351
|
Shanmuganathan S, Angayarkanni N. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascul Pharmacol 2018; 108:23-35. [DOI: 10.1016/j.vph.2018.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022]
|
352
|
Involvement of poly(ADP-ribose) polymerase-1 in Chinese patients with glioma: a potential target for effective patient care. Int J Biol Markers 2018; 33:68-72. [PMID: 28777431 DOI: 10.5301/ijbm.5000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We aimed to evaluate the genetic variation of poly(ADP-ribose) polymerase-1 (PARP-1) in the development of gliomas among Chinese individuals. MATERIALS AND METHODS Patients with a confirmed diagnosis of glioma and healthy individuals with no clinical symptoms of glioma were enrolled at Liaocheng People's Hospital, China. Genetic polymorphisms were studied in plasma samples by polymerase chain reaction-restriction fragment length polymorphism assay. Cytokine levels were measured routinely in serum samples by sandwich ELISA technique. RESULTS A total of 120 Chinese patients with gliomas and 120 healthy Chinese individuals were included. We found that patients with the GG genotype (odds ratio [OR] 2.53, 95% confidence interval [CI] 1.46-4.38, p<0.001) and carriers of the G allele (OR 11.5, 95% CI 6.31-21.3, p<0.0001) were at high risk of developing glioma. A del/ins polymorphism of the NF-κB1 gene (OR 4.27, 95% CI 2.43-7.50, p<0.001) was also found to be associated with glioma. In addition, significantly increased cytokine levels were observed in patients with glioma (p<0.05). CONCLUSIONS Our findings showed that PARP-1 polymorphisms are involved in the development of glioma in Chinese individuals. Also serum cytokine levels can be considered among the potential risk factors for developing glioma.
Collapse
|
353
|
Ng AWR, Tan PJ, Hoo WPY, Liew DS, Teo MYM, Siak PY, Ng SM, Tan EW, Abdul Rahim R, Lim RLH, Song AAL, In LLA. In silico-guided sequence modifications of K-ras epitopes improve immunological outcome against G12V and G13D mutant KRAS antigens. PeerJ 2018; 6:e5056. [PMID: 30042874 PMCID: PMC6055689 DOI: 10.7717/peerj.5056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Somatic point substitution mutations in the KRAS proto-oncogene primarily affect codons 12/13 where glycine is converted into other amino acids, and are highly prevalent in pancreatic, colorectal, and non-small cell lung cancers. These cohorts are non-responsive to anti-EGFR treatments, and are left with non-specific chemotherapy regimens as their sole treatment options. In the past, the development of peptide vaccines for cancer treatment was reported to have poor AT properties when inducing immune responses. Utilization of bioinformatics tools have since become an interesting approach in improving the design of peptide vaccines based on T- and B-cell epitope predictions. Methods In this study, the region spanning exon 2 from the 4th to 18th codon within the peptide sequence of wtKRAS was chosen for sequence manipulation. Mutated G12V and G13D K-ras controls were generated in silico, along with additional single amino acid substitutions flanking the original codon 12/13 mutations. IEDB was used for assessing human and mouse MHC class I/II epitope predictions, as well as linear B-cell epitopes predictions, while RNA secondary structure prediction was performed via CENTROIDFOLD. A scoring and ranking system was established in order to shortlist top mimotopes whereby normalized and reducing weighted scores were assigned to peptide sequences based on seven immunological parameters. Among the top 20 ranked peptide sequences, peptides of three mimotopes were synthesized and subjected to in vitro and in vivo immunoassays. Mice PBMCs were treated in vitro and subjected to cytokine assessment using CBA assay. Thereafter, mice were immunized and sera were subjected to IgG-based ELISA. Results In silico immunogenicity prediction using IEDB tools shortlisted one G12V mimotope (68-V) and two G13D mimotopes (164-D, 224-D) from a total of 1,680 candidates. Shortlisted mimotopes were predicted to promote high MHC-II and -I affinities with optimized B-cell epitopes. CBA assay indicated that: 224-D induced secretions of IL-4, IL-5, IL-10, IL-12p70, and IL-21; 164-D triggered IL-10 and TNF-α; while 68-V showed no immunological responses. Specific-IgG sera titers against mutated K-ras antigens from 164-D immunized Balb/c mice were also elevated post first and second boosters compared to wild-type and G12/G13 controls. Discussion In silico-guided predictions of mutated K-ras T- and B-cell epitopes were successful in identifying two immunogens with high predictive scores, Th-bias cytokine induction and IgG-specific stimulation. Developments of such immunogens are potentially useful for future immunotherapeutic and diagnostic applications against KRAS(+) malignancies, monoclonal antibody production, and various other research and development initiatives.
Collapse
Affiliation(s)
- Allan Wee Ren Ng
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pei Jun Tan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Dek Shen Liew
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Sze Man Ng
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Ee Wern Tan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Renee Lay Hong Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Adelene Ai Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
354
|
Ukrainskaya VM, Bobik TV, Argentova-Stevens A, Slutskaya EA, Kalinin RS, Gabibov AG, Stepanov AV. Directed Change in TNFα Specificity to Create DR5 Antagonists. Bull Exp Biol Med 2018; 165:386-389. [PMID: 30003423 DOI: 10.1007/s10517-018-4176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/01/2022]
Abstract
Death receptor 5 (DR5) is a promising target for antitumor therapy due to its high expression on different tumor cells. Resistance of various tumor cells against TRAIL, a natural ligand for the death receptors, reduces its therapeutic potential and prompts the search for novel agonists at these receptors. Previous screening across the combinatorial peptide library yielded a peptide sequence KVVLTHR that specifically binds DR5. Incorporation of this sequence into TNFα resulted in binding DR5 with mutant protein TNFα-mut and appearance of cytotoxicity against lymphoma cells.
Collapse
Affiliation(s)
- V M Ukrainskaya
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - T V Bobik
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A Argentova-Stevens
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E A Slutskaya
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - R S Kalinin
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A G Gabibov
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A V Stepanov
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
355
|
Ben-Shaanan TL, Schiller M, Azulay-Debby H, Korin B, Boshnak N, Koren T, Krot M, Shakya J, Rahat MA, Hakim F, Rolls A. Modulation of anti-tumor immunity by the brain's reward system. Nat Commun 2018; 9:2723. [PMID: 30006573 PMCID: PMC6045610 DOI: 10.1038/s41467-018-05283-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Regulating immunity is a leading target for cancer therapy. Here, we show that the anti-tumor immune response can be modulated by the brain's reward system, a key circuitry in emotional processes. Activation of the reward system in tumor-bearing mice (Lewis lung carcinoma (LLC) and B16 melanoma) using chemogenetics (DREADDs), resulted in reduced tumor weight. This effect was mediated via the sympathetic nervous system (SNS), manifested by an attenuated noradrenergic input to a major immunological site, the bone marrow. Myeloid derived suppressor cells (MDSCs), which develop in the bone marrow, became less immunosuppressive following reward system activation. By depleting or adoptively transferring the MDSCs, we demonstrated that these cells are both necessary and sufficient to mediate reward system effects on tumor growth. Given the central role of the reward system in positive emotions, these findings introduce a physiological mechanism whereby the patient's psychological state can impact anti-tumor immunity and cancer progression.
Collapse
Affiliation(s)
- Tamar L Ben-Shaanan
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Maya Schiller
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Hilla Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Ben Korin
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Nadia Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Maria Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Jivan Shakya
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Immunotherapy Lab, Carmel Medical Center, 3436212, Haifa, Israel
| | - Michal A Rahat
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Immunotherapy Lab, Carmel Medical Center, 3436212, Haifa, Israel
| | - Fahed Hakim
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,Pediatric Pulmonary Unit, Rambam Health Care Campus, 3109601, Haifa, Israel. .,Cancer Research Center, EMMS Hospital, 16100, Nazareth, Israel.
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.
| |
Collapse
|
356
|
Krecak I, Gveric-Krecak V, Roncevic P, Basic-Kinda S, Gulin J, Lapic I, Fumic K, Ilic I, Horvat I, Zadro R, Holik H, Coha B, Peran N, Aurer I, Durakovic N. Serum chitotriosidase: a circulating biomarker in polycythemia vera. ACTA ACUST UNITED AC 2018; 23:793-802. [PMID: 29993340 DOI: 10.1080/10245332.2018.1498157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Serum chitotriosidase activity (CHIT1) is a biomarker of macrophage activation with an important role in inflammation-induced tissue remodeling and fibrosis. Macrophages have been described to play a crucial role in regulating pathological erythropoiesis in polycythemia vera (PV). The aim of this study was to evaluate CHIT1 in patients diagnosed with Philadelphia-negative myeloproliferative neoplasms (MPNs). METHODS Using fluorometric assay, we measured CHIT1 in 28 PV, 27 essential thrombocythemia (ET), 17 primary myelofibrosis (PMF), 19 patients with secondary myelofibrosis and in 25 healthy controls. RESULTS CHIT1 was significantly higher in PV (p < .001) and post-PV myelofibrosis (MF) transformation (post-PV MF) (p = .020), but not in ET (p = .080), post-ET MF transformation (p = .086), and PMF patients (p = .287), when compared to healthy controls. CHIT1 in PV was positively correlated with hemoglobin (p = .026), hematocrit (p = .012), absolute basophil count (p = .030) and the presence of reticulin fibrosis in the bone marrow (p = .023). DISCUSSION A positive correlation between CHIT1 and these distinct laboratory PV features might imply macrophages closely related to clonal erythropoiesis as cells of CHIT1 origin. In addition, a positive association between CHIT1 and reticulin fibrosis might indicate its potential role in PV progression. CONCLUSION CHIT1 might be considered as a circulating biomarker in PV. Additional studies are needed to clarify the role of CHIT1 in promoting disease progression and bone marrow fibrosis in PV.
