351
|
Nakaye M, Bwanga F, Itabangi H, Stanley IJ, Bashir M, Bazira J. AmpC-BETA Lactamases among Enterobacteriaceae Isolated at a Tertiary Hospital, South Western Uganda. ACTA ACUST UNITED AC 2014; 4:1026-1036. [PMID: 26078920 PMCID: PMC4465074 DOI: 10.9734/bbj/2014/10570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim To characterize AmpC-beta lactamases among Enterobacteriaceae isolates from clinical samples at Mbarara Regional Referral Hospital. Study Design Laboratory-based descriptive cross-sectional study Place and Duration of Study Microbiology Department, Mbarara Regional Referral Hospital and MBN clinical Laboratories, between May to September 2013. Methodology This study included 293 Enterobacteriaceae isolates recovered from clinical specimens that included blood, urine, stool and aspirates. AmpC Beta lactamase production was determined using disc placement method for cefoxitin at a break point of <18mm. Common AmpC plasmid mediated genes were EBC, ACC, FOX, DHA, CIT and MOX were; was determined by Multiplex PCR as described by Hanson and Perez-Perez. Results Plasmid mediated AmpC phenotype was confirmed in 107 of the 293 (36.5%) cefoxitin resistant isolates with 30 isolates having more than one gene coding for resistance. The commonest source that harbored AmpC beta lactamases was urine and E. coli was the most common AmpC producer (59.5%). The genotypes detected in this study, included EBC (n=36), FOX (n=18), ACC (n=11), CIT (n=10), DHA (n=07) and MOX (n=1). Conclusion Our findings showed that prevalence of AmpC beta-lactamase at MRRH was high (39.6), with EBC as the commonest genotype among Enterobacteriaceae Urine and E. coli were the commonest source and organism respectively that harbored AmpC beta-lactamases. There‘s rational antimicrobial therapy and antibiotic susceptibility tests should be requested by health workers especially patients presenting with urinary tract infections and bacteraemias.
Collapse
Affiliation(s)
- Martha Nakaye
- Department of Microbiology, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Freddie Bwanga
- Department of Microbiology, Makerere College of Health sciences, P.O 7072 Kampala, Uganda
| | - Herbert Itabangi
- Department of Microbiology, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Iramiot J Stanley
- Department of Microbiology, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Mwambi Bashir
- Department of Microbiology, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Joel Bazira
- Department of Microbiology, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| |
Collapse
|
352
|
Yamina B, Tahar B, Lila M, Hocine H, Laure FM. Study on Cadmium Resistant-Bacteria Isolated from Hospital Wastewaters. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.58085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
353
|
Rapa RA, Labbate M. The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg. Front Microbiol 2013; 4:385. [PMID: 24367362 PMCID: PMC3856429 DOI: 10.3389/fmicb.2013.00385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022] Open
Abstract
The integron is a genetic element that incorporates mobile genes termed gene cassettes into a reserved genetic site via site-specific recombination. It is best known for its role in antibiotic resistance with one type of integron, the class 1 integron, a major player in the dissemination of antibiotic resistance genes across Gram negative pathogens and commensals. However, integrons are ancient structures with over 100 classes (including class 1) present in bacteria from the broader environment. While, the class 1 integron is only one example of an integron being mobilized into the clinical environment, it is by far the most successful. Unlike clinical class 1 integrons which are largely found on plasmids, other integron classes are found on the chromosomes of bacteria and carry diverse gene cassettes indicating a non-antibiotic resistance role(s). However, there is very limited knowledge on what these alternative roles are. This is particularly relevant to Vibrio species where gene cassettes make up approximately 1-3% of their entire genome. In this review, we discuss how emphasis on class 1 integron research has resulted in a limited understanding by the wider research community on the role of integrons in the broader environment. This has the capacity to be counterproductive in solving or improving the antibiotic resistance problem into the future. Furthermore, there is still a significant lack of knowledge on how gene cassettes in Vibrio species drive adaptation and evolution. From research in Vibrio rotiferianus DAT722, new insight into how gene cassettes affect cellular physiology offers new alternative roles for the gene cassette resource. At least a subset of gene cassettes are involved in host surface polysaccharide modification suggesting that gene cassettes may be important in processes such as bacteriophage resistance, adhesion/biofilm formation, protection from grazers and bacterial aggregation.
Collapse
Affiliation(s)
- Rita A Rapa
- ithree Institute, University of Technology Sydney, NSW, Australia ; Department of Medical and Molecular Biosciences, University of Technology Sydney, NSW, Australia
| | - Maurizio Labbate
- ithree Institute, University of Technology Sydney, NSW, Australia ; Department of Medical and Molecular Biosciences, University of Technology Sydney, NSW, Australia
| |
Collapse
|
354
|
Quantitative and qualitative impact of hospital effluent on dissemination of the integron pool. ISME JOURNAL 2013; 8:768-77. [PMID: 24152716 DOI: 10.1038/ismej.2013.189] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/19/2023]
Abstract
There is increasing evidence that human activity, and especially the resulting effluent, has a major role in the dissemination of bacterial antibiotic-resistance determinants in the environment. Hospitals are the major antibiotic consumers and thus facilitate the spread of antibiotic resistance. Questions are increasingly being raised about the management of hospital effluents, but their involvement in antibiotic-resistance dissemination has never been assessed. Integrons are a paradigm of genetic transfer between the environmental resistome and both commensal and pathogenic bacteria. In order to assess the impact of hospital activities on antibiotic-resistance dissemination in the environment, we monitored integrons and their gene cassettes in hospital effluents, and their release in the environment. We found that bacterial communities present in a hospital effluent contained a high proportion of integrons. In terms of both their gene cassette diversity and gene cassette arrays, the urban effluent and municipal wastewater treatment plant (WWTP) influent were most similar, whereas the hospital effluent and recirculation sludge exhibited very specific patterns. We found that anthropogenic activities led to the release of abundant integrons and antibiotic-resistance gene cassettes, but we observed no specific impact of hospital activities on the receiving environment. Furthermore, although the WWTP did not reduce the normalized integron copy number, it reduced the diversity of gene cassette arrays contained in the raw wastewater, underlining the effect of the biological treatment on the anthropogenic integron pool arriving at the WWTP.
Collapse
|
355
|
Chen T, Feng Y, Yuan JL, Qi Y, Cao YX, Wu Y. Class 1 integrons contributes to antibiotic resistance among clinical isolates of Escherichia coli producing extended-spectrum beta-lactamases. Indian J Med Microbiol 2013; 31:385-9. [DOI: 10.4103/0255-0857.118903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
356
|
Paytubi S, Aznar S, Madrid C, Balsalobre C, Dillon SC, Dorman CJ, Juárez A. A novel role for antibiotic resistance plasmids in facilitatingSalmonellaadaptation to non-host environments. Environ Microbiol 2013; 16:950-62. [DOI: 10.1111/1462-2920.12244] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/05/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Sonia Paytubi
- Departament de Microbiologia; Facultat de Biologia; Universitat de Barcelona; Avda. Diagonal 643 08028 Barcelona Spain
| | - Sonia Aznar
- Departament de Microbiologia; Facultat de Biologia; Universitat de Barcelona; Avda. Diagonal 643 08028 Barcelona Spain
| | - Cristina Madrid
- Departament de Microbiologia; Facultat de Biologia; Universitat de Barcelona; Avda. Diagonal 643 08028 Barcelona Spain
| | - Carlos Balsalobre
- Departament de Microbiologia; Facultat de Biologia; Universitat de Barcelona; Avda. Diagonal 643 08028 Barcelona Spain
| | - Shane C. Dillon
- Department of Microbiology; Trinity College Dublin; Dublin 2 Ireland
| | - Charles J. Dorman
- Department of Microbiology; Trinity College Dublin; Dublin 2 Ireland
| | - Antonio Juárez
- Departament de Microbiologia; Facultat de Biologia; Universitat de Barcelona; Avda. Diagonal 643 08028 Barcelona Spain
- Institut de Bioenginyeria de Catalunya (IBEC); Parc Científic de Barcelona; Baldiri Reixach 15-21 08028 Barcelona Spain
| |
Collapse
|
357
|
Abstract
New research suggests that secondary bacterial symbionts in insects act as a mechanism for horizontal genetic exchange among hosts, facilitating adaptation to new ecological niches.
Collapse
Affiliation(s)
- Jennifer A White
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
358
|
Molecular characterization of multidrug resistant hospital isolates using the antimicrobial resistance determinant microarray. PLoS One 2013; 8:e69507. [PMID: 23936031 PMCID: PMC3723915 DOI: 10.1371/journal.pone.0069507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular methods that enable the detection of antimicrobial resistance determinants are critical surveillance tools that are necessary to aid in curbing the spread of antibiotic resistance. In this study, we describe the use of the Antimicrobial Resistance Determinant Microarray (ARDM) that targets 239 unique genes that confer resistance to 12 classes of antimicrobial compounds, quaternary amines and streptothricin for the determination of multidrug resistance (MDR) gene profiles. Fourteen reference MDR strains, which either were genome, sequenced or possessed well characterized drug resistance profiles were used to optimize detection algorithms and threshold criteria to ensure the microarray's effectiveness for unbiased characterization of antimicrobial resistance determinants in MDR strains. The subsequent testing of Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae hospital isolates revealed the presence of several antibiotic resistance genes [e.g. belonging to TEM, SHV, OXA and CTX-M classes (and OXA and CTX-M subfamilies) of β-lactamases] and their assemblages which were confirmed by PCR and DNA sequence analysis. When combined with results from the reference strains, ∼25% of the ARDM content was confirmed as effective for representing allelic content from both Gram-positive and –negative species. Taken together, the ARDM identified MDR assemblages containing six to 18 unique resistance genes in each strain tested, demonstrating its utility as a powerful tool for molecular epidemiological investigations of antimicrobial resistance in clinically relevant bacterial pathogens.
Collapse
|
359
|
The evolutionary histories of clinical and environmental SHV β-lactamases are intertwined. J Mol Evol 2013; 76:388-93. [PMID: 23860538 DOI: 10.1007/s00239-013-9574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
The rise of antibiotic-resistant pathogens focuses our attention on the source of antibiotic resistance genes, on the existence of these genes in environments exposed to little or no antibiotics, and on the relationship between resistance genes found in the clinic and those encountered in non-clinical settings. Here, we address the evolutionary history of a class of resistance genes, the SHV β-lactamases. We focus on bla SHV genes isolated both from clinical and non-clinical sources and show that clinically important resistance determinants arise repeatedly from within a diverse pool of bla SHV genes present in the environment. While our results argue against the notion of a single common origin for all clinically derived bla SHV genes, we detect a characteristic selective signature shaping this protein in clinical environments. This clinical signature reveals the joint action of purifying and positive selection on specific residues, including those known to confer extended-spectrum activity. Surprisingly, antibiotic resistance genes isolated from non-clinical-and presumably antibiotic-free-settings also experience the joint action of purifying and positive selection. The picture that emerges undercuts the notion of a separate reservoir of antibiotic resistance genes confined only to clinical settings. Instead, we argue for the presence of a single extensive and variable pool of antibiotic resistance genes present in the environment.
Collapse
|
360
|
Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 2013; 15:1917-42. [PMID: 23711078 DOI: 10.1111/1462-2920.12134] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 12/18/2022]
Abstract
The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated.
Collapse
Affiliation(s)
- Felipe C Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
361
|
Power ML, Emery S, Gillings MR. Into the wild: dissemination of antibiotic resistance determinants via a species recovery program. PLoS One 2013; 8:e63017. [PMID: 23717399 PMCID: PMC3661720 DOI: 10.1371/journal.pone.0063017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Management strategies associated with captive breeding of endangered species can establish opportunities for transfer of pathogens and genetic elements between human and animal microbiomes. The class 1 integron is a mobile genetic element associated with clinical antibiotic resistance in gram-negative bacteria. We examined the gut microbiota of endangered brush-tail rock wallabies Petrogale penicillata to determine if they carried class 1 integrons. No integrons were detected in 65 animals from five wild populations. In contrast, class 1 integrons were detected in 48% of fecal samples from captive wallabies. The integrons contained diverse cassette arrays that encoded resistance to streptomycin, spectinomycin, and trimethoprim. Evidence suggested that captive wallabies had acquired typical class 1 integrons on a number of independent occasions, and had done so in the absence of strong selection afforded by antibiotic therapy. Sufficient numbers of bacteria containing diverse class 1 integrons must have been present in the general environment occupied by the wallabies to account for this acquisition. The captive wallabies have now been released, in an attempt to bolster wild populations of the species. Consequently, they can potentially spread resistance integrons into wild wallabies and into new environments. This finding highlights the potential for genes and pathogens from human sources to be acquired during captive breeding and to be unwittingly spread to other populations.
Collapse
Affiliation(s)
- Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.
| | | | | |
Collapse
|
362
|
Labella A, Gennari M, Ghidini V, Trento I, Manfrin A, Borrego JJ, Lleo MM. High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming. MARINE POLLUTION BULLETIN 2013; 70:197-203. [PMID: 23518445 DOI: 10.1016/j.marpolbul.2013.02.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
Marine bacteria exposed to antibiotics in fish farms can acquire antimicrobial resistance by mobile genetic elements and horizontal gene transfer. A total of 872 autochthonous marine bacterial strains was isolated from samples collected from four different fish farms located at northern and southern Italian Adriatic Sea. Resistance to only tetracycline (17%) and to trimethoprim-sulfadiazine (7%) were the most frequent patterns obtained, while flumequine resistance has recorded in only 0.3% of the strains. Comparing strains isolated from coastal areas and fish farms, a significant higher incidence (4% versus 10%) of multi-resistant strains in aquaculture centers was found. Significant differences in antibiotic resistance incidence were also detected among the four fish farms due probably to different approaches in farm management and the more or less frequent use of antibiotics. Antibiotic-resistant and multi-resistant strains isolated constitute an environmental reservoir directly involved in the seafood chain and might represent a public health concern.
Collapse
Affiliation(s)
- A Labella
- Departamento de Microbiologia, Universidad de Malaga, Spain
| | | | | | | | | | | | | |
Collapse
|
363
|
Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Bürgmann H, Sørum H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 2013; 4:96. [PMID: 23675371 PMCID: PMC3653125 DOI: 10.3389/fmicb.2013.00096] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/04/2013] [Indexed: 01/14/2023] Open
Abstract
The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs.
Collapse
Affiliation(s)
- L Cantas
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Van Meervenne E, Boon N, Verstraete K, Devlieghere F, De Reu K, Herman L, Buvens G, Piérard D, Van Coillie E. Integron characterization and typing of Shiga toxin-producing Escherichia coli isolates in Belgium. J Med Microbiol 2013; 62:712-719. [DOI: 10.1099/jmm.0.048934-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The presence of integrons and the antibiotic susceptibility profiles of STEC strains isolated in Belgium were analysed. The collection contained 306 strains, of which 225 were human isolates and 81 originated from different food or animal sources. Integrons were detected by PCR in 7.5 % of the tested isolates and all were class 1 integrons. The integron-positive strains all belonged to the human collection. By RFLP, five different types (A, B, C, D, E) were distinguished. The antibiotic-resistance gene cassettes were identified by sequencing representatives of the five different types. Two types of gene cassettes were found in different combinations, one encoding resistance to streptomycin/spectinomycin and the other encoding resistance to trimethoprim. One of the gene cassettes present was the rarely detected aadA23, which was now apparently for the first time reported in Western Europe. Susceptibility profiling of the strains for 11 antibiotics was done by standard disc diffusion assays. Among the 23 integron-positive strains, 17 different antibiotic susceptibility profiles were found. In the 283 integron-negative strains, 24 different antibiotic susceptibility profiles were observed. The majority of these strains were susceptible to all tested antibiotics (n = 218, 77.0 %). The integron-positive strains were significantly more resistant to eight of the eleven tested antibiotics compared to the integron-negative strains (P<0.05). PFGE profiles of integron-positive strains within selected serogroups did not cluster together.
