351
|
Abstract
Apiculate yeasts of the genus Hanseniaspora/Kloeckera are the main species present on mature grapes and play a significant role at the beginning of fermentation, producing enzymes and aroma compounds that expand the diversity of wine color and flavor. Ten species of the genus Hanseniaspora have been recovered from grapes and are associated in two groups: H. valbyensis, H. guilliermondii, H. uvarum, H. opuntiae, H. thailandica, H. meyeri, and H. clermontiae; and H. vineae, H. osmophila, and H. occidentalis. This review focuses on the application of some strains belonging to this genus in co-fermentation with Saccharomyces cerevisiae that demonstrates their positive contribution to winemaking. Some consistent results have shown more intense flavors and complex, full-bodied wines, compared with wines produced by the use of S. cerevisiae alone. Recent genetic and physiologic studies have improved the knowledge of the Hanseniaspora/Kloeckera species. Significant increases in acetyl esters, benzenoids, and sesquiterpene flavor compounds, and relative decreases in alcohols and acids have been reported, due to different fermentation pathways compared to conventional wine yeasts.
Collapse
|
352
|
Effects of Pure and Mixed Autochthonous Torulaspora delbrueckii and Saccharomyces cerevisiae on Fermentation and Volatile Compounds of Narince Wines. Foods 2018; 7:foods7090147. [PMID: 30189601 PMCID: PMC6163554 DOI: 10.3390/foods7090147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
The cultivar of Narince is a native white grape variety of Vitis vinifera, grown in Tokat city, the Mid-Black Sea Region of Anatolia. In this study, the effects of pure and mixed autochthonous Torulaspora delbrueckii-214 and Saccharomyces cerevisiae-1088 cultures on the fermentation behavior and aroma compounds of Narince wines were investigated. Volatile compounds formed in wines were extracted using a liquid–liquid extraction method and determined by GC-MS-FID. Narince grape must was fermented in duplicate, under the following three conditions. Two pure cultures of T. delbrueckii-214 and S. cerevisiae-1088 and a mixture of T. delbrueckii-214 and S. cerevisiae-1088 (1:1). The presence of the non-Saccharomyces T. delbrueckii-214 yeast slowed down the fermentation and produced a lower level of ethanol and a higher levels of glycerol and volatile acid. Only the pure culture of T. delbrueckii-214 was unable to finish fermentation. On the other hand, mixed culture fermentation improved the aroma intensity and complexity of wine due to increased levels of higher alcohols and esters. According to sensory analysis, wine fermented with mixed culture was the most preferred wine followed by wine inoculated with pure S. cerevisiae-1088. This study confirms the role of T. delbrueckii in wine aroma and the potential of non-Saccharomyces use in winemaking.
Collapse
|
353
|
Lleixà J, Kioroglou D, Mas A, Portillo MDC. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes. Int J Food Microbiol 2018; 281:36-46. [DOI: 10.1016/j.ijfoodmicro.2018.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022]
|
354
|
González B, Vázquez J, Morcillo-Parra MÁ, Mas A, Torija MJ, Beltran G. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol 2018; 74:64-74. [DOI: 10.1016/j.fm.2018.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
|
355
|
Canonico L, Comitini F, Ciani M. Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Food Microbiol 2018; 74:100-106. [DOI: 10.1016/j.fm.2018.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/24/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
356
|
Abstract
The interest in non-Saccharomyces yeast for use in sparkling wine production has increased in recent years. Studies have reported differences in amino acids and ammonia, volatile aroma compounds (VOCs), glycerol, organic acids, proteins and polysaccharides. The aim of this review is to report on our current knowledge concerning the influence of non-Saccharomyces yeast on sparkling wine chemical composition and sensory profiles. Further information regarding the nutritional requirements of each of these yeasts and nutrient supplementation products specifically for non-Saccharomyces yeasts are likely to be produced in the future. Further studies that focus on the long-term aging ability of sparkling wines made from non-Saccharomyces yeast and mixed inoculations including their foam ability and persistence, organic acid levels and mouthfeel properties are recommended as future research topics.
Collapse
|
357
|
Abstract
The genus Zygosaccharomyces is generally associated to wine spoilage in the winemaking industry, since a contamination with strains of this species may produce re-fermentation and CO2 production in sweet wines. At the same time, this capacity might be useful for sparkling wines production, since this species may grow under restrictive conditions, such as high ethanol, low oxygen, and harsh osmotic conditions. The spoilage activity of this genus is also found in fruit juices, soft drinks, salad dressings, and other food products, producing besides package expansion due to gas production, non-desired compounds such as ethanol and esters. Despite these drawbacks, Zygosaccharomyces spp. produces high ethanol and acetoin content in wines and may play an important role as non-Saccharomyces yeasts in differentiated wine products. Control strategies, such as the use of antimicrobial peptides like Lactoferricin B (Lfcin B), the use of dimethyl dicarbonate (DMDC) or non-thermal sterilization techniques may control this spoilage genus in the food industry.
Collapse
|
358
|
Vázquez J, Grillitsch K, Daum G, Mas A, Torija MJ, Beltran G. Melatonin Minimizes the Impact of Oxidative Stress Induced by Hydrogen Peroxide in Saccharomyces and Non-conventional Yeast. Front Microbiol 2018; 9:1933. [PMID: 30177925 PMCID: PMC6109679 DOI: 10.3389/fmicb.2018.01933] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is synthesized from tryptophan by Saccharomyces cerevisiae and non-conventional yeast species. Antioxidant properties have been suggested as a possible role of melatonin in a S. cerevisiae wine strain. However, the possible antioxidant melatonin effect on non-Saccharomyces species and other strains of S. cerevisiae must be evaluated. The aim of this study was to determine the antioxidant capacity of melatonin in eight S. cerevisiae strains and four non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Starmerella bacillaris, and Hanseniaspora uvarum). Therefore, the ROS formation, lipid peroxidation, catalase activity, fatty acid composition, and peroxisome proliferation were investigated. The results showed that the presence of melatonin increases peroxisome accumulation and slightly increases the catalase activity. When cells grown in the presence of melatonin were exposed to oxidative stress induced by H2O2, lower ROS accumulation and lipid peroxidation were observed in all tested strains. Therefore, the increased catalase activity that was a consequence of oxidative stress was lower in the presence of melatonin. Moreover, the presence of MEL modulates cell FA composition, increasing oleic and palmitoleic acids and leading to higher UFA/SFA ratios, which have been previously related to a higher tolerance to H2O2. These findings demonstrate that melatonin can act as an antioxidant compound in both S. cerevisiae and non-Saccharomyces yeasts.
Collapse
Affiliation(s)
- Jennifer Vázquez
- Oenological Biotechnology Research Group, Department of Biochemistry and Biotechnology, Faculty of Oenology, University of Rovira i Virgili, Tarragona, Spain
| | | | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Albert Mas
- Oenological Biotechnology Research Group, Department of Biochemistry and Biotechnology, Faculty of Oenology, University of Rovira i Virgili, Tarragona, Spain
| | - María-Jesús Torija
- Oenological Biotechnology Research Group, Department of Biochemistry and Biotechnology, Faculty of Oenology, University of Rovira i Virgili, Tarragona, Spain
| | - Gemma Beltran
- Oenological Biotechnology Research Group, Department of Biochemistry and Biotechnology, Faculty of Oenology, University of Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
359
|
Abstract
Each year, winemakers can face sluggish or stuck fermentations during wine making, especially when a spontaneous fermentation is performed, even if strains of the classical wine yeast Saccharomyces cerevisiae are applied. Problems are inevitable when low ammonium concentrations (<160 mg L−1 grape must) or an excess of fructose compared to glucose are observed during grape must fermentation. S. cerevisiae strains cannot use all kinds of amino acids as the sole nitrogen source but usually need free ammonium (optimal concentration: 600 mg L−1 grape must). It preferably consumes glucose, leading often to an excess of fructose in the fermenting must, which contains glucose and fructose in an equal ratio at the beginning of fermentation. Yeast hybrids have been isolated from wines several times and different strains are already commercially available. The united properties of the parent strains can provide advantages under sophisticated fermentation conditions. However, the involvement of a hybrid yeast for the rectification of fermentation disorders in spontaneous fermentations has only been described recently in the literature. Recent investigations have provided convincing evidence that fermentation problems can be overcome when must fermentations are successively performed with Saccharomyces bayanus strain HL 77 and the triple hybrid S. cerevisiae × Saccharomyces kudriavzevii × S. bayanus strain HL 78. The triple hybrid strain HL 78 uses amino acids as a nitrogen source in the absence of ammonium and it also exhibits a fructophilic character with an enhanced uptake of fructose in comparison to glucose. The application of genetically modified yeast strains is not allowed for starter cultures in wine making, but the usage of yeast mixtures and hybrid strains could be a promising tool for winemakers to solve fermentation problems during spontaneous fermentation or for the creation of novel wine types with desired sensory characteristics under more challenging conditions, especially when the composition of the must components is not optimal because of, e.g., critical climatic or soil conditions.
Collapse
|
360
|
Mangado A, Morales P, Gonzalez R, Tronchoni J. Evolution of a Yeast With Industrial Background Under Winemaking Conditions Leads to Diploidization and Chromosomal Copy Number Variation. Front Microbiol 2018; 9:1816. [PMID: 30127779 PMCID: PMC6088182 DOI: 10.3389/fmicb.2018.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Industrial wine yeast strains show genome particularities, with strains showing polyploid genomes or chromosome copy number variations, being easier to identify. Although these genomic structures have classically been considered transitory steps in the genomic adaptation to new environmental conditions, they may be more stable than thought. These yeasts are highly specialized strains able to cope with the different stresses associated with the fermentation process, from the high osmolarity to the final ethanol content. In this work, we use adaptive laboratory evolution, focusing on the initial steps of the fermentation process, where growth rate is maximum, to provide new insights into the role of the different genomic and chromosomic rearrangements that occur during adaptation to wine conditions, and providing an understanding of the chronology of the different evolutionary steps.
Collapse
Affiliation(s)
- Ana Mangado
- Instituto de Ciencias de la Vid y del Vino, Gobierno de La Rioja, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Logroño, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino, Gobierno de La Rioja, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Logroño, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino, Gobierno de La Rioja, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Logroño, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino, Gobierno de La Rioja, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Logroño, Spain
| |
Collapse
|
361
|
Lachancea thermotolerans, the Non-Saccharomyces Yeast that Reduces the Volatile Acidity of Wines. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4030056] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To improve the quality of fermented drinks, or more specifically, wine, some strains of yeast have been isolated, tested and studied, such as Saccharomyces and non-Saccharomyces. Some non-conventional yeasts present good fermentative capacities and are able to ferment in quite undesirable conditions, such as the case of must, or wines that have a high concentration of acetic acid. One of those yeasts is Lachancea thermotolerants (L. thermotolerans), which has been studied for its use in wine due to its ability to decrease pH through L-lactic acid production, giving the wines a pleasant acidity. This review focuses on the recent discovery of an interesting feature of L. thermotolerans—namely, its ability to decrease wines’ volatile acidity.
Collapse
|
362
|
Ma W, Wu Y, Wei Y, Zou W, Yan Y, Xue J, Tian G, Wang L, Wang W, Pan H. Microbial diversity analysis of vineyards in the Xinjiang region using high-throughput sequencing. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenrui Ma
- College of Food Science and Pharmacy; Xinjiang Agriculture University; Urumqi 830052 China
| | - Yun Wu
- College of Food Science and Pharmacy; Xinjiang Agriculture University; Urumqi 830052 China
| | - Yujie Wei
- College of Food Science and Pharmacy; Xinjiang Agriculture University; Urumqi 830052 China
| | - Wan Zou
- College of Food Science and Pharmacy; Xinjiang Agriculture University; Urumqi 830052 China
| | - Yinzhuo Yan
- China National Research Institute of Food and Fermentation Industries; Beijing 100015 China
| | - Jie Xue
- China National Research Institute of Food and Fermentation Industries; Beijing 100015 China
| | - Ge Tian
- College of Food Science and Pharmacy; Xinjiang Agriculture University; Urumqi 830052 China
| | - Liye Wang
- College of Food Science and Pharmacy; Xinjiang Agriculture University; Urumqi 830052 China
| | - Wei Wang
- College of Food Science and Pharmacy; Xinjiang Agriculture University; Urumqi 830052 China
| | - Hongyu Pan
- China National Research Institute of Food and Fermentation Industries; Beijing 100015 China
| |
Collapse
|
363
|
Sobhy IS, Baets D, Goelen T, Herrera-Malaver B, Bosmans L, Van den Ende W, Verstrepen KJ, Wäckers F, Jacquemyn H, Lievens B. Sweet Scents: Nectar Specialist Yeasts Enhance Nectar Attraction of a Generalist Aphid Parasitoid Without Affecting Survival. FRONTIERS IN PLANT SCIENCE 2018; 9:1009. [PMID: 30061909 PMCID: PMC6055026 DOI: 10.3389/fpls.2018.01009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/21/2018] [Indexed: 05/29/2023]
Abstract
Floral nectar is commonly inhabited by microorganisms, mostly yeasts and bacteria, which can have a strong impact on nectar chemistry and scent. Yet, little is known about the effects of nectar microbes on the behavior and survival of insects belonging to the third trophic level such as parasitoids. Here, we used five nectar-inhabiting yeast species to test the hypothesis that yeast species that almost solely occur in nectar, and therefore substantially rely on floral visitors for dispersal, produce volatile compounds that enhance insect attraction without compromising insect life history parameters, such as survival. Experiments were performed using two nectar specialist yeasts (Metschnikowia gruessii and M. reukaufii) and three generalist species (Aureobasidium pullulans, Hanseniaspora uvarum, and Sporobolomyces roseus). Saccharomyces cerevisiae was included as a reference yeast. We compared olfactory responses of the generalist aphid parasitoid Aphidius ervi (Haliday) (Hymenoptera: Braconidae) when exposed to these microorganisms inoculated in synthetic nectar. Nectar-inhabiting yeasts had a significant impact on nectar chemistry and produced distinct volatile blends, some of which were attractive, while others were neutral or repellent. Among the different yeast species tested, the nectar specialists M. gruessii and M. reukaufii were the only species that produced a highly attractive nectar to parasitoid females, which simultaneously had no adverse effects on longevity and survival of adults. By contrast, parasitoids that fed on nectars fermented with the reference strain, A. pullulans, H. uvarum or S. roseus showed shortest longevity and lowest survival. Additionally, nectars fermented by A. pullulans or S. roseus were consumed significantly less, suggesting a lack of important nutrients or undesirable changes in the nectar chemical profiles. Altogether our results indicate that nectar-inhabiting yeasts play an important, but so far largely overlooked, role in plant-insect interactions by modulating the chemical composition of nectar, and may have important ecological consequences for plant pollination and biological control of herbivorous insects.
Collapse
Affiliation(s)
- Islam S. Sobhy
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Dieter Baets
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
| | - Tim Goelen
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
| | - Beatriz Herrera-Malaver
- VIB Lab for Systems Biology and Centre of Microbial and Plant Genetics Lab for Genetics and Genomics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Lien Bosmans
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Kevin J. Verstrepen
- VIB Lab for Systems Biology and Centre of Microbial and Plant Genetics Lab for Genetics and Genomics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Felix Wäckers
- Biobest, Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Hans Jacquemyn
- Laboratory of Plant Conversation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
| |
Collapse
|
364
|
|
365
|
Lemos Junior WJF, da Silva Duarte V, Treu L, Campanaro S, Nadai C, Giacomini A, Corich V. Whole genome comparison of two Starmerella bacillaris strains with other wine yeasts uncovers genes involved in modulating important winemaking traits. FEMS Yeast Res 2018; 18:5046425. [DOI: 10.1093/femsyr/foy069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wilson Josè Fernandes Lemos Junior
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
| | - Vinicius da Silva Duarte
- Department of Microbiology, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, 36570 000, Viçosa, Brazil
| | - Laura Treu
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58b, 35121, Padova, Italy
| | - Chiara Nadai
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| |
Collapse
|
366
|
Raymond Eder ML, Conti F, Rosa AL. Differences Between Indigenous Yeast Populations in Spontaneously Fermenting Musts From V. vinifera L. and V. labrusca L. Grapes Harvested in the Same Geographic Location. Front Microbiol 2018; 9:1320. [PMID: 29971059 PMCID: PMC6018209 DOI: 10.3389/fmicb.2018.01320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022] Open
Abstract
Yeast communities associated with Vitis vinifera L. ecosystems have been widely characterized. Less is known, however, about yeast communities present in grapes and fermenting musts from Vitis non-vinifera ecosystems. Moreover, there are no comparative studies concerning yeast communities in grapes from V. vinifera L. and non-vinifera Vitis species in vineyards from a shared terroir. In this work, we have used a culture-dependent strategy, phenotypic analyses, and molecular genotyping, to study the most representative yeast species present in spontaneously fermenting musts of grapes harvested from neighboring V. vinifera L. (cv. Malbec) and V. labrusca L. (cv. Isabella) vineyards. Phenotypic analyses of H2S production, ethanol tolerance and carbon utilization, on randomly selected strains of each Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae strains, as well as microsatellite genotyping of S. cerevisiae isolates from each the Malbec and Isabella grape musts, suggest that V. vinifera L. and V. labrusca L. ecosystems could harbor different yeast strain populations. Thus, microbial communities in exotic Vitis species may offer opportunities to look for unique yeast strains that could not be present in conventional V. vinifera L. ecosystems.
Collapse
Affiliation(s)
- María L Raymond Eder
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Francisco Conti
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| |
Collapse
|
367
|
Benito S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl Microbiol Biotechnol 2018; 102:6775-6790. [PMID: 29876604 DOI: 10.1007/s00253-018-9117-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/29/2022]
Abstract
At one time, Saccharomyces spp. yeasts were the only option for use in winemaking due to their unique abilities to metabolize all grape juice sugars to ethanol. However, during the previous decade, several commercial non-Saccharomyces yeast products appeared in the biotechnology market. Some of them have slowly begun to establish new enological resources to solve modern winemaking challenges in the new century. Among these challenges, acidification in the warm-growing regions is of great concern for improving wine quality from those areas, particularly in light of the predictions of serious climate change. This review explores one of the most popular commercialized non-Saccharomyces yeast options in warm viticultural regions, Lachancea thermotolerans, and its influences on wine quality parameters, such as lactic acid, ethanol, glycerol, volatile acidity, volatile profiles, isovaleric acid, mannoproteins, polysaccharides, color, anthocyanins, amino acids, and sensory perception.
Collapse
Affiliation(s)
- Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain.
| |
Collapse
|
368
|
Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol 2018; 72:55-66. [DOI: 10.1016/j.fm.2017.11.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/08/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
|
369
|
Luan Y, Zhang BQ, Duan CQ, Yan GL. Effects of different pre-fermentation cold maceration time on aroma compounds of Saccharomyces cerevisiae co-fermentation with Hanseniaspora opuntiae or Pichia kudriavzevii. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
370
|
Fitness of Selected Indigenous Saccharomyces cerevisiae Strains for White Piceno DOC Wines Production. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
371
|
Nisiotou A, Sgouros G, Mallouchos A, Nisiotis CS, Michaelidis C, Tassou C, Banilas G. The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines. Food Res Int 2018; 111:498-508. [PMID: 30007712 DOI: 10.1016/j.foodres.2018.05.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/08/2018] [Accepted: 05/18/2018] [Indexed: 11/17/2022]
Abstract
The performance of two vineyard strains, Saccharomyces cerevisiae SacPK7 and Starmerella bacillaris StbPK9, was evaluated in laboratory and pilot scale fermentations of Cretan grape must under the following inoculation schemes: single inoculation of SacPK7 (IS), simultaneous inoculation of StbPK9 and SacPK7 (SM), and sequential inoculation of StbPK9 followed by SacPK7 (SQ). Un-inoculated (spontaneous) fermentations (SP) and fermentations inoculated with control S. cerevisiae strains (CS) were also conducted as reference. Star. bacillaris not only did not restrict but also slightly promoted the growth of S. cerevisiae when the two strains were co-inoculated at equal quantities. On the contrary, the SQ inoculation scheme conferred a competitive advantage to Star. bacillaris over S. cerevisiae, which maximum population was reduced, while increased levels of Star. bacillaris were recorded. The fermentation kinetics were also affected, accordingly. The completion of fermentation was faster in SM, IS and CS ferments than in SQ and SP. Ethanol accumulation had a predominant role in the early death of Star. bacillaris, since its growth was similarly arrested irrespective of the dominating yeast species, the magnitude of yeast population or the availability of energy sources. Interestingly, the inoculation scheme applied significantly affected the chemical profiles of the resulting wines. SQ produced the most divergent chemical profile in sterile must, with glycerol, acetic acid, acetaldehyde, residual glucose, malic acid, ethyl acetate and higher alcohols being the key compounds affected by the prolonged activity of StbPK9. In pilot scale ferments, the indigenous S. cerevisiae produced twice as high levels of esters and higher alcohols compared to the commercial starter. Star. bacillaris further increased the levels of ethyl esters in the respective ferments. The use of a mixed S. cerevisiae/Star. bacillaris starter culture instead of S. cerevisiae alone enhanced the chemical complexity of Cretan local wine. The magnitude of differentiation was even higher when the addition of Star. bacillaris preceded that of S. cerevisiae. The highest divergence in analytical profiles was recorded between wines produced by native strain combinations and commercial S. cerevisiae. Present results show that the use of indigenous yeast formulations provides significant diversification to local wines, in line with the microbial terroir concept and recent observations that indigenous yeast strains may confer regional characters to wines.
Collapse
Affiliation(s)
- Aspasia Nisiotou
- ELGO 'DEMETER', Institute of Technology of Agricultural Products, S. Venizelou 1, Athens GR-14123, Greece.
| | - Georgios Sgouros
- ELGO 'DEMETER', Institute of Technology of Agricultural Products, S. Venizelou 1, Athens GR-14123, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Constantinos-Symeon Nisiotis
- Department of Statistics, Athens University of Economics and Business, 76 Patission Str., Athens GR-10434, Greece
| | - Christos Michaelidis
- ELGO 'DEMETER', Institute of Technology of Agricultural Products, S. Venizelou 1, Athens GR-14123, Greece
| | - Chryssoula Tassou
- ELGO 'DEMETER', Institute of Technology of Agricultural Products, S. Venizelou 1, Athens GR-14123, Greece
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridona St., Athens 12210, Greece
| |
Collapse
|
372
|
Stefanini I, Cavalieri D. Metagenomic Approaches to Investigate the Contribution of the Vineyard Environment to the Quality of Wine Fermentation: Potentials and Difficulties. Front Microbiol 2018; 9:991. [PMID: 29867889 PMCID: PMC5964215 DOI: 10.3389/fmicb.2018.00991] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
The winemaking is a complex process that begins in the vineyard and ends at consumption moment. Recent reports have shown the relevance of microbial populations in the definition of the regional organoleptic and sensory characteristics of a wine. Metagenomic approaches, allowing the exhaustive identification of microorganisms present in complex samples, have recently played a fundamental role in the dissection of the contribution of the vineyard environment to wine fermentation. Systematic approaches have explored the impact of agronomical techniques, vineyard topologies, and climatic changes on bacterial and fungal populations found in the vineyard and in fermentations, also trying to predict or extrapolate the effects on the sensorial characteristics of the resulting wine. This review is aimed at highlighting the major technical and experimental challenges in dissecting the contribution of the vineyard and native environments microbiota to the wine fermentation process, and how metagenomic approaches can help in understanding microbial fluxes and selections across the environments and specimens related to wine fermentation.
Collapse
Affiliation(s)
- Irene Stefanini
- Division of Biomedical Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
373
|
Agustini BC, da Silva GA, Bonfim TMB. MALDI-TOF MS Supplementary database for species identification employing the yeast diversity encountered on southern Brazil grapes. Folia Microbiol (Praha) 2018; 63:685-693. [PMID: 29752627 DOI: 10.1007/s12223-018-0607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/25/2018] [Indexed: 10/16/2022]
Abstract
The study of grape microflora is of interest when autochthonous yeasts, which are related to typical wine characteristics, are intended to be used in winemaking. The election of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) as the first method for yeast identification was based on its accuracy and rapidity compared to alternative laboratory protocols for identification. The aims of this study are to consolidate the MALDI-TOF MS Supplementary database for environmental yeasts already constructed, to expand it through the addition of standard spectra of not included yeast species, and to discuss the grape microflora encountered in Southern Brazil. A total of 358 strains, isolated from grape berries, were submitted to protein profiling employing Biotyper and Supplementary database. Molecular biology techniques were used as alternatives to identify 6.4% of strains not promptly designated by protein profiling. These strains corresponded to the species Candida californica, Zygoascus meyerae, Candida akabanensis, Candida azyma, and Hanseniaspora vineae. The MALDI-TOF MS spectra of the identified species were added to Supplementary database. The presented results strengthen the need for further expansion of the mass spectra database to broaden its microbiological application.