Collapse
Affiliation(s)
- Ivan Krecak
- a Department of Internal Medicine , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Velka Gveric-Krecak
- a Department of Internal Medicine , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Pavle Roncevic
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia
| | - Sandra Basic-Kinda
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia
| | - Josipa Gulin
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia
| | - Ivana Lapic
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia
| | - Ksenija Fumic
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia.,d Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| | - Ivana Ilic
- e Department of Pathology and Cytology, University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Ivana Horvat
- g Division for Laboratory Hematology and Coagulation, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb , Zagreb , Croatia
| | - Renata Zadro
- d Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia.,g Division for Laboratory Hematology and Coagulation, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb , Zagreb , Croatia
| | - Hrvoje Holik
- h Department of Internal medicine , "Dr. Josip Bencevic" General Hospital , Slavonski Brod , Croatia
| | - Bozena Coha
- h Department of Internal medicine , "Dr. Josip Bencevic" General Hospital , Slavonski Brod , Croatia
| | - Nena Peran
- i Department of Laboratory Diagnostics , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Igor Aurer
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Nadira Durakovic
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
357
|
A mouse model of the Δ133p53 isoform: roles in cancer progression and inflammation. Mamm Genome 2018; 29:831-842. [PMID: 29992419 DOI: 10.1007/s00335-018-9758-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/05/2018] [Indexed: 01/19/2023]
Abstract
This review paper outlines studies on the Δ122p53 mouse, a model of the human Δ133p53 isoform, together with studies in other model organisms, cell culture, and where available, clinical investigations. In general, these studies imply that, in contrast to the canonical p53 tumor suppressor, Δ133p53 family members have oncogenic capability. Δ122p53 is multi-functional, conferring survival and proliferative advantages on cells, promoting invasion, metastasis and vascularization, as does Δ133p53. Cancers with high levels of Δ133p53 often have poor prognosis. Δ122p53 mediates its effects through the JAK-STAT and RhoA-ROCK signaling pathways. We propose that Δ133p53 isoforms have evolved as inflammatory signaling molecules to deal with the consequent tissue damage of p53 activation. However, if sustained expression of the isoforms occur, pathologies may result.
Collapse
|
358
|
Krishnan VV, Selvan SR, Parameswaran N, Venkateswaran N, Luciw PA, Venkateswaran KS. Proteomic profiles by multiplex microsphere suspension array. J Immunol Methods 2018; 461:1-14. [PMID: 30003895 DOI: 10.1016/j.jim.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
Advances in high-throughput proteomic approaches have provided substantial momentum to novel disease-biomarker discovery research and have augmented the quality of clinical studies. Applications based on multiplexed microsphere suspension array technology are making strong in-roads into the clinical diagnostic/prognostic practice. Conventional proteomic approaches are designed to discover a broad set of proteins that are associated with a specific medical condition. In comparison, multiplex microsphere immunoassays use quantitative measurements of selected set(s) of specific/particular molecular markers such as cytokines, chemokines, pathway signaling or disease-specific markers for detection, metabolic disorders, cancer, and infectious agents causing human, plant and animal diseases. This article provides a foundation to the multiplexed microsphere suspension array technology, with an emphasis on the improvements in the technology, data analysis approaches, and applications to translational and clinical research with implications for personalized and precision medicine.
Collapse
Affiliation(s)
- Viswanathan V Krishnan
- Department of Chemistry, California State University, Fresno, CA 93750, United States; Department of Medical Pathology and Laboratory Medicine, University of California School of Medicine, Sacramento, CA 95817, United States.
| | | | | | | | - Paul A Luciw
- Center for Comparative Medicine, University of California Davis, Davis, CA 95616, United States; Department of Medical Pathology and Laboratory Medicine, University of California School of Medicine, Sacramento, CA 95817, United States
| | | |
Collapse
|
359
|
Dubé PE, Liu CY, Girish N, Washington MK, Polk DB. Pharmacological activation of epidermal growth factor receptor signaling inhibits colitis-associated cancer in mice. Sci Rep 2018; 8:9119. [PMID: 29904166 PMCID: PMC6002410 DOI: 10.1038/s41598-018-27353-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
Current treatments for inflammatory bowel disease (IBD) target the overactive immune response of the intestinal mucosa. However, epidermal growth factor (EGF), an activating ligand of the EGF receptor (EGFR), has been shown to induce disease remission through direct targeting of intestinal mucosal healing. Despite promising preclinical and clinical results, this EGFR-activating therapy has not progressed, in part due to the potential for carcinogenesis associated with long-term use and the increased risk of colitis-associated cancer (CAC) in IBD. Here we tested whether pharmacological modulation of EGFR altered outcomes of CAC in the murine azoxymethane/dextran sulfate sodium model. We found that administering EGF during the period of maximum colitis severity ("early"), coincident with the initiation and early promotion of tumors, improved outcomes of colitis and reduced tumor size. In contrast, daily EGF administration beginning ~2 months after tumor initiation ("late") increased tumor size. Administration of the EGFR kinase inhibitor gefitinib increased the tumor size when the drug was given early and decreased the tumor size when the drug was administered late. EGF administration not only reduced colonic cytokine and chemokine expression during injury, but also baseline chemokine expression in homeostasis. These results suggest that EGFR activation during acute bouts of colitis may reduce the long-term burden of CAC.
Collapse
Affiliation(s)
- Philip E Dubé
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Taconic Biosciences, Hudson, NY, USA
| | - Cambrian Y Liu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nandini Girish
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
360
|
Goda AA, Siddique AB, Mohyeldin M, Ayoub NM, El Sayed KA. The Maxi-K (BK) Channel Antagonist Penitrem A as a Novel Breast Cancer-Targeted Therapeutic. Mar Drugs 2018; 16:md16050157. [PMID: 29751615 PMCID: PMC5983288 DOI: 10.3390/md16050157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with different molecular subtypes. The high conductance calcium-activated potassium channels (BK, Maxi-K channels) play an important role in the survival of some BC phenotypes, via membrane hyperpolarization and regulation of cell cycle. BK channels have been implicated in BC cell proliferation and invasion. Penitrems are indole diterpene alkaloids produced by various terrestrial and marine Penicillium species. Penitrem A (1) is a selective BK channel antagonist with reported antiproliferative and anti-invasive activities against multiple malignancies, including BC. This study reports the high expression of BK channel in different BC subtypes. In silico BK channel binding affinity correlates with the antiproliferative activities of selected penitrem analogs. 1 showed the best binding fitting at multiple BK channel crystal structures, targeting the calcium-sensing aspartic acid moieties at the calcium bowel and calcium binding sites. Further, 1 reduced the levels of BK channel expression and increased expression of TNF-α in different BC cell types. Penitrem A (1) induced G1 cell cycle arrest of BC cells, and induced upregulation of the arrest protein p27. Combination treatment of 1 with targeted anti-HER drugs resulted in synergistic antiproliferative activity, which was associated with reduced EGFR and HER2 receptor activation, as well as reduced active forms of AKT and STAT3. Collectively, the BK channel antagonists represented by penitrem A can be novel sensitizing, chemotherapeutics synergizing, and therapeutic agents for targeted BC therapy.
Collapse
Affiliation(s)
- Amira A Goda
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Abu Bakar Siddique
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Mohamed Mohyeldin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
361
|
Lettieri-Barbato D, Aquilano K. Pushing the Limits of Cancer Therapy: The Nutrient Game. Front Oncol 2018; 8:148. [PMID: 29868472 PMCID: PMC5951973 DOI: 10.3389/fonc.2018.00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
The standard cancer treatments include chemotherapy, radiotherapy, or their combination, which are generally associated with a multitude of side effects ranging from discomfort to the development of secondary tumors and severe toxicity to multiple systems including immune system. Mounting evidence has highlighted that the fine-tuning of nutrients may selectively sensitize cancer cells to conventional cancer therapies, while simultaneously protecting normal cells from their side effects. Nutrient modulation through diet also improves cancer immunesurveillance in a way that severe immunosuppression could be avoided or even the immune response or immune-based cancer therapies be potentiated also through patient microbiota remodeling. Here, we review recent advances in cancer therapy focusing on the effects of adjuvant dietary interventions (e.g., ketogenic diets, fasting) on the metabolic pathways within cancer cells and tumor environment (e.g., microbiota, immune system, tumor microenvironment) that are involved in cancer progression and resistance as well as cancer cell death. Finally, based on the overall literature data, we designed a nutritional intervention consisting in a plant-based moderate ketogenic diet that could be exploited for future preclinical research in cancer therapy.
Collapse
|
362
|
Heim L, Friedrich J, Engelhardt M, Trufa DI, Geppert CI, Rieker RJ, Sirbu H, Finotto S. NFATc1 Promotes Antitumoral Effector Functions and Memory CD8 + T-cell Differentiation during Non-Small Cell Lung Cancer Development. Cancer Res 2018; 78:3619-3633. [PMID: 29691251 DOI: 10.1158/0008-5472.can-17-3297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
Nuclear factor of activated T cells 1 (NFATc1) is a transcription factor activated by T-cell receptor (TCR) and Ca2+ signaling that affects T-cell activation and effector function. Upon tumor antigen challenge, TCR and calcium-release-activated channels are induced, promoting NFAT dephosphorylation and translocation into the nucleus. In this study, we report a progressive decrease of NFATc1 in lung tumor tissue and in tumor-infiltrating lymphocytes (TIL) of patients suffering from advanced-stage non-small cell lung cancer (NSCLC). Mice harboring conditionally inactivated NFATc1 in T cells (NFATc1ΔCD4) showed increased lung tumor growth associated with impaired T-cell activation and function. Furthermore, in the absence of NFATc1, reduced IL2 influenced the development of memory CD8+ T cells. We found a reduction of effector memory and CD103+ tissue-resident memory (TRM) T cells in the lung of tumor-bearing NFATc1ΔCD4 mice, underlining an impaired cytotoxic T-cell response and a reduced TRM tissue-homing capacity. In CD4+ICOS+ T cells, programmed cell death 1 (PD-1) was induced in the draining lymph nodes of these mice and associated with lung tumor cell growth. Targeting PD-1 resulted in NFATc1 induction in CD4+ and CD8+ T cells in tumor-bearing mice and was associated with increased antitumor cytotoxic functions. This study reveals a role of NFATc1 in the activation and cytotoxic functions of T cells, in the development of memory CD8+ T-cell subsets, and in the regulation of T-cell exhaustion. These data underline the indispensability of NFATc1 for successful antitumor immune responses in patients with NSCLC.Significance: The multifaceted role of NFATc1 in the activation and function of T cells during lung cancer development makes it a critical participant in antitumor immune responses in patients with NSCLC. Cancer Res; 78(13); 3619-33. ©2018 AACR.