Collapse
Affiliation(s)
- Eva Van Meervenne
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, part of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, part of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, part of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
| | - Karen Verstraete
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Frank Devlieghere
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, part of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
| | - Koen De Reu
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Lieve Herman
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Glenn Buvens
- National Reference Center for VTEC/STEC, Department Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussel, Belgium
| | - Denis Piérard
- National Reference Center for VTEC/STEC, Department Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussel, Belgium
| | - Els Van Coillie
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| |
Collapse
|
365
|
Hayek N. Lateral transfer and GC content of bacterial resistant genes. Front Microbiol 2013; 4:41. [PMID: 23487592 PMCID: PMC3594838 DOI: 10.3389/fmicb.2013.00041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 01/05/2023] Open
Affiliation(s)
- Nabil Hayek
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
366
|
Popowska M, Krawczyk-Balska A. Broad-host-range IncP-1 plasmids and their resistance potential. Front Microbiol 2013; 4:44. [PMID: 23471189 PMCID: PMC3590792 DOI: 10.3389/fmicb.2013.00044] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/19/2013] [Indexed: 12/28/2022] Open
Abstract
The plasmids of the incompatibility (Inc) group IncP-1, also called IncP, as extrachromosomal genetic elements can transfer and replicate virtually in all Gram-negative bacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental bioremediation. Broad-host-range IncP plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to a broad spectrum of antibiotics, heavy metals, and quaternary ammonium compounds used as disinfectants. The backbone of these plasmids carries modules that enable them to effectively replicate, move to a new host via conjugative transfer and to be stably maintained in bacterial cells. The adaptive, resistance, and virulence genes are mainly located on mobile genetic elements integrated between the functional plasmid backbone modules. Environmental studies have demonstrated the wide distribution of IncP-like replicons in manure, soils and wastewater treatment plants. They also are present in strains of pathogenic or opportunistic bacteria, which can be a cause for concern, because they may encode multiresistance. Their broad distribution suggests that IncP plasmids play a crucial role in bacterial adaptation by utilizing horizontal gene transfer. This review summarizes the variety of genetic information and physiological functions carried by IncP plasmids, which can contribute to the spread of antibiotic and heavy metal resistance while also mediating the process of bioremediation of pollutants. Due to the location of the resistance genes on plasmids with a broad-host-range and the presence of transposons carrying these genes it seems that the spread of these genes would be possible and quite hazardous in infection control. Future studies are required to determine the level of risk of the spread of resistance genes located on these plasmids.
Collapse
Affiliation(s)
- Magdalena Popowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | |
Collapse
|
367
|
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013; 4:15. [PMID: 23508522 PMCID: PMC3589745 DOI: 10.3389/fmicb.2013.00015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022] Open
Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Ana P. Tedim
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
368
|
Class 1 Integron in Pseudomonas aeruginosa Isolates From Different Places and Devices of ICU in Babol, Iran. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.4850] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
369
|
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:345-60. [PMID: 23396083 DOI: 10.1016/j.scitotenv.2013.01.032] [Citation(s) in RCA: 1325] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 05/20/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB.
Collapse
Affiliation(s)
- L Rizzo
- Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
370
|
Xu Y, Luo QQ, Zhou MG. Identification and characterization of integron-mediated antibiotic resistance in the phytopathogen Xanthomonas oryzae pv. oryzae. PLoS One 2013; 8:e55962. [PMID: 23437082 PMCID: PMC3578876 DOI: 10.1371/journal.pone.0055962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/04/2013] [Indexed: 12/11/2022] Open
Abstract
Four streptomycin-resistant isolates of Xanthomonas oryzae pv. oryzae (YNA7-1, YNA10-2, YNA11-2, and YNA12-2) were examined via PCR amplification for the presence of class 1, class 2, and class 3 integrons and aadA1 and aadA2 genes, which confer resistance to streptomycin and spectinomycin. The class 1 integrase gene intI1 and the aminoglycoside adenylyltransferase gene aadA1 were identified in all four resistant isolates but not in 25 sensitive isolates. PCR amplifications showed that 7790-bp, 7162-bp, 7790-bp, and 7240-bp resistance integrons with transposition gene modules (tni module) in 3′ conserved segments existed in YNA7-1, YNA10-2, YNA11-2, and YNA12-2, respectively. Subsequent analysis of sequences indicated that the integrons of YNA7-1 and YNA11-2 carried three gene cassettes in the order |aacA3|arr3|aadA1|. The integron of YNA10-2 carried only |arr3|aadA1| gene cassettes. The integron of YNA12-2 lacked a 550-bp sequence including part of intI1 but it still carried |aacA3|arr3|aadA1| gene cassettes. The analysis of inactive mutants and complementation tests confirmed that the aacA3 gene conferred resistance to tobramycin, kanamycin, gentamicin and netilmicin; the arr3 gene conferred resistance to rifampicin; and the aadA1 gene conferred resistance to streptomycin and spectinomycin. The resistance phenotypes of the four isolates corresponded with their resistance gene cassettes, except that YNA7-1 and YNA12-2 did not show rifampicin resistance. Sequence comparison revealed that no gene cassette array in GenBank was in the same order as in the integrons of the four resistant isolates in this study and the aadA1, which was identical in the four resistant isolates, showed 99% identity with aadA1 sequences in GenBank. The result of a stability test showed that the resistance phenotype, the aadA1 gene, and the intI1 gene were completely stable in YNA7-1 and YNA12-2 but unstable in YNA10-2 and YNA11-2. To our knowledge, this is the first report of resistance integron in a phytopathogenic bacteria.
