351
|
Knudsen EI. Evolution of neural processing for visual perception in vertebrates. J Comp Neurol 2020; 528:2888-2901. [PMID: 32003466 PMCID: PMC7586818 DOI: 10.1002/cne.24871] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/22/2023]
Abstract
Visual perception requires both visual information and attention. This review compares, across classes of vertebrates, the functional and anatomical characteristics of (a) the neural pathways that process visual information about objects, and (b) stimulus selection pathways that determine the objects to which an animal attends. Early in the evolution of vertebrate species, visual perception was dominated by information transmitted via the midbrain (retinotectal) visual pathway, and attention was probably controlled primarily by a selection network in the midbrain. In contrast, in primates, visual perception is dominated by information transmitted via the forebrain (retinogeniculate) visual pathway, and attention is mediated largely by networks in the forebrain. In birds and nonprimate mammals, both the retinotectal and retinogeniculate pathways contribute critically to visual information processing, and both midbrain and forebrain networks play important roles in controlling attention. The computations and processing strategies in birds and mammals share some strikingly similar characteristics despite over 300 million years of independent evolution and being implemented by distinct brain architectures. The similarity of these functional characteristics suggests that they provide valuable advantages to visual perception in advanced visual systems. A schema is proposed that describes the evolution of the pathways and computations that enable visual perception in vertebrate species.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University, Stanford, California
| |
Collapse
|
352
|
Fan LZ, Kheifets S, Böhm UL, Wu H, Piatkevich KD, Xie ME, Parot V, Ha Y, Evans KE, Boyden ES, Takesian AE, Cohen AE. All-Optical Electrophysiology Reveals the Role of Lateral Inhibition in Sensory Processing in Cortical Layer 1. Cell 2020; 180:521-535.e18. [PMID: 31978320 PMCID: PMC7259440 DOI: 10.1016/j.cell.2020.01.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/06/2019] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
Cortical layer 1 (L1) interneurons have been proposed as a hub for attentional modulation of underlying cortex, but the transformations that this circuit implements are not known. We combined genetically targeted voltage imaging with optogenetic activation and silencing to study the mechanisms underlying sensory processing in mouse barrel cortex L1. Whisker stimuli evoked precisely timed single spikes in L1 interneurons, followed by strong lateral inhibition. A mild aversive stimulus activated cholinergic inputs and evoked a bimodal distribution of spiking responses in L1. A simple conductance-based model that only contained lateral inhibition within L1 recapitulated the sensory responses and the winner-takes-all cholinergic responses, and the model correctly predicted that the network would function as a spatial and temporal high-pass filter for excitatory inputs. Our results demonstrate that all-optical electrophysiology can reveal basic principles of neural circuit function in vivo and suggest an intuitive picture for how L1 transforms sensory and modulatory inputs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Linlin Z Fan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Simon Kheifets
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Urs L Böhm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hao Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Kiryl D Piatkevich
- Media Lab and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michael E Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Vicente Parot
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yooree Ha
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Edward S Boyden
- Media Lab and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Anne E Takesian
- Harvard Medical School, Boston, MA, USA; Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Department of Physics, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
353
|
Gallego JA, Perich MG, Chowdhury RH, Solla SA, Miller LE. Long-term stability of cortical population dynamics underlying consistent behavior. Nat Neurosci 2020; 23:260-270. [PMID: 31907438 PMCID: PMC7007364 DOI: 10.1038/s41593-019-0555-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/11/2019] [Indexed: 01/08/2023]
Abstract
Animals readily execute learned behaviors in a consistent manner over long periods of time, and yet no equally stable neural correlate has been demonstrated. How does the cortex achieve this stable control? Using the sensorimotor system as a model of cortical processing, we investigated the hypothesis that the dynamics of neural latent activity, which captures the dominant co-variation patterns within the neural population, must be preserved across time. We recorded from populations of neurons in premotor, