351
|
Li Q, Qin Z, Wang Q, Xu T, Yang Y, He Z. Applications of Genome Editing Technology in Animal Disease Modeling and Gene Therapy. Comput Struct Biotechnol J 2019; 17:689-698. [PMID: 31303973 PMCID: PMC6603303 DOI: 10.1016/j.csbj.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 02/05/2023] Open
Abstract
Genome editing technology is a technique for targeted genetic modifications, enabling the knockout and addition of specific DNA fragments. This technology has been widely used in various types of biomedical research, clinics and agriculture. In terms of disease research, constructing appropriate animal models is necessary. Combining reproductive technology with genome editing, many animal disease models have been generated for basic and clinical research. In addition, precisely targeted modifications allow genome editing to flourish in the field of gene therapy. Many mutations refractory to traditional gene therapy could be permanently corrected at the DNA level. Thus, genome editing is undoubtedly a promising technology for gene therapy. In this review, we mainly introduce the applications of genome editing in constructing animal disease models and gene therapies, as well as its future prospects and challenges.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhou Qin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Ting Xu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhiyao He
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| |
Collapse
|
352
|
Hajian R, Balderston S, Tran T, deBoer T, Etienne J, Sandhu M, Wauford NA, Chung JY, Nokes J, Athaiya M, Paredes J, Peytavi R, Goldsmith B, Murthy N, Conboy IM, Aran K. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2019; 3:427-437. [PMID: 31097816 PMCID: PMC6556128 DOI: 10.1038/s41551-019-0371-x] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 02/19/2019] [Indexed: 12/25/2022]
Abstract
Most methods for the detection of nucleic acids require many reagents and expensive and bulky instrumentation. Here, we report the development and testing of a graphene-based field-effect transistor that uses clustered regularly interspaced short palindromic repeats (CRISPR) technology to enable the digital detection of a target sequence within intact genomic material. Termed CRISPR-Chip, the biosensor uses the gene-targeting capacity of catalytically deactivated CRISPR-associated protein 9 (Cas9) complexed with a specific single-guide RNA and immobilized on the transistor to yield a label-free nucleic-acid-testing device whose output signal can be measured with a simple handheld reader. We used CRISPR-Chip to analyse DNA samples collected from HEK293T cell lines expressing blue fluorescent protein, and clinical samples of DNA with two distinct mutations at exons commonly deleted in individuals with Duchenne muscular dystrophy. In the presence of genomic DNA containing the target gene, CRISPR-Chip generates, within 15 min, with a sensitivity of 1.7 fM and without the need for amplification, a significant enhancement in output signal relative to samples lacking the target sequence. CRISPR-Chip expands the applications of CRISPR-Cas9 technology to the on-chip electrical detection of nucleic acids.
Collapse
Affiliation(s)
- Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Thanhtra Tran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Tara deBoer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jessy Etienne
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Mandeep Sandhu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Noreen A Wauford
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jing-Yi Chung
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Mitre Athaiya
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Jacobo Paredes
- Tecnun, School of Engineering, University of Navarra, San Sebastián, Spain
| | | | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Nanosens Innovations, San Diego, CA, USA.
| |
Collapse
|
353
|
Straiton J. Genetically modified humans: the X-Men of scientific research. Biotechniques 2019; 66:249-252. [DOI: 10.2144/btn-2019-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
354
|
|
355
|
Wang Z, Yang L, Qu S, Zhang C. CRISPR-mediated gene editing to rescue haploinsufficient obesity syndrome. Protein Cell 2019; 10:705-708. [PMID: 31124015 PMCID: PMC6776488 DOI: 10.1007/s13238-019-0635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Zhifeng Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Research & Development Department, Sinoneural Cell and Gene Engineering Holdings Co., Ltd., Shanghai, China
| | - Liu Yang
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
356
|
Cai A, Kong X. Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy. Hum Gene Ther Methods 2019; 30:71-80. [PMID: 31062609 DOI: 10.1089/hgtb.2018.187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe type of X-linked recessive degenerative muscle disease caused by mutations in the dystrophin (DMD) gene on the X chromosome. The DMD gene is complex, consisting of 79 exons, and mutations cause changes in the DMD mRNA so that the reading frame is altered, and the muscle-specific isoform of the dystrophin protein is either absent or truncated with variable residual function. The emerging CRISPR-Cas9-mediated genome editing technique is being developed as a potential therapeutic approach to treat DMD because it can permanently replace the mutated dystrophin gene with the normal gene. Prenatal DNA testing can inform whether the female fetus is a carrier of DMD, and the male fetus has inherited a mutation from his mother (50% chance of both). This article summarizes the present status of current and future treatments for DMD.
Collapse
Affiliation(s)
- Aojie Cai
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
357
|
Abstract
Heritable cardiomyopathies are a class of heart diseases caused by variations in a number of genetic loci. Genetic variants on one allele lead to either a degraded protein, which causes a haploinsufficiency of that protein, or a nonfunctioning protein that subverts the molecular system within which the protein works. Over years, both of these mechanisms eventually lead to diseased heart tissue and symptoms of a failing heart. Most cardiomyopathy treatments repurpose heart failure drugs to manage these symptoms and avoid adverse outcomes. There are few therapies that correct the underlying pathogenic genetic or molecular mechanism. This review will reflect on this unmet clinical need in genetic cardiomyopathies and consider a variety of therapies that address the mechanism of disease rather than patient symptoms. These therapies are genetic, targeting a defective gene or transcript, or ameliorating a genetic insufficiency. However, there are also a number of small molecules under exploration that modulate downstream faulty protein products affected in cardiomyopathies.
Collapse
Affiliation(s)
- Giuliana G Repetti
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
| | - Christopher N Toepfer
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.N.T.)