Collapse
Affiliation(s)
- Ying Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Shanghai Landscape Gardening Research Institute, Shanghai, China
| | - Qing-quan Luo
- Shanghai Landscape Gardening Research Institute, Shanghai, China
| | - Ming-guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
371
|
Wiles TJ, Norton JP, Smith SN, Lewis AJ, Mobley HLT, Casjens SR, Mulvey MA. A phyletically rare gene promotes the niche-specific fitness of an E. coli pathogen during bacteremia. PLoS Pathog 2013; 9:e1003175. [PMID: 23459509 PMCID: PMC3573123 DOI: 10.1371/journal.ppat.1003175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022] Open
Abstract
In bacteria, laterally acquired genes are often concentrated within chromosomal regions known as genomic islands. Using a recently developed zebrafish infection model, we set out to identify unique factors encoded within genomic islands that contribute to the fitness and virulence of a reference urosepsis isolate—extraintestinal pathogenic Escherichia coli strain CFT073. By screening a series of deletion mutants, we discovered a previously uncharacterized gene, neaT, that is conditionally required by the pathogen during systemic infections. In vitro assays indicate that neaT can limit bacterial interactions with host phagocytes and alter the aggregative properties of CFT073. The neaT gene is localized within an integrated P2-like bacteriophage in CFT073, but was rarely found within other proteobacterial genomes. Sequence-based analyses revealed that neaT homologues are present, but discordantly conserved, within a phyletically diverse set of bacterial species. In CFT073, neaT appears to be unameliorated, having an exceptionally A+T-rich composition along with a notably altered codon bias. These data suggest that neaT was recently brought into the proteobacterial pan-genome from an extra-phyletic source. Interestingly, even in G+C-poor genomes, as found within the Firmicutes lineage, neaT-like genes are often unameliorated. Sequence-level features of neaT homologues challenge the common supposition that the A+T-rich nature of many recently acquired genes reflects the nucleotide composition of their genomes of origin. In total, these findings highlight the complexity of the evolutionary forces that can affect the acquisition, utilization, and assimilation of rare genes that promote the niche-dependent fitness and virulence of a bacterial pathogen. Bacterial pathogens, even those belonging to the same species, can be incredibly diverse with regard to the genes they carry. However, the design of vaccines and antibiotics typically relies upon identification of general molecular features shared by the targeted organisms. Thus, we have traditionally focused on broadly conserved characteristics of pathogenic bacteria, often ignoring the genes that account for their individuality. In this article we report the discovery of a unique gene, neaT, that promotes the fitness of a pathogenic Escherichia coli isolate in zebrafish and mouse models of systemic blood infections. Surprisingly, neaT is rarely found in other related strains of E. coli and appears to have been recently acquired from distant lineages of bacteria via a process known as ‘lateral gene transfer’ that is used by microbes to swap genetic material. Expression of the neaT gene appears to help pathogens avoid interactions with host immune cells, possibly by altering bacterial surface structures. This work provides an interesting example of how the lateral acquisition of a rare gene can impact the niche-specific virulence properties of a pathogen, shedding light on the mechanisms that drive pathogen evolution and diversity.
