351
|
Quantitative modeling of currents from a voltage gated ion channel undergoing fast inactivation. PLoS One 2008; 3:e3342. [PMID: 18833322 PMCID: PMC2551740 DOI: 10.1371/journal.pone.0003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022] Open
Abstract
Ion channels play a central role in setting gradients of ion concentration and electrostatic potentials, which in turn regulate sensory systems and other functions. Based on the structure of the open configuration of the Kv1.2 channel and the suggestion that the two ends of the N-terminal inactivating peptide form a bivalent complex that simultaneously blocks the channel pore and binds to the cytoplasmic T1 domain, we propose a six state kinetic model that for the first time reproduces the kinetics of recovery of the Drosophila Shaker over the full range of time scales and hyperpolarization potentials, including tail currents. The model is motivated by a normal mode analysis of the inactivated channel that suggests that a displacement consistent with models of the closed state propagates to the T1 domain via the S1-T1 linker. This motion stretches the bound (inactivating) peptide, hastening the unblocking of the pore. This pulling force is incorporated into the rates of the open to blocked states, capturing the fast recovery phase of the current for repolarization events shorter than 1 ms. If the membrane potential is hyperpolarized, essential dynamics further suggests that the T1 domain returns to a configuration where the peptide is un-stretched and the S1-T1 linker is extended. Coupling this novel hyperpolarized substate to the closed, open and blocked pore states is enough to quantitatively estimate the number of open channels as a function of time and membrane potential. A straightforward prediction of the model is that a slow ramping of the potential leads to very small currents.
Collapse
|
352
|
Lad Y, Jiang P, Ruskamo S, Harburger DS, Ylänne J, Campbell ID, Calderwood DA. Structural basis of the migfilin-filamin interaction and competition with integrin beta tails. J Biol Chem 2008; 283:35154-63. [PMID: 18829455 DOI: 10.1074/jbc.m802592200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A link between sites of cell adhesion and the cytoskeleton is essential for regulation of cell shape, motility, and signaling. Migfilin is a recently identified adaptor protein that localizes at cell-cell and cell-extracellular matrix adhesion sites, where it is thought to provide a link to the cytoskeleton by interacting with the actin cross-linking protein filamin. Here we have used x-ray crystallography, NMR spectroscopy, and protein-protein interaction studies to investigate the molecular basis of migfilin binding to filamin. We report that the N-terminal portion of migfilin can bind all three human filamins (FLNa, -b, or -c) and that there are multiple migfilin-binding sites in FLNa. Human filamins are composed of an N-terminal actin-binding domain followed by 24 immunoglobulin-like (IgFLN) domains and we find that migfilin binds preferentially to IgFLNa21 and more weakly to IgFLNa19 and -22. The filamin-binding site in migfilin is localized between Pro(5) and Pro(19) and binds to the CD face of the IgFLNa21 beta-sandwich. This interaction is similar to the previously characterized beta 7 integrin-IgFLNa21 interaction and migfilin and integrin beta tails can compete with one another for binding to IgFLNa21. This suggests that competition between filamin ligands for common binding sites on IgFLN domains may provide a general means of modulating filamin interactions and signaling. In this specific case, displacement of integrin tails from filamin by migfilin may provide a mechanism for switching between different integrin-cytoskeleton linkages.
Collapse
Affiliation(s)
- Yatish Lad
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
353
|
Höppener C, Novotny L. Imaging of membrane proteins using antenna-based optical microscopy. NANOTECHNOLOGY 2008; 19:384012. [PMID: 21832571 DOI: 10.1088/0957-4484/19/38/384012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The localization and identification of individual proteins is of key importance for the understanding of biological processes on the molecular scale. Here, we demonstrate near-field fluorescence imaging of single proteins in their native cell membrane. Incident laser radiation is localized and enhanced with an optical antenna in the form of a spherical gold particle attached to a pointed dielectric tip. Individual proteins can be identified with a diffraction-unlimited spatial resolution of ∼50 nm. Besides determining the concentration and distribution of specific membrane proteins, this approach makes it possible to study the colocalization of different membrane proteins. Moreover, it enables a simultaneous recording of the membrane topology. Protein distributions can be correlated with the local membrane topology, thereby providing important information on the chemical and structural organization of cellular membranes.