Collapse
Affiliation(s)
- Bruna Carla Agustini
- Laboratory of Applied Microbiology, Embrapa Grape and Wine, Bento Gonçalves, RS, Brazil.
| | | | - Tania Maria Bordin Bonfim
- Laboratory of Enzymology and Fermentation Technology, Pharmacy Department, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
374
|
Rollero S, Bloem A, Ortiz-Julien A, Camarasa C, Divol B. Fermentation performances and aroma production of non-conventional wine yeasts are influenced by nitrogen preferences. FEMS Yeast Res 2018; 18:4993531. [DOI: 10.1093/femsyr/foy055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/05/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Stéphanie Rollero
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Audrey Bloem
- Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, Montpellier 34060, France
- UMR SPO, INRA, 2 place Pierre Viala, Montpellier 34060, France
| | | | - Carole Camarasa
- UMR SPO, INRA, 2 place Pierre Viala, Montpellier 34060, France
| | - Benoit Divol
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
375
|
Biodiversity and Enological Potential of Non-Saccharomyces Yeasts from Nemean Vineyards. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
376
|
Toh DWK, Chua JY, Liu SQ. Impact of simultaneous fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii on volatile and non-volatile constituents in beer. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
377
|
Genome Sequence of Australian Indigenous Wine Yeast Torulaspora delbrueckii COFT1 Using Nanopore Sequencing. GENOME ANNOUNCEMENTS 2018; 6:6/17/e00321-18. [PMID: 29700153 PMCID: PMC5920178 DOI: 10.1128/genomea.00321-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we report the first sequenced genome of an indigenous Australian wine isolate of Torulaspora delbrueckii using the Oxford Nanopore MinION and Illumina HiSeq sequencing platforms. The genome size is 9.4 Mb and contains 4,831 genes.
Collapse
|
378
|
Englezos V, Rantsiou K, Cravero F, Torchio F, Giacosa S, Ortiz-Julien A, Gerbi V, Rolle L, Cocolin L. Volatile profiles and chromatic characteristics of red wines produced with Starmerella bacillaris and Saccharomyces cerevisiae. Food Res Int 2018; 109:298-309. [PMID: 29803453 DOI: 10.1016/j.foodres.2018.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/25/2022]
Abstract
The use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae is gaining attention in recent years due to their ability to modulate the metabolites production of enological interest. In the present study, four of the most popular planted red grape varieties (Cabernet sauvignon, Merlot, Pinot noir and Shiraz) were fermented using the aforementioned species and two different inoculation protocols (inoculation of S. cerevisiae after 24 and 48 h from the Starm. bacillaris inoculation), in order to evaluate their impact on the volatile composition and chromatic characteristics of wines. Analysis from chemical composition showed that titratable acidity and glycerol content exhibited marked differences among wines after fermentation. For volatile compounds, mixed fermented wines using an inoculation delay of 48 h led to reduction of volatile compounds (mainly esters). A shorter 24 h delay produced wines with higher values of color intensity than pure fermented wines. The differences observed between the inoculation protocols can be explained by the growth dynamics of both species during fermentation. These findings suggest that mixed fermentations posed a great potential in reducing metabolites which are considered negative for wine quality (mainly ethyl acetate and volatile fatty acids) and with an improvement of the chromatic profile of the wines.
Collapse
Affiliation(s)
- Vasileios Englezos
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Kalliopi Rantsiou
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Francesco Cravero
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Fabrizio Torchio
- Dipartimento di Scienze e Tecnologie Alimentari per una filiera Agro-Alimentare Sostenibile, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Simone Giacosa
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | | | - Vincenzo Gerbi
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Rolle
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
379
|
González B, Vázquez J, Cullen PJ, Mas A, Beltran G, Torija MJ. Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species. Front Microbiol 2018; 9:670. [PMID: 29696002 PMCID: PMC5904269 DOI: 10.3389/fmicb.2018.00670] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes.
Collapse
Affiliation(s)
- Beatriz González
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jennifer Vázquez
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - María-Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
380
|
Zhang BQ, Luan Y, Duan CQ, Yan GL. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile. Front Microbiol 2018; 9:606. [PMID: 29674999 PMCID: PMC5895779 DOI: 10.3389/fmicb.2018.00606] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/15/2018] [Indexed: 12/02/2022] Open
Abstract
The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which could provide an alternative way to meet the requirement of wine consumers for diversified aromatic quality.
Collapse
Affiliation(s)
- Bo-Qin Zhang
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Yu Luan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| | - Guo-Liang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
381
|
Primary souring: A novel bacteria-free method for sour beer production. Food Microbiol 2018; 70:76-84. [DOI: 10.1016/j.fm.2017.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 11/20/2022]
|
382
|
Balmaseda A, Bordons A, Reguant C, Bautista-Gallego J. Non- Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation. Front Microbiol 2018; 9:534. [PMID: 29628914 PMCID: PMC5876288 DOI: 10.3389/fmicb.2018.00534] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB), especially Oenococcus oeni, the main species carrying out the malolactic fermentation (MLF). The emphasis has been placed on non-Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non-Saccharomyces. Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae, but non-Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs) produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non-Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non-Saccharomyces. According to the stimulatory effects, the use of non-Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non-Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Joaquín Bautista-Gallego
- Food Biotechnology Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
383
|
Hu K, Jin GJ, Xu YH, Tao YS. Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae. Food Res Int 2018; 108:119-127. [PMID: 29735040 DOI: 10.1016/j.foodres.2018.03.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023]
Abstract
Wine aroma response to a selected Hanseniaspora uvarum Yun268 strain was investigated using different inoculation strategies with commercial Saccharomyces cerevisiae yeast, namely, simultaneous fermentation (SiF), sequential fermentation (SeF), S. cerevisiae fermentation treated with extracellular extract of H. uvarum (EE), and pure S. cerevisiae fermentation (PF). Contributive volatiles in the perception of enhanced aroma traits were uncovered by partial least-squares regression. Results showed that controlled inoculation resulted into different amounts of H. uvarum Yun268, which distinctively affected the chemical and sensory profiles of wines. The concentration of aromatic compounds could be increased by H. uvarum Yun268 yeasts via high levels of β-glucosidase activity and fatty acids. Terpenes, C13-norisoprenoids, acetate esters, ethyl esters, and fatty acids served as the impact volatiles that contributed to the enhanced aroma traits. SiF specifically increased the contents of C13-norisoprenoids, terpenes, and ethyl esters, while EE enhanced varietal volatile content rather than those of fermentative ones. However, excessive H. uvarum Yun268 in sequential inoculation elevated the concentrations of acetate esters and volatile phenols, triggering nail polish odor in Cabernet Sauvignon red wines.
