We demonstrated that the tRNA-gRNA intron is able to fuse with Cas9 as one gene. Such a hybrid gene could be expressed using one polymerase II promoter, and exhibited high efficiency and robustness in simultaneously targeting multiple sites. We also implemented this strategy in Cpf1-mediated genome editing using intronic tRNA-crRNA and crRNA-crRNA arrays. Interestingly, hybrid genes containing Cpf1 and intronic crRNA array exhibited remarkably increased efficiency compared with the conventional Cpf1 vectors. Taken together, this study presents a method to express CRISPR reagents from one hybrid gene to increase genome-editing efficiency and capacity. Owing to its simplicity and versatility, this method could be broadly used to develop sophisticated CRISPR tools in eukaryotes.
Collapse
Affiliation(s)
- Dan Ding
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaiyuan Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuedan Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
358
|
Chen L, Li W, Katin-Grazzini L, Ding J, Gu X, Li Y, Gu T, Wang R, Lin X, Deng Z, McAvoy RJ, Gmitter FG, Deng Z, Zhao Y, Li Y. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. HORTICULTURE RESEARCH 2018; 5:13. [PMID: 29531752 PMCID: PMC5834642 DOI: 10.1038/s41438-018-0023-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 05/20/2023]
Abstract
Developing CRISPR/Cas9-mediated non-transgenic mutants in asexually propagated perennial crop plants is challenging but highly desirable. Here, we report a highly useful method using an Agrobacterium-mediated transient CRISPR/Cas9 gene expression system to create non-transgenic mutant plants without the need for sexual segregation. We have also developed a rapid, cost-effective, and high-throughput mutant screening protocol based on Illumina sequencing followed by high-resolution melting (HRM) analysis. Using tetraploid tobacco as a model species and the phytoene desaturase (PDS) gene as a target, we successfully created and expediently identified mutant plants, which were verified as tetra-allelic mutants. We produced pds mutant shoots at a rate of 47.5% from tobacco leaf explants, without the use of antibiotic selection. Among these pds plants, 17.2% were confirmed to be non-transgenic, for an overall non-transgenic mutation rate of 8.2%. Our method is reliable and effective in creating non-transgenic mutant plants without the need to segregate out transgenes through sexual reproduction. This method should be applicable to many economically important, heterozygous, perennial crop species that are more difficult to regenerate.
Collapse
Affiliation(s)
- Longzheng Chen
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
| | - Lorenzo Katin-Grazzini
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
| | - Jing Ding
- College of Horticulture and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xianbin Gu
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
| | - Yanjun Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
| | - Tingting Gu
- College of Horticulture and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ren Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
| | - Xinchun Lin
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Zhejiang Hangzhou, China
| | - Ziniu Deng
- College of Horticulture, Hunan Agricultural University, Hunan Changsha, China
| | - Richard J. McAvoy
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093 USA
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT USA
- College of Horticulture and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
359
|
Zhang Q, Xing HL, Wang ZP, Zhang HY, Yang F, Wang XC, Chen QJ. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. PLANT MOLECULAR BIOLOGY 2018; 96:445-456. [PMID: 29476306 PMCID: PMC5978904 DOI: 10.1007/s11103-018-0709-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE We present novel observations of high-specificity SpCas9 variants, sgRNA expression strategies based on mutant sgRNA scaffold and tRNA processing system, and CRISPR/Cas9-mediated T-DNA integrations. Specificity of CRISPR/Cas9 tools has been a major concern along with the reports of their successful applications. We report unexpected observations of high frequency off-target mutagenesis induced by CRISPR/Cas9 in T1 Arabidopsis mutants although the sgRNA was predicted to have a high specificity score. We also present evidence that the off-target effects were further exacerbated in the T2 progeny. To prevent the off-target effects, we tested and optimized two strategies in Arabidopsis, including introduction of a mCherry cassette for a simple and reliable isolation of Cas9-free mutants and the use of highly specific mutant SpCas9 variants. Optimization of the mCherry vectors and subsequent validation found that fusion of tRNA with the mutant rather than the original sgRNA scaffold significantly improves editing efficiency. We then examined the editing efficiency of eight high-specificity SpCas9 variants in combination with the improved tRNA-sgRNA fusion strategy. Our results suggest that highly specific SpCas9 variants require a higher level of expression than their wild-type counterpart to maintain high editing efficiency. Additionally, we demonstrate that T-DNA can be inserted into the cleavage sites of CRISPR/Cas9 targets with high frequency. Altogether, our results suggest that in plants, continuous attention should be paid to off-target effects induced by CRISPR/Cas9 in current and subsequent generations, and that the tools optimized in this report will be useful in improving genome editing efficiency and specificity in plants and other organisms.