351
|
Chua EYD, Sandin S. Advances in phase plate cryo-EM imaging of DNA and nucleosomes. Nucleus 2017; 8:275-278. [PMID: 28340334 PMCID: PMC5499919 DOI: 10.1080/19491034.2017.1287643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 11/11/2022] Open
Abstract
Contrast in electron cryo-microscopy (cryo-EM) is limited by the weak phase and radiation sensitive nature of biologic samples embedded in vitrified ice. We have recently shown that a new contrast enhancement technique utilizing the Volta phase plate can be combined with single particle analysis to determine the structure of a small chromatin complex, the nucleosome core particle, at near-atomic resolution. Here, we discuss advantages and limitations of the technique in terms of data collection, particle detection, and visualization of individual DNA molecules and higher-order chromatin structure.
Collapse
Affiliation(s)
- Eugene Y. D. Chua
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore
| |
Collapse
|
352
|
Abstract
Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; ,
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , .,Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
353
|
Kolovou A, Schorb M, Tarafder A, Sachse C, Schwab Y, Santarella-Mellwig R. A new method for cryo-sectioning cell monolayers using a correlative workflow. Methods Cell Biol 2017; 140:85-103. [PMID: 28528643 DOI: 10.1016/bs.mcb.2017.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryo-electron microscopy (cryo-EM) techniques have made a huge advancement recently, providing close to atomic resolution of the structure of protein complexes. Interestingly, this imaging technique can be performed in cells, giving access to the molecular machines in their natural context, therefore bridging structural and cell biology. However, in situ structural electron microscopy faces one major challenge, which is the ability to focus on specific subcellular regions to capture the objects of interest. Correlative light and electron microscopy (CLEM) is one very efficient solution for this. Here we present a sample preparation technique that enables cryo-sections of vitrified cell monolayers in an orientation that places the cryo-section parallel to the fluorescence imaging plane. The main advantage of this approach is that it exploits the potentials of CLEM for cryo-EM investigation, for selecting specific cells of interest in a heterogeneous population, or for finding identified subcellular regions on sections.
Collapse
Affiliation(s)
| | - Martin Schorb
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Abul Tarafder
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
354
|
In situ structural studies of tripeptidyl peptidase II (TPPII) reveal spatial association with proteasomes. Proc Natl Acad Sci U S A 2017; 114:4412-4417. [PMID: 28396430 DOI: 10.1073/pnas.1701367114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tripeptidyl peptidase II (TPPII) is a eukaryotic protease acting downstream of the 26S proteasome; it removes tripeptides from the degradation products released by the proteasome. Structural studies in vitro have revealed the basic architecture of TPPII, a two-stranded linear polymer that assembles to form a spindle-shaped complex of ∼6 MDa. Dependent on protein concentration, TPPII has a distinct tendency for polymorphism. Therefore, its structure in vivo has remained unclear. To resolve this issue, we have scrutinized cryo-electron tomograms of rat hippocampal neurons for the occurrence and spatial distribution of TPPII by template matching. The quality of the tomograms recorded with the Volta phase plate enabled a detailed structural analysis of TPPII despite its low abundance. Two different assembly states (36-mers and 32-mers) coexist as well as occasional extended forms with longer strands. A distance analysis of the relative locations of TPPII and 26S proteasomes confirmed the visual impression that these two complexes spatially associate in agreement with TPPII's role in postproteasomal degradation.
Collapse
|
355
|
Vénien-Bryan C, Li Z, Vuillard L, Boutin JA. Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery. Acta Crystallogr F Struct Biol Commun 2017; 73:174-183. [PMID: 28368275 PMCID: PMC5379166 DOI: 10.1107/s2053230x17003740] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
The invention of the electron microscope has greatly enhanced the view scientists have of small structural details. Since its implementation, this technology has undergone considerable evolution and the resolution that can be obtained for biological objects has been extended. In addition, the latest generation of cryo-electron microscopes equipped with direct electron detectors and software for the automated collection of images, in combination with the use of advanced image-analysis methods, has dramatically improved the performance of this technique in terms of resolution. While calculating a sub-10 Å resolution structure was an accomplishment less than a decade ago, it is now common to generate structures at sub-5 Å resolution and even better. It is becoming possible to relatively quickly obtain high-resolution structures of biological molecules, in particular large ones (>500 kDa) which, in some cases, have resisted more conventional methods such as X-ray crystallography or nuclear magnetic resonance (NMR). Such newly resolved structures may, for the first time, shed light on the precise mechanisms that are essential for cellular physiological processes. The ability to attain atomic resolution may support the development of new drugs that target these proteins, allowing medicinal chemists to understand the intimacy of the relationship between their molecules and targets. In addition, recent developments in cryo-electron microscopy combined with image analysis can provide unique information on the conformational variability of macromolecular complexes. Conformational flexibility of macromolecular complexes can be investigated using cryo-electron microscopy and multiconformation reconstruction methods. However, the biochemical quality of the sample remains the major bottleneck to routine cryo-electron microscopy-based determination of structures at very high resolution.