Collapse
Affiliation(s)
- Travis J. Wiles
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - J. Paul Norton
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Adam J. Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
372
|
Gillings MR. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol 2013; 4:4. [PMID: 23386843 PMCID: PMC3560386 DOI: 10.3389/fmicb.2013.00004] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/03/2013] [Indexed: 12/16/2022] Open
Abstract
The widespread use and abuse of antibiotic therapy has evolutionary and ecological consequences, some of which are only just beginning to be examined. One well known consequence is the fixation of mutations and lateral gene transfer (LGT) events that confer antibiotic resistance. Sequential selection events, driven by different classes of antibiotics, have resulted in the assembly of diverse resistance determinants and mobile DNAs into novel genetic elements of ever-growing complexity and flexibility. These novel plasmids, integrons, and genomic islands have now become fixed at high frequency in diverse cell lineages by human antibiotic use. Consequently they can be regarded as xenogenetic pollutants, analogous to xenobiotic compounds, but with the critical distinction that they replicate rather than degrade when released to pollute natural environments. Antibiotics themselves must also be regarded as pollutants, since human production overwhelms natural synthesis, and a major proportion of ingested antibiotic is excreted unchanged into waste streams. Such antibiotic pollutants have non-target effects, raising the general rates of mutation, recombination, and LGT in all the microbiome, and simultaneously providing the selective force to fix such changes. This has the consequence of recruiting more genes into the resistome and mobilome, and of increasing the overlap between these two components of microbial genomes. Thus the human use and environmental release of antibiotics is having second order effects on the microbial world, because these small molecules act as drivers of bacterial evolution. Continued pollution with both xenogenetic elements and the selective agents that fix such elements in populations has potentially adverse consequences for human welfare.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
373
|
Farkas A, Butiuc-Keul A, Ciatarâş D, Neamţu C, Crăciunaş C, Podar D, Drăgan-Bularda M. Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:932-938. [PMID: 23247295 DOI: 10.1016/j.scitotenv.2012.11.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 06/01/2023]
Abstract
Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.
Collapse
Affiliation(s)
- Anca Farkas
- Someş Water Company, 79 21 December 1989 Boulevard, 400604 Cluj-Napoca, Romania.
| | | | | | | | | | | | | |
Collapse
|
374
|
Chen HD, Jewett MW, Groisman EA. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product. PLoS Genet 2012; 8:e1003060. [PMID: 23300460 PMCID: PMC3531487 DOI: 10.1371/journal.pgen.1003060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022] Open
Abstract
Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.
Collapse
Affiliation(s)
- H. Deborah Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mollie W. Jewett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
375
|
Boulund F, Johnning A, Pereira MB, Larsson DGJ, Kristiansson E. A novel method to discover fluoroquinolone antibiotic resistance (qnr) genes in fragmented nucleotide sequences. BMC Genomics 2012; 13:695. [PMID: 23231464 PMCID: PMC3543242 DOI: 10.1186/1471-2164-13-695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. RESULTS In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. CONCLUSIONS The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.
Collapse
Affiliation(s)
- Fredrik Boulund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, SE-412 96, Sweden
| | | | | | | | | |
Collapse
|
376
|
Camarda A, Pupillo A, Pugliese N, Circella E, Dionisi AM, Ricci A, Pazzani C. Phenotypic and genetic traits of Salmonella enterica subsp. serovar Typhimurium strains causing salmonellosis foci in rabbit farms from Southern Italy in 1999-2003. Res Vet Sci 2012. [PMID: 23178046 DOI: 10.1016/j.rvsc.2012.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we characterised the Salmonella Typhimurium strains responsible for four outbreaks which occurred in distinct rabbit farms (Southern Italy) from 1999 to 2003. Strains were typed by Pulsed Field Gel Electrophoresis (PFGE) and the genetic basis of antimicrobial resistance was established. A major group of clonally related isolates, pulsotype STYMXB.0061, accounted for three of the salmonellosis foci. Strains were resistant to streptomycin, chloramphenicol, tetracycline, ampicillin and sulphonamides encoded respectively by the aadA2, floR, tetG, blaPSE-1, sul1 gene cluster harboured by a Salmonella Genomic Island 1. The clonally related group of isolates included strains phage type DT104, DT12 or undefined type (NT). The fourth salmonellosis focus was caused by a strain pulsotype STYMXB.0147, resistant to sulphonamides (encoded by sul2) and phage type U302. Results provided first molecular characterisation of S. Typhimurium strains isolated from rabbit farms in Italy and highlighted the presence of the pulsotype STYMXB.0061 even before its wide detection among human clinical isolates collected in Italy in the mid 2000s from clinical cases.
Collapse
Affiliation(s)
- Antonio Camarda
- Dipartimento di Sanità Pubblica e Zootecnica, Università di Bari, strada provinciale per Casamassima Km 3, 70010 Valenzano-Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
377
|
Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 2012; 37:336-63. [PMID: 22928673 DOI: 10.1111/j.1574-6976.2012.00353.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window.