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hui-Li Xing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi-Ping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hai-Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue-Chen Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
360
|
Liu C, Moschou PN. Phenotypic novelty by CRISPR in plants. Dev Biol 2018; 435:170-175. [DOI: 10.1016/j.ydbio.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
|
361
|
Cao J, Xiao Q, Yan Q. The multiplexed CRISPR targeting platforms. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 28:53-61. [PMID: 30205881 DOI: 10.1016/j.ddtec.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
The discovery and engineering of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the past several years have revolutionized biomedical research. The CRISPR technology showed great potential to advance detection, prevention, and treatment of human diseases in the near future. Compared to previous developed genome editing approaches, such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR-based systems have numerous advantages. One example is that the CRISPR systems can be easily adopted to efficiently target multiple genes simultaneously. Several strategies and toolboxes have been developed to achieve multiplexed targeting using the CRISPR systems. In this short review, we will discuss the principle, approach, and application of these strategies.
Collapse
Affiliation(s)
- Jian Cao
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States.
| | - Qian Xiao
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
362
|
Johnson RA, Conklin PA, Tjahjadi M, Missirian V, Toal T, Brady SM, Britt AB. SUPPRESSOR OF GAMMA RESPONSE1 Links DNA Damage Response to Organ Regeneration. PLANT PHYSIOLOGY 2018; 176:1665-1675. [PMID: 29222192 PMCID: PMC5813563 DOI: 10.1104/pp.17.01274] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/02/2017] [Indexed: 05/17/2023]
Abstract
In Arabidopsis, DNA damage-induced programmed cell death is limited to the meristematic stem cell niche and its early descendants. The significance of this cell-type-specific programmed cell death is unclear. Here, we demonstrate in roots that it is the programmed destruction of the mitotically compromised stem cell niche that triggers its regeneration, enabling growth recovery. In contrast to wild-type plants, sog1 plants, which are defective in damage-induced programmed cell death, maintain the cell identities and stereotypical structure of the stem cell niche after irradiation, but these cells fail to undergo cell division, terminating root growth. We propose DNA damage-induced programmed cell death is employed by plants as a developmental response, contrasting with its role as an anticarcinogenic response in animals. This role in plants may have evolved to restore the growth of embryos after the accumulation of DNA damage in seeds.
Collapse
Affiliation(s)
- Ross A Johnson
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, California 95616
| | - Phillip A Conklin
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, California 95616
| | - Michelle Tjahjadi
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, California 95616
| | - Victor Missirian
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, California 95616
| | - Ted Toal
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, California 95616
| | - Anne B Britt
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, California 95616
| |
Collapse
|
363
|
Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E. Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. CRISPR J 2018; 1:65-74. [PMID: 30627700 PMCID: PMC6319321 DOI: 10.1089/crispr.2017.0010] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The CRISPR-Cas9-based multiplexed gene editing (MGE) provides a powerful method to modify multiple genomic regions simultaneously controlling different agronomic traits in crops. We applied the MGE construct built by combining the tandemly arrayed tRNA–gRNA units to generate heritable mutations in the TaGW2, TaLpx-1, and TaMLO genes of hexaploid wheat. The knockout mutations generated by this construct in all three homoeologous copies of one of the target genes, TaGW2, resulted in a substantial increase in seed size and thousand grain weight. We showed that the non-modified gRNA targets in the early generation plants can be edited by CRISPR-Cas9 in the following generations. Our results demonstrate that transgenerational gene editing activity can serve as the source of novel variation in the progeny of CRISPR-Cas9-expressing plants and suggest that the Cas9-inducible trait transfer for crop improvement can be achieved by crossing the plants expressing the gene editing constructs with the lines of interest.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas
| | - Qianli Pan
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas
| | - Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas.,Integrated Genomics Facility, Kansas State University, Manhattan, Kansas
| | - Shiaoman Chao
- USDA-ARS Cereal Crops Research Unit, Fargo, North Dakota
| | - Harold Trick
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
364
|
Hashimoto R, Ueta R, Abe C, Osakabe Y, Osakabe K. Efficient Multiplex Genome Editing Induces Precise, and Self-Ligated Type Mutations in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:916. [PMID: 30018630 PMCID: PMC6037947 DOI: 10.3389/fpls.2018.00916] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/08/2018] [Indexed: 05/04/2023]
Abstract
Several expression systems for multiple guide RNA (gRNAs) have been developed in the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) system to induce multiple-gene modifications in plants. Here, we evaluated mutation efficiencies in the tomato genome using multiplex CRISPR/Cas9 vectors consisting of various Cas9 expression promoters with multiple gRNA expression combinations. In transgenic tomato calli induced with these vectors, mutation patterns varied depending on the promoters used to express Cas9. By using the tomato ELONGATION FACTOR-1α (SlEF1α) promoter to drive Cas9, occurrence of various types of mutations with high efficiency was detected in the tomato genome. Furthermore, sequence analysis showed that the majority of mutations using the multiplex system with the SlEF1α promoter corresponded to specific mutation pattern of deletions produced by self-ligation at two target sites of CRISPR/Cas9 with low mosaic mutations. These results suggest that optimizing the Cas9 expression promoter used in CRISPR/Cas9-mediated mutation improves multiplex genome editing, and could be used effectively to disrupt functional domains precisely in the tomato genome.
Collapse
Affiliation(s)
- Ryosuke Hashimoto
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Risa Ueta
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Chihiro Abe
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Yuriko Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
- *Correspondence: Keishi Osakabe,
| |
Collapse
|
365
|
Abstract
Plant tissue culture (PTC) is a set of techniques for culturing cells, tissues, or organs in an aseptic medium with a defined chemical composition, in a controlled environment. Tissue culture, when combined with molecular biology techniques, becomes a powerful tool for the study of metabolic pathways, elucidation of cellular processes, genetic improvement and, through genetic engineering, the generation of cell lines resistant to biotic and abiotic stress, obtaining improved plants of agronomic interest, or studying the complex cellular genome. In this chapter, we analyze in general the use of plant tissue culture, in particular protoplasts and calli, in the implementation of CRISPR/Cas9 technology.
Collapse
|
366
|
Sasaki K. Utilization of transcription factors for controlling floral morphogenesis in horticultural plants. BREEDING SCIENCE 2018; 68:88-98. [PMID: 29681751 PMCID: PMC5903982 DOI: 10.1270/jsbbs.17114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/07/2017] [Indexed: 05/26/2023]
Abstract
Transcription factors play important roles not only in the development of floral organs but also in the formation of floral characteristics in various plant species. Therefore, transcription factors are reasonable targets for modifying these floral traits and generating new flower cultivars. However, it has been difficult to control the functions of transcription factors because most plant genes, including those encoding transcription factors, exhibit redundancy. In particular, it has been difficult to understand the functions of these redundant genes by genetic analysis. Thus, a breakthrough silencing method called chimeric repressor gene silencing technology (CRES-T) was developed specifically for plant transcription factors. This method transforms transcriptional activators into dominant repressors, and the artificial chimeric repressors suppress the function of transcription factors regardless of their redundancy. Among these chimeric repressors, some were found to be inappropriate for expression throughout the plant body because they resulted in deformities. For these chimeric repressors, utilization of floral organ-specific promoters overcomes this problem by avoiding expression throughout the plant body. In contrast, attachment of viral activation domain VP16 to transcriptional repressors effectively alters into transcriptional activators. This review presents the importance of transcription factors for characterizing floral traits, describes techniques for controlling the functions of transcription factors.