Collapse
Affiliation(s)
- Catherine Vénien-Bryan
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, UPMC, IRD, MNHN, 4 Place Jussieu, 75005 Paris, France
| | - Zhuolun Li
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, UPMC, IRD, MNHN, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Vuillard
- Chimie des Protéines, Pôle d’Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean Albert Boutin
- Pôle d’Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| |
Collapse
|
356
|
Earnest TM, Watanabe R, Stone JE, Mahamid J, Baumeister W, Villa E, Luthey-Schulten Z. Challenges of Integrating Stochastic Dynamics and Cryo-Electron Tomograms in Whole-Cell Simulations. J Phys Chem B 2017; 121:3871-3881. [PMID: 28291359 DOI: 10.1021/acs.jpcb.7b00672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cryo-electron tomography (cryo-ET) has rapidly emerged as a powerful tool to investigate the internal, three-dimensional spatial organization of the cell. In parallel, the GPU-based technology to perform spatially resolved stochastic simulations of whole cells has arisen, allowing the simulation of complex biochemical networks over cell cycle time scales using data taken from -omics, single molecule experiments, and in vitro kinetics. By using real cell geometry derived from cryo-ET data, we have the opportunity to imbue these highly detailed structural data-frozen in time-with realistic biochemical dynamics and investigate how cell structure affects the behavior of the embedded chemical reaction network. Here we present two examples to illustrate the challenges and techniques involved in integrating structural data into stochastic simulations. First, a tomographic reconstruction of Saccharomyces cerevisiae is used to construct the geometry of an entire cell through which a simple stochastic model of an inducible genetic switch is studied. Second, a tomogram of the nuclear periphery in a HeLa cell is converted directly to the simulation geometry through which we study the effects of cellular substructure on the stochastic dynamics of gene repression. These simple chemical models allow us to illustrate how to build whole-cell simulations using cryo-ET derived geometry and the challenges involved in such a process.
Collapse
Affiliation(s)
- Tyler M Earnest
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| | - Reika Watanabe
- Department of Chemistry and Biochemistry, University of California , San Diego, California, United States
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry , Munich, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry , Munich, Germany
| | - Elizabeth Villa
- Department of Chemistry and Biochemistry, University of California , San Diego, California, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| |
Collapse
|
357
|
Deciphering the molecular architecture of membrane contact sites by cryo-electron tomography. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1507-1512. [PMID: 28330771 DOI: 10.1016/j.bbamcr.2017.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/16/2023]
Abstract
At membrane contact sites (MCS) two cellular membranes form tight appositions that play critical roles in fundamental phenomena such as lipid metabolism or Ca2+ homeostasis. The interest for these structures has surged in recent years, bringing about the characterization of a plethora of MCS-resident molecules. How those molecules are structurally organized at MCS remains enigmatic, limiting our understanding of MCS function. Whereas such molecular detail is obscured by conventional electron microscopy sample preparation, cryo-electron tomography (cryo-ET) allows high resolution imaging of cellular landscapes in close-to-native conditions. Here we briefly review the fundamentals of cryo-ET and how recent developments in this technique are beginning to unveil the molecular architecture of MCS. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
|
358
|
Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally. Int J Biochem Cell Biol 2017; 86:37-41. [PMID: 28323208 DOI: 10.1016/j.biocel.2017.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/20/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022]
Abstract
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton.