Collapse
Affiliation(s)
- Christiane Höppener
- The Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
354
|
Dynamic control of slow water transport by aquaporin 0: implications for hydration and junction stability in the eye lens. Proc Natl Acad Sci U S A 2008; 105:14430-5. [PMID: 18787121 DOI: 10.1073/pnas.0802401105] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aquaporin 0 (AQP0), the most abundant membrane protein in mammalian lens fiber cells, not only serves as the primary water channel in this tissue but also appears to mediate the formation of thin junctions between fiber cells. AQP0 is remarkably less water permeable than other aquaporins, but the structural basis and biological significance of this low permeability remain uncertain, as does the permeability of the protein in a reported junctional form. To address these issues, we performed molecular dynamics (MD) simulations of water transport through membrane-embedded AQP0 in both its (octameric) junctional and (tetrameric) nonjunctional forms. From our simulations, we measured an osmotic permeability for the nonjunctional form that agrees with experiment and found that the distinct dynamics of the conserved, lumen-protruding side chains of Tyr-23 and Tyr-149 modulate water passage, accounting for the slow permeation. The junctional and nonjunctional forms conducted water equivalently, in contrast to a previous suggestion based on static crystal structures that water conduction is lost on junction formation. Our analysis suggests that the low water permeability of AQP0 may help maintain the mechanical stability of the junction. We hypothesize that the structural features leading to low permeability may have evolved in part to allow AQP0 to form junctions that both conduct water and contribute to the organizational structure of the fiber cell tissue and microcirculation within it, as required to maintain transparency of the lens.
Collapse
|
355
|
Helenius J, Heisenberg CP, Gaub HE, Muller DJ. Single-cell force spectroscopy. J Cell Sci 2008; 121:1785-91. [PMID: 18492792 DOI: 10.1242/jcs.030999] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The controlled adhesion of cells to each other and to the extracellular matrix is crucial for tissue development and maintenance. Numerous assays have been developed to quantify cell adhesion. Among these, the use of atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) has recently been established. This assay permits the adhesion of living cells to be studied in near-physiological conditions. This implementation of AFM allows unrivaled spatial and temporal control of cells, as well as highly quantitative force actuation and force measurement that is sufficiently sensitive to characterize the interaction of single molecules. Therefore, not only overall cell adhesion but also the properties of single adhesion-receptor-ligand interactions can be studied. Here we describe current implementations and applications of SCFS, as well as potential pitfalls, and outline how developments will provide insight into the forces, energetics and kinetics of cell-adhesion processes.
Collapse
Affiliation(s)
- Jonne Helenius
- Biotechnology Center, University of Technology Dresden, Germany.
| | | | | | | |
Collapse
|
356
|
Abstract
Forced dissociation of selectin-ligand bonds is crucial to such biological processes as leukocyte recruitment, thrombosis formation, and tumor metastasis. Although the bond rupture has been well known at high loading rate r(f) (>or=10(2) pN/s), defined as the product of spring constant k and retract velocity v, how the low r(f) (<10(2) pN/s) or the low k regulates the bond dissociation remains unclear. Here an optical trap assay was used to quantify the bond rupture at r(f) <or= 20 pN/s with low k ( approximately 10(-3)-10(-2) pN/nm) when P-selectin and P-selectin glycoprotein ligand 1 (PSGL-1) were respectively coupled onto two glass microbeads. Our data indicated that the bond rupture force f retained the similar values when r(f) increased up to 20 pN/s. It was also found that f varied with different combinations of k and v even at the same r(f). The most probable force, f*, was enhanced with the spring constant when k < 47.0 x 10(-3) pN/nm, indicating that the bond dissociation at low r(f) was spring constant dependent and that bond rupture force depended on both the loading rate and the mechanical compliance of force transducer. These results provide new insights into understanding the P-selectin glycoprotein ligand 1 bond dissociation at low r(f) or k.