Collapse
Affiliation(s)
- Kai Hu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guo-Jie Jin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin-Hu Xu
- National Center for Yeast Technology Research and Promotion, Yichang, Hubei 443003, China; Angel Yeast Co., Ltd, Yichang, Hubei 443003, China
| | - Yong-Sheng Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
384
|
Escribano R, González-Arenzana L, Portu J, Garijo P, López-Alfaro I, López R, Santamaría P, Gutiérrez AR. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones. J Appl Microbiol 2018; 124:1521-1531. [PMID: 29457321 DOI: 10.1111/jam.13735] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/04/2018] [Accepted: 02/09/2018] [Indexed: 11/28/2022]
Abstract
AIMS Twenty-five enological yeasts belonging to nine different species (Candida zeylanoides, Cryptococcus uzbekistanensis, Debaryomyces hansenii, Lachancea thermotolerans, Metschnikowia pulcherrima, Torulaspora delbrueckii, Williopsis pratensis, Zygosaccharomyces bailii and Saccharomyces cerevisiae) were screened for aroma formation and fermentative behaviour as part of a non-Saccharomyces yeast selection programme. METHODS AND RESULTS Pure cultures were inoculated in pasteurized grape juice in order to perform alcoholic fermentations. Some non-Saccharomyces species did not ferment, others did not get established and none of them completed alcoholic fermentations. The physico-chemical parameters of the wines and the abundance of aromatic compounds at the end of alcoholic fermentation highlighted the notable differences in the aroma-forming ability and fermentative behaviour of the different non-Saccharomyces species, but not within clones. CONCLUSIONS Lower diversity was detected within non-Saccharomyces species than that reported in S. cerevisiae with regard to enological behaviour and aromatic profiles. Metschnikowia pulcherrima and L. thermotolerans are the two species with higher possibilities to become an inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY Few significant differences were found within clones of the same species, but very important parameters in wine quality, such as volatile acidity, ethyl acetate and acetoin, which would justify selection programmes within those species. The results also demonstrated that T. delbrueckii and L. thermotolerans are two close species in their aromatic profiles.
Collapse
Affiliation(s)
- R Escribano
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - L González-Arenzana
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J Portu
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - P Garijo
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I López-Alfaro
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - R López
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - P Santamaría
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - A R Gutiérrez
- ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| |
Collapse
|
385
|
Chasseriaud L, Coulon J, Marullo P, Albertin W, Bely M. New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide. Appl Microbiol Biotechnol 2018. [PMID: 29516146 DOI: 10.1007/s00253-018-8861-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.
Collapse
Affiliation(s)
- Laura Chasseriaud
- BioLaffort, 33100, Bordeaux, France. .,EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France.
| | | | - Philippe Marullo
- BioLaffort, 33100, Bordeaux, France.,EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France
| | - Warren Albertin
- EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France.,ENSCBP - Bordeaux INP, 16 avenue Pey Berland, 33607, Pessac Cedex, France
| | - Marina Bely
- EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France
| |
Collapse
|
386
|
Dibalova-Culakova H, Alonso-del-Real J, Querol A, Sychrova H. Expression of heterologous transporters in Saccharomyces kudriavzevii: A strategy for improving yeast salt tolerance and fermentation performance. Int J Food Microbiol 2018; 268:27-34. [DOI: 10.1016/j.ijfoodmicro.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
|
387
|
The impact of Torulaspora delbrueckii yeast in winemaking. Appl Microbiol Biotechnol 2018; 102:3081-3094. [PMID: 29492641 DOI: 10.1007/s00253-018-8849-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
Commercial Saccharomyces strains are usually inoculated to ferment alcoholic beverages due to their ability to convert all fermentable sugars into ethanol. However, modern trends in winemaking have turned toward less known, non-Saccharomyces yeast species. These species perform the first stages of natural spontaneous fermentation and play important roles in wine variety. New alcoholic fermentation trends have begun to consider objectives other than alcohol production to improve flavor diversity. This review explores the influence of the most used and commercialized non-Saccharomyces yeast, Torulaspora delbrueckii, on fermentation quality parameters, such as ethanol, glycerol, volatile acidity, volatile profile, succinic acid, mannoproteins, polysaccharides, color, anthocyanins, amino acids, and sensory perception.
Collapse
|
388
|
Kačániová M, Terentjeva M, Felsöciová S, Ivanišová E, Kunová S, Žiarovská J, Kluz M, Hanus P, Puchalski C, Kántor A. Bacteria and yeasts isolated from different grape varieties. POTRAVINARSTVO 2018. [DOI: 10.5219/878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to isolate and identify bacteria and yeasts in different grape samples. The samples were collected in September 2017. Used 13 grape samples in this study (9 white and 4 red) were from the local Slovak winemakers. Alibernet, Irsai Oliver, Dornfelder, Blue Frankish, Feteasca regala, Green Veltliner, Pálava, Mūller Thurgau, Rhinriesling, Cabernet Savignon, Pinot Blanc, Savignon Blanc and Welschriesling. Two cultivation media were used for detection of bacteri and yeasts in grape samples. Malt extract agar base (MEA) and Tryptone Soay agar (TSA) were used for the cultivation of bacteria and yeasts. Cultivation was performed by spread plate method. Ethanol/formic acid extraction procedure was used for preparation of samples. MALDI-TOF Mass Spectrometer (Microflex LT/SH) (Bruker Daltonics, Germany) was used for identification of bacteria and yeasts. In total, 8 genera of yeasts, 8 genera of Gram-negative bacteria and 10 of Gram-positive bacteria were identified. Together 333 isolates, yeasts, Gram-negative and Gram-positive bacteria were identified.
Collapse
|
389
|
Moreno-García J, García-Martínez T, Mauricio JC, Moreno J. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives. Front Microbiol 2018; 9:241. [PMID: 29497415 PMCID: PMC5819314 DOI: 10.3389/fmicb.2018.00241] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
Yeast immobilization is defined as the physical confinement of intact cells to a region of space with conservation of biological activity. The use of these methodologies for alcoholic fermentation (AF) offers many advantages over the use of the conventional free yeast cell method and different immobilization systems have been proposed so far for different applications, like winemaking. The most studied methods for yeast immobilization include the use of natural supports (e.g., fruit pieces), organic supports (e.g., alginate), inorganic (e.g., porous ceramics), membrane systems, and multi-functional agents. Some advantages of the yeast-immobilization systems include: high cell densities, product yield improvement, lowered risk of microbial contamination, better control and reproducibility of the processes, as well as reuse of the immobilization system for batch fermentations and continuous fermentation technologies. However, these methods have some consequences on the behavior of the yeasts, affecting the final products of the fermentative metabolism. This review compiles current information about cell immobilizer requirements for winemaking purposes, the immobilization methods applied to the production of fermented beverages to date, and yeast physiological consequences of immobilization strategies. Finally, a recent inter-species immobilization methodology has been revised, where yeast cells are attached to the hyphae of a Generally Recognized As Safe fungus and remain adhered following loss of viability of the fungus. The bio-capsules formed with this method open new and promising strategies for alcoholic beverage production (wine and low ethanol content beverages).