Collapse
|
359
|
Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M, Ben-Harush K, Dubrovsky-Gaupp A, Sapra KT, Goldman RD, Medalia O. The molecular architecture of lamins in somatic cells. Nature 2017; 543:261-264. [PMID: 28241138 PMCID: PMC5616216 DOI: 10.1038/nature21382] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/11/2017] [Indexed: 01/13/2023]
Abstract
The nuclear lamina is a fundamental constituent of metazoan nuclei. It is composed mainly of lamins, which are intermediate filament proteins that assemble into a filamentous meshwork, bridging the nuclear envelope and chromatin. Besides providing structural stability to the nucleus, the lamina is involved in many nuclear activities, including chromatin organization, transcription and replication. However, the structural organization of the nuclear lamina is poorly understood. Here we use cryo-electron tomography to obtain a detailed view of the organization of the lamin meshwork within the lamina. Data analysis of individual lamin filaments resolves a globular-decorated fibre appearance and shows that A- and B-type lamins assemble into tetrameric filaments of 3.5 nm thickness. Thus, lamins exhibit a structure that is remarkably different from the other canonical cytoskeletal elements. Our findings define the architecture of the nuclear lamin meshworks at molecular resolution, providing insights into their role in scaffolding the nuclear lamina.
Collapse
Affiliation(s)
- Yagmur Turgay
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anne E. Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Maayan Khayat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, 84105 Beer-Sheva, Israel
| | - Kfir Ben-Harush
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245 Ashdod, Israel
| | - Anna Dubrovsky-Gaupp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K. Tanuj Sapra
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, 84105 Beer-Sheva, Israel
| |
Collapse
|
360
|
The sleeping beauty kissed awake: new methods in electron microscopy to study cellular membranes. Biochem J 2017; 474:1041-1053. [DOI: 10.1042/bcj20160990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023]
Abstract
Electron microscopy (EM) for biological samples, developed in the 1940–1950s, changed our conception about the architecture of eukaryotic cells. It was followed by a period where EM applied to cell biology had seemingly fallen asleep, even though new methods with important implications for modern EM were developed. Among these was the discovery that samples can be preserved by chemical fixation and most importantly by rapid freezing without the formation of crystalline ice, giving birth to the world of cryo-EM. The past 15–20 years are hallmarked by a tremendous interest in EM, driven by important technological advances. Cryo-EM, in particular, is now capable of revealing structures of proteins at a near-atomic resolution owing to improved sample preparation methods, microscopes and cameras. In this review, we focus on the challenges associated with the imaging of membranes by EM and give examples from the field of host–pathogen interactions, in particular of virus-infected cells. Despite the advantages of imaging membranes under native conditions in cryo-EM, conventional EM will remain an important complementary method, in particular if large volumes need to be imaged.
Collapse
|
361
|
Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S, Plitzko JM, Baumeister W, Zimmermann R, Freeze HH, Engel BD, Förster F. Dissecting the molecular organization of the translocon-associated protein complex. Nat Commun 2017; 8:14516. [PMID: 28218252 PMCID: PMC5321747 DOI: 10.1038/ncomms14516] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022] Open
Abstract
In eukaryotic cells, one-third of all proteins must be transported across or inserted into the endoplasmic reticulum (ER) membrane by the ER protein translocon. The translocon-associated protein (TRAP) complex is an integral component of the translocon, assisting the Sec61 protein-conducting channel by regulating signal sequence and transmembrane helix insertion in a substrate-dependent manner. Here we use cryo-electron tomography (CET) to study the structure of the native translocon in evolutionarily divergent organisms and disease-linked TRAP mutant fibroblasts from human patients. The structural differences detected by subtomogram analysis form a basis for dissecting the molecular organization of the TRAP complex. We assign positions to the four TRAP subunits within the complex, providing insights into their individual functions. The revealed molecular architecture of a central translocon component advances our understanding of membrane protein biogenesis and sheds light on the role of TRAP in human congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Johanna Dudek
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Sahradha Albert
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.,Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
362
|
Grange M, Vasishtan D, Grünewald K. Cellular electron cryo tomography and in situ sub-volume averaging reveal the context of microtubule-based processes. J Struct Biol 2017; 197:181-190. [PMID: 27374320 PMCID: PMC5287354 DOI: 10.1016/j.jsb.2016.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022]
Abstract
Electron cryo-tomography (cryoET) is currently the only technique that allows the direct observation of proteins in their native cellular environment. Sub-volume averaging of electron tomograms offers a route to increase the signal-to-noise of repetitive biological structures, such improving the information content and interpretability of tomograms. We discuss the potential for sub-volume averaging in highlighting and investigating specific processes in situ, focusing on microtubule structure and viral infection. We show that (i) in situ sub-volume averaging from single tomograms can guide and complement segmentation of biological features, (ii) the in situ determination of the structure of individual viruses is possible as they infect a cell, and (iii) novel, transient processes can be imaged with high levels of detail.