Collapse
|
367
|
Hahn F, Eisenhut M, Mantegazza O, Weber APM. Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. FRONTIERS IN PLANT SCIENCE 2018; 9:424. [PMID: 29675030 PMCID: PMC5895730 DOI: 10.3389/fpls.2018.00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/16/2018] [Indexed: 05/18/2023]
Abstract
The CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double-strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral replicons did not yield any trichome-bearing plants.
Collapse
|
368
|
Curtin SJ. Editing the Medicago truncatula Genome: Targeted Mutagenesis Using the CRISPR-Cas9 Reagent. Methods Mol Biol 2018; 1822:161-174. [PMID: 30043304 DOI: 10.1007/978-1-4939-8633-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Medicago truncatula is an annual plant used for studying legume biology, in particular symbioses with nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi. Efforts to decipher the genetic basis of these ecologically and economically important traits are a major goal of plant and crop biology. M. truncatula is an excellent model system for this purpose, as it has several publicly available sequenced genomes, has a rapid seed-to-seed generation time, and is highly transformable. Various mutagenesis platforms such as Tnt1 retrotransposons and RNAi knockdown have been used successfully in forward and reverse genetic studies to identify and functionally characterize candidate genes. The CRISPR/Cas9 reagent is the most recent mutagenesis platform and is highly effective at generating site-directed double-stranded breaks (DSB) in M. truncatula. This protocol will demonstrate the construction of reagents using two genome engineering platforms that have successfully generated mutant plants in M. truncatula, M. sativa, and soybean systems. The reagents are easy to assemble, can be quickly retrofitted to test novel regulatory sequences for improved efficiency, and can be used for more advanced genome engineering strategies such as gene insertion or gene replacement.
Collapse
Affiliation(s)
- Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN, USA.
| |
Collapse
|
369
|
Abstract
Many researchers have sought along the last two decades a legume species that could serve as a model system for genetic studies to resolve specific developmental or metabolic processes that cannot be studied in other model plants. Nitrogen fixation, nodulation, compound leaf, inflorescence and plant architecture, floral development, pod formation, secondary metabolite biosynthesis, and other developmental and metabolic aspects are legume-specific or show important differences with those described in Arabidopsis thaliana, the most studied model plant. Mainly Medicago truncatula and Lotus japonicus were proposed in the 1990s as model systems due to their key attributes, diploid genome, autogamous nature, short generation times, small genome sizes, and both species can be readily transformed. After more than decade-long, the genome sequences of both species are essentially complete, and a series of functional genomics tools have been successfully developed and applied. Mutagens that cause insertions or deletions are being used in these model systems because these kinds of DNA rearrangements are expected to assist in the isolation of the corresponding genes by Target-Induced Local Lesions IN Genomes (TILLING) approaches. Different M. truncatula mutants have been obtained following γ-irradiation or fast neutron bombardment (FNB), ethyl-nitrosourea (ENU) or ethyl-methanesulfonate (EMS) treatments, T-DNA and activation tagging, use of the tobacco retrotransposon Tnt1 to produce insertional mutants, gene silencing by RNAi, and transient post-transcriptional gene silencing by virus-induced gene silencing (VIGS). Emerging technologies of targeted mutagenesis and gene editing, such as the CRISPR-Cas9 system, could open a new era in this field. Functional genomics tools and phenotypic analyses of several mutants generated in M. truncatula have been essential to better understand differential aspects of legumes development and metabolism.
Collapse
Affiliation(s)
- Luis A Cañas
- CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP), Valencia, Spain.
| | - José Pío Beltrán
- CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP), Valencia, Spain
| |
Collapse
|
370
|
Gene editing in tomatoes. Emerg Top Life Sci 2017; 1:183-191. [DOI: 10.1042/etls20170056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
Tomato is an effective model plant species because it possesses the qualities necessary for genetic and functional studies, but is also a food crop making what is learned more translatable for crop improvement when compared with other non-food crop models. The availability of genome sequences for many genotypes and amenability to transformation methodologies (Agrobacterium-mediated, direct DNA uptake via protoplasts, biolistics) make tomato the perfect platform to study the application of gene-editing technologies. This review includes information related to tomato transformation methodology, one of the necessary requirements for gene editing, along with the status of site-directed mutagenesis by TALENs (transcription activator-like effector nucleases) and CRISPR/Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated Proteins). In addition to the reports on proof-of-concept experiments to demonstrate the feasibility of gene editing in tomato, there are many reports that show the power of these technologies for modification of traits, such as fruit characteristics (ripening, size, and parthenocarpy), pathogen susceptibility, architecture (plant and inflorescence), and metabolic engineering. Also highlighted in this review are reports on the application of a recent CRISPR technology called base editing that allows the modification of one base pair in a gene sequence and a strategy that takes advantage of a geminivirus replicon for delivery of DNA repair template.