Collapse
Affiliation(s)
- Lisanne Heim
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Friedrich
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Engelhardt
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
363
|
Luo L, Cai L, Luo L, Tang Z, Meng X. Silencing activating transcription factor 2 promotes the anticancer activity of sorafenib in hepatocellular carcinoma cells. Mol Med Rep 2018; 17:8053-8060. [PMID: 29693700 PMCID: PMC5983979 DOI: 10.3892/mmr.2018.8921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the anticancer effect of sorafenib combined with silencing of activating transcription factor 2 (ATF2) in hepatocellular carcinoma (HCC) cells and to assess the underlying molecular mechanisms. Huh-7 HCC cell line was selected for the present study. Small interfering RNA (siRNA)-ATF2 sequence was constructed to silence ATF2 expression. The experiment was divided into 6 groups: i) Control; ii) vector; iii) sorafenib (6.8 µM); iv) vector+sorafenib; v) siRNA-ATF2; and vi) siRNA-ATF2+sorafenib groups. Cell proliferation, apoptosis, migration and invasion were detected following treatments with sorafenib and/or ATF2 silencing. Additionally, expression of tumor necrosis factor (TNF)-α and c-Jun N-terminal kinase 3 (JNK3) was detected using reverse transcription-quantitative polymerase chain reaction and western blotting. The current findings revealed that siRNA-ATF2 significantly reduced ATF2 expression. Cell proliferation, migration and invasion abilities in the sorafenib and siRNA-ATF2 groups were significantly reduced compared with the control group (P<0.05). Apoptotic rate in the sorafenib and siRNA-ATF2 groups was significantly increased compared with the control group (P<0.05). The mRNA and protein expression levels of ATF2 in the sorafenib or siRNA-ATF2 groups was significantly reduced when compared with control group. The phosphorylation of ATF2 was also reduced following sorafenib treatment or ATF2 silence. Although JNK3 mRNA expression level was not affected, the phosphorylation level of JNK3 was significantly promoted following sorafenib treatment or ATF2 silencing. Additionally, TNF-α mRNA and protein expression levels were increased following sorafenib treatment or ATF2 silencing. It is of note that siRNA-ATF2 treatment promoted the anticancer activity of sorafenib in Huh-7 cells. Additionally, siRNA-ATF2+sorafenib treatment combined additionally promoted TNF-α expression and phosphorylation of JNK3. Combined siRNA-ATF2 and sorafenib treatment had a greater anticancer effect compared with sorafenib or ATF2 silencing alone. The possible mechanism involved in the anticancer effect of sorafenib and ATF2 silencing may be associated with the activation of the TNF-α/JNK3 signaling pathway.
Collapse
Affiliation(s)
- Lifang Luo
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Lijing Cai
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Laibang Luo
- Department of General Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimou Tang
- Department of Oncology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaohui Meng
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
364
|
Calip GS, Patel PR, Adimadhyam S, Xing S, Wu Z, Sweiss K, Schumock GT, Lee TA, Chiu BCH. Tumor necrosis factor-alpha inhibitors and risk of non-Hodgkin lymphoma in a cohort of adults with rheumatologic conditions. Int J Cancer 2018; 143:1062-1071. [PMID: 29603214 DOI: 10.1002/ijc.31407] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
Based on limited evidence, the U.S. Food and Drug Administration (FDA) issued a black box warning for the use of tumor necrosis factor-alpha inhibitors (TNFIs) and risk of non-Hodgkin lymphoma (NHL). Our objective was to determine the risk of NHL associated with TNFI use by duration and type of anti-TNF agent. We performed a nested case-control study within a retrospective cohort of adults with rheumatologic conditions from a U.S. commercial health insurance database between 2009 and 2015. Use of TNFIs (infliximab, adalimumab, etanercept, golimumab and certolizumab pegol) and conventional-synthetic disease-modifying antirheumatic drugs (csDMARDs) was identified, and conditional logistic regression models were used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI) for risk of NHL. From a retrospective cohort of 55,446 adult patients, 101 NHL cases and 984 controls matched on age, gender and rheumatologic indication were included. Compared to controls, NHL cases had greater TNFI use (33% vs. 20%) but were similar in csDMARD use (70% vs. 71%). TNFI ever-use was associated with nearly two-fold increased risk of NHL (OR = 1.93; 95% CI: 1.16-3.20) with suggestion of increasing risk with duration (P-trend = 0.05). TNF fusion protein (etanercept) was associated with increased NHL risk (OR = 2.73; 95% CI: 1.40-5.33), whereas risk with anti-TNF monoclonal antibodies was not statistically significant (OR = 1.77; 95% CI: 0.87-3.58). In sensitivity analyses evaluating confounding by rheumatologic disease severity, channeling bias was not likely to account for our results. Our findings support the FDA black box warning for NHL. Continued surveillance and awareness of this rare but serious adverse outcome are warranted with new TNFIs and biosimilar products forthcoming.
Collapse
Affiliation(s)
- Gregory S Calip
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL.,University of Illinois at Chicago, Center for Pharmacoepidemiology and Pharmacoeconomic Research, Chicago, IL.,Division of Public Health Sciences, Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Pritesh R Patel
- Department of Medicine, Division of Hematology Oncology, University of Illinois at Chicago, Chicago, IL
| | - Sruthi Adimadhyam
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Shan Xing
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Zhaoju Wu
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Karen Sweiss
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL
| | - Glen T Schumock
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL.,University of Illinois at Chicago, Center for Pharmacoepidemiology and Pharmacoeconomic Research, Chicago, IL
| | - Todd A Lee
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL.,University of Illinois at Chicago, Center for Pharmacoepidemiology and Pharmacoeconomic Research, Chicago, IL
| | - Brian C-H Chiu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL
| |
Collapse
|
365
|
Slotta C, Storm J, Pfisterer N, Henkel E, Kleinwächter S, Pieper M, Ruiz-Perera LM, Greiner JFW, Kaltschmidt B, Kaltschmidt C. IKK1/2 protect human cells from TNF-mediated RIPK1-dependent apoptosis in an NF-κB-independent manner. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1025-1033. [PMID: 29630899 DOI: 10.1016/j.bbamcr.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023]
Abstract
TNF signaling is directly linked to cancer development and progression. A broad range of tumor cells is able to evade cell death induced by TNF impairing the potential anti-cancer value of TNF in therapy. Although sensitizing cells to TNF-induced death therefore has great clinical implications, detailed mechanistic insights into TNF-mediated human cell death still remain unknown. Here, we analyzed human cells by applying CRISPR/Cas9n to generate cells deficient of IKK1, IKK2, IKK1/2 and RELA. Despite stimulation with TNF resulted in impaired NF-κB activation in all genotypes compared to wildtype cells, increased cell death was observable only in IKK1/2-double-deficient cells. Cell death could be detected by Caspase-3 activation and binding of Annexin V. TNF-induced programmed cell death in IKK1/2-/- cells was further shown to be mediated via RIPK1 in a predominantly apoptotic manner. Our findings demonstrate the IKK complex to protect from TNF-induced cell death in human cells independently to NF-κB RelA suggesting IKK1/2 to be highly promising targets for cancer therapy.
Collapse
Affiliation(s)
- Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany; Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Jonathan Storm
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Nina Pfisterer
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Elena Henkel
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Svenja Kleinwächter
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Maren Pieper
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Lucia M Ruiz-Perera
- Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Johannes F W Greiner
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany; Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany.
| |
Collapse
|
366
|
Ahmad S, Khan MY, Rafi Z, Khan H, Siddiqui Z, Rehman S, Shahab U, Khan MS, Saeed M, Alouffi S, Khan MS. Oxidation, glycation and glycoxidation—The vicious cycle and lung cancer. Semin Cancer Biol 2018; 49:29-36. [DOI: 10.1016/j.semcancer.2017.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
|
367
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
368
|
Pellegatta S, Savoldo B, Di Ianni N, Corbetta C, Chen Y, Patané M, Sun C, Pollo B, Ferrone S, DiMeco F, Finocchiaro G, Dotti G. Constitutive and TNFα-inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: Implications for CAR-T cell therapy. Sci Transl Med 2018; 10:eaao2731. [PMID: 29491184 PMCID: PMC8713441 DOI: 10.1126/scitranslmed.aao2731] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/31/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022]
Abstract
The heterogeneous expression of tumor-associated antigens limits the efficacy of chimeric antigen receptor (CAR)-redirected T cells (CAR-Ts) for the treatment of glioblastoma (GBM). We have found that chondroitin sulfate proteoglycan 4 (CSPG4) is highly expressed in 67% of the GBM specimens with limited heterogeneity. CSPG4 is also expressed on primary GBM-derived cells, grown in vitro as neurospheres (GBM-NS), which recapitulate the histopathology and molecular characteristics of primary GBM. CSPG4.CAR-Ts efficiently controlled the growth of GBM-NS in vitro and in vivo upon intracranial tumor inoculation. Moreover, CSPG4.CAR-Ts were also effective against GBM-NS with moderate to low expression of CSPG4. This effect was mediated by the in vivo up-regulation of CSPG4 on tumor cells, induced by tumor necrosis factor-α (TNFα) released by the microglia surrounding the tumor. Overall, the constitutive and TNFα-inducible expression of CSPG4 in GBM may greatly reduce the risk of tumor cell escape observed when targeted antigens are heterogeneously expressed on tumor cells.