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.N.T., C.E.S.)
| | - Jonathan G Seidman
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
| | - Christine E Seidman
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| |
Collapse
|
358
|
Stark JC, Huang A, Hsu KJ, Dubner RS, Forbrook J, Marshalla S, Rodriguez F, Washington M, Rybnicky GA, Nguyen PQ, Hasselbacher B, Jabri R, Kamran R, Koralewski V, Wightkin W, Martinez T, Jewett MC. BioBits Health: Classroom Activities Exploring Engineering, Biology, and Human Health with Fluorescent Readouts. ACS Synth Biol 2019; 8:1001-1009. [PMID: 30925042 DOI: 10.1021/acssynbio.8b00381] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in synthetic biology have resulted in biological technologies with the potential to reshape the way we understand and treat human disease. Educating students about the biology and ethics underpinning these technologies is critical to empower them to make informed future policy decisions regarding their use and to inspire the next generation of synthetic biologists. However, hands-on, educational activities that convey emerging synthetic biology topics can be difficult to implement due to the expensive equipment and expertise required to grow living cells. We present BioBits Health, an educational kit containing lab activities and supporting curricula for teaching antibiotic resistance mechanisms and CRISPR-Cas9 gene editing in high school classrooms. This kit links complex biological concepts to visual, fluorescent readouts in user-friendly freeze-dried cell-free reactions. BioBits Health represents a set of educational resources that promises to encourage teaching of cutting-edge, health-related synthetic biology topics in classrooms and other nonlaboratory settings.
Collapse
Affiliation(s)
- Jessica C. Stark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208-3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| | - Ally Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Karen J. Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute B224, Evanston, Illinois 60208-3120, United States
| | - Rachel S. Dubner
- Department of Biological Sciences, Northwestern University, 2205 Tech Drive, Hogan Hall 2144, Evanston, Illinois 60208, United States
| | - Jason Forbrook
- Waukegan High School, 2325 Brookside Avenue, Waukegan, Illinois 60085, United States
| | - Suzanne Marshalla
- Round Lake Senior High School, 800 Panther Blvd, Round Lake, Illinois 60073, United States
| | - Faith Rodriguez
- Chicago Math and Science Academy, 7212 N. Clark Street, Chicago, Illinois 60626, United States
| | - Mechelle Washington
- Mather High School, 5835 N. Lincoln Avenue, Chicago, Illinois 60659, United States
| | - Grant A. Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208-3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2205 Tech Drive, Hogan Hall 2100, Evanston, Illinois 60208, United States
| | - Peter Q. Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Brenna Hasselbacher
- Glenbard East High School, 1014 S. Main Street, Lombard, Illinois 60148, United States
| | - Ramah Jabri
- Glenbard East High School, 1014 S. Main Street, Lombard, Illinois 60148, United States
| | - Rijha Kamran
- Glenbard East High School, 1014 S. Main Street, Lombard, Illinois 60148, United States
| | - Veronica Koralewski
- Glenbard East High School, 1014 S. Main Street, Lombard, Illinois 60148, United States
| | - Will Wightkin
- Glenbard East High School, 1014 S. Main Street, Lombard, Illinois 60148, United States
| | - Thomas Martinez
- Glenbard East High School, 1014 S. Main Street, Lombard, Illinois 60148, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208-3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St. Clair Street, Suite 1200, Chicago, Illinois 60611-3068, United States
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Suite 11-131, Chicago, Illinois 60611-2875, United States
| |
Collapse
|
359
|
Breuls N, Giacomazzi G, Sampaolesi M. (Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives. Cells 2019; 8:cells8050429. [PMID: 31075875 PMCID: PMC6562881 DOI: 10.3390/cells8050429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is considered to be an ideal target for stem cell therapy as it has an inherent regenerative capacity. Upon injury, the satellite cells, muscle stem cells that reside under the basal lamina of the myofibres, start to differentiate in order to reconstitute the myofibres while maintaining the initial stem cell pool. In recent years, it has become more and more evident that epigenetic mechanisms such as histon modifications, DNA methylations and microRNA modulations play a pivatol role in this differentiation process. By understanding the mechanisms behind myogenesis, researchers are able to use this knowledge to enhance the differentiation and engraftment potential of different muscle stem cells. Besides manipulation on an epigenetic level, recent advances in the field of genome-engineering allow site-specific modifications in the genome of these stem cells. Combining epigenetic control of the stem cell fate with the ability to site-specifically correct mutations or add genes for further cell control, can increase the use of stem cells as treatment of muscular dystrophies drastically. In this review, we will discuss the advances that have been made in genome-engineering and the epigenetic regulation of muscle stem cells and how this knowledge can help to get stem cell therapy to its full potential.
Collapse
Affiliation(s)
- Natacha Breuls
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Giorgia Giacomazzi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, and Interuniversity Institute of Myology, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
360
|
Affiliation(s)
- Helen M Blau
- From the Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA (H.M.B.); and the Department of Medicine, Harvard Medical School, Boston (G.Q.D.)
| | - George Q Daley
- From the Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA (H.M.B.); and the Department of Medicine, Harvard Medical School, Boston (G.Q.D.)