Collapse
|
371
|
Opportunities for genome editing in vegetable crops. Emerg Top Life Sci 2017; 1:193-207. [DOI: 10.1042/etls20170033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
Vegetables include high-value crops with health-promoting effects and reduced environmental impact. The availability of genomic and biotechnological tools in certain species, coupled with the recent development of new breeding techniques based on precise editing of DNA, provides unique opportunities to finally take advantage of the past decades of detailed genetic analyses, thus making improvement of traits related to quality and stress tolerance achievable in a reasonable time frame. Recent reports of such approaches in vegetables illustrate the feasibility of obtaining multiple homozygous mutations in a single generation, heritable by the progeny, using stable or transient transformation approaches, which may not rely on the integration of unwanted foreign DNA. Application of these approaches to currently non-sequenced/tissue culture recalcitrant crops will contribute to meet the challenges posed by the increase in population and climate change.
Collapse
|
372
|
Petit J, Bres C, Mauxion JP, Bakan B, Rothan C. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5369-5387. [PMID: 29036305 DOI: 10.1093/jxb/erx341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/14/2017] [Indexed: 05/18/2023]
Abstract
Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties.
Collapse
Affiliation(s)
- Johann Petit
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | - Cécile Bres
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | | | | | - Christophe Rothan
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|
373
|
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G. From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends Biotechnol 2017; 36:160-172. [PMID: 29102241 DOI: 10.1016/j.tibtech.2017.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
Bread wheat (Triticum aestivum) ranks as one of our most important staple crops. However, its hexaploid nature has complicated our understanding of the genetic bases underlying many of its traits. Historically, functional genetic studies in wheat have focused on identifying natural variations and have contributed to assembling and enriching its genetic stock. Recently, mold-breaking advances in whole genome sequencing, exome-capture based mutant libraries, and genome editing have revolutionized strategies for genetic research in wheat. We review new trends in wheat functional genetic studies along with germplasm conservation and innovation, including the relevance of genetic stocks, and the application of sequencing-based mutagenesis and genome editing. We also highlight the potential of multiplex genome editing toolkits in addressing species-specific challenges in wheat.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; These authors contributed equally to this work
| | - Shubin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; These authors contributed equally to this work
| | - Zhen Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
374
|
Mikami M, Toki S, Endo M. In Planta Processing of the SpCas9-gRNA Complex. PLANT & CELL PHYSIOLOGY 2017; 58:1857-1867. [PMID: 29040704 PMCID: PMC5921533 DOI: 10.1093/pcp/pcx154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
In CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9)-mediated genome editing in plants, Streptococcus pyogenes Cas9 (SpCas9) protein and the required guide RNA (gRNA) are, in most cases, expressed from a stably integrated transgene. Generally, SpCas9 protein is expressed from an RNA polymerase (pol) II promoter, while gRNA is expressed from a pol III promoter. However, pol III promoters have not been much characterized other than in model plants, making it difficult to select appropriate promoters for specific applications, while pol II transcripts have to be processed to generate functional gRNAs. Recently, successful processing of a pol II transcript into functional gRNAs using ribozyme or Csy4-RNA cleavage systems has been demonstrated. Here, we show that functional gRNAs can be efficiently processed using SpCas9 protein and plant endogenous RNA cleavage systems without the need for a specific RNA processing system. In our system, SpCas9 RNA and gRNA are both transcribed as a single RNA using a single pol II promoter; translated SpCas9 protein can be bound to this RNA and, finally, extra RNA sequences are trimmed by plant RNA processing systems to form a functional SpCas9-gRNA complex. The efficiency of targeted mutagenesis using our novel SpCas9-gRNA fused system was comparable with that of the SpCas9-gRNA system with ribozyme sequence, achieving rates of up to 100% in rice. Our results could be useful in developing stable SpCas9-gRNA expression systems and in RNA virus vector-mediated genome editing systems in plants.