Collapse
Affiliation(s)
- Patrick Seitz
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
378
|
Domingues S, Harms K, Fricke WF, Johnsen PJ, da Silva GJ, Nielsen KM. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog 2012; 8:e1002837. [PMID: 22876180 PMCID: PMC3410848 DOI: 10.1371/journal.ppat.1002837] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/19/2012] [Indexed: 12/24/2022] Open
Abstract
We have investigated to what extent natural transformation acting on free DNA substrates can facilitate transfer of mobile elements including transposons, integrons and/or gene cassettes between bacterial species. Naturally transformable cells of Acinetobacter baylyi were exposed to DNA from integron-carrying strains of the genera Acinetobacter, Citrobacter, Enterobacter, Escherichia, Pseudomonas, and Salmonella to determine the nature and frequency of transfer. Exposure to the various DNA sources resulted in acquisition of antibiotic resistance traits as well as entire integrons and transposons, over a 24 h exposure period. DNA incorporation was not solely dependent on integrase functions or the genetic relatedness between species. DNA sequence analyses revealed that several mechanisms facilitated stable integration in the recipient genome depending on the nature of the donor DNA; homologous or heterologous recombination and various types of transposition (Tn21-like and IS26-like). Both donor strains and transformed isolates were extensively characterized by antimicrobial susceptibility testing, integron- and cassette-specific PCRs, DNA sequencing, pulsed field gel electrophoreses (PFGE), Southern blot hybridizations, and by re-transformation assays. Two transformant strains were also genome-sequenced. Our data demonstrate that natural transformation facilitates interspecies transfer of genetic elements, suggesting that the transient presence of DNA in the cytoplasm may be sufficient for genomic integration to occur. Our study provides a plausible explanation for why sequence-conserved transposons, IS elements and integrons can be found disseminated among bacterial species. Moreover, natural transformation of integron harboring populations of competent bacteria revealed that interspecies exchange of gene cassettes can be highly efficient, and independent on genetic relatedness between donor and recipient. In conclusion, natural transformation provides a much broader capacity for horizontal acquisitions of genetic elements and hence, resistance traits from divergent species than previously assumed. Genetic elements, such as transposons and integrons, frequently carry antimicrobial resistance determinants and can be found widely disseminated among pathogenic bacteria. Their distribution pattern suggests dissemination through horizontal gene transfer. The role of natural transformation in horizontal transfer of genetic elements other than those that are self-replicative (plasmids) has remained largely unexplored. We have tested if natural transformation can facilitate transfer of transposons and class 1 integrons between bacterial species. We here provide experimental evidence showing that natural transformation can be a general mechanism for dissemination of genetic elements that by themselves do not encode interspecies transfer functions (e.g. transposons, insertion sequences). We demonstrate that antibiotic resistance determinants present in such genetic elements can spread by natural transformation between species of clinical interest. We show by quantitative data that interspecies exchange of resistance gene cassettes is highly efficient among integron-containing strains and species. Our study also provides a plausible explanation for how sequence-conserved integrons can become distributed among bacterial species.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Klaus Harms
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - W. Florian Fricke
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Pål J. Johnsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Gabriela J. da Silva
- Centre of Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kaare Magne Nielsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Genøk-Centre for Biosafety, Tromsø, Norway
- * E-mail:
| |
Collapse
|
379
|
Nardelli M, Scalzo PM, Ramírez MS, Quiroga MP, Cassini MH, Centrón D. Class 1 integrons in environments with different degrees of urbanization. PLoS One 2012; 7:e39223. [PMID: 22761743 PMCID: PMC3382206 DOI: 10.1371/journal.pone.0039223] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/17/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Class 1 integrons are one of the most successful elements in the acquisition, expression and spread of antimicrobial resistance genes (ARG) among clinical isolates. Little is known about the gene flow of the components of the genetic platforms of class 1 integrons within and between bacterial communities. Thus it is important to better understand the interactions among "environmental" intI1, its genetic platforms and its distribution with human activities. METHODOLOGY/PRINCIPAL FINDINGS An evaluation of two types of genetic determinants, ARG (sul1 and qacE1/qacEΔ1 genes) and lateral genetic elements (LGE) (intI1, ISCR1 and tniC genes) in a model of a culture-based method without antibiotic selection was conducted in a gradient of anthropogenic disturbances in a Patagonian island recognized as being one of the last regions containing wild areas. The intI1, ISCR1 genes and intI1 pseudogenes that were found widespread throughout natural communities were not associated with urbanization (p>0.05). Each ARG that is embedded in the most common genetic platform of clinical class 1 integrons, showed different ecological and molecular behaviours in environmental samples. While the sul1 gene frequency was associated with urbanization, the qacE1/qacEΔ1 gene showed an adaptive role to several habitats. CONCLUSIONS/SIGNIFICANCE The high frequency of intI1 pseudogenes suggests that, although intI1 has a deleterious impact within several genomes, it can easily be disseminated among natural bacterial communities. The widespread occurrence of ISCR1 and intI1 throughout Patagonian sites with different degree of urbanization, and within different taxa, could be one of the causes of the increasing frequency of multidrug-resistant isolates that have characterized Argentina for decades. The flow of ARG and LGE between natural and clinical communities cannot be explained with a single general process but is a direct consequence of the interaction of multiple factors operating at molecular, ecological, phylogenetic and historical levels.
Collapse
Affiliation(s)
- Maximiliano Nardelli
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Marina Scalzo
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Soledad Ramírez
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Hernán Cassini
- Grupo GEMA, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Laboratorio de Biología del Comportamiento, IBYME, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones de los Mecanismos de Resistencia a Antibióticos, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
380
|
Gillings MR, Stokes H. Are humans increasing bacterial evolvability? Trends Ecol Evol 2012; 27:346-52. [DOI: 10.1016/j.tree.2012.02.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/21/2012] [Accepted: 02/28/2012] [Indexed: 12/01/2022]
|
381
|
Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012; 3:119. [PMID: 22509175 PMCID: PMC3321497 DOI: 10.3389/fmicb.2012.00119] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons - genetic elements that acquire, exchange, and express genes embedded within gene cassettes (GC) - are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids, and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic-resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc.).