| |
Collapse
|
361
|
Wasala NB, Hakim CH, Chen SJ, Yang NN, Duan D. Questions Answered and Unanswered by the First CRISPR Editing Study in a Canine Model of Duchenne Muscular Dystrophy. Hum Gene Ther 2019; 30:535-543. [PMID: 30648435 PMCID: PMC6534086 DOI: 10.1089/hum.2018.243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) editing is being considered as a potential gene repair therapy to treat Duchenne muscular dystrophy, a dystrophin-deficient lethal muscle disease affecting all muscles in the body. A recent preliminary study from the Olson laboratory (Amoasii et al. Science 2018;362:89-91) showed robust dystrophin restoration in a canine Duchenne muscular dystrophy model following intramuscular or intravenous delivery of the CRISPR editing machinery by adeno-associated virus serotype 9. Despite the limitation of the small sample size, short study duration, and the lack of muscle function data, the Olson lab findings have provided important proof of principle for scaling up CRISPR therapy from rodents to large mammals. Future large-scale, long-term, and comprehensive studies are warranted to establish the safety and efficacy of CRISPR editing therapy in large mammals.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
| | - Chady H. Hakim
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Shi-Jie Chen
- Department of Physics, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Biochemistry, College of Veterinary Medicine, The University of Missouri, Columbia
| | - N. Nora Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Dongsheng Duan
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Neurology, School of Medicine, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Bioengineering, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia
| |
Collapse
|
362
|
Zhao J, Lai L, Ji W, Zhou Q. Genome editing in large animals: current status and future prospects. Natl Sci Rev 2019; 6:402-420. [PMID: 34691891 PMCID: PMC8291540 DOI: 10.1093/nsr/nwz013] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Large animals (non-human primates, livestock and dogs) are playing important roles in biomedical research, and large livestock animals serve as important sources of meat and milk. The recently developed programmable DNA nucleases have revolutionized the generation of gene-modified large animals that are used for biological and biomedical research. In this review, we briefly introduce the recent advances in nuclease-meditated gene editing tools, and we outline these editing tools' applications in human disease modeling, regenerative medicine and agriculture. Additionally, we provide perspectives regarding the challenges and prospects of the new genome editing technology.
Collapse
Affiliation(s)
- Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Liangxue Lai
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai 200031, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
363
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
364
|
Seferović PM, Polovina M, Bauersachs J, Arad M, Gal TB, Lund LH, Felix SB, Arbustini E, Caforio AL, Farmakis D, Filippatos GS, Gialafos E, Kanjuh V, Krljanac G, Limongelli G, Linhart A, Lyon AR, Maksimović R, Miličić D, Milinković I, Noutsias M, Oto A, Oto Ö, Pavlović SU, Piepoli MF, Ristić AD, Rosano GM, Seggewiss H, Ašanin M, Seferović JP, Ruschitzka F, Čelutkiene J, Jaarsma T, Mueller C, Moura B, Hill L, Volterrani M, Lopatin Y, Metra M, Backs J, Mullens W, Chioncel O, Boer RA, Anker S, Rapezzi C, Coats AJ, Tschöpe C. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019; 21:553-576. [DOI: 10.1002/ejhf.1461] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Petar M. Seferović
- University of Belgrade Faculty of Medicine Belgrade Serbia
- Serbian Academy of Sciences and Arts Belgrade Serbia
| | - Marija Polovina
- University of Belgrade Faculty of Medicine Belgrade Serbia
- Department of CardiologyClinical Center of Serbia Belgrade Serbia
| | - Johann Bauersachs
- Department of Cardiology and AngiologyMedical School Hannover Hannover Germany
| | - Michael Arad
- Cardiomyopathy Clinic and Heart Failure Institute, Leviev Heart Center, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University Tel Aviv Israel
| | - Tuvia Ben Gal
- Department of CardiologyRabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv Israel
| | - Lars H. Lund
- Department of MedicineKarolinska Institutet, and Heart and Vascular Theme, Karolinska University Hospital Stockholm Sweden
| | - Stephan B. Felix
- Department of Internal Medicine BUniversity Medicine Greifswald Greifswald Germany
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo Pavia Italy
| | - Alida L.P. Caforio
- Division of Cardiology, Department of Cardiological, Thoracic and Vascular SciencesUniversity of Padua Padua Italy
| | - Dimitrios Farmakis
- University of Cyprus Medical School, Nicosia, Cyprus; Heart Failure Unit, Department of CardiologyAthens University Hospital Attikon, National and Kapodistrian University of Athens Athens Greece
| | - Gerasimos S. Filippatos
- University of Cyprus Medical School, Nicosia, Cyprus; Heart Failure Unit, Department of CardiologyAthens University Hospital Attikon, National and Kapodistrian University of Athens Athens Greece
| | - Elias Gialafos
- Second Department of CardiologyHeart Failure and Preventive Cardiology Section, Henry Dunant Hospital Athens Greece
| | | | - Gordana Krljanac
- University of Belgrade Faculty of Medicine Belgrade Serbia
- Department of CardiologyClinical Center of Serbia Belgrade Serbia
| | - Giuseppe Limongelli
- Department of Cardiothoracic Sciences, Università della Campania ‘Luigi VanvitellI’Monaldi Hospital, AORN Colli, Centro di Ricerca Cardiovascolare, Ospedale Monaldi, AORN Colli, Naples, Italy, and UCL Institute of Cardiovascular Science London UK
| | - Aleš Linhart
- Second Department of Medicine, Department of Cardiovascular MedicineGeneral University Hospital, Charles University in Prague Prague Czech Republic
| | - Alexander R. Lyon
- National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital London UK
| | - Ružica Maksimović
- University of Belgrade Faculty of Medicine Belgrade Serbia
- Centre for Radiology and Magnetic Resonance Imaging, Clinical Centre of Serbia Belgrade Serbia
| | - Davor Miličić
- Department of Cardiovascular DiseasesUniversity Hospital Center Zagreb, University of Zagreb Zagreb Croatia
| | - Ivan Milinković
- Department of CardiologyClinical Center of Serbia Belgrade Serbia
| | - Michel Noutsias
- Mid‐German Heart Center, Department of Internal Medicine III, Division of CardiologyAngiology and Intensive Medical Care, University Hospital Halle, Martin‐Luther‐University Halle Halle Germany
| | - Ali Oto
- Department of CardiologyHacettepe University Faculty of Medicine Ankara Turkey
| | - Öztekin Oto
- Department of Cardiovascular SurgeryDokuz Eylül University Faculty of Medicine İzmir Turkey
| | - Siniša U. Pavlović
- University of Belgrade Faculty of Medicine Belgrade Serbia
- Pacemaker Center, Clinical Center of Serbia Belgrade Serbia
| | | | - Arsen D. Ristić
- University of Belgrade Faculty of Medicine Belgrade Serbia
- Department of CardiologyClinical Center of Serbia Belgrade Serbia
| | - Giuseppe M.C. Rosano
- Centre for Clinical and Basic Research, Department of Medical SciencesIRCCS San Raffaele Pisana Rome Italy
| | - Hubert Seggewiss
- Medizinische Klinik, Kardiologie & Internistische Intensivmedizin, Klinikum Würzburg‐Mitte Würzburg Germany
| | - Milika Ašanin
- University of Belgrade Faculty of Medicine Belgrade Serbia
- Department of CardiologyClinical Center of Serbia Belgrade Serbia
| | - Jelena P. Seferović
- Cardiovascular DivisionBrigham and Women's Hospital, Harvard Medical School Boston MA USA
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center Serbia and Faculty of MedicineUniversity of Belgrade Belgrade Serbia
| | - Frank Ruschitzka
- Department of CardiologyUniversity Heart Center Zürich Switzerland
| | - Jelena Čelutkiene
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of MedicineVilnius University Vilnius Lithuania
- State Research Institute Centre for Innovative Medicine Vilnius Lithuania
| | - Tiny Jaarsma
- Department of Social and Welfare Studies, Faculty of Health ScienceLinköping University Linköping Sweden
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of Basel Basel Switzerland
| | - Brenda Moura
- Cardiology DepartmentCentro Hospitalar São João Porto Portugal
| | - Loreena Hill
- School of Nursing and Midwifery, Queen's University Belfast Belfast UK
| | | | - Yuri Lopatin
- Volgograd State Medical University, Regional Cardiology Centre Volgograd Volgograd Russia
| | - Marco Metra
- Cardiology, Department of Medical and Surgical SpecialtiesRadiological Sciences, and Public Health, University of Brescia Brescia Italy
| | - Johannes Backs
- Department of Molecular Cardiology and EpigeneticsUniversity of Heidelberg Heidelberg Germany
- DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim Heidelberg Germany
| | - Wilfried Mullens
- BIOMED ‐ Biomedical Research Institute, Faculty of Medicine and Life SciencesHasselt University Diepenbeek Belgium
- Department of CardiologyZiekenhuis Oost‐Limburg Genk Belgium
| | - Ovidiu Chioncel
- University of Medicine Carol Davila Bucharest Romania
- Emergency Institute for Cardiovascular Diseases, ‘Prof. C. C. Iliescu’ Bucharest Romania
| | - Rudolf A. Boer
- Department of CardiologyUniversity Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Stefan Anker
- Division of Cardiology and Metabolism, Department of Cardiology (CVK)Charité Berlin Germany
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin, Charité Berlin Germany
| | - Claudio Rapezzi
- Cardiology, Department of ExperimentalDiagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna Bologna Italy
| | - Andrew J.S. Coats
- Monash University, Australia, and University of Warwick Coventry UK
- Pharmacology, Centre of Clinical and Experimental Medicine, IRCCS San Raffaele Pisana, Rome, Italy, and St George's University of London London UK
| | - Carsten Tschöpe
- Berlin‐Brandenburg Center for Regenerative Therapies, Deutsches Zentrum für Herz‐Kreislauf‐Forschung (DZHK) Berlin, Department of CardiologyCampus Virchow Klinikum, Charite ‐ Universitaetsmedizin Berlin Berlin Germany
| |
Collapse
|
365
|
Evasion of Pre-Existing Immunity to Cas9: a Prerequisite for Successful Genome Editing In Vivo? CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00237-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
366
|
Bilkey GA, Burns BL, Coles EP, Mahede T, Baynam G, Nowak KJ. Optimizing Precision Medicine for Public Health. Front Public Health 2019; 7:42. [PMID: 30899755 PMCID: PMC6416195 DOI: 10.3389/fpubh.2019.00042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/14/2019] [Indexed: 01/15/2023] Open
Abstract
Advances in precision medicine have presented challenges to traditional public health decision-making paradigms. Historical methods of allocating healthcare funds based on safety, efficacy, and efficiency, are challenged in a healthcare delivery model that focuses on individualized variations in pathology that form the core of precision medicine. Public health policy and decision-making must adapt to this new frontier of healthcare delivery to ensure that the broad public health goals of reducing healthcare disparities and improving the health of populations are achieved, through effective and equitable allocation of healthcare funds. This paper discusses contemporary applications of precision medicine, and the potential impacts of these on public health policy and decision-making, with particular focus on patients living with rare diseases and rare cancers. The authors then reconcile these, presenting precision public health as the bridge between these seemingly competing fields.
Collapse
Affiliation(s)
- Gemma A Bilkey
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,Office of the Chief Health Officer, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Belinda L Burns
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Emily P Coles
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Trinity Mahede
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Gareth Baynam
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,Genetic Services of Western Australia, King Edward Memorial Hospital, Department of Health, Government of Western Australia, Perth, WA, Australia.,Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Kristen J Nowak
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, WA, Australia
| |
Collapse
|
367
|
Nakamura A. Mutation-Based Therapeutic Strategies for Duchenne Muscular Dystrophy: From Genetic Diagnosis to Therapy. J Pers Med 2019; 9:jpm9010016. [PMID: 30836656 PMCID: PMC6462977 DOI: 10.3390/jpm9010016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscle disorders caused by mutations of the DMD gene, which encodes the subsarcolemmal protein dystrophin. In DMD, dystrophin is not expressed due to a disruption in the reading frame of the DMD gene, resulting in a severe phenotype. Becker muscular dystrophy exhibits a milder phenotype, having mutations that maintain the reading frame and allow for the production of truncated dystrophin. To date, various therapeutic approaches for DMD have been extensively developed. However, the pathomechanism is quite complex despite it being a single gene disorder, and dystrophin is expressed not only in a large amount of skeletal muscle but also in cardiac, vascular, intestinal smooth muscle, and nervous system tissue. Thus, the most appropriate therapy would be complementation or restoration of dystrophin expression, such as gene therapy using viral vectors, readthrough therapy, or exon skipping therapy. Among them, exon skipping therapy with antisense oligonucleotides can restore the reading frame and yield the conversion of a severe phenotype to one that is mild. In this paper, I present the significance of molecular diagnosis and the development of mutation-based therapeutic strategies to complement or restore dystrophin expression.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Neurology, National Hospital Organization, Matsumoto Medical Center, 2-20-30 Murai-machi Minami, Matsumoto 399-8701, Japan.
- Third Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| |
Collapse
|
368
|
Abstract
Les premiers biomédicaments conçus pour traiter des maladies neuromusculaires sont déjà sur le marché. Ils ne constituent pourtant que la partie émergée d’un iceberg considérable. Les développements en cours sont foisonnants, pour la thérapie génique comme cellulaire. L’AFM-Téléthon contribue depuis plusieurs décennies à impulser cette dynamique, qui n’est pas sans générer de nouveaux défis.
Collapse
|
369
|
Min YL, Li H, Rodriguez-Caycedo C, Mireault AA, Huang J, Shelton JM, McAnally JR, Amoasii L, Mammen PPA, Bassel-Duby R, Olson EN. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. SCIENCE ADVANCES 2019; 5:eaav4324. [PMID: 30854433 PMCID: PMC6402849 DOI: 10.1126/sciadv.aav4324] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/28/2019] [Indexed: 05/16/2023]
Abstract
Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), which is characterized by lethal degeneration of cardiac and skeletal muscles. Mutations that delete exon 44 of the dystrophin gene represent one of the most common causes of DMD and can be corrected in ~12% of patients by editing surrounding exons, which restores the dystrophin open reading frame. Here, we present a simple and efficient strategy for correction of exon 44 deletion mutations by CRISPR-Cas9 gene editing in cardiomyocytes obtained from patient-derived induced pluripotent stem cells and in a new mouse model harboring the same deletion mutation. Using AAV9 encoding Cas9 and single guide RNAs, we also demonstrate the importance of the dosages of these gene editing components for optimal gene correction in vivo. Our findings represent a significant step toward possible clinical application of gene editing for correction of DMD.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cristina Rodriguez-Caycedo
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alex A. Mireault
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jian Huang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - John M. Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - John R. McAnally
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Exonics Therapeutics, 490 Arsenal Way, Watertown, MA 02472, USA
| | - Pradeep P. A. Mammen
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
370
|
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 2019; 25:427-432. [PMID: 30778238 PMCID: PMC6455975 DOI: 10.1038/s41591-019-0344-3] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the mdx mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.
Collapse
Affiliation(s)
- Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P Gemberling
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Matthew L Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew A Waller
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Joel D Bohning
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Karen Bulaklak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
371
|
Therapeutic Genome Editing in Cardiovascular Diseases. JACC Basic Transl Sci 2019; 4:122-131. [PMID: 30847427 PMCID: PMC6390678 DOI: 10.1016/j.jacbts.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
A variety of genetic cardiovascular diseases may one day be curable using gene editing technology. Germline genome editing and correction promises to permanently remove monogenic cardiovascular disorders from the offspring and subsequent generations of affected families. Although technically feasible and likely to be ready for implementation in humans in the near future, this approach remains ethically controversial. Although currently beset by several technical challenges, and not yet past small animal models, somatic genome editing may also be useful for a variety of cardiovascular disorders. It potentially avoids ethical concerns about permanent editing of the germline and allows treatment of already diseased individuals. If technical challenges of Cas9-gRNA delivery (viral vector immune response, nonviral vector delivery) can be worked out, then CRISPR-Cas9 may have a significant place in the treatment of a wide variety of disorders in which partial or complete gene knockout is desired. However, CRISPR may not work for gene correction in the human heart because of low rates of homology directed repair. Off-target effects also remain a concern, although, thus far, small animal studies have been reassuring. Some of the therapies mentioned in this review may be ready for small clinical trials in the near future.
Collapse
|
372
|
Vita G, Vita GL, Musumeci O, Rodolico C, Messina S. Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 2: diseases of motor neuron and skeletal muscle. Neurol Sci 2019; 40:671-681. [PMID: 30805745 DOI: 10.1007/s10072-019-03764-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
This is the second part of a two-part document intended to discuss recent therapeutic progresses in genetic neuromuscular disorders. The present review is for diseases of motor neuron and skeletal muscle, some of which reached recently the most innovative therapeutic approaches. Nusinersen, an SMN2 mRNA splicing modifier, was approved as first-ever therapy of spinal muscular atrophy (SMA) by FDA in 2016 and by EMA in 2017. The orally administered small-molecule risdiplam, which increases SMN protein levels similarly but also in peripheral organs, is tested in ongoing phase 2 and 3 trials. After positive results with phase 1 treatment with AAV9-SMN, the first gene therapy for SMA, a phase 3 clinical trial is ongoing. Ataluren is the first approved drug for Duchenne muscular dystrophy (DMD) patients with premature stop codon mutations and its indication has been recently extended since the age of 2 years. Exon skipping technology was and is currently tested in many phase 3 trials, and eteplirsen received a conditional approval by FDA for patients amenable to exon 51 skipping, but not by EMA. Many other compounds with different mechanisms of action are now tested in DMD by phase 2 and 3 trials, including phase 1 gene therapy. Other innovative approaches are under investigation, i.e., gene therapy in X-linked myotubular myopathy and Pompe disease, and antisense oligonucleotides in myotonic dystrophy type 1. Positive evidences are discussed about lamotrigine and ranolazine in non-dystrophic myotonias, chaperons in Pompe disease, and nucleosides in mitochondrial DNA depletion induced by thymidine kinase 2 deficiency.
Collapse
Affiliation(s)
- Giuseppe Vita
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy. .,Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy.
| | - Gian Luca Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Rodolico
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
| |
Collapse
|
373
|
Nghiem PP, Kornegay JN. Gene therapies in canine models for Duchenne muscular dystrophy. Hum Genet 2019; 138:483-489. [PMID: 30734120 DOI: 10.1007/s00439-019-01976-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.
Collapse
Affiliation(s)
- Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA.
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA
| |
Collapse
|
374
|
Ramos JN, Hollinger K, Bengtsson NE, Allen JM, Hauschka SD, Chamberlain JS. Development of Novel Micro-dystrophins with Enhanced Functionality. Mol Ther 2019; 27:623-635. [PMID: 30718090 PMCID: PMC6403485 DOI: 10.1016/j.ymthe.2019.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/24/2023] Open
Abstract
Gene therapies using adeno-associated viral (AAV) vectors have advanced into clinical trials for several diseases, including Duchenne muscular dystrophy (DMD). A limitation of AAV is the carrying capacity (∼5 kb) available for genes and regulatory cassettes (RCs). These size constraints are problematic for the 2.2-Mb dystrophin gene. We previously designed a variety of miniaturized micro-dystrophins (μDys) that displayed significant, albeit incomplete, function in striated muscles. To develop μDys proteins with improved performance, we explored structural modifications of the dystrophin central rod domain. Eight μDys variants were studied that carried unique combinations of between four and six of the 24 spectrin-like repeats present in the full-length protein, as well as various hinge domains. Expression of μDys was regulated by a strong but compact muscle-restricted RC (CK8e) or by the ubiquitously active cytomegalovirus (CMV) RC. Vectors were evaluated by intramuscular injection and systemic delivery to dystrophic mdx4cv mice, followed by analysis of skeletal muscle pathophysiology. Two μDys designs were identified that led to increased force generation compared with previous μDys while also localizing neuronal nitric oxide synthase to the sarcolemma. An AAV vector expressing the smaller of these (μDys5) from the CK8e RC is currently being evaluated in a DMD clinical trial.
Collapse
Affiliation(s)
- Julian N Ramos
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Katrin Hollinger
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Niclas E Bengtsson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - James M Allen
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Stephen D Hauschka
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jeffrey S Chamberlain
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
375
|
Huml RA, Uspenskaya-Cadoz O, Dawson J, Slifer Z. Updating the Clinical Picture of Facioscapulohumeral Muscular Dystrophy: Ramifications for Drug Development With Potential Solutions. Ther Innov Regul Sci 2019. [DOI: 10.1177/2168479018820313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | - Zachary Slifer
- North Carolina State University’s College of Veterinary Medicine, Raleigh, North Carolina, USA
| |
Collapse
|
376
|
Foss DV, Hochstrasser ML, Wilson RC. Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion 2019; 59:1389-1399. [PMID: 30600536 DOI: 10.1111/trf.15126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-driven genome editing has rapidly transformed preclinical biomedical research by eliminating the underlying genetic basis of many diseases in model systems and facilitating the study of disease etiology. Translation to the clinic is under way, with announced or impending clinical trials utilizing ex vivo strategies for anticancer immunotherapy or correction of hemoglobinopathies. These exciting applications represent just a fraction of what is theoretically possible for this emerging technology, but many technical hurdles must be overcome before CRISPR-based genome editing technology can reach its full potential. One exciting recent development is the use of CRISPR systems for diagnostic detection of genetic sequences associated with pathogens or cancer. We review the biologic origins and functional mechanism of CRISPR systems and highlight several current and future clinical applications of genome editing.
Collapse
Affiliation(s)
- Dana V Foss
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Megan L Hochstrasser
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California
| | - Ross C Wilson
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| |
Collapse
|
377
|
Shah AM, Al-Chalabi A. New therapies for neuromuscular diseases in 2018. Lancet Neurol 2019; 18:12-13. [DOI: 10.1016/s1474-4422(18)30414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/18/2023]
|
378
|
SPIEGEL ALLENM. THE JEREMIAH METZGER LECTURE: A BRIEF HISTORY OF EUGENICS IN AMERICA: IMPLICATIONS FOR MEDICINE IN THE 21 ST CENTURY. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2019; 130:216-234. [PMID: 31516187 PMCID: PMC6736015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the first half of the 20th century, the US was swept up in a multifaceted movement to enhance the genetic makeup of the country's population. This eugenics movement, based on flawed scientific principles promulgated by Galton in the UK and Davenport in the US included legally mandated compulsory sterilization in 27 states in the US and sharply restricted immigration from many parts of the world. Compulsory sterilization legislation was upheld by the Supreme Court in 1927. The American eugenics movement was a model for the compulsory sterilization implemented by the Nazis after they took power in Germany in 1933. The movement waned in America only following World War II when the US public became aware of the full extent of the Nazi Aryan racial superiority program. With the advent of major advances in molecular and cellular biology that are already being applied to clinical medicine in the 21st century, we have entered a new eugenics era. It is critical that we learn the lessons of our earlier eugenics movement if we are to avoid making the same flawed decisions now.