Collapse
Affiliation(s)
- Michael Grange
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Daven Vasishtan
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom.
| |
Collapse
|
363
|
Khoshouei M, Pfeffer S, Baumeister W, Förster F, Danev R. Subtomogram analysis using the Volta phase plate. J Struct Biol 2017; 197:94-101. [DOI: 10.1016/j.jsb.2016.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
364
|
Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J Struct Biol 2017; 197:73-82. [DOI: 10.1016/j.jsb.2016.07.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022]
|
365
|
Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium "Candidatus Pelagibacter ubique". Appl Environ Microbiol 2017; 83:AEM.02807-16. [PMID: 27836840 DOI: 10.1128/aem.02807-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022] Open
Abstract
SAR11 bacteria are small, heterotrophic, marine alphaproteobacteria found throughout the oceans. They thrive at the low nutrient concentrations typical of open ocean conditions, although the adaptations required for life under those conditions are not well understood. To illuminate this issue, we used cryo-electron tomography to study "Candidatus Pelagibacter ubique" strain HTCC1062, a member of the SAR11 clade. Our results revealed its cellular dimensions and details of its intracellular organization. Frozen-hydrated cells, which were preserved in a life-like state, had an average cell volume (enclosed by the outer membrane) of 0.037 ± 0.011 μm3 Strikingly, the periplasmic space occupied ∼20% to 50% of the total cell volume in log-phase cells and ∼50% to 70% in stationary-phase cells. The nucleoid occupied the convex side of the crescent-shaped cells and the ribosomes predominantly occupied the concave side, at a relatively high concentration of 10,000 to 12,000 ribosomes/μm3 Outer membrane pore complexes, likely composed of PilQ, were frequently observed in both log-phase and stationary-phase cells. Long filaments, most likely type IV pili, were found on dividing cells. The physical dimensions, intracellular organization, and morphological changes throughout the life cycle of "Ca. Pelagibacter ubique" provide structural insights into the functional adaptions of these oligotrophic ultramicrobacteria to their habitat. IMPORTANCE Bacterioplankton of the SAR11 clade (Pelagibacterales) are of interest because of their global biogeochemical significance and because they appear to have been molded by unusual evolutionary circumstances that favor simplicity and efficiency. They have adapted to an ecosystem in which nutrient concentrations are near the extreme limits at which transport systems can function adequately, and they have evolved streamlined genomes to execute only functions essential for life. However, little is known about the actual size limitations and cellular features of living oligotrophic ultramicrobacteria. In this study, we have used cryo-electron tomography to obtain accurate physical information about the cellular architecture of "Candidatus Pelagibacter ubique," the first cultivated member of the SAR11 clade. These results provide foundational information for answering questions about the cell architecture and functions of these ultrasmall oligotrophic bacteria.
Collapse
|
366
|
Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus. Mol Biol Cell 2017; 28:1984-1996. [PMID: 28057760 PMCID: PMC5541848 DOI: 10.1091/mbc.e16-09-0653] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/04/2016] [Accepted: 12/29/2016] [Indexed: 02/02/2023] Open
Abstract
The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
367
|
Bollschweiler D, Schaffer M, Lawrence CM, Engelhardt H. Cryo-electron microscopy of an extremely halophilic microbe: technical aspects. Extremophiles 2017; 21:393-398. [PMID: 28050645 PMCID: PMC5329092 DOI: 10.1007/s00792-016-0912-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022]
Abstract
Most halophilic Archaea of the class Halobacteriaceae depend on the presence of several molar sodium chloride for growth and cell integrity. This poses problems for structural studies, particularly for electron microscopy, where the high salt concentration results in diminished contrast. Since cryo-electron microscopy of intact cells provides new insights into the cellular and molecular organization under close-to-live conditions, we evaluated strategies and conditions to make halophilic microbes available for investigations in situ. Halobacterium salinarum, the test organism for this study, usually grows at 4.3 M NaCl. Adaptation to lower concentrations and subsequent NaCl reduction via dialysis led to still vital cells at 3 M salt. A comprehensive evaluation of vitrification parameters, thinning of frozen cells by focused-ion-beam micromachining, and cryo-electron microscopy revealed that structural studies under high salt conditions are possible in situ.