Collapse
|
357
|
Poirier C, van Effenterre D, Delord B, Johannes L, Roux D. Specific adsorption of functionalized colloids at the surface of living cells: a quantitative kinetic analysis of the receptor-mediated binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2450-7. [PMID: 18675781 DOI: 10.1016/j.bbamem.2008.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 06/24/2008] [Accepted: 07/08/2008] [Indexed: 12/27/2022]
Abstract
This paper presents a statistical experimental study of the adsorption of colloids onto the plasma membrane of living cells mediated by specific ligand-receptor interactions. The colloids consist of lipid multilamellar liposomes (spherulites) functionalized by Shiga toxin B-subunit (STxB), while cells are cervix carcinoma epithelial cells expressing the Shiga toxin receptor, the glycolipid globotriaosyl ceramide (Gb3). The specificity of the colloid adsorption is demonstrated using both confocal microscopy and flow cytometry, while a thorough cytometry study on living cells allows characterizing the kinetics of this specific adsorption. The final number of bound colloids and the characteristic adsorption time are shown to depend on bulk concentration, as expected for a thermodynamic equilibrium. However, the colloids appear to be irreversibly attached to the membrane. We interpret this apparent irreversibility as the result of a progressive recruitment of receptors. The methodology used here, whereby microscopic mechanisms are deduced from direct quantitative measurements on living cells, might allow the optimization of drug delivery systems or the quantification of virus infectivity.
Collapse
Affiliation(s)
- C Poirier
- Université Bordeaux 1, Centre de Recherche Paul Pascal, av. du Docteur Schweitzer, 33600 Pessac, France.
| | | | | | | | | |
Collapse
|
358
|
Affiliation(s)
- Daniel J. Muller
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
359
|
Abstract
This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.
Collapse
|
360
|
Janovjak H, Sapra KT, Kedrov A, Müller DJ. From valleys to ridges: exploring the dynamic energy landscape of single membrane proteins. Chemphyschem 2008; 9:954-66. [PMID: 18348129 DOI: 10.1002/cphc.200700662] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Membrane proteins are involved in essential biological processes such as energy conversion, signal transduction, solute transport and secretion. All biological processes, also those involving membrane proteins, are steered by molecular interactions. Molecular interactions guide the folding and stability of membrane proteins, determine their assembly, switch their functional states or mediate signal transduction. The sequential steps of molecular interactions driving these processes can be described by dynamic energy landscapes. The conceptual energy landscape allows to follow the complex reaction pathways of membrane proteins while its modifications describe why and how pathways are changed. Single-molecule force spectroscopy (SMFS) detects, quantifies and locates interactions within and between membrane proteins. SMFS helps to determine how these interactions change with temperature, point mutations, oligomerization and the functional states of membrane proteins. Applied in different modes, SMFS explores the co-existence and population of reaction pathways in the energy landscape of the protein and thus reveals detailed insights into local mechanisms, determining its structural and functional relationships. Here we review how SMFS extracts the defining parameters of an energy landscape such as the barrier position, reaction kinetics and roughness with high precision.
Collapse
Affiliation(s)
- Harald Janovjak
- Department. of Molecular & Cell Biology, University of California, Berkeley, 279 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | | | | | |
Collapse
|
361
|
Tuning the formation and rupture of single ligand-receptor bonds by hyaluronan-induced repulsion. Biophys J 2008; 95:3999-4012. [PMID: 18599637 DOI: 10.1529/biophysj.108.135947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We used a combination of laminar flow chamber and reflection interference microscopy to study the formation and rupture of single bonds formed between Fc-ICAM-1 attached to a substrate and anti-ICAM-1 carried by micrometric beads in the presence of a repulsive hyaluronan (HA) layer adsorbed onto the substrate. The absolute distance between the colloids and the surface was measured under flow with an accuracy of a few nanometers. We could verify the long-term prediction of classical lubrication theory for the movement of a sphere near a wall in a shear flow. The HA polymer layer exerted long-range repulsive steric force on the beads and the hydrodynamics at the boundary remained more or less unchanged. By incubating HA at various concentrations, the thickness of the layer, as estimated by beads most probable height, was tuned in the range 20-200 nm. Frequency of bond formation was decreased by more than one order of magnitude by increasing the thickness of the repulsive layer, while the lifetime of individual bonds was not affected. This study opens the way for further quantitative studies of the effect of molecular environment and separation distance on ligand-receptor association and dissociation.
Collapse
|
362
|
Lamblet M, Delord B, Johannes L, van Effenterre D, Bassereau P. Key role of receptor density in colloid/cell specific interaction: a quantitative biomimetic study on giant vesicles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2008; 26:205-216. [PMID: 18480963 DOI: 10.1140/epje/i2007-10317-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 03/19/2008] [Indexed: 05/26/2023]
Abstract
This paper presents an experimental study of the adsorption of colloids on model membranes mediated by specific ligand-receptor interactions. The colloids consist of lipid multilamellar liposomes (spherulites) functionalized with the B-subunit of Shiga Toxin (STxB), while the membranes are lipid Giant Unilamellar Vesicles (GUV) containing STxB lipid receptor, Globotriaosylceramide (Gb3). Through confocal microscopy and flow cytometry, we show the specificity of the adsorption. Moreover, we show that flow cytometry can be used to efficiently quantify the kinetics of colloid adsorption on GUVs with very good statistics. By varying the bulk colloid concentration and receptor density in the membrane, we point out the existence of an optimum Gb3 density for adsorption. We propose that this optimum corresponds to a transition between reversible colloid adsorption at low Gb3 density and irreversible adsorption, and likely spherulite fusion, at high density. We compare our results both to STxB-colloids adhering on living cells and to free STxB proteins interacting with GUVs containing Gb3. This biomimetic system could be used for a quantitative evaluation of the early stage of virus infection or drug delivery.
Collapse
Affiliation(s)
- M Lamblet
- Université Pierre et Marie Curie, Laboratoire PhysicoChimie Curie, Paris, France
| | | | | | | | | |
Collapse
|
363
|
Macdonald A, Horwitz AR, Lauffenburger DA. Kinetic model for lamellipodal actin-integrin 'clutch' dynamics. Cell Adh Migr 2008; 2:95-105. [PMID: 19262096 DOI: 10.4161/cam.2.2.6210] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In migrating cells, with especial prominence in lamellipodial protrusions at the cell front, highly dynamic connections are formed between the actin cytoskeleton and the extracellular matrix through linkages of integrin adhesion receptors to actin filaments via complexes of cytosolic "connector" proteins. Myosin-mediated contractile forces strongly influence the dynamic behavior of these adhesion complexes, apparently in two counter-acting ways: negatively as the cell-generated forces enhance complex dissociation, and at the same time positively as force-induced signaling can lead to strengthening of the linkage complexes. The net balance arising from this dynamic interplay is challenging to ascertain a priori, rendering experimental studies difficult to interpret and molecular manipulations of cell and/or environment difficult to predict. We have constructed a kinetics-based model governing the dynamic behavior of this system. We obtained ranges of parameter value sets yielding behavior consistent with that observed experimentally for 3T3 cells and for CHO cells, respectively. Model simulations are able to produce results for the effects of paxillin mutations on the turnover rate of actin/integrin linkages in CHO cells, which are consistent with recent literature reports. Overall, although this current model is quite simple it provides a useful foundation for more detailed models extending upon it.
Collapse
Affiliation(s)
- Alice Macdonald
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
364
|
Friddle RW. Unified model of dynamic forced barrier crossing in single molecules. PHYSICAL REVIEW LETTERS 2008; 100:138302. [PMID: 18518003 DOI: 10.1103/physrevlett.100.138302] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Indexed: 05/24/2023]
Abstract
Thermally activated barrier crossing in the presence of an increasing load can reveal kinetic rate constants and energy barrier parameters when repeated over a range of loading rates. Here we derive a model of the mean escape force for all relevant loading rates-the complete force spectrum. Two well-known approximations emerge as limiting cases, one of which confirms predictions that single-barrier spectra should converge to a phenomenological description in the slow loading limit.
Collapse
Affiliation(s)
- Raymond W Friddle
- Chemistry, Materials, Earth, and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
365
|
Korn CB, Schwarz US. Dynamic states of cells adhering in shear flow: from slipping to rolling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:041904. [PMID: 18517653 DOI: 10.1103/physreve.77.041904] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Indexed: 05/10/2023]
Abstract
Motivated by rolling adhesion of white blood cells in the vasculature, we study how cells move in linear shear flow above a wall to which they can adhere via specific receptor-ligand bonds. Our computer simulations are based on a Langevin equation accounting for hydrodynamic interactions, thermal fluctuations, and adhesive interactions. In contrast to earlier approaches, our model not only includes stochastic rules for the formation and rupture of bonds, but also fully resolves both receptor and ligand positions. We identify five different dynamic states of motion in regard to the translational and angular velocities of the cell. The transitions between the different states are mapped out in a dynamic state diagram as a function of the rates for bond formation and rupture. For example, as the cell starts to adhere under the action of bonds, its translational and angular velocities become synchronized and the dynamic state changes from slipping to rolling. We also investigate the effect of nonmolecular parameters. In particular, we find that an increase in viscosity of the medium leads to a characteristic expansion of the region of stable rolling to the expense of the region of firm adhesion, but not to the expense of the regions of free or transient motion. Our results can be used in an inverse approach to determine single bond parameters from flow chamber data on rolling adhesion.
Collapse
Affiliation(s)
- C B Korn
- University of Heidelberg, Bioquant, BQ 0013 BIOMS Schwarz, Im Neuenheimer Feld 267, Heidelberg, Germany
| | | |
Collapse
|
366
|
Ghosh D, Beavis RC, Wilkins JA. The Identification and Characterization of Membranome Components. J Proteome Res 2008; 7:1572-83. [DOI: 10.1021/pr070509u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dhimankrishna Ghosh
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine, Biochemistry and Medical Genetics, and Immunology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Ron C. Beavis
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine, Biochemistry and Medical Genetics, and Immunology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - John A. Wilkins
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine, Biochemistry and Medical Genetics, and Immunology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
367
|
Qian J, Wang J, Gao H. Lifetime and strength of adhesive molecular bond clusters between elastic media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1262-70. [PMID: 18179265 DOI: 10.1021/la702401b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With a long-term objective toward a quantitative understanding of cell adhesion, we consider an idealized theoretical model of a cluster of molecular bonds between two dissimilar elastic media subjected to an applied tensile load. In this model, the distribution of interfacial traction is assumed to obey classical elastic equations whereas the rupture and rebinding of individual molecular bonds are governed by stochastic equations. Monte Carlo simulations that combine the elastic and stochastic equations are conducted to investigate the lifetime of the bond cluster as a function of the applied load. We show that the interfacial traction is generally nonuniform and for a given adhesion size the average cluster lifetime asymptotically approaches infinity as the applied load is reduced to below a critical value, defined as the strength of the cluster. The effects of elastic moduli, adhesion size, and rebinding rate on the cluster lifetime and strength are studied under strongly nonuniform distributions of interfacial traction. Although overly simplified in a number of aspects, our model seems to give predictions that are consistent with relevant experimental observations on focal adhesion dynamics.
Collapse
Affiliation(s)
- Jin Qian
- Division of Engineering, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
368
|
Sapra KT, Park PSH, Palczewski K, Muller DJ. Mechanical properties of bovine rhodopsin and bacteriorhodopsin: possible roles in folding and function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1330-7. [PMID: 18266338 PMCID: PMC2504747 DOI: 10.1021/la702299z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Molecular interactions and mechanical properties that contribute to the stability and function of proteins are complex and of fundamental importance. In this study, we used single-molecule dynamic force spectroscopy (DFS) to explore the interactions and the unfolding energy landscape of bovine rhodopsin and bacteriorhodopsin. An analysis of the experimental data enabled the extraction of parameters that provided insights into the kinetic stability and mechanical properties of these membrane proteins. Individual structural segments of rhodopsin and bacteriorhodopsin have different properties. A core of rigid structural segments was observed in rhodopsin but not in bacteriorhodopsin. This core may reflect differences in mechanisms of protein folding between the two membrane proteins. The different structural rigidity of the two proteins may also reflect their adaptation to differing functions.
Collapse
Affiliation(s)
- K. Tanuj Sapra
- Corresponding authors. (K.T.S.) E-mail: . (D.J.M.) E-mail: . Tel: +49-351-46340330/48. Fax: +49-351-46340342
| | | | | | - Daniel J. Muller
- Corresponding authors. (K.T.S.) E-mail: . (D.J.M.) E-mail: . Tel: +49-351-46340330/48. Fax: +49-351-46340342
| |
Collapse
|
369
|
Husson J, Pincet F. Analyzing single-bond experiments: influence of the shape of the energy landscape and universal law between the width, depth, and force spectrum of the bond. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:026108. [PMID: 18352091 DOI: 10.1103/physreve.77.026108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/05/2007] [Indexed: 05/26/2023]
Abstract
Experimentalists who measure the rupture force of a single molecular bond usually pull on that bond at a constant speed, keeping the loading rate r=df/dt constant. The challenge is to extract the energy landscape of the interaction between the two molecules involved from the experimental rupture force distribution under several loading rates. This analysis requires the use of a model for the shape of this energy landscape. Several barriers can compose the landscape, though molecular bonds with a single barrier are often observed. The Bell model is commonly used for the analysis of rupture force measurements with bonds displaying a single barrier. It provides an analytical expression of the most likely rupture force which makes it very simple to use. However, in principle, it can only be applied to landscapes with extrema whose positions do not vary under force. Here, we evaluate the general relevance of the Bell model by comparing it with another analytical model for which the landscape is harmonic in the vicinity of its extrema. Similar shapes of force distributions are obtained with both models, making it difficult to confirm the validity of the Bell model for a given set of experimental data. Nevertheless, we show that the analysis of rupture force experiments on such harmonic landscapes with the Bell model provides excellent results in most cases. However, numerical computation of the distributions of the rupture forces on piecewise-linear energy landscapes indicates that the blind use of any model such as the Bell model may be risky, since there often exist several landscapes compatible with a given set of experimental data. Finally, we derive a universal relation between the range and energy of the bond and the force spectrum. This relation does not depend on the shape of the energy landscape and can thus be used to characterize unambiguously any one-barrier landscape from experiments. All the results are illustrated with the streptavidin-biotin bond.
Collapse
Affiliation(s)
- Julien Husson
- Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, Associé aux Universités Paris 6 et Paris 7, UMR CNRS 8550, 24 Rue Lhomond, 75231 Paris Cedex 05, France.