Collapse
Affiliation(s)
- ALLEN M. SPIEGEL
- Correspondence and reprint requests: Allen M. Spiegel, MD, Albert Einstein College of Medicine,
Belfer 1003, 1300 Morris Park Avenue, Bronx, New York 10461929-246-6738
| |
Collapse
|
379
|
Wai H, Douglas AGL, Baralle D. RNA splicing analysis in genomic medicine. Int J Biochem Cell Biol 2018; 108:61-71. [PMID: 30594648 DOI: 10.1016/j.biocel.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
High-throughput next-generation sequencing technologies have led to a rapid increase in the number of sequence variants identified in clinical practice via diagnostic genetic tests. Current bioinformatic analysis pipelines fail to take adequate account of the possible splicing effects of such variants, particularly where variants fall outwith canonical splice site sequences, and consequently the pathogenicity of such variants may often be missed. The regulation of splicing is highly complex and as a result, in silico prediction tools lack sufficient sensitivity and specificity for reliable use. Variants of all kinds can be linked to aberrant splicing in disease and the need for correct identification and diagnosis grows ever more crucial as novel splice-switching antisense oligonucleotide therapies start to enter clinical usage. RT-PCR provides a useful targeted assay of the splicing effects of identified variants, while minigene assays, massive parallel reporter assays and animal models can also be used for more detailed study of a particular splicing system, given enough time and resources. However, RNA-sequencing (RNA-seq) has the potential to be used as a rapid diagnostic tool in genomic medicine. By utilising data science approaches and machine learning, it may prove possible to finally understand and interpret the 'splicing code' and apply this knowledge in human disease diagnostics.
Collapse
Affiliation(s)
- Htoo Wai
- Human Development and Health, Faculty of Medicine, University of Southampton, UK
| | - Andrew G L Douglas
- Human Development and Health, Faculty of Medicine, University of Southampton, UK; Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, UK; Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
380
|
Abstract
This review discusses current bottlenecks in making CRISPR-Cas9-mediated genome editing a therapeutic reality and it outlines recent strategies that aim to overcome these hurdles as well as the scope of current clinical trials that pioneer the medical translation of CRISPR-Cas9. Additionally, this review outlines the specifics of disease-modifying gene editing in recessive versus dominant genetic diseases with the focus on genetic myopathies that are exemplified by Duchenne muscular dystrophy and myotonic dystrophies.
Collapse
Affiliation(s)
- Irina Conboy
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | - Niren Murthy
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | - Jessy Etienne
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | | |
Collapse
|
381
|
Ravenscroft G, Bryson-Richardson RJ, Nowak KJ, Laing NG. Recent advances in understanding congenital myopathies. F1000Res 2018; 7. [PMID: 30631434 PMCID: PMC6290972 DOI: 10.12688/f1000research.16422.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
By definition, congenital myopathy typically presents with skeletal muscle weakness and hypotonia at birth. Traditionally, congenital myopathy subtypes have been predominantly distinguished on the basis of the pathological hallmarks present on skeletal muscle biopsies. Many genes cause congenital myopathies when mutated, and a burst of new causative genes have been identified because of advances in gene sequencing technology. Recent discoveries include extending the disease phenotypes associated with previously identified genes and determining that genes formerly known to cause only dominant disease can also cause recessive disease. The more recently identified congenital myopathy genes account for only a small proportion of patients. Thus, the congenital myopathy genes remaining to be discovered are predicted to be extremely rare causes of disease, which greatly hampers their identification. Significant progress in the provision of molecular diagnoses brings important information and value to patients and their families, such as possible disease prognosis, better disease management, and informed reproductive choice, including carrier screening of parents. Additionally, from accurate genetic knowledge, rational treatment options can be hypothesised and subsequently evaluated
in vitro and in animal models. A wide range of potential congenital myopathy therapies have been investigated on the basis of improved understanding of disease pathomechanisms, and some therapies are in clinical trials. Although large hurdles remain, promise exists for translating treatment benefits from preclinical models to patients with congenital myopathy, including harnessing proven successes for other genetic diseases.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | | | - Kristen J Nowak
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,School of Biological Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia.,Office of Population Health Genomics, Western Australian Department of Health, East Perth, WA, Australia
| | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
382
|
Gajendran N. The root cause of Duchenne muscular dystrophy is the lack of dystrophin in smooth muscle of blood vessels rather than in skeletal muscle per se. F1000Res 2018. [DOI: 10.12688/f1000research.15889.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:The dystrophin protein is part of the dystrophin associated protein complex (DAPC) linking the intracellular actin cytoskeleton to the extracellular matrix. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy (D/BMD). Neuronal nitric oxide synthase associates with dystrophin in the DAPC to generate the vasodilator nitric oxide (NO). Systemic dystrophin deficiency, such as in D/BMD, results in muscle ischemia, injury and fatigue during exercise as dystrophin is lacking, affecting NO production and hence vasodilation. The role of neuregulin 1 (NRG) signaling through the epidermal growth factor family of receptors ERBB2 and ERBB4 in skeletal muscle has been controversial, but it was shown to phosphorylate α-dystrobrevin 1 (α-DB1), a component of the DAPC. The aim of this investigation was to determine whether NRG signaling had a functional role in muscular dystrophy.Methods:Primary myoblasts (muscle cells) were isolated from conditional knock-out mice containing lox P flanked ERBB2 and ERBB4 receptors, immortalized and exposed to Cre recombinase to obtainErbb2/4double knock-out (dKO) myoblasts where NRG signaling would be eliminated. Myotubes, thein vitroequivalent of muscle fibers, formed by fusion of the lox P flankedErbb2/4myoblasts as well as theErbb2/4dKO myoblasts were then used to identify changes in dystrophin expression.Results:Elimination of NRG signaling resulted in the absence of dystrophin demonstrating that it is essential for dystrophin expression. However, unlike the DMD mouse model mdx, with systemic dystrophin deficiency, lack of dystrophin in skeletal muscles ofErbb2/4dKO mice did not result in muscular dystrophy. In these mice, ERBB2/4, and thus dystrophin, is still expressed in the smooth muscle of blood vessels allowing normal blood flow through vasodilation during exercise.Conclusions:Dystrophin deficiency in smooth muscle of blood vessels, rather than in skeletal muscle, is the main cause of disease progression in DMD.