Collapse
Affiliation(s)
- Daniel Bollschweiler
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Miroslava Schaffer
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - C Martin Lawrence
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Harald Engelhardt
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
368
|
Huang L, Bian S, Cheng Y, Shi G, Liu P, Ye X, Wang W. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. BIOMICROFLUIDICS 2017; 11:011501. [PMID: 28217240 PMCID: PMC5303167 DOI: 10.1063/1.4975666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 05/03/2023]
Abstract
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation-high-efficiency cell enrichment and precise single cell capture-have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Shengtai Bian
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Guanya Shi
- Department of Automotive Engineering, Tsinghua University , Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| |
Collapse
|
369
|
Fernández-Álvarez A, Cooper JP. Chromosomes Orchestrate Their Own Liberation: Nuclear Envelope Disassembly. Trends Cell Biol 2016; 27:255-265. [PMID: 28024902 DOI: 10.1016/j.tcb.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The mammalian nuclear division cycle is coordinated with nuclear envelope breakdown (NEBD), in which the entire nuclear envelope (NE) is dissolved to allow chromosomes to access their segregation vehicle, the spindle. In other eukaryotes, complete NEBD is replaced by localized disassembly or remodeling of the NE. Although the molecular mechanisms controlling NE disassembly are incompletely understood, coordinated cycles of modification of specific NE components drive breakdown. Here, we review the current state of knowledge regarding NE disassembly and argue for a role of chromosome-NE contacts in triggering initiation of NE disassembly and thereby, cell division.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
370
|
Monachino E, Spenkelink LM, van Oijen AM. Watching cellular machinery in action, one molecule at a time. J Cell Biol 2016; 216:41-51. [PMID: 27979907 PMCID: PMC5223611 DOI: 10.1083/jcb.201610025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/03/2022] Open
Abstract
Monachino et al. review recent developments in single-molecule biophysical approaches and the cell biological advances they allow. Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.
Collapse
Affiliation(s)
- Enrico Monachino
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Lisanne M Spenkelink
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Antoine M van Oijen
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
371
|
Rez P, Larsen T, Elbaum M. Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens. J Struct Biol 2016; 196:466-478. [DOI: 10.1016/j.jsb.2016.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
|
372
|
Marko M, Hsieh C, Leith E, Mastronarde D, Motoki S. Practical Experience with Hole-Free Phase Plates for Cryo Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1316-1328. [PMID: 27881198 PMCID: PMC5241999 DOI: 10.1017/s143192761601196x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phase plate (PP) imaging has proven to be valuable in transmission cryo electron microscopy of unstained, native-state biological specimens. Many PP types have been described, however until the recent implementation of the "hole-free" phase plate (HFPP), imaging has been challenging. We found the HFPP to be simple to construct and to set up in the transmission electron microscopy, but care in implementing automated data collection is needed. Performance may be variable, both initially and over time, thus it is important to monitor and evaluate image quality by observing the power spectrum. We found that while some HFPPs gave transfer to high resolution without CTF oscillation, most reached high resolution when operated with modest defocus.
Collapse
Affiliation(s)
- Michael Marko
- NY State Department of Health, Wadsworth Center, PO Box 509, Albany,
NY 12201, USA
- College of Nanoscale Science and Engineering, SUNY Polytechnic
Institute, Albany, NY 12203, USA
| | - Chyongere Hsieh
- NY State Department of Health, Wadsworth Center, PO Box 509, Albany,
NY 12201, USA
| | - Eric Leith
- Department of Materials Science and Engineering, Rensselaer
Polytechnic Institute, Troy, NY 12180, USA
| | - David Mastronarde
- Department of MCD Biology, University of Colorado Boulder, Boulder,
CO 80309, USA
| | - Sohei Motoki
- JEOL USA, 11 Dearborn Road, Peabody, MA 01960, USA
| |
Collapse
|
373
|
Abstract
Over the past decade, major advances in imaging techniques have enhanced our understanding of Plasmodium spp. parasites and their interplay with mammalian hosts and mosquito vectors. Cryoelectron tomography, cryo-X-ray tomography and super-resolution microscopy have shifted paradigms of sporozoite and gametocyte structure, the process of erythrocyte invasion by merozoites, and the architecture of Maurer's clefts. Intravital time-lapse imaging has been revolutionary for our understanding of pre-erythrocytic stages of rodent Plasmodium parasites. Furthermore, high-speed imaging has revealed the link between sporozoite structure and motility, and improvements in time-lapse microscopy have enabled imaging of the entire Plasmodium falciparum erythrocytic cycle and the complete Plasmodium berghei pre-erythrocytic stages for the first time. In this Review, we discuss the contribution of key imaging tools to these and other discoveries in the malaria field over the past 10 years.