| | | |
Collapse
|
370
|
Examining the Dynamic Energy Landscape of an Antiporter upon Inhibitor Binding. J Mol Biol 2008; 375:1258-66. [DOI: 10.1016/j.jmb.2007.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/08/2007] [Accepted: 11/12/2007] [Indexed: 11/19/2022]
|
371
|
Extending Bell's model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophys J 2008; 94:2621-30. [PMID: 18178658 DOI: 10.1529/biophysj.107.114454] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forced unbinding of complementary macromolecules such as ligand-receptor complexes can reveal energetic and kinetic details governing physiological processes ranging from cellular adhesion to drug metabolism. Although molecular-level experiments have enabled sampling of individual ligand-receptor complex dissociation events, disparities in measured unbinding force F(R) among these methods lead to marked variation in inferred binding energetics and kinetics at equilibrium. These discrepancies are documented for even the ubiquitous ligand-receptor pair, biotin-streptavidin. We investigated these disparities and examined atomic-level unbinding trajectories via steered molecular dynamics simulations, as well as via molecular force spectroscopy experiments on biotin-streptavidin. In addition to the well-known loading rate dependence of F(R) predicted by Bell's model, we find that experimentally accessible parameters such as the effective stiffness of the force transducer k can significantly perturb the energy landscape and the apparent unbinding force of the complex for sufficiently stiff force transducers. Additionally, at least 20% variation in unbinding force can be attributed to minute differences in initial atomic positions among energetically and structurally comparable complexes. For force transducers typical of molecular force spectroscopy experiments and atomistic simulations, this energy barrier perturbation results in extrapolated energetic and kinetic parameters of the complex that depend strongly on k. We present a model that explicitly includes the effect of k on apparent unbinding force of the ligand-receptor complex, and demonstrate that this correction enables prediction of unbinding distances and dissociation rates that are decoupled from the stiffness of actual or simulated molecular linkers.
Collapse
|
372
|
Abstract
The complex interactions of cells with extracellular matrix (ECM) play crucial roles in mediating and regulating many processes, including cell adhesion, migration, and signaling during morphogenesis, tissue homeostasis, wound healing, and tumorigenesis. Many of these interactions involve transmembrane integrin receptors. Integrins cluster in specific cell-matrix adhesions to provide dynamic links between extracellular and intracellular environments by bi-directional signaling and by organizing the ECM and intracellular cytoskeletal and signaling molecules. This mini review discusses these interconnections, including the roles of matrix properties such as composition, three-dimensionality, and porosity, the bi-directional functions of cellular contractility and matrix rigidity, and cell signaling. The review concludes by speculating on the application of this knowledge of cell-matrix interactions in the formation of cell adhesions, assembly of matrix, migration, and tumorigenesis to potential future therapeutic approaches.
Collapse
Affiliation(s)
- Allison L Berrier
- Katrina Visiting Faculty Program, National Center on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
373
|
Ludwig T, Kirmse R, Poole K, Schwarz US. Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Arch 2007; 456:29-49. [PMID: 18058123 DOI: 10.1007/s00424-007-0398-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 12/20/2022]
Abstract
The function of cells is strongly determined by the properties of their extracellular microenvironment. Biophysical parameters like environmental stiffness and fiber orientation in the surrounding matrix are important determinants of cell adhesion and migration. Processes like tissue maintenance, wound repair, cancer cell invasion, and morphogenesis depend critically on the ability of cells to actively sense and remodel their surroundings. Pericellular proteolytic activity and adaptation of migration tactics to the environment are strategies to achieve this aim. Little is known about the distinct regulatory mechanisms that are involved in these processes. The system's critical biophysical and biochemical determinants are well accessible by atomic force microscopy (AFM), a unique tool for functional, nanoscale probing and morphometric, high-resolution imaging of processes in live cells. This review highlights common principles of tissue remodeling and focuses on application examples of different AFM techniques, for example elasticity mapping, the combination of AFM and fluorescence microscopy, the morphometric imaging of proteolytic activity, and force spectroscopy applications of single molecules or individual cells. To achieve a more complete understanding of the processes underlying the interaction of cells with their environments, the combination of AFM force spectroscopy experiments will be essential.
Collapse
Affiliation(s)
- Thomas Ludwig
- Group Microenvironment of Tumor Cell Invasion, German Cancer Research Center, BIOQUANT-Zentrum; BQ 0009 NWG Ludwig, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
374
|
Abstract
Insect flight muscle is capable of very high oscillatory frequencies. In this issue of Structure, De Nicola and colleagues (De Nicola et al., 2007) describe the structure of the Ca2+ binding protein that regulates asynchronous contraction, casting light on the mechanism of stretch activation.