Collapse
Affiliation(s)
- Masafumi Mikami
- Graduate School of Nanobioscience, Yokohama City University, 22- 2 Seto, Yokohama, Kanagawa 236-0027, Japan
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Seiichi Toki
- Graduate School of Nanobioscience, Yokohama City University, 22- 2 Seto, Yokohama, Kanagawa 236-0027, Japan
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, Kanagawa 244-0813, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
375
|
Zhang D, Zhang H, Li T, Chen K, Qiu JL, Gao C. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biol 2017; 18:191. [PMID: 29020979 PMCID: PMC5637269 DOI: 10.1186/s13059-017-1325-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/24/2017] [Indexed: 12/26/2022] Open
Abstract
High-fidelity SpCas9 variants (eSpCas9 and SpCas9-HF1) have been engineered to reduce off-target effects. We found that changes in guide RNA length induced significant reductions in the editing activities of SpCas9 variants in plant cells. Single guide RNAs harboring precise, perfectly matched 20-nucleotide guide sequences are necessary for high on-target editing activities of eSpCas9 and SpCas9-HF1. Precise 20-nucleotide guide sequences derived from tRNA-sgRNA precursors enable robust on-target editing by these variants with enhanced specificity. Our work reveals an effective way of enhancing the use of the high-fidelity SpCas9 nucleases for efficient and precise genome engineering.
Collapse
Affiliation(s)
- Dingbo Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tingdong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
376
|
Wright RC, Zahler ML, Gerben SR, Nemhauser JL. Insights into the Evolution and Function of Auxin Signaling F-Box Proteins in Arabidopsis thaliana Through Synthetic Analysis of Natural Variants. Genetics 2017; 207:583-591. [PMID: 28760746 PMCID: PMC5629325 DOI: 10.1534/genetics.117.300092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
The evolution of complex body plans in land plants has been paralleled by gene duplication and divergence within nuclear auxin-signaling networks. A deep mechanistic understanding of auxin signaling proteins therefore may allow rational engineering of novel plant architectures. Toward that end, we analyzed natural variation in the auxin receptor F-box family of wild accessions of the reference plant Arabidopsis thaliana and used this information to populate a structure/function map. We employed a synthetic assay to identify natural hypermorphic F-box variants and then assayed auxin-associated phenotypes in accessions expressing these variants. To more directly measure the impact of the strongest variant in our synthetic assay on auxin sensitivity, we generated transgenic plants expressing this allele. Together, our findings link evolved sequence variation to altered molecular performance and auxin sensitivity. This approach demonstrates the potential for combining synthetic biology approaches with quantitative phenotypes to harness the wealth of available sequence information and guide future engineering efforts of diverse signaling pathways.
Collapse
Affiliation(s)
- R Clay Wright
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | - Mollye L Zahler
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | - Stacey R Gerben
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | | |
Collapse
|
377
|
Gal-On A, Fuchs M, Gray S. Generation of novel resistance genes using mutation and targeted gene editing. Curr Opin Virol 2017; 26:98-103. [DOI: 10.1016/j.coviro.2017.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023]
|
378
|
Yu QH, Wang B, Li N, Tang Y, Yang S, Yang T, Xu J, Guo C, Yan P, Wang Q, Asmutola P. CRISPR/Cas9-induced Targeted Mutagenesis and Gene Replacement to Generate Long-shelf Life Tomato Lines. Sci Rep 2017; 7:11874. [PMID: 28928381 PMCID: PMC5605656 DOI: 10.1038/s41598-017-12262-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/01/2017] [Indexed: 01/15/2023] Open
Abstract
Quickly and precisely gain genetically enhanced breeding elites with value-adding performance traits is desired by the crop breeders all the time. The present of gene editing technologies, especially the CRISPR/Cas9 system with the capacities of efficiency, versatility and multiplexing provides a reasonable expectation towards breeding goals. For exploiting possible application to accelerate the speed of process at breeding by CRISPR/Cas9 technology, in this study, the Agrobacterium tumefaciens-mediated CRISPR/Cas9 system transformation method was used for obtaining tomato ALC gene mutagenesis and replacement, in absence and presence of the homologous repair template. The average mutation frequency (72.73%) and low replacement efficiency (7.69%) were achieved in T0 transgenic plants respectively. None of homozygous mutation was detected in T0 transgenic plants, but one plant carry the heterozygous genes (Cas9/*-ALC/alc) was stably transmitted to T1 generations for segregation and genotyping. Finally, the desired alc homozygous mutants without T-DNA insertion (*/*-alc/alc) in T1 generations were acquired and further confirmed by genotype and phenotype characterization, with highlight of excellent storage performance, thus the recessive homozygous breeding elites with the character of long-shelf life were generated. Our results support that CRISPR/Cas9-induced gene replacement via HDR provides a valuable method for breeding elite innovation in tomato.