Collapse
|
374
|
Orlov I, Myasnikov AG, Andronov L, Natchiar SK, Khatter H, Beinsteiner B, Ménétret JF, Hazemann I, Mohideen K, Tazibt K, Tabaroni R, Kratzat H, Djabeur N, Bruxelles T, Raivoniaina F, Pompeo LD, Torchy M, Billas I, Urzhumtsev A, Klaholz BP. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 2016; 109:81-93. [PMID: 27730650 DOI: 10.1111/boc.201600042] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
Abstract
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.
Collapse
Affiliation(s)
- Igor Orlov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexander G Myasnikov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Leonid Andronov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Heena Khatter
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-François Ménétret
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Kareem Mohideen
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Karima Tazibt
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Rachel Tabaroni
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Hanna Kratzat
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Nadia Djabeur
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Tatiana Bruxelles
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Finaritra Raivoniaina
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Lorenza di Pompeo
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Morgan Torchy
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
375
|
|
376
|
Pei L, Xu M, Frazier Z, Alber F. Simulating cryo electron tomograms of crowded cell cytoplasm for assessment of automated particle picking. BMC Bioinformatics 2016; 17:405. [PMID: 27716029 PMCID: PMC5050594 DOI: 10.1186/s12859-016-1283-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/27/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cryo-electron tomography is an important tool to study structures of macromolecular complexes in close to native states. A whole cell cryo electron tomogram contains structural information of all its macromolecular complexes. However, extracting this information remains challenging, and relies on sophisticated image processing, in particular for template-free particle extraction, classification and averaging. To develop these methods it is crucial to realistically simulate tomograms of crowded cellular environments, which can then serve as ground truth models for assessing and optimizing methods for detection of complexes in cell tomograms. RESULTS We present a framework to generate crowded mixtures of macromolecular complexes for realistically simulating cryo electron tomograms including noise and image distortions due to the missing-wedge effects. Simulated tomograms are then used for assessing the template-free Difference-of-Gaussian (DoG) particle-picking method to detect complexes of different shapes and sizes under various crowding and noise levels. We identified DoG parameter settings that maximize precision and recall for detecting particles over a wide range of sizes and shapes. We observed that medium sized DoG scaling factors showed the overall best performance. To further improve performance, we propose a combination strategy for integrating results from multiple parameter settings. With increasing macromolecular crowding levels, the precision of particle picking remained relatively high, while the recall was dramatically reduced, which limits the detection of sufficient copy numbers of complexes in a crowded environment. Over a wide range of increasing noise levels, the DoG particle picking performance remained stable, but dramatically reduced beyond a specific noise threshold. CONCLUSIONS Automatic and reference-free particle picking is an important first step in a visual proteomics analysis of cell tomograms. However, cell cytoplasm is highly crowded, which makes particle detection challenging. It is therefore important to test particle-picking methods in a realistic crowded setting. Here, we present a framework for simulating tomograms of cellular environments at high crowding levels and assess the DoG particle picking method. We determined optimal parameter settings to maximize the performance of the DoG particle-picking method.
Collapse
Affiliation(s)
- Long Pei
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089 USA
| | - Min Xu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089 USA
| | - Zachary Frazier
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089 USA
| | - Frank Alber
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089 USA
| |
Collapse
|
377
|
Unravelling biological macromolecules with cryo-electron microscopy. Nature 2016; 537:339-46. [PMID: 27629640 DOI: 10.1038/nature19948] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
Abstract
Knowledge of the three-dimensional structures of proteins and other biological macromolecules often aids understanding of how they perform complicated tasks in the cell. Because many such tasks involve the cleavage or formation of chemical bonds, structural characterization at the atomic level is most useful. Developments in the electron microscopy of frozen hydrated samples (cryo-electron microscopy) are providing unprecedented opportunities for the structural characterization of biological macromolecules. This is resulting in a wave of information about processes in the cell that were impossible to characterize with existing techniques in structural biology.
Collapse
|
378
|
Mass-spectrometric exploration of proteome structure and function. Nature 2016; 537:347-55. [PMID: 27629641 DOI: 10.1038/nature19949] [Citation(s) in RCA: 1404] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022]
Abstract
Numerous biological processes are concurrently and coordinately active in every living cell. Each of them encompasses synthetic, catalytic and regulatory functions that are, almost always, carried out by proteins organized further into higher-order structures and networks. For decades, the structures and functions of selected proteins have been studied using biochemical and biophysical methods. However, the properties and behaviour of the proteome as an integrated system have largely remained elusive. Powerful mass-spectrometry-based technologies now provide unprecedented insights into the composition, structure, function and control of the proteome, shedding light on complex biological processes and phenotypes.