Collapse
|
375
|
Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 2007; 19:495-507. [PMID: 17928215 PMCID: PMC2443699 DOI: 10.1016/j.ceb.2007.08.002] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 08/14/2007] [Indexed: 01/09/2023]
Abstract
Integrins are alpha/beta heterodimeric adhesion glycoprotein receptors that regulate a wide variety of dynamic cellular processes such as cell migration, phagocytosis, and growth and development. X-ray crystallography of the integrin ectodomain revealed its modular architecture and defined its metal-dependent interaction with extracellular ligands. This interaction is regulated from inside the cell (inside-out activation), through the short cytoplasmic alpha and beta integrin tails, which also mediate biochemical and mechanical signals transmitted to the cytoskeleton by the ligand-occupied integrins, effecting major changes in cell shape, behavior, and fate. Recent advances in the structural elucidation of integrins and integrin-binding cytoskeleton proteins are the subjects of this review.
Collapse
Affiliation(s)
- M Amin Arnaout
- Nephrology Division, Leukocyte Biology & Inflammation Program, Structural Biology Program, Massachusetts General Hospital, and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, United States.
| | | | | |
Collapse
|
376
|
Franz CM, Taubenberger A, Puech PH, Muller DJ. Studying Integrin-Mediated Cell Adhesion at the Single-Molecule Level Using AFM Force Spectroscopy. ACTA ACUST UNITED AC 2007; 2007:pl5. [PMID: 17911652 DOI: 10.1126/stke.4062007pl5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The establishment of cell adhesion involves specific recognition events between individual cell-surface receptors and molecules of the cellular environment. However, characterizing single-molecule adhesion events in the context of a living cell presents an experimental challenge. The atomic force microscope (AFM) operated in force spectroscopy mode provides an ultrasensitive method to investigate cell adhesion forces at the level of single receptor-ligand bonds. With a living cell attached to the AFM cantilever, the number of cell-substrate interactions can be controlled and limited to the formation of single receptor-ligand bonds. From force-distance (F-D) curves recorded during cell detachment, the strength of single receptor-ligand bonds can be determined. Furthermore, by varying the rate of force application during bond rupture, a dynamic force spectrum (DFS) can be generated from which additional parameters that describe the energy landscape of the interaction, such as dissociation rate and energy barrier width, can be obtained. Using the example of alpha(2)beta(1) integrin-mediated adhesion to type I collagen, we provide a detailed description of how dynamic AFM single-cell force spectroscopy (SCFS) adhesion measurements can be performed with single-molecule sensitivity, and how specific energy landscape parameters of the integrin-collagen bond can be extracted from the DFS.
Collapse
Affiliation(s)
- Clemens M Franz
- BioTechnological Center, University of Technology Dresden, Tatzberg 47-51, 01307 Dresden, Germany.
| | | | | | | |
Collapse
|
377
|
Abstract
To identify cytoskeletal proteins that change conformation or assembly within stressed cells, in situ labeling of sterically shielded cysteines with fluorophores was analyzed by fluorescence imaging, quantitative mass spectrometry, and sequential two-dye labeling. Within red blood cells, shotgun labeling showed that shielded cysteines in the two isoforms of the cytoskeletal protein spectrin were increasingly labeled as a function of shear stress and time, indicative of forced unfolding of specific domains. Within mesenchymal stem cells-as a prototypical adherent cell-nonmuscle myosin IIA and vimentin are just two of the cytoskeletal proteins identified that show differential labeling in tensed versus drug-relaxed cells. Cysteine labeling of proteins within live cells can thus be used to fluorescently map out sites of molecular-scale deformation, and the results also suggest means to colocalize signaling events such as phosphorylation with forced unfolding.
Collapse
Affiliation(s)
- Colin P. Johnson
- Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- Systems Biology Division—The Wistar Institute, Philadelphia, PA 19104, USA
| | - Christine Carag
- Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Speicher
- Systems Biology Division—The Wistar Institute, Philadelphia, PA 19104, USA
| | - Dennis E. Discher
- Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
- Systems Biology Division—The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|