Collapse
Affiliation(s)
- Qing-Hui Yu
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China.
| | - Baike Wang
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Ning Li
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Yaping Tang
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Shengbao Yang
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Tao Yang
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Juan Xu
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Chunmiao Guo
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Peng Yan
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Qiang Wang
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Patiguli Asmutola
- Institute of Horticulture, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| |
Collapse
|
379
|
CRISPR-based tools for plant genome engineering. Emerg Top Life Sci 2017; 1:135-149. [PMID: 33525768 PMCID: PMC7289020 DOI: 10.1042/etls20170011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023]
Abstract
Molecular tools adapted from bacterial CRISPR (clustered regulatory interspaced short palindromic repeat) adaptive immune systems have been demonstrated in an increasingly wide range of plant species. They have been applied for the induction of targeted mutations in one or more genes as well as for directing the integration of new DNA to specific genomic loci. The construction of molecular tools for multiplexed CRISPR-mediated editing in plants has been facilitated by cloning techniques that allow multiple sequences to be assembled together in a single cloning reaction. Modifications of the canonical Cas9 protein from Streptococcus pyogenes and the use of nucleases from other bacteria have increased the diversity of genomic sequences that can be targeted and allow the delivery of protein cargos such as transcriptional activators and repressors. Furthermore, the direct delivery of protein-RNA complexes to plant cells and tissues has enabled the production of engineered plants without the delivery or genomic integration of foreign DNA. Here, we review toolkits derived from bacterial CRISPR systems for targeted mutagenesis, gene delivery and modulation of gene expression in plants, focusing on their composition and the strategies employed to reprogramme them for the recognition of specific genomic targets.
Collapse
|
380
|
Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell 2017; 171:470-480.e8. [PMID: 28919077 DOI: 10.1016/j.cell.2017.08.030] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/30/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022]
Abstract
Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits.
Collapse
Affiliation(s)
| | - Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jarrett Man
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
381
|
Synthetic genetic circuits in crop plants. Curr Opin Biotechnol 2017; 49:16-22. [PMID: 28772191 DOI: 10.1016/j.copbio.2017.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
The love affair between crop breeding and genetics began over a century ago and has continued unabated, from mass selection programs to targeted genome modifications. Synthetic genetic circuits, a recent development, are combinations of regulatory and coding DNA introduced into a crop plant to achieve a desired function. Genetic circuits could accelerate crop improvement, allowing complex traits to be rationally designed and requisite DNA parts delivered directly into a genome of interest. However, there is not yet a standardized pipeline from exploratory laboratory testing to crop trials, and bringing transgenic products to market remains a considerable barrier. We highlight successes so far and future developments necessary to make genetic circuits a viable crop improvement technology over this century.