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence (ceiA3), Campus de Rabanales, University of Cordoba, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence (ceiA3), Campus de Rabanales, University of Cordoba, Cordoba, Spain
| | - Juan C. Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence (ceiA3), Campus de Rabanales, University of Cordoba, Cordoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry and Soil Science, Agrifood Campus of International Excellence (ceiA3), Campus de Rabanales, University of Cordoba, Cordoba, Spain
| |
Collapse
|
390
|
Rollero S, Bloem A, Ortiz-Julien A, Camarasa C, Divol B. Altered Fermentation Performances, Growth, and Metabolic Footprints Reveal Competition for Nutrients between Yeast Species Inoculated in Synthetic Grape Juice-Like Medium. Front Microbiol 2018; 9:196. [PMID: 29487584 PMCID: PMC5816954 DOI: 10.3389/fmicb.2018.00196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
The sequential inoculation of non-Saccharomyces yeasts and Saccharomyces cerevisiae in grape juice is becoming an increasingly popular practice to diversify wine styles and/or to obtain more complex wines with a peculiar microbial footprint. One of the main interactions is competition for nutrients, especially nitrogen sources, that directly impacts not only fermentation performance but also the production of aroma compounds. In order to better understand the interactions taking place between non-Saccharomyces yeasts and S. cerevisiae during alcoholic fermentation, sequential inoculations of three yeast species (Pichia burtonii, Kluyveromyces marxianus, Zygoascus meyerae) with S. cerevisiae were performed individually in a synthetic medium. Different species-dependent interactions were evidenced. Indeed, the three sequential inoculations resulted in three different behaviors in terms of growth. P. burtonii and Z. meyerae declined after the inoculation of S. cerevisiae which promptly outcompeted the other two species. However, while the presence of P. burtonii did not impact the fermentation kinetics of S. cerevisiae, that of Z. meyerae rendered the overall kinetics very slow and with no clear exponential phase. K. marxianus and S. cerevisiae both declined and became undetectable before fermentation completion. The results also demonstrated that yeasts differed in their preference for nitrogen sources. Unlike Z. meyerae and P. burtonii, K. marxianus appeared to be a competitor for S. cerevisiae (as evidenced by the uptake of ammonium and amino acids), thereby explaining the resulting stuck fermentation. Nevertheless, the results suggested that competition for other nutrients (probably vitamins) occurred during the sequential inoculation of Z. meyerae with S. cerevisiae. The metabolic footprint of the non-Saccharomyces yeasts determined after 48 h of fermentation remained until the end of fermentation and combined with that of S. cerevisiae. For instance, fermentations performed with K. marxianus were characterized by the formation of phenylethanol and phenylethyl acetate, while those performed with P. burtonii or Z. meyerae displayed higher production of isoamyl alcohol and ethyl esters. When considering sequential inoculation of yeasts, the nutritional requirements of the yeasts used should be carefully considered and adjusted accordingly. Finally, our chemical data suggests that the organoleptic properties of the wine are altered in a species specific manner.
Collapse
Affiliation(s)
- Stephanie Rollero
- Department of Viticulture and Oenology, Institute of Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Audrey Bloem
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | | | - Carole Camarasa
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | - Benoit Divol
- Department of Viticulture and Oenology, Institute of Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
391
|
Molecular and Phenotypic Characterization of Metschnikowia pulcherrima Strains from Douro Wine Region. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
392
|
Gamero-Sandemetrio E, Payá-Tormo L, Gómez-Pastor R, Aranda A, Matallana E. Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non- Saccharomyces wine yeasts with poor performance in active dry yeast production. MICROBIAL CELL 2018; 5:184-197. [PMID: 29610760 PMCID: PMC5878686 DOI: 10.15698/mic2018.04.624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY) production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidative stress response of non-Saccharomyces wine yeasts and their potential impact on ADY production. In this study we analyzed the oxidative stress response in several non-Saccharomyces yeast species by measuring the activity of reactive oxygen species (ROS) scavenging enzymes, e.g., catalase and glutathione reductase, accumulation of protective metabolites, e.g., trehalose and reduced glutathione (GSH), and lipid and protein oxidation levels. Our data suggest that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after ADY production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.
Collapse
Affiliation(s)
| | - Lucía Payá-Tormo
- Department of Biotechnology, Institute for Agrochemistry and Food Technology, CSIC, Valencia, Spain
| | - Rocío Gómez-Pastor
- Department of Biotechnology, Institute for Agrochemistry and Food Technology, CSIC, Valencia, Spain.,Present address: Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Agustín Aranda
- Department of Biotechnology, Institute for Agrochemistry and Food Technology, CSIC, Valencia, Spain.,Institute for Integrative Systems Biology I2SysBio, Universitat de València/CSIC, Valencia. Spain
| | - Emilia Matallana
- Department of Biotechnology, Institute for Agrochemistry and Food Technology, CSIC, Valencia, Spain.,Institute for Integrative Systems Biology I2SysBio, Universitat de València/CSIC, Valencia. Spain
| |
Collapse
|
393
|
Shekhawat K, Porter TJ, Bauer FF, Setati ME. Employing oxygen pulses to modulate Lachancea thermotolerans–Saccharomyces cerevisiae Chardonnay fermentations. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1319-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
394
|
Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3040064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
395
|
Morrison-Whittle P, Goddard MR. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environ Microbiol 2017; 20:75-84. [PMID: 29052965 DOI: 10.1111/1462-2920.13960] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022]
Abstract
Humans have been making wine for thousands of years and microorganisms play an integral part in this process as they not only drive fermentation, but also significantly influence the flavour, aroma and quality of finished wines. Since fruits are ephemeral, they cannot comprise a permanent microbial habitat; thus, an age-old unanswered question concerns the origin of fruit and ferment associated microbes. Here we use next-generation sequencing approaches to examine and quantify the roles of native forest, vineyard soil, bark and fruit habitats as sources of fungal diversity in ferments. We show that microbial communities in harvested juice and ferments vary significantly across regions, and that while vineyard fungi account for ∼40% of the source of this diversity, uncultivated ecosystems outside of vineyards also prove a significant source. We also show that while communities in harvested juice resemble those found on grapes, these increasingly resemble fungi present on vine bark as the ferment proceeds.