Collapse
Affiliation(s)
- Serena Pellegatta
- Unit of Molecular Neuro-Oncology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan 20133, Italy
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natalia Di Ianni
- Unit of Molecular Neuro-Oncology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Cristina Corbetta
- Unit of Molecular Neuro-Oncology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Yuhui Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Monica Patané
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco DiMeco
- Department of Neuro-Surgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
369
|
Shen J, Xiao Z, Zhao Q, Li M, Wu X, Zhang L, Hu W, Cho CH. Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif 2018; 51:e12441. [PMID: 29484738 DOI: 10.1111/cpr.12441] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) were originally found to be produced by inflammatory cells and play important roles in the immune system and surveillance of tumour growth. By activating distinct signalling pathways of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and JAK/STAT, TNFα and IFNγ were reported to effectively trigger cell death and perform powerful anti-cancer effects. In this review, we will discuss the new advancements of TNFα and IFNγ in anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
370
|
Li J, Volk A, Zhang J, Cannova J, Dai S, Hao C, Hu C, Sun J, Xu Y, Wei W, Breslin P, Nand S, Chen J, Kini A, Zhu J, Zhang J. Sensitizing leukemia stem cells to NF-κB inhibitor treatment in vivo by inactivation of both TNF and IL-1 signaling. Oncotarget 2018; 8:8420-8435. [PMID: 28039479 PMCID: PMC5352411 DOI: 10.18632/oncotarget.14220] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 01/30/2023] Open
Abstract
We previously reported that autocrine TNF-α (TNF) is responsible for JNK pathway activation in a subset of acute myeloid leukemia (AML) patient samples, providing a survival/proliferation signaling parallel to NF-κB in AML stem cells (LSCs). In this study, we report that most TNF-expressing AML cells (LCs) also express another pro-inflammatory cytokine, IL1β, which acts in a parallel manner. TNF was produced primarily by LSCs and leukemic progenitors (LPs), whereas IL1β was mainly produced by partially differentiated leukemic blasts (LBs). IL1β also stimulates an NF-κB-independent pro-survival and proliferation signal through activation of the JNK pathway. We determined that co-inhibition of signaling stimulated by both TNF and IL1β synergizes with NF-κB inhibition in eliminating LSCs both ex vivo and in vivo. Our studies show that such treatments are most effective in M4/5 subtypes of AML.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Andrew Volk
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Joseph Cannova
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Shaojun Dai
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Caiqin Hao
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Chenglong Hu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Jiewen Sun
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Yan Xu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.,Department of Molecular and Cellular Physiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Sucha Nand
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jianjun Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Ameet Kini
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology, Loyola University Medical Center, Maywood, IL. 60153, USA
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology, Loyola University Medical Center, Maywood, IL. 60153, USA
| |
Collapse
|
371
|
Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget 2018; 7:76274-76290. [PMID: 27517754 PMCID: PMC5342813 DOI: 10.18632/oncotarget.11187] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an antimicrobial MR1-restricted T cell subset and play an important role in immune defense response to bacteria. However, little is known about the role of MAIT cells in cancer. The aims of this study were to examine the level and function of MAIT cells in cancer patients and to evaluate the clinical relevance of MAIT cell levels. Ninety-nine patients with cancer and 20 healthy controls were included in this study. Circulating MAIT cell levels were significantly reduced in patients with mucosal-associated cancers (MACs), such as gastric, colon and lung cancers, but their capacities for IFN-γ, IL-17, or TNF-α production were preserved. This MAIT cell deficiency was significantly correlated with N staging and carcinoembryonic antigen level. Percentages of MAIT cells were significantly higher in cancer tissue than in peripheral blood and immunofluorescent labeling showed MAIT cell infiltration into colon cancer tissues. Circulating MAIT cells exhibited high levels of CCR6 and CXCR6, and their corresponding chemokines, such as CCL20 and CXCL16, were strongly expressed in colon cancer tissues. Activated MAIT cells not only had lymphokine-activated killer activity, but they also had direct cytotoxicity on K562 cells via degranulation of granzyme B and perforin. This study primarily demonstrates that circulating MAIT cells are reduced in MAC patients due to migration to mucosal cancer tissues and they have the potential to kill cancer cells. In addition, this circulating MAIT cell deficiency is related to the degree of cancer progression in mucosal tissues.
Collapse
|
372
|
Tarasiuk A, Mosińska P, Fichna J. The mechanisms linking obesity to colon cancer: An overview. Obes Res Clin Pract 2018; 12:251-259. [PMID: 29428365 DOI: 10.1016/j.orcp.2018.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
Obesity, characterised as a chronic low-grade inflammation is a crucial risk factor for colon cancer. The expansion of the adipose tissue is related to elevated triglyceride and low-density lipoprotein (LDL) levels and hyperinsulinemia, which all are presumed mediators of the tumour development. Obesity is also believed to support carcinogenesis by activating the insulin/IGF-1 pathway. Moreover, obesity increases the level of proinflammatory cytokines (e.g. TNF-α, IL-1, and IL-6) and has a significant impact on selected adipokines. This paper briefly outlines the latest evidence of the linkage between the obesity and colon cancer and discusses its possible implication for the improvement of anticancer prevention and treatment strategies connected with nutrition.
Collapse
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland.
| |
Collapse
|
373
|
Anticancer Applications of Nanostructured Silica-Based Materials Functionalized with Titanocene Derivatives: Induction of Cell Death Mechanism through TNFR1 Modulation. MATERIALS 2018; 11:ma11020224. [PMID: 29385103 PMCID: PMC5848921 DOI: 10.3390/ma11020224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/16/2023]
Abstract
A series of cytotoxic titanocene derivatives have been immobilized onto nanostructured silica-based materials using two different synthetic routes, namely, (i) a simple grafting protocol via protonolysis of the Ti–Cl bond; and (ii) a tethering method by elimination of ethanol using triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM, observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight changes in the textural features of the materials after functionalization with the metallodrugs. A complete biological study has been carried out using the synthesized materials exhibiting moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B) and three human colon carcinomas (DLD-1, HT-29, COLO320) and very low cytotoxicity against normal cell lines. In addition, the cells’ metabolic activity was modified by a 24-h exposure in a dose-dependent manner. Despite not having a significant effect on TNFα or the proinflammatory interleukin 1α secretion, the materials strongly modulated tumor necrosis factor (TNF) signaling, even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor production, something which has not previously been observed for these systems.
Collapse
|
374
|
Shi G, Zheng X, Zhang S, Wu X, Yu F, Wang Y, Xing F. Kanglaite inhibits EMT caused by TNF-α via NF-κΒ inhibition in colorectal cancer cells. Oncotarget 2018; 9:6771-6779. [PMID: 29467927 PMCID: PMC5805513 DOI: 10.18632/oncotarget.23645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor-alpha is a critical pro-inflammatory cytokine produced by macrophages and was once considered an anti-tumor agent. However, a low dose of tumor necrosis factor-alpha can cause epithelial mesenchymal transition, angiogenesis and metastasis. NF-κΒ contributes to epithelial mesenchymal transition induced by tumor necrosis factor-alpha. Kanglaite, an extract from the Coix lacryma-jobi (adlay) seed, is an NF-κΒ inhibitor. The aim of this study was to investigate whether Kanglaite could inhibit epithelial mesenchymal transition caused by tumor necrosis factor-alpha using four colorectal cancer cell lines, HCT106, HCT116, LoVo and CT26. Our results showed that tumor necrosis factor-alpha -mediated activation of NF-κΒ, caused changes in epithelial mesenchymal transition -related protein expression, and increased migration and invasion in all four cell lines. However, these effects were inhibited by Kanglaite when used in combination with tumor necrosis factor-alpha. In a subcutaneous tumor model of CT26, tumor necrosis factor-alpha enhanced the tumorigenic ability of the cells, and again this was inhibited by Kanglaite. However, treatment with Kanglaite alone caused almost no inhibition of epithelial mesenchymal transition -mediated tumor growth, when cells were pretreated with tumor necrosis factor-alpha prior to injection. These results suggest that Kanglaite inhibits tumor necrosis factor-alpha -mediated epithelial mesenchymal transition in colorectal cancer cell lines via inhibition of NF-κΒ.
Collapse
Affiliation(s)
- Guiling Shi
- Tianjin Union Medical Center, Tianjin 300121, China
| | - Xiaoli Zheng
- Tianjin Union Medical Center, Tianjin 300121, China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Tianjin 300121, China
| | - Xiaojing Wu
- Tianjin Union Medical Center, Tianjin 300121, China
| | - Fei Yu
- School of Pharmacy, Tianjin Medical University, Tianjin 300121, China
| | - Yijia Wang
- Tianjin Union Medical Center, Tianjin 300121, China
| | - Fei Xing
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics School and School of Physics, Nankai University, Tianjin 300071, China
| |
Collapse
|
375
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
376
|
Miao Y, Hu B, Wang Q, Yang Q, Zhou S. Myokines related to leukocyte recruitment are down-regulated in osteosarcoma. Int J Med Sci 2018; 15:859-866. [PMID: 30008597 PMCID: PMC6036099 DOI: 10.7150/ijms.24928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/27/2018] [Indexed: 11/10/2022] Open
Abstract
Myokines are cytokines that are secreted by muscle cells during exercises, muscle development and pathology. Studies have shown that expression of some individual myokines was altered in tumors. However, comprehensive analyses of myokines' expression in osteosarcoma (OS), the most common malignant tumor in musculoskeletal system, have not been performed. In this study, we analyzed the expression of 35 myokines in osteosarcoma, peritumoral skeletal muscle, and cancellous bone by qRT-PCR. Heatmap analysis based on the expression pattern of these myokines revealed that OS is more likely derived from cancellous bone than peritumoral skeletal muscle. Thus, we compared the expression of myokines between OS and cancellous bone to reveal a potential role of myokines in OS development. Our results showed that expression of 19 myokines in OS was significantly lower than that in cancellous bone. KEGG signaling pathway analysis showed that these 19 myokines are involved in several important signaling pathways, one of which was associated with leukocyte recruitment in TNF-α signaling. We verified that expression of these leukocyte recruitment-related myokines were down-regulated in OS cell line MNNG compared to those in human BMSC. Downregulation of the myokines related to leukocyte recruitment suggests that escaping from host immune system may help the occurrence of osteosarcoma.
Collapse
Affiliation(s)
- Yu Miao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Bin Hu
- Institution of microsurgery for limbs, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qiong Wang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Shumin Zhou
- Institution of microsurgery for limbs, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
377
|
Grabarek B, Bednarczyk M, Mazurek U. The characterization of tumor necrosis factor alpha (TNF-α), its role in cancerogenesis and cardiovascular system diseases and possibilities of using this cytokine as a molecular marker. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/fobio-2017-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The inflammatory process is directly associated with secretion of cytokines, e.g. tumor necrosis factor alpha (TNF-α). This molecule is one of the 22 proteins which belong to TNF family and is secreted mainly by: macrophages, monocytes, T lymphocyte and mast cells. The biological effects of TNF-α is possible through binding this cytokine to specific receptors – TNFR1 and TNFR2. The large number of reports provides that this cytokine plays extremely important role in cancers and cardiovascular disease – two groups of inflammatory diseases. Unfortunately, these diseases are the main cause of death in spite of advances in medicine and increasing public awareness of prevention. It is believed that better understanding both molecular potential of this cytokine and the impact in cancerogenesis and others inflammatory diseases may cause using TNF-α as a molecular marker in these diseases and will make it possible to observe the effects of anti-inflammatory therapy. It will be able to cause a drop in the incidence of these diseases and better monitoring of them.
Collapse
|
378
|
Holdbrooks AT, Britain CM, Bellis SL. ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J Biol Chem 2017; 293:1610-1622. [PMID: 29233887 DOI: 10.1074/jbc.m117.801480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/05/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of the tumor necrosis factor receptor 1 (TNFR1) death receptor by TNF induces either cell survival or cell death. However, the mechanisms mediating these distinct outcomes remain poorly understood. In this study, we report that the ST6Gal-I sialyltransferase, an enzyme up-regulated in numerous cancers, sialylates TNFR1 and thereby protects tumor cells from TNF-induced apoptosis. Using pancreatic and ovarian cancer cells with ST6Gal-I knockdown or overexpression, we determined that α2-6 sialylation of TNFR1 had no effect on early TNF-induced signaling events, including the rapid activation of NF-κB, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and Akt (occurring within 15 min). However, upon extended TNF treatment (6-24 h), cells with high ST6Gal-I levels exhibited resistance to TNF-induced apoptosis, as indicated by morphological evidence of cell death and decreased activation of caspases 8 and 3. Correspondingly, at these later time points, high ST6Gal-I expressers displayed sustained activation of the survival molecules Akt and NF-κB. Additionally, extended TNF treatment resulted in the selective enrichment of clonal variants with high ST6Gal-I expression, further substantiating a role for ST6Gal-I in cell survival. Given that TNFR1 internalization is known to be essential for apoptosis induction, whereas survival signaling is initiated by TNFR1 at the plasma membrane, we examined TNFR1 localization. The α2-6 sialylation of TNFR1 was found to inhibit TNF-induced TNFR1 internalization. Thus, by restraining TNFR1 at the cell surface via sialylation, ST6Gal-I acts as a functional switch to divert signaling toward survival. These collective findings point to a novel glycosylation-dependent mechanism that regulates the cellular response to TNF and may promote cancer cell survival within TNF-rich tumor microenvironments.
Collapse
Affiliation(s)
- Andrew T Holdbrooks
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Colleen M Britain
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Susan L Bellis
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
379
|
De Luca R, Soltermann A, Pretto F, Pemberton-Ross C, Pellegrini G, Wulhfard S, Neri D. Potency-matched Dual Cytokine-Antibody Fusion Proteins for Cancer Therapy. Mol Cancer Ther 2017; 16:2442-2451. [PMID: 28716814 PMCID: PMC5844457 DOI: 10.1158/1535-7163.mct-17-0211] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 01/23/2023]
Abstract
A novel biopharmaceutical, consisting of the F8 mAb (specific to a splice isoform of fibronectin) simultaneously fused to both TNF and IL2, was found to react with the majority of solid tumors and hematologic malignancies in mouse and man, but not with healthy adult tissues. The product selectively localized to neoplastic lesions in vivo, as evidenced by quantitative biodistribution studies using radioiodinated protein preparations. When the potency of the cytokine payloads was matched by a single-point mutation, the resulting fusion protein (IL2-F8-TNFmut) eradicated soft-tissue sarcomas in immunocompetent mice, which did not respond to individual antibody-cytokine fusion proteins or by standard doxorubicin treatment. Durable complete responses were also observed in mice bearing CT26, C1498, and F9 tumors. The simultaneous delivery of multiple proinflammatory payloads to the cancer site conferred protective immunity against subsequent tumor challenges. A fully human homolog of IL2-F8-TNFmut, which retained selectivity similar to its murine counterpart when tested on human material, may open new clinical applications for the immunotherapy of cancer. Mol Cancer Ther; 16(11); 2442-51. ©2017 AACR.
Collapse
Affiliation(s)
- Roberto De Luca
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Alex Soltermann
- Institut für Klinische Pathologie, Universitätspital Zürich, Zürich, Switzerland
| | | | | | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Universität Zürich, Zürich, Switzerland
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
380
|
Maji P, Shah E. Significance and Functional Similarity for Identification of Disease Genes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1419-1433. [PMID: 28113633 DOI: 10.1109/tcbb.2016.2598163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the most significant research issues in functional genomics is insilico identification of disease related genes. In this regard, the paper presents a new gene selection algorithm, termed as SiFS, for identification of disease genes. It integrates the information obtained from interaction network of proteins and gene expression profiles. The proposed SiFS algorithm culls out a subset of genes from microarray data as disease genes by maximizing both significance and functional similarity of the selected gene subset. Based on the gene expression profiles, the significance of a gene with respect to another gene is computed using mutual information. On the other hand, a new measure of similarity is introduced to compute the functional similarity between two genes. Information derived from the protein-protein interaction network forms the basis of the proposed SiFS algorithm. The performance of the proposed gene selection algorithm and new similarity measure, is compared with that of other related methods and similarity measures, using several cancer microarray data sets.
Collapse
|
381
|
Kosowska A, Gallego-Colon E, Garczorz W, Kłych-Ratuszny A, Aghdam MRF, Woz Niak M, Witek A, Wróblewska-Czech A, Cygal A, Wojnar J, Francuz T. Exenatide modulates tumor-endothelial cell interactions in human ovarian cancer cells. Endocr Connect 2017; 6:856-865. [PMID: 29042458 PMCID: PMC5682419 DOI: 10.1530/ec-17-0294] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
Abstract
Diabetes and cancer are prevalent diseases whose incidence is increasing globally. Diabetic women have a moderate risk increase in ovarian cancer, suggested to be due to an interaction between these two disorders. Furthermore, patients manifesting both diseases have associated worse prognosis, reduced survival and shorter relapse-free survival. According to current recommendations, incretin drugs such as Exenatide, a synthetic analog of Exendin-4, and Liraglutide are used as therapy for the type 2 diabetes (T2D). We studied the effects of GLP-1 and Exendin-4 on migration, apoptosis and metalloproteinase production in two human ovarian cancer cells (SKOV-3 and CAOV-3). Exendin-4 inhibited migration and promoted apoptosis through caspase 3/7 activation. Exendin-4 also modulated the expression of key metalloproteinases (MMP-2 and MMP-9) and their inhibitors (TIMP-1 and TIMP-2). Vascular endothelial cells, which contribute to the formation and progression of metastasis, were also analyzed. TNF-α-stimulated endothelial cells from iliac artery after Exendin-4 treatment showed reduced production of adhesion molecules (ICAM-1 and VCAM-1). Additionally, incretin treatment inhibited activation of apoptosis in TNF-α-stimulated endothelial cells. In the same experiment, MMPs (MMP-1 and MMP-9), which are relevant for tumor development, were also reduced. Our study demonstrated that incretin drugs may reduce cancer cell proliferation and dissemination potential, hence limiting the risk of metastasis in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kosowska
- Department of BiochemistrySchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Enrique Gallego-Colon
- Department of BiochemistrySchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Garczorz
- Department of BiochemistrySchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kłych-Ratuszny
- Department of BiochemistrySchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mohammad Reza F Aghdam
- Department of BiochemistrySchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Woz Niak
- Department of BiochemistrySchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Andrzej Witek
- Department of Gynaecology and ObstetricsSchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Wróblewska-Czech
- Department of Gynaecology and ObstetricsSchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Cygal
- Department of Gynaecology and ObstetricsSchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Wojnar
- Department of Internal Medicine and Oncological ChemotherapySchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of BiochemistrySchool of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
382
|
McDonald AM, Fiveash JB, Kirkland RS, Cardan RA, Jacob R, Kim RY, Dobelbower MC, Yang ES. Subcutaneous adipose tissue characteristics and the risk of biochemical recurrence in men with high-risk prostate cancer. Urol Oncol 2017; 35:663.e15-663.e21. [DOI: 10.1016/j.urolonc.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
383
|
Pazhouhandeh M, Samiee F, Boniadi T, Khedmat AF, Vahedi E, Mirdamadi M, Sigari N, Siadat SD, Vaziri F, Fateh A, Ajorloo F, Tafsiri E, Ghanei M, Mahboudi F, Rahimi Jamnani F. Comparative Network Analysis of Patients with Non-Small Cell Lung Cancer and Smokers for Representing Potential Therapeutic Targets. Sci Rep 2017; 7:13812. [PMID: 29062084 PMCID: PMC5653836 DOI: 10.1038/s41598-017-14195-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023] Open
Abstract
Cigarette smoking is the leading cause of lung cancer worldwide. In this study, we evaluated the serum autoantibody (AAb) repertoires of non-small cell lung cancer (NSCLC) patients and smokers (SM), leading to the identification of overactivated pathways and hubs involved in the pathogenesis of NSCLC. Surface- and solution-phase biopanning were performed on immunoglobulin G purified from the sera of NSCLC and SM groups. In total, 20 NSCLC- and 12 SM-specific peptides were detected, which were used to generate NSCLC and SM protein datasets. NSCLC- and SM-related proteins were visualized using STRING and Gephi, and their modules were analyzed using Enrichr. By integrating the overrepresented pathways such as pathways in cancer, epithelial growth factor receptor, c-Met, interleukin-4 (IL-4) and IL-6 signaling pathways, along with a set of proteins (e.g. phospholipase D (PLD), IL-4 receptor, IL-17 receptor, laminins, collagens, and mucins) into the PLD pathway and inflammatory cytokines network as the most critical events in both groups, two super networks were made to elucidate new aspects of NSCLC pathogenesis and to determine the influence of cigarette smoking on tumour formation. Taken together, assessment of the AAb repertoires using a systems biology approach can delineate the hidden events involved in various disorders.
Collapse
Affiliation(s)
| | - Fatemeh Samiee
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Tahereh Boniadi
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Abbas Fadaei Khedmat
- Department of Pulmonology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirdamadi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Naseh Sigari
- Internal Medicine Department, Medical Faculty, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Faezeh Ajorloo
- Department of Biology, Faculty of Science, Islamic Azad University, East Tehran Branch, Tehran, Iran
| | - Elham Tafsiri
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
384
|
Jeon H, Kim D, Choi M, Kang S, Kim JY, Kim S, Jon S. Targeted Cancer Therapy Using Fusion Protein of TNFα and Tumor-Associated Fibronectin-Specific Aptide. Mol Pharm 2017; 14:3772-3779. [PMID: 28969419 DOI: 10.1021/acs.molpharmaceut.7b00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tumor necrosis factor-α has shown potent antitumor effects in preclinical and clinical studies. However, severe side effects at less than therapeutic doses have limited its systemic delivery, prompting the need for a new strategy for targeted delivery of the protein to tumors. Here, we report a fusion protein of mouse tumor necrosis factor (TNF)-α (mTNFα) and a cancer-targeting, high-affinity aptide and investigate its therapeutic efficacy in tumor-bearing mice. A fusion protein consisting of mTNFα, a linker, and an aptide specific to extra domain B (EDB) of fibronectin (APTEDB), designated mTNFα-APTEDB, was successfully produced by expression in Escherichia coli. mTNFα-APTEDB retained specificity and affinity for its target, EDB. In mice bearing EDB-overexpressing fibrosarcomas, mTNFα-APTEDB showed greater efficacy in inhibiting tumor growth than mTNFα alone or mTNFα linked to a nonrelevant aptide, without causing an appreciable loss in body weight. Moreover, in vivo antitumor efficacy was further significantly increased by combination treatment with the chemotherapeutic drug, melphalan, suggesting a synergistic effect attributable to enhanced drug uptake into the tumor as a result of TNFα-mediated enhanced vascular permeability. These results suggest that a fusion protein of mTNFα with a cancer-targeting peptide could be a new anticancer therapeutic option for ensuring potent antitumor efficacy after systemic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunghyun Kim
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology , 202 Osongsaengmyeong 1-ro, Cheongjusi 28160, Chungcheongbuk-do, South Korea
| | | |
Collapse
|
385
|
Huang G, Khan I, Li X, Chen L, Leong W, Ho LT, Hsiao WLW. Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in Apc Min/+ mice. Sci Rep 2017; 7:12552. [PMID: 28970547 PMCID: PMC5624945 DOI: 10.1038/s41598-017-12644-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
Studies showed that manipulation of gut microbiota (GM) composition through the treatment of prebiotics could be a novel preventive measure against colorectal cancer (CRC) development. In this study, for the first time, we assessed the non-toxic doses of the triterpene saponins (ginsenoside-Rb3 and ginsenoside-Rd) - as prebiotics - that effectively reinstated the dysbiotic-gut microbial composition and intestinal microenvironment in an ApcMin/+ mice model. Rb3 and Rd effectively reduced the size and the number of the polyps that accompanied with the downregulation of oncogenic signaling molecules (iNOS, STAT3/pSTAT3, Src/pSrc). Both the compounds improved the gut epithelium by promoting goblet and Paneth cells population and reinstating the E-cadherin and N-Cadherin expression. Mucosal immunity remodeled with increased in anti-inflammatory cytokines and reduced in pro-inflammatory cytokines in treated mice. All these changes were correlating with the promoted growth of beneficial bacteria such as Bifidobacterium spp., Lactobacillus spp., Bacteroides acidifaciens, and Bacteroides xylanisolvens. Whereas, the abundance of cancer cachexia associated bacteria, such as Dysgonomonas spp. and Helicobacter spp., was profoundly lower in Rb3/Rd-treated mice. In conclusion, ginsenosides Rb3 and Rd exerted anti-cancer effects by holistically reinstating mucosal architecture, improving mucosal immunity, promoting beneficial bacteria, and down-regulating cancer-cachexia associated bacteria.
Collapse
Affiliation(s)
- Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lei Chen
- Department of Genetics, Rutgers University, New Brunswick, USA
| | - Waikit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Leung Tsun Ho
- Department of Pathology, University Hospital, Macau University of Science and Technology, Macau, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
386
|
Chavez-Galan L, Vesin D, Uysal H, Blaser G, Benkhoucha M, Ryffel B, Quesniaux VFJ, Garcia I. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy. Front Immunol 2017; 8:999. [PMID: 28890718 PMCID: PMC5574880 DOI: 10.3389/fimmu.2017.00999] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 01/22/2023] Open
Abstract
Pleural tuberculosis (TB) is a form of extra-pulmonary TB observed in patients infected with Mycobacterium tuberculosis. Accumulation of myeloid-derived suppressor cells (MDSC) has been observed in animal models of TB and in human patients but their role remains to be fully elucidated. In this study, we analyzed the role of transmembrane TNF (tmTNF) in the accumulation and function of MDSC in the pleural cavity during an acute mycobacterial infection. Mycobacterium bovis BCG-induced pleurisy was resolved in mice expressing tmTNF, but lethal in the absence of tumor necrosis factor. Pleural infection induced MDSC accumulation in the pleural cavity and functional MDSC required tmTNF to suppress T cells as did pleural wild-type MDSC. Interaction of MDSC expressing tmTNF with CD4 T cells bearing TNF receptor 2 (TNFR2), but not TNFR1, was required for MDSC suppressive activity on CD4 T cells. Expression of tmTNF attenuated Th1 cell-mediated inflammatory responses generated by the acute pleural mycobacterial infection in association with effective MDSC expressing tmTNF and interacting with CD4 T cells expressing TNFR2. In conclusion, this study provides new insights into the crucial role played by the tmTNF/TNFR2 pathway in MDSC suppressive activity required during acute pleural infection to attenuate excessive inflammation generated by the infection.
Collapse
Affiliation(s)
- Leslie Chavez-Galan
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratory of Integrative Immunology, National Institute of Respiratory Diseases "Ismael Cosio Villegas", Mexico City, Mexico
| | - Dominique Vesin
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Husnu Uysal
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Guillaume Blaser
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Valérie F J Quesniaux
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Irene Garcia
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
387
|
Relationship between necrotic patterns in glioblastoma and patient survival: fractal dimension and lacunarity analyses using magnetic resonance imaging. Sci Rep 2017; 7:8302. [PMID: 28814802 PMCID: PMC5559591 DOI: 10.1038/s41598-017-08862-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Necrosis is a hallmark feature of glioblastoma (GBM). This study investigated the prognostic role of necrotic patterns in GBM using fractal dimension (FD) and lacunarity analyses of magnetic resonance imaging (MRI) data and evaluated the role of lacunarity in the biological processes leading to necrosis. We retrospectively reviewed clinical and MRI data of 95 patients with GBM. FD and lacunarity of the necrosis on MRI were calculated by fractal analysis and subjected to survival analysis. We also performed gene ontology analysis in 32 patients with available RNA-seq data. Univariate analysis revealed that FD < 1.56 and lacunarity > 0.46 significantly correlated with poor progression-free survival (p = 0.006 and p = 0.012, respectively) and overall survival (p = 0.008 and p = 0.005, respectively). Multivariate analysis revealed that both parameters were independent factors for unfavorable progression-free survival (p = 0.001 and p = 0.015, respectively) and overall survival (p = 0.002 and p = 0.007, respectively). Gene ontology analysis revealed that genes positively correlated with lacunarity were involved in the suppression of apoptosis and necrosis-associated biological processes. We demonstrate that the fractal parameters of necrosis in GBM can predict patient survival and are associated with the biological processes of tumor necrosis.
Collapse
|
388
|
Greish K, Taha S, Jasim A, Elghany SA, Sultan A, AlKhateeb A, Othman M, Jun F, Taurin S, Bakhiet M. Styrene maleic acid encapsulated raloxifene micelles for management of inflammatory bowel disease. Clin Transl Med 2017; 6:28. [PMID: 28770521 PMCID: PMC5540747 DOI: 10.1186/s40169-017-0157-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) comprises a group of disorders that manifest through chronic inflammation of the colon and small intestine. Although the exact cause of IBD is still unclear, dysfunctional immunoregulation involving overproduction of inflammatory cytokines such as TNF-α, and IL-6 have been implicated in pathogenesis. Current therapy relies on immunosuppression, cytotoxic drugs, and monoclonal antibodies against TNF-α. These classes of drugs have severe side-effects, especially when used for long duration. Our previous work with raloxifene, a selective estrogen receptor modulator, has shown that the drug, and to a greater extent its micellar formulation, has a significant suppressive effect on NF-κB, an essential immune-regulator. This finding directed the current work towards testing the anti-inflammatory and immunomodulatory effects of raloxifene using cell lines, as well as testing the potential use of the styrene maleic acid (SMA) micelles loaded with raloxifene (SMA-Ral) against dextran sulfate sodium (DSS) induced colitis in an in vivo model of IBD. Results Treatment of MCF-7 cells with TNF-α was shown to protect the cells from the cytotoxic effect of raloxifene (42 vs. 10% cell death, with TNF-α. Treating CaCo-2 cells with both free and SMA-Ral improved cell survival after exposure to 2% DDS with significantly higher protection with SMA-Ral. Treatment of U-937 with SMA-Ral and free-Ral resulted in down-regulation of TNF-α, IL-1β, IL-6, and MIP1α, with greater inhibition of the SMA-Ral, compared to free Ral. Balb/c mice treated with raloxifene and SMA-Ral showed weight gain at 14 days, compared to the control group (122, and 115% respectively). Treatment with raloxifene prevented DSS-induced diarrhea in 6/6 of free raloxifene treated mice and in 5/6 mice treated with SMA-Ral. Control group of DSS-treated mice showed average colon length of 7.4 cm compared to 13 cm in the control group. The average colon length was 12.3 and 11.5 cm for raloxifene and SMA-Ral treated groups, respectively. Furthermore, inflammatory cytokines such as IL-6 and TNF-α were reduced in serum of animals treated with free-Ral and SMA-Ral. Conclusions Raloxifene and its micellar formulation warrants further studies to understand their effect on the treatment of colitis.SMA-Raloxifene preparation and its in vivo and in vitro effect on colitis ![]()
Collapse
Affiliation(s)
- Khaled Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain.
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Anfal Jasim
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Sara Abd Elghany
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ameera Sultan
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ali AlKhateeb
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Manal Othman
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.,Department of Histology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Fang Jun
- Department of Pharmacology and Oncology, Sojo University, Kumamoto, Japan
| | - Sebastien Taurin
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, USA
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
389
|
Zhao Y, Hoang TH, Joshi P, Hong SH, Giardina C, Shin DG. A route-based pathway analysis framework integrating mutation information and gene expression data. Methods 2017. [PMID: 28647608 DOI: 10.1016/j.ymeth.2017.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We propose a new way of analyzing biological pathways in which the analysis combines both transcriptome data and mutation information and uses the outcome to identify "routes" of aberrant pathways potentially responsible for the etiology of disease. Each pathway route is encoded as a Bayesian Network which is initialized with a sequence of conditional probabilities which are designed to encode directionality of regulatory relationships encoded in the pathways, i.e. activation and inhibition relationships. First, we demonstrate the effectiveness of our model through simulation in which the model was able to easily separate Test samples from Control samples using fictitiously perturbed pathway routes. Second, we apply our model to analyze the Breast Cancer data set, available from TCGA, against many cancer pathways available from KEGG and rank the significance of identified pathways. The outcome is consistent with what have already been reported in the literature. Third, survival analysis has been carried out on the same data set by using pathway routes as features. Overall, we envision that our model of using pathway routes for analysis can further refine the conventional ways of subtyping cancer patients as it can discover additional characteristics specific to individual's tumor.
Collapse
Affiliation(s)
- Yue Zhao
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, United States.
| | - Tham H Hoang
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, United States
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, United States
| | - Seung-Hyun Hong
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, United States
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269, United States
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, United States
| |
Collapse
|
390
|
Kumar N, Chugh H, Tomar R, Tomar V, Singh VK, Chandra R. Exploring the interplay between autoimmunity and cancer to find the target therapeutic hotspots. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:658-668. [PMID: 28687059 DOI: 10.1080/21691401.2017.1350188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autoimmunity arises when highly active immune responses are developed against the tissues or substances of one's own body. It is one of the most prevalent disorders among the old-age population with prospects increasing with age. The major cause of autoimmunity and associated diseases is the dysregulation of host immune surveillance. Impaired repairment of immune system and apoptosis regulation can be seen as major landmarks in autoimmune disorders such as the mutation of p53 gene which results in rheumatoid arthritis, bowel disease which consequently lead to tissue destruction, inflammation and dysfunctioning of body organs. Cytokines mediated apoptosis and proliferation of cells plays a regulatory role in cell cycle and further in cancer development. Anti-TNF therapy, Treg therapy and stem cell therapy have been used for autoimmune diseases, however, with the increase in the use of immunomodulatory therapies and their development for autoimmune diseases and cancer, the understanding of human immune system tends to become an increasing requirement. Hence, the findings associated with the relationship between autoimmune diseases and cancer may prove to be beneficial for the improvement in the health of suffering patients. Here in, we are eliciting the underlying mechanisms which result in autoimmune disorders causing the onset of cancer, exploration of interactome to find the pathways which are mutual to both, and recognition of hotspots which might play important role in autoimmunity mediated therapeutics with different therapies such as anti-TNF therapy, Treg therapy and stem cell therapy.
Collapse
Affiliation(s)
- Neeraj Kumar
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India.,b Department of Biotechnology, Stem Cell Research Laboratory , Delhi Technological University , Delhi , India
| | - Heerak Chugh
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India
| | - Ravi Tomar
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India
| | - Vartika Tomar
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India
| | - Vimal Kishor Singh
- b Department of Biotechnology, Stem Cell Research Laboratory , Delhi Technological University , Delhi , India
| | - Ramesh Chandra
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India.,c Dr. B. R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| |
Collapse
|
391
|
Jahangir A, Chandra D, Quispe-Tintaya W, Singh M, Selvanesan BC, Gravekamp C. Immunotherapy with Listeria reduces metastatic breast cancer in young and old mice through different mechanisms. Oncoimmunology 2017; 6:e1342025. [PMID: 28932647 DOI: 10.1080/2162402x.2017.1342025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer immunotherapy is one of the most promising and benign therapies against metastatic cancer. However, most cancer patients are old and elderly react less efficient to cancer vaccines than young adults, due to T cell unresponsiveness. Here we present data of cancer vaccination in young and old mice with metastatic breast cancer (4T1 model). We tested adaptive and innate immune responses to foreign antigens (Listeria-derived) and self-antigens (tumor-associated antigens (TAA)) and their contribution to elimination of metastases at young and old age. Three different protocols were tested with Listeria: a semi- and exclusive-therapeutic protocol both one-week apart, and an exclusive therapeutic protocol frequently administered. Adaptive and innate immune responses were measured by ELISPOT in correlation with efficacy in the 4T1 model. We found that Listeria induced immunogenic tumor cell death, resulting in CD8 T cell responses to multiple TAA expressed by the 4T1 tumors. Only exclusive therapeutic frequent immunizations were able to overcome immune suppression and to activate TAA- and Listeria-specific CD8 T cells, in correlation with a strong reduction in metastases at both ages. However, MHC class Ia antibodies showed inhibition of CD8 T cell responses to TAA at young but not at old age, and CD8 T cell depletions in vivo demonstrated that the T cells contributed to reduction in metastases at young age only. These results indicate that CD8 T cells activated by Listeria has an antitumor effect at young but not at old age, and that metastases at old age have been eliminated through different mechanism(s).
Collapse
Affiliation(s)
- Arthee Jahangir
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Dinesh Chandra
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Wilber Quispe-Tintaya
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Manisha Singh
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Benson Chellakkan Selvanesan
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Claudia Gravekamp
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, 1300 Morris Park Avenue, Bronx, NY, USA
| |
Collapse
|
392
|
Mao H, Pan F, Wu Z, Wang Z, Zhou Y, Zhang P, Gou M, Dai G. Colorectal tumors are enriched with regulatory plasmablasts with capacity in suppressing T cell inflammation. Int Immunopharmacol 2017; 49:95-101. [PMID: 28558303 DOI: 10.1016/j.intimp.2017.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Inflammation plays a critical role in the initiation of colorectal cancer but is also required to mediate antitumor immunity in established tumors. Therefore, identifying the cellular and molecular components in colorectal tumors is necessary for the understanding of tumor progression and the development of novel treatment strategies. In this study, we demonstrated that a specific subtype of regulatory B cells, the CD19loCD27hi plasmablasts, was enriched in the colorectal tumor microenvironment. This CD19loCD27hi plasmablast subset presented high interleukin 10 (IL-10) expression but not transforming growth factor-β (TGF-β) secretion. Phenotypically, the tumor-infiltrating IL-10+ CD19loCD27hi plasmablasts presented lower CD24, CD38, and IgA, and higher Tim-1 and IgG expression compared to the IL-10- CD19loCD27hi plasmablasts. The tumor-infiltrating IL-10+ CD19loCD27hi plasmablasts were found to be gut-homing due to their higher expression of α4β7 while peripheral blood B cells did not show the same characteristic. When cocultured with autologous T cells, CD19loCD27hi plasmablasts demonstrated potent activity in suppressing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) expression but did not promote Foxp3 expression. Overall, this study demonstrate that in colorectal cancer, CD19loCD27hi plasmablasts make up a large percentage in tumor-infiltrating lymphocytes and possess potent immunoregulatory functions, and thus could be utilized in future therapeutic strategies.
Collapse
Affiliation(s)
- Hui Mao
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- Department of Gastroenterology, Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Wu
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Zhikuan Wang
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yanhua Zhou
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Pengfei Zhang
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Miaomiao Gou
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Guanghai Dai
- Department of Oncology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
393
|
Divella R, Daniele A, Mazzocca A, Abbate I, Casamassima P, Caliandro C, Ruggeri E, Naglieri E, Sabbà C, De Luca R. ADIPOQ rs266729 G/C gene polymorphism and plasmatic adipocytokines connect metabolic syndrome to colorectal cancer. J Cancer 2017; 8:1000-1008. [PMID: 28529612 PMCID: PMC5436252 DOI: 10.7150/jca.17515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/27/2016] [Indexed: 12/30/2022] Open
Abstract
Background: ADIPOQ gene, which encode for Adiponectin (APN), is sited on chromosome 3q27 and linked to a susceptibility locus for metabolic syndrome (MetS). The ADIPOQ rs266729 G/C gene polymorphism is significantly associated with low APN levels and linked to susceptibility to develop cancer. In addition, decreased APN serum levels are linked with tumor development and progression and inversely associated with markers of inflammation. Here, we investigate the influence of APN rs266729 G/C polymorphism on adipocytokine circulating levels and their association with MetS in colorectal cancer patients (CRC). Methods: Blood samples from 105 CRC patients (50 women and 55 men) with and without MetS were genotyped for APN rs266729 G/C polymorphism by TETRA ARMS PCR. ELISA assay was used to measure plasma levels of APN and inflammatory TNF-α cytokine. Biochemical and anthropometric parameters of MetS were also analyzed. Results: We found that CRC patients (N=75) with genotype rs266729G/C or carriers of G allele were associated with a significantly increased risk of MetS development (OR =2.9) compared to those with CC genotype (N=30). Also, CG/GG genotypes were associated with significantly lower plasma APN levels and higher TNF-α levels in comparison to CC genotype (P=0.034) and APN levels were decreased in relation to BMI increases (P=0.001). Conclusions: Our findings show that APN rs266729 G/C polymorphism is associated with lower APN levels in CRC patients, indicating that decreased circulating levels of APN may be a determinant risk factor for CRC in MetS patients.
Collapse
Affiliation(s)
- Rosa Divella
- Clinical Pathology Laboratory, Department of Experimantal Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Antonella Daniele
- Clinical Pathology Laboratory, Department of Experimantal Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Ines Abbate
- Clinical Pathology Laboratory, Department of Experimantal Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Porzia Casamassima
- Clinical Pathology Laboratory, Department of Experimantal Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Cosimo Caliandro
- Department of Surgery Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Eustachio Ruggeri
- Department of Surgery Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| | - Emanuele Naglieri
- Unit of Medical Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Raffaele De Luca
- Department of Surgery Oncology. Giovanni Paolo II National Cancer Institute, V.Le Orazio Flacco 65, 70124 -Bari, Italy
| |
Collapse
|
394
|
Gerri C, Marín-Juez R, Marass M, Marks A, Maischein HM, Stainier DYR. Hif-1α regulates macrophage-endothelial interactions during blood vessel development in zebrafish. Nat Commun 2017; 8:15492. [PMID: 28524872 PMCID: PMC5493593 DOI: 10.1038/ncomms15492] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 04/01/2017] [Indexed: 12/21/2022] Open
Abstract
Macrophages are known to interact with endothelial cells during developmental and pathological angiogenesis but the molecular mechanisms modulating these interactions remain unclear. Here, we show a role for the Hif-1α transcription factor in this cellular communication. We generated hif-1aa;hif-1ab double mutants in zebrafish, hereafter referred to as hif-1α mutants, and find that they exhibit impaired macrophage mobilization from the aorta-gonad-mesonephros (AGM) region as well as angiogenic defects and defective vascular repair. Importantly, macrophage ablation is sufficient to recapitulate the vascular phenotypes observed in hif-1α mutants, revealing for the first time a macrophage-dependent angiogenic process during development. Further substantiating our observations of vascular repair, we find that most macrophages closely associated with ruptured blood vessels are Tnfα-positive, a key feature of classically activated macrophages. Altogether, our data provide genetic evidence that Hif-1α regulates interactions between macrophages and endothelial cells starting with the mobilization of macrophages from the AGM. The molecular mechanism regulating macrophage interaction with endothelial cells during development is unclear. Here, the authors show that in zebrafish mutation of hypoxia-inducible factor-1α impairs macrophage mobilization from the aorta-gonad-mesonephros, causing defects in angiogenesis and vessel repair.
Collapse
Affiliation(s)
- Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Alora Marks
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
395
|
da Silva RF, Yoshida A, Cardozo DM, Jales RM, Paust S, Derchain S, Guimarães F. Natural Killer Cells Response to IL-2 Stimulation Is Distinct between Ascites with the Presence or Absence of Malignant Cells in Ovarian Cancer Patients. Int J Mol Sci 2017; 18:ijms18050856. [PMID: 28513532 PMCID: PMC5454809 DOI: 10.3390/ijms18050856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated ascites, which also can or not contain malignant cells. The goal of this study was to analyze the functional characteristics of natural killer (NK) cells from EOC-associated ascites in terms of their expression of activating receptors and ascites’ contents of lymphocyte subtypes, cytokine profile and presence of EOC cells. NK cell function was evaluated by the expression of the degranulation marker CD107a in resting and interleukin (IL)-2 stimulated NK cells from ascites and blood. Degranulation of NK cells from EOC cell-free ascites was significantly (p < 0.05) higher than all the other groups, either in their resting state or after IL-2 stimulation, suggesting a previous local stimulation. In contrast, treatment with IL-2 had no effect on NK cells from ascites with EOC cells. The amount of regulatory T cells was significantly higher in ascites with EOC cells compared to EOC cell-free ascites. Ascites with EOC cells also had higher levels of tumor necrosis factor (TNF)-α, suggesting inflammation related to the malignancy. In conclusion, the functional performance of NK cells was distinct between EOC cell-free ascites and ascites with EOC cells. The impairment of NK cell response to IL-2 in ascites with EOC cells was consistent with an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
| | - Adriana Yoshida
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | | | | | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sophie Derchain
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | - Fernando Guimarães
- Women´s Hospital "Professor Doutor José Aristodemo Pinotti"-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas, 13083-881 Campinas, Brazil.
| |
Collapse
|
396
|
Xi R, Pun IHY, Menezes SV, Fouani L, Kalinowski DS, Huang MLH, Zhang X, Richardson DR, Kovacevic Z. Novel Thiosemicarbazones Inhibit Lysine-Rich Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) Coisolated (LYRIC) and the LYRIC-Induced Epithelial-Mesenchymal Transition via Upregulation of N-Myc Downstream-Regulated Gene 1 (NDRG1). Mol Pharmacol 2017; 91:499-517. [PMID: 28275050 DOI: 10.1124/mol.116.107870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor α (TNFα) plays a vital role in cancer progression as it is associated with inflammation and promotion of cancer angiogenesis and metastasis. The effects of TNFα are mediated by its downstream target, the oncogene lysine-rich CEACAM1 coisolated protein (LYRIC, also known as metadherin or astrocyte elevated gene-1). LYRIC plays an important role in activating the nuclear factor-ĸB (NF-κB) signaling pathway, which controls multiple cellular processes, including proliferation, apoptosis, migration, etc. In contrast, the metastasis suppressor N-myc downstream regulated gene 1 (NDRG1) has the opposite effect on the NF-κB pathway, being able to inhibit NF-κB activation and reduce angiogenesis, proliferation, migration, and cancer cell invasion. These potent anticancer properties make NDRG1 an ideal therapeutic target. Indeed, a novel class of thiosemicarbazone anticancer agents that target this molecule has been developed; the lead agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, has recently entered clinical trials for advanced and resistant cancers. To further elucidate the interaction between NDRG1 and oncogenic signaling, this study for the first time assessed the effects of NDRG1 on the tumorigenic properties of TNFα and its downstream target, LYRIC. We have demonstrated that NDRG1 inhibits the TNFα-mediated epithelial-to-mesenchymal transition. Further, NDRG1 also potently inhibited LYRIC expression, with a negative feedback loop existing between these two molecules. Examining the mechanism involved, we demonstrated that NDRG1 inhibited phosphatidylinositol 3-kinase/AKT signaling, leading to reduced levels of the LYRIC transcriptional activator, c-Myc. Finally, we demonstrated that novel thiosemicarbazones that upregulate NDRG1 also inhibit LYRIC expression, further highlighting their marked potential for cancer treatment.
Collapse
Affiliation(s)
- Ruxing Xi
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| | - Ivan Ho Yuen Pun
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| | - Sharleen V Menezes
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| | - Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| | - Michael L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| | - Xiaozhi Zhang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia (R.X., I.H.Y.P., S.V.M., L.F., D.S.K., M.L.H.H., D.R.R., Z.K.); Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, China (R.X., X.Z.); and Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong, China (I.H.Y.P.)
| |
Collapse
|
397
|
Genetic association between TNF-α promoter polymorphism and susceptibility to squamous cell carcinoma, basal cell carcinoma, and melanoma: A meta-analysis. Oncotarget 2017; 8:53873-53885. [PMID: 28881857 PMCID: PMC5581156 DOI: 10.18632/oncotarget.17179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 01/18/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a multifunctional pro-inflammatory cytokine that plays an important role in cancer development. We performed a meta-analysis to assess the relationship between single nucleotide polymorphisms in the TNF-α promoter region (rs1800629 and rs361525) and susceptibility to squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and melanoma. After database retrieval, article selection, data extraction, and quality assessment, 20 articles comprising 4865 cases and 6329 controls were included in this study. rs1800629 was associated with an increased overall risk of SCC, lung SCC, and oral SCC in the AA vs G and AA vs GG+GA genetic models (all OR>1, Passociation<0.05). No increased risk of skin SCC, skin BCC or melanoma was observed (all Passociation>0.05). Rs361525 was not associated with overall SCC risk in the allele, heterozygote, dominant, recessive, or carrier model (all Passociation>0.05). Begg's and Egger's tests (PBegg>0.05; PEgger>0.05) demonstrated there was no significant publication bias. These data indicate that the AA genotype of TNF-α rs1800629, but not rs361525, is associated with an increased risk of SCC, suggesting it could potentially serve as a prognostic marker for predicting SCC risk.
Collapse
|
398
|
Hosseinzadeh A, Ardebili SMM. Efficacy of Omega Fatty Acid Supplementation on mRNA Expression Level of Tumor Necrosis Factor Alpha in Patients with Gastric Adenocarcinoma. J Gastrointest Cancer 2017; 47:287-93. [PMID: 27170003 DOI: 10.1007/s12029-016-9826-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Tumor necrosis factor alpha (TNF-α), a multifunctional cytokine, is involved in apoptosis, cell proliferation, cell survival, and inflammation. It plays a dual role in cancer development and progression. It has been revealed that polyunsaturated fatty acids (PUFAs) modulate the production and activity of TNF family cytokines. The objective of the present study was to evaluate the effect of PUFAs on messenger RNA expression levels of TNF-α in patients with gastric adenocarcinoma. METHODS Thirty-four chemotherapy-naive patients diagnosed with gastric adenocarcinoma were randomly divided into two groups. The first group (17 individuals) received cisplatin without supplements and the second group (17 individuals) received cisplatin plus orally administered PUFA supplements for 3 weeks, based on treatment strategies. The gastric biopsy samples were obtained from all participants before and after treatment, and TNF-α mRNA expression levels were evaluated by quantitative real-time PCR procedure. RESULTS Our findings revealed that TNF-α mRNA expression is downregulated in group II, after receiving cisplatin and omega fatty acid supplement for 3 weeks. However, this difference is not statistically significant (p > 0.05). TNF-α mRNA expression did not show significant alteration in group I, after receiving cisplatin alone. CONCLUSIONS Taken together, we concluded that omega fatty acids reduce TNF-α expression at the mRNA level in patients with gastric adenocarcinoma. These data suggest that TNF-α may act as a potential target for the therapy of human gastric adenocarcinoma.
Collapse
Affiliation(s)
- Asghar Hosseinzadeh
- Department of Biology, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran.,Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Seyed Mojtaba Mohaddes Ardebili
- Department of Biology, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran. .,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
399
|
Cansu DÜ, Teke HÜ, Korkmaz C. Etanercept-induced leukemia: could increased mean corpuscular volume be a predictor of hematologic malignancy? Rheumatol Int 2017; 37:1381-1385. [PMID: 28255644 DOI: 10.1007/s00296-017-3687-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Abstract
In rheumatology practice, anti-tumor necrosis factor (TNF) alpha agents are frequently used medications, more so in ankylosing spondylitis (AS). There are case reports, besides their adverse effects, such as infection and injection site reaction, suggesting these agents may cause solid or hematologic malignancies. Acute leukemia secondary to anti-TNF alpha agents has been rarely reported in patients with AS. In this case report, based on a patient who developed acute leukemia while on the treatment with etanercept, we will discuss whether it is possible to predict acute leukemia by monitoring the mean corpuscular volume in light of the literature.
Collapse
Affiliation(s)
- Döndü Üsküdar Cansu
- Division of Rheumatology, Department of Internal Medicine, Eskişehir Osmangazi University, Eskisehir, Turkey.
| | - Hava Üsküdar Teke
- Division of Hematology, Eskişehir Osmangazi University, Eskisehir, Turkey
| | - Cengiz Korkmaz
- Division of Rheumatology, Department of Internal Medicine, Eskişehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
400
|
Sun X, Liu S, Wang D, Zhang Y, Li W, Guo Y, Zhang H, Suo J. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling. Oncotarget 2017; 8:15168-15181. [PMID: 28147310 PMCID: PMC5362476 DOI: 10.18632/oncotarget.14834] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.
Collapse
Affiliation(s)
- Xuan Sun
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Suoning Liu
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Wei Li
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Yuchen Guo
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Hua Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Jian Suo
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin province, China
| |
Collapse
|