Collapse
|
379
|
The assembly of C. elegans lamins into macroscopic fibers. J Mech Behav Biomed Mater 2016; 63:35-43. [DOI: 10.1016/j.jmbbm.2016.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/23/2016] [Accepted: 05/28/2016] [Indexed: 11/18/2022]
|
380
|
Vidavsky N, Akiva A, Kaplan-Ashiri I, Rechav K, Addadi L, Weiner S, Schertel A. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state. J Struct Biol 2016; 196:487-495. [PMID: 27693309 DOI: 10.1016/j.jsb.2016.09.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm3) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Anat Akiva
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, Global Applications Support, Oberkochen, Germany
| |
Collapse
|
381
|
Beck M, Baumeister W. Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of Cells in Atomic Detail? Trends Cell Biol 2016; 26:825-837. [PMID: 27671779 DOI: 10.1016/j.tcb.2016.08.006] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Traditionally, macromolecular structure determination is performed ex situ, that is, with purified materials. But, there are strong incentives to develop approaches to study them in situ in their native functional context. In recent years, cryo-electron tomography (cryo-ET) has emerged as a powerful method for visualizing the molecular organization of unperturbed cellular landscapes with the potential to attain near-atomic resolution. Here, we review recent work on several macromolecular assemblies, demonstrating the power of in situ studies. We also highlight technical challenges and discuss ways to meet them.
Collapse
Affiliation(s)
- Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried (Planegg), Germany.
| |
Collapse
|
382
|
Kuznetsova MA, Sheval EV. Chromatin fibers: from classical descriptions to modern interpretation. Cell Biol Int 2016; 40:1140-1151. [PMID: 27569720 DOI: 10.1002/cbin.10672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022]
Abstract
The first description of intrachromosomal fibers was made by Baranetzky in 1880. Since that time, a plethora of fibrillar substructures have been described inside the mitotic chromosomes, and published data indicate that chromosomes may be formed as a result of the hierarchical folding of chromatin fibers. In this review, we examine the evolution and the current state of research on the morphological organization of mitotic chromosomes.
Collapse
Affiliation(s)
- Maria A Kuznetsova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia. .,LIA1066 French-Russian Joint Cancer Research Laboratory, 119334, Moscow, Russia.
| |
Collapse
|
383
|
Chen C, Lim HH, Shi J, Tamura S, Maeshima K, Surana U, Gan L. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol Biol Cell 2016; 27:3357-3368. [PMID: 27605704 PMCID: PMC5170867 DOI: 10.1091/mbc.e16-07-0506] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/01/2016] [Indexed: 11/11/2022] Open
Abstract
Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin-nucleosomes-are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an "open" configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome-nucleosome associations.
Collapse
Affiliation(s)
- Chen Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos, Singapore 138673, Singapore.,Bioprocessing Technology Institute, Singapore 138668, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sachiko Tamura
- National Institute of Genetics and Sokendai, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- National Institute of Genetics and Sokendai, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos, Singapore 138673, Singapore.,Bioprocessing Technology Institute, Singapore 138668, Singapore.,Department of Pharmacology, National University of Singapore, Singapore 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
384
|
Meurig Thomas J. Developments in Structural Chemistry from the Viewpoint of a Solid-state Chemist: A Review Prompted by the Sixtieth Anniversary of Professor Jack Dunitz's Research Group in the ETH, Zurich. Isr J Chem 2016. [DOI: 10.1002/ijch.201600053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John Meurig Thomas
- Department of Materials Science and Metallurgy; University of Cambridge; 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
385
|
Pfeffer S, Dudek J, Zimmermann R, Förster F. Organization of the native ribosome-translocon complex at the mammalian endoplasmic reticulum membrane. Biochim Biophys Acta Gen Subj 2016; 1860:2122-9. [PMID: 27373685 DOI: 10.1016/j.bbagen.2016.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND In eukaryotic cells, many proteins have to be transported across or inserted into the endoplasmic reticulum membrane during their biogenesis on the ribosome. This process is facilitated by the protein translocon, a highly dynamic multi-subunit membrane protein complex. SCOPE OF REVIEW The aim of this review is to summarize the current structural knowledge about protein translocon components in mammals. MAJOR CONCLUSIONS Various structural biology approaches have been used in synergy to characterize the translocon in recent years. X-ray crystallography and cryoelectron microscopy single particle analysis have yielded highly detailed insights into the structure and functional mechanism of the protein-conducting channel Sec61, which constitutes the functional core of the translocon. Cryoelectron tomography and subtomogram analysis have advanced our understanding of the overall structure, molecular organization and compositional heterogeneity of the translocon in a native membrane environment. Tomography densities at subnanometer resolution revealed an intricate network of interactions between the ribosome, Sec61 and accessory translocon components that assist in protein transport, membrane insertion and maturation. GENERAL SIGNIFICANCE The protein translocon is a gateway for approximately one third of all synthesized proteins and numerous human diseases are associated with malfunctioning of its components. Thus, detailed insights into the structure and molecular organization of the translocon will not only advance our understanding of membrane protein biogenesis in general, but they can potentially pave the way for novel therapeutic approaches against human diseases.