Collapse
Affiliation(s)
- Peter Morrison-Whittle
- The School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Matthew R Goddard
- The School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.,School of Life Sciences and Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN6 7DL, UK
| |
Collapse
|
396
|
Gobert A, Tourdot-Maréchal R, Morge C, Sparrow C, Liu Y, Quintanilla-Casas B, Vichi S, Alexandre H. Non- Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile. Front Microbiol 2017; 8:2175. [PMID: 29163451 PMCID: PMC5672154 DOI: 10.3389/fmicb.2017.02175] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022] Open
Abstract
Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the interactions observed here, such as poorer performances of S. cerevisiae and volatile profile changes.
Collapse
Affiliation(s)
- Antoine Gobert
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | | | | | - Youzhong Liu
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | - Beatriz Quintanilla-Casas
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
397
|
Curiel JA, Morales P, Gonzalez R, Tronchoni J. Different Non- Saccharomyces Yeast Species Stimulate Nutrient Consumption in S. cerevisiae Mixed Cultures. Front Microbiol 2017; 8:2121. [PMID: 29163412 PMCID: PMC5671574 DOI: 10.3389/fmicb.2017.02121] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/18/2017] [Indexed: 01/31/2023] Open
Abstract
The growing interest of the winemaking industry on the use of non-Saccharomyces starters has prompted several studies about the physiological features of this diverse group of microorganisms. The fact that the proposed use of these new starters will almost invariably involve either simultaneous or sequential inoculation with Saccharomyces cerevisiae has also driven the attention to the potential biological interactions between different starters during wine fermentation. Our current understanding is that alternative yeast starters will affect wine features by both direct and indirect mechanisms (through metabolic or other types of interactions with S. cerevisiae). There are still few studies addressing the question of yeast-yeast interactions in winemaking by a transcriptomic approach. In a previous report, we revealed early responses of S. cerevisiae and Torulaspora delbrueckii to the presence of each other under anaerobic conditions, mainly the overexpression of genes related with sugar consumption and cell proliferation. We have now studied the response, under aerobic conditions, of S. cerevisiae to other two non-Saccharomyces species, Hanseniaspora uvarum and Candida sake, keeping T. delbrueckii as a reference; and always focusing on the early stages of the interaction. Results point to some common features of the way S. cerevisiae modifies its transcriptome in front of other yeast species, namely activation of glucose and nitrogen metabolism, being the later specific for aerobic conditions.
Collapse
Affiliation(s)
- Jose A Curiel
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| |
Collapse
|
398
|
Glycolytic Functions Are Conserved in the Genome of the Wine Yeast Hanseniaspora uvarum, and Pyruvate Kinase Limits Its Capacity for Alcoholic Fermentation. Appl Environ Microbiol 2017; 83:AEM.01580-17. [PMID: 28887422 DOI: 10.1128/aem.01580-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/03/2017] [Indexed: 01/11/2023] Open
Abstract
Hanseniaspora uvarum (anamorph Kloeckera apiculata) is a predominant yeast on wine grapes and other fruits and has a strong influence on wine quality, even when Saccharomyces cerevisiae starter cultures are employed. In this work, we sequenced and annotated approximately 93% of the H. uvarum genome. Southern and synteny analyses were employed to construct a map of the seven chromosomes present in a type strain. Comparative determinations of specific enzyme activities within the fermentative pathway in H. uvarum and S. cerevisiae indicated that the reduced capacity of the former yeast for ethanol production is caused primarily by an ∼10-fold-lower activity of the key glycolytic enzyme pyruvate kinase. The heterologous expression of the encoding gene, H. uvarumPYK1 (HuPYK1), and two genes encoding the phosphofructokinase subunits, HuPFK1 and HuPFK2, in the respective deletion mutants of S. cerevisiae confirmed their functional homology.IMPORTANCEHanseniaspora uvarum is a predominant yeast species on grapes and other fruits. It contributes significantly to the production of desired as well as unfavorable aroma compounds and thus determines the quality of the final product, especially wine. Despite this obvious importance, knowledge on its genetics is scarce. As a basis for targeted metabolic modifications, here we provide the results of a genomic sequencing approach, including the annotation of 3,010 protein-encoding genes, e.g., those encoding the entire sugar fermentation pathway, key components of stress response signaling pathways, and enzymes catalyzing the production of aroma compounds. Comparative analyses suggest that the low fermentative capacity of H. uvarum compared to that of Saccharomyces cerevisiae can be attributed to low pyruvate kinase activity. The data reported here are expected to aid in establishing H. uvarum as a non-Saccharomyces yeast in starter cultures for wine and cider fermentations.
Collapse
|
399
|
Alonso-Del-Real J, Contreras-Ruiz A, Castiglioni GL, Barrio E, Querol A. The Use of Mixed Populations of Saccharomyces cerevisiae and S. kudriavzevii to Reduce Ethanol Content in Wine: Limited Aeration, Inoculum Proportions, and Sequential Inoculation. Front Microbiol 2017; 8:2087. [PMID: 29118746 PMCID: PMC5661026 DOI: 10.3389/fmicb.2017.02087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
Saccharomyces cerevisiae is the most widespread microorganism responsible for wine alcoholic fermentation. Nevertheless, the wine industry is currently facing new challenges, some of them associate with climate change, which have a negative effect on ethanol content and wine quality. Numerous and varied strategies have been carried out to overcome these concerns. From a biotechnological point of view, the use of alternative non-Saccharomyces yeasts, yielding lower ethanol concentrations and sometimes giving rise to new and interesting aroma, is one of the trendiest approaches. However, S. cerevisiae usually outcompetes other Saccharomyces species due to its better adaptation to the fermentative environment. For this reason, we studied for the first time the use of a Saccharomyces kudriavzevii strain, CR85, for co-inoculations at increasing proportions and sequential inoculations, as well as the effect of aeration, to improve its fermentation performance in order to obtain wines with an ethanol yield reduction. An enhanced competitive performance of S. kudriavzevii CR85 was observed when it represented 90% of the cells present in the inoculum. Furthermore, airflow supply of 20 VVH to the fermentation synergistically improved CR85 endurance and, interestingly, a significant ethanol concentration reduction was achieved.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Alba Contreras-Ruiz
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Gabriel L Castiglioni
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| |
Collapse
|
400
|
Englezos V, Giacosa S, Rantsiou K, Rolle L, Cocolin L. Starmerella bacillaris in winemaking: opportunities and risks. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|