Collapse
|
382
|
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 2012; 18:263-72. [PMID: 22480775 DOI: 10.1016/j.molmed.2012.03.003] [Citation(s) in RCA: 722] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022]
Abstract
The current worldwide emergence of resistance to the powerful antibiotic carbapenem in Enterobacteriaceae constitutes an important growing public health threat. Sporadic outbreaks or endemic situations with enterobacterial isolates not susceptible to carbapenems are now reported not only in hospital settings but also in the community. Acquired class A (KPC), class B (IMP, VIM, NDM), or class D (OXA-48, OXA-181) carbapenemases, are the most important determinants sustaining resistance to carbapenems. The corresponding genes are mostly plasmid-located and associated with various mobile genetic structures (insertion sequences, integrons, transposons), further enhancing their spread. This review summarizes the current knowledge on carbapenem resistance in Enterobacteriaceae, including activity, distribution, clinical impact, and possible novel antibiotic pathways.
Collapse
Affiliation(s)
- Patrice Nordmann
- Service de Bactériologie-Virologie, INSERM U914 Emerging Resistance to Antibiotic, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris Sud, K.-Bicêtre, 94275 Le Kremlin-Bicêtre Cedex, France.
| | | | | |
Collapse
|
383
|
|
384
|
Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrob Agents Chemother 2011; 56:1434-43. [PMID: 22203596 DOI: 10.1128/aac.05766-11] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study examined differences in antibiotic-resistant soil bacteria and the presence and quantity of resistance genes in soils with a range of management histories. We analyzed four soils from agricultural systems that were amended with manure from animals treated with erythromycin and exposed to streptomycin and/or oxytetracycline, as well as non-manure-amended compost and forest soil. Low concentrations of certain antibiotic resistance genes were detected using multiplex quantitative real-time PCR (qPCR), with tet(B), aad(A), and str(A) each present in only one soil and tet(M) and tet(W) detected in all soils. The most frequently detected resistance genes were tet(B), tet(D), tet(O), tet(T), and tet(W) for tetracycline resistance, str(A), str(B), and aac for streptomycin resistance, and erm(C), erm(V), erm(X), msr(A), ole(B), and vga for erythromycin resistance. Transposon genes specific for Tn916, Tn1549, TnB1230, Tn4451, and Tn5397 were detected in soil bacterial isolates. The MIC ranges of isolated bacteria for tetracycline, streptomycin, and erythromycin were 8 to >256 μg/ml, 6 to >1,024 μg/ml, and 0.094 to >256 μg/ml, respectively. Based on 16S rRNA gene similarity, isolated bacteria showed high sequence identity to genera typical of soil communities. Bacteria with the highest MICs were detected in manure-amended soils or soils from agricultural systems with a history of antibiotic use. Non-manure-amended soils yielded larger proportions of antibiotic-resistant bacteria, but these had lower MICs, carried fewer antibiotic resistance genes, and did not display multidrug resistance (MDR).
Collapse
|
385
|
Gillings MR. HOW EVOLUTION GENERATES COMPLEXITY WITHOUT DESIGN: LANGUAGE AS AN INSTRUCTIONAL METAPHOR. Evolution 2011; 66:617-622. [DOI: 10.1111/j.1558-5646.2011.01511.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
386
|
Tsafnat G, Copty J, Partridge SR. RAC: Repository of Antibiotic resistance Cassettes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar054. [PMID: 22140215 PMCID: PMC3229207 DOI: 10.1093/database/bar054] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Antibiotic resistance in bacteria is often due to acquisition of resistance genes associated with different mobile genetic elements. In Gram-negative bacteria, many resistance genes are found as part of small mobile genetic elements called gene cassettes, generally found integrated into larger elements called integrons. Integrons carrying antibiotic resistance gene cassettes are often associated with mobile elements and here are designated ‘mobile resistance integrons’ (MRIs). More than one cassette can be inserted in the same integron to create arrays that contribute to the spread of multi-resistance. In many sequences in databases such as GenBank, only the genes within cassettes, rather than whole cassettes, are annotated and the same gene/cassette may be given different names in different entries, hampering analysis. We have developed the Repository of Antibiotic resistance Cassettes (RAC) website to provide an archive of gene cassettes that includes alternative gene names from multiple nomenclature systems and allows the community to contribute new cassettes. RAC also offers an additional function that allows users to submit sequences containing cassettes or arrays for annotation using the automatic annotation system Attacca. Attacca recognizes features (gene cassettes, integron regions) and identifies cassette arrays as patterns of features and can also distinguish minor cassette variants that may encode different resistance phenotypes (aacA4 cassettes and bla cassettes-encoding β-lactamases). Gaps in annotations are manually reviewed and those found to correspond to novel cassettes are assigned unique names. While there are other websites dedicated to integrons or antibiotic resistance genes, none includes a complete list of antibiotic resistance gene cassettes in MRI or offers consistent annotation and appropriate naming of all of these cassettes in submitted sequences. RAC thus provides a unique resource for researchers, which should reduce confusion and improve the quality of annotations of gene cassettes in integrons associated with antibiotic resistance. Database URL:http://www2.chi.unsw.edu.au/rac.
Collapse
Affiliation(s)
- Guy Tsafnat
- Centre for Health Informatics, Australian Institute of Health Innovation, University of New South Wales, Australia.
| | | | | |
Collapse
|