Collapse
Affiliation(s)
- Stefan Pfeffer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany
| | - Johanna Dudek
- Saarland University, Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Richard Zimmermann
- Saarland University, Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany.
| | - Friedrich Förster
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany; Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
386
|
Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res 2016; 44:7511-26. [PMID: 27317694 PMCID: PMC5027499 DOI: 10.1093/nar/gkw551] [Citation(s) in RCA: 552] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
The 5′ m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2′O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.
Collapse
Affiliation(s)
- Anand Ramanathan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - G Brett Robb
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
387
|
Wang C, Han B, Zhou R, Zhuang X. Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell 2016; 165:990-1001. [PMID: 27153499 PMCID: PMC4905760 DOI: 10.1016/j.cell.2016.04.040] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Translation is under tight spatial and temporal controls to ensure protein production in the right time and place in cells. Methods that allow real-time, high-resolution visualization of translation in live cells are essential for understanding the spatiotemporal dynamics of translation regulation. Based on multivalent fluorescence amplification of the nascent polypeptide signal, we develop a method to image translation on individual mRNA molecules in real time in live cells, allowing direct visualization of translation events at the translation sites. Using this approach, we monitor transient changes of translation dynamics in responses to environmental stresses, capture distinct mobilities of individual polysomes in different subcellular compartments, and detect 3' UTR-dependent local translation and active transport of polysomes in dendrites of primary neurons.
Collapse
Affiliation(s)
- Chong Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Boran Han
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ruobo Zhou
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
388
|
Abstract
A new advance in electron microscopy can reveal highly-detailed structures of protein complexes.
Collapse
Affiliation(s)
- Robert M Glaeser
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
389
|
Danev R, Baumeister W. Cryo-EM single particle analysis with the Volta phase plate. eLife 2016; 5. [PMID: 26949259 PMCID: PMC4850076 DOI: 10.7554/elife.13046] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach. DOI:http://dx.doi.org/10.7554/eLife.13046.001 One way of investigating how proteins and other biological molecules work is to look at their structure. Light microscopes cannot produce detailed enough images to fully reveal these structures, and so a technique called cryo-electron microscopy is often used instead. In this technique, a biological sample is frozen to the temperature of liquid nitrogen and a beam of electrons is fired at it to create an image. By taking many of these images and then subjecting them to computer processing it is possible to reconstruct the three-dimensional structure of the molecule. Frozen biological samples are essentially transparent to the electron beam used in an electron microscope. To view samples, researchers therefore use a method called phase contrast, which relies on a property of the electron beam (called its phase) changing as the beam passes through the sample. The traditional “defocus” method of producing phase contrast from electron microscopy relies on processing a series of slightly out-of-focus images of the sample. Phase plates are add-on devices that are commonly used in light microscopes to produce phase contrast. For many years now, attempts have been made to produce a working phase plate for electron microscopes. However, an effective plate, called the Volta phase plate, has only recently been developed. Danev and Baumeister have now evaluated how well the Volta phase plate performs during the analysis of a single, relatively large protein. This molecule is considered ‘easy’ to analyze using cryo-electron microscopy as relatively few microscopic images need to be recorded to solve the protein’s structure. Danev and Baumeister found that the Volta phase plate matched or slightly exceeded the performance of the traditional defocus method of producing phase contrast, depending on how many images were used to analyze the protein. This is the first time that a phase plate has matched the performance of the defocus method. A future challenge will be to make the experimental procedures and the software involved in using the Volta phase plate more user-friendly. The phase plate also needs to be tested with more ‘difficult’ samples, such as small proteins and samples whose structure could not be established using the defocus method of producing phase contrast. DOI:http://dx.doi.org/10.7554/eLife.13046.002
Collapse
Affiliation(s)
- Radostin Danev
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|