Collapse
|
383
|
Hodges CA, Conlon RA. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis 2018; 6:97-108. [PMID: 31193992 PMCID: PMC6545485 DOI: 10.1016/j.gendis.2018.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
In this review, we describe a path for translation of gene editing into therapy for cystic fibrosis (CF). Cystic fibrosis results from mutations in the CFTR gene, with one allele predominant in patient populations. This simple, genetic etiology makes gene editing appealing for treatment of this disease. There already have been success in applying this approach to cystic fibrosis in cell and animal models, although these advances have been modest in comparison to advances for other disease. Less than six years after its first demonstration in animals, CRISPR/Cas gene editing is in early clinical trials for several disorders. Most clinical trials, thus far, attempt to edit genes in cells of the blood lineages. The advantage of the blood is that the stem cells are known, can be isolated, edited, selected, expanded, and returned to the body. The likely next trials will be in the liver, which is accessible to many delivery methods. For cystic fibrosis, the biggest hurdle is to deliver editors to other, less accessible organs. We outline a path by which delivery can be improved. The translation of new therapies doesn't occur in isolation, and the development of gene editors is occurring as advances in gene therapy and small molecule therapeutics are being made. The advances made in gene therapy may help develop delivery vehicles for gene editing, although major improvements are needed. Conversely, the approval of effective small molecule therapies for many patients with cystic fibrosis will raise the bar for translation of gene editing.
Collapse
Affiliation(s)
- Craig A Hodges
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
384
|
Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy. J Pers Med 2018; 8:jpm8040038. [PMID: 30477208 PMCID: PMC6313657 DOI: 10.3390/jpm8040038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disease prevalent in 1 in 3500 to 5000 males worldwide. As a result of mutations that interrupt the reading frame of the dystrophin gene (DMD), DMD is characterized by a loss of dystrophin protein that leads to decreased muscle membrane integrity, which increases susceptibility to degeneration. CRISPR/Cas9 technology has garnered interest as an avenue for DMD therapy due to its potential for permanent exon skipping, which can restore the disrupted DMD reading frame in DMD and lead to dystrophin restoration. An RNA-guided DNA endonuclease system, CRISPR/Cas9 allows for the targeted editing of specific sequences in the genome. The efficacy and safety of CRISPR/Cas9 as a therapy for DMD has been evaluated by numerous studies in vitro and in vivo, with varying rates of success. Despite the potential of CRISPR/Cas9-mediated gene editing for the long-term treatment of DMD, its translation into the clinic is currently challenged by issues such as off-targeting, immune response activation, and sub-optimal in vivo delivery. Its nature as being mostly a personalized form of therapy also limits applicability to DMD patients, who exhibit a wide spectrum of mutations. This review summarizes the various CRISPR/Cas9 strategies that have been tested in vitro and in vivo for the treatment of DMD. Perspectives on the approach will be provided, and the challenges faced by CRISPR/Cas9 in its road to the clinic will be briefly discussed.
Collapse
|
385
|
Abstract
The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
386
|
Liu H, Wang L, Luo Y. Blossom of CRISPR technologies and applications in disease treatment. Synth Syst Biotechnol 2018; 3:217-228. [PMID: 30370342 PMCID: PMC6199817 DOI: 10.1016/j.synbio.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023] Open
Abstract
Since 2013, the CRISPR-based bacterial antiviral defense systems have revolutionized the genome editing field. In addition to genome editing, CRISPR has been developed as a variety of tools for gene expression regulations, live cell chromatin imaging, base editing, epigenome editing, and nucleic acid detection. Moreover, in the context of further boosting the usability and feasibility of CRISPR systems, novel CRISPR systems and engineered CRISPR protein mutants have been explored and studied actively. With the flourish of CRISPR technologies, they have been applied in disease treatment recently, as in gene therapy, cell therapy, immunotherapy, and antimicrobial therapy. Here we present the developments of CRISPR technologies and describe the applications of these CRISPR-based technologies in disease treatment.
Collapse
Affiliation(s)
- Huayi Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lian Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Yunzi Luo
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| |
Collapse
|
387
|
VandenDriessche T. Gene and Cell Therapy: Tearing Down Walls. Hum Gene Ther 2018; 29:1071-1073. [PMID: 30280978 DOI: 10.1089/hum.2018.29074.tva] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- 1 European Editor-Human Gene Therapy; Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium .,2 Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB) , Brussels, Belgium; and Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium .,3 Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| |
Collapse
|
388
|
|
389
|
Personalised Medicine: The Odyssey from Hope to Practice. J Pers Med 2018; 8:jpm8040031. [PMID: 30248964 PMCID: PMC6313378 DOI: 10.3390/jpm8040031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
In this endeavour, inspired by the Odyssey, we aim to embark with the reader on a journey on a ship from Troy to Ithaca, coursing through the history of the momentous events and achievements that paved the way for personalised medicine. We will set sail amidst important genetic discoveries, beginning with the discovery of the first human genome, and voyage through the projects that contributed to the progress of pharmacogenomic studies. Concurrently, we will propose methods to overcome the obstacles that are slowing the potential full implementation of accumulated knowledge into everyday practice. This journey aims to reflect on the frontiers of current genetic knowledge and the practical use of this knowledge in preventive, diagnostic and pharmacogenomic approaches to directly impact the socio-economic aspects of public health.
Collapse
|