Collapse
|
382
|
Affiliation(s)
- C Robin Buell
- Department of Plant BiologyMichigan State UniversityEast Lansing, Michigan 48824
| | - Daniel Voytas
- Microbial and Plant Genomics InstituteUniversity of MinnesotaMinneapolis, Minnesota 55455
| |
Collapse
|
383
|
Čermák T, Curtin SJ. Design and Assembly of CRISPR/Cas9 Reagents for Gene Knockout, Targeted Insertion, and Replacement in Wheat. Methods Mol Biol 2017; 1679:187-212. [PMID: 28913802 DOI: 10.1007/978-1-4939-7337-8_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Advances in cereal transformation along with the completion of the wheat genome sequence assembly have increased the demand for tools that perform targeted and specific modifications in this crop plant. This protocol demonstrates the construction of reagents using a comprehensive genome engineering kit to create single and multiple gene "knockouts," site-specific chromosome deletions and gene replacement or "knockins" including the use of geminivirus replicons (GVRs). The reagents allow for both easy construction of simple genome engineering vectors, and "mix and match" swapping of components such as the Cas9, guide RNA and donor template cassettes for gene targeting. In addition, a web-based tool greatly streamlines vector selection, primer design, and vector construction.
Collapse
Affiliation(s)
- Tomáš Čermák
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, 1500 Gortner Avenue, Minneapolis, MN, 55455, USA.
| | - Shaun J Curtin
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, St Paul, MN, 55108, USA
| |
Collapse
|
384
|
Zhu C, Yang J, Shyu C. Setaria Comes of Age: Meeting Report on the Second International Setaria Genetics Conference. FRONTIERS IN PLANT SCIENCE 2017; 8:1562. [PMID: 29033954 PMCID: PMC5625327 DOI: 10.3389/fpls.2017.01562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/28/2017] [Indexed: 05/08/2023]
Abstract
Setaria viridis is an emerging model for cereal and bioenergy grasses because of its short stature, rapid life cycle and expanding genetic and genomic toolkits. Its close phylogenetic relationship with economically important crops such as maize and sorghum positions Setaria as an ideal model system for accelerating discovery and characterization of crop genes that control agronomically important traits. The Second International Setaria Genetics Conference was held on March 6-8, 2017 at the Donald Danforth Plant Science Center, St. Louis, MO, United States to discuss recent technological breakthroughs and research directions in Setaria (presentation abstracts can be downloaded at https://www.brutnelllab.org/setaria). Here, we highlight topics presented in the conference including inflorescence architecture, C4 photosynthesis and abiotic stress. Genetic and genomic toolsets including germplasm, mutant populations, transformation and gene editing technologies are also discussed. Since the last meeting in 2014, the Setaria community has matured greatly in the quality of research being conducted. Outreach and increased communication with maize and other plant communities will allow broader adoption of Setaria as a model system to translate fundamental discovery research to crop improvement.
Collapse
|
385
|
Jia H, Xu J, Orbović V, Zhang Y, Wang N. Editing Citrus Genome via SaCas9/sgRNA System. FRONTIERS IN PLANT SCIENCE 2017; 8:2135. [PMID: 29312390 PMCID: PMC5732962 DOI: 10.3389/fpls.2017.02135] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 05/22/2023]
Abstract
SaCas9/sgRNA, derived from Staphylococcus aureus, is an alternative system for genome editing to Streptococcus pyogenes SpCas9/sgRNA. The smaller SaCas9 recognizes a different protospacer adjacent motif (PAM) sequence from SpCas9. SaCas9/sgRNA has been employed to edit the genomes of Arabidopsis, tobacco and rice. In this study, we aimed to test its potential in genome editing of citrus. Transient expression of SaCas9/sgRNA in Duncan grapefruit via Xcc-facilitated agroinfiltration showed it can successfully modify CsPDS and Cs2g12470. Subsequently, binary vector GFP-p1380N-SaCas9/35S-sgRNA1:AtU6-sgRNA2 was developed to edit two target sites of Cs7g03360 in transgenic Carrizo citrange. Twelve GFP-positive Carrizo transformants were successfully established, designated as #Cz1 to #Cz12. Based on targeted next generation sequencing results, the mutation rates for the two targets ranged from 15.55 to 39.13% for sgRNA1 and 49.01 to 79.67% for sgRNA2. Therefore, SaCas9/sgRNA can be used as an alternative tool to SpCas9/sgRNA for citrus genome editing.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Vladimir Orbović
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Nian Wang,
| |
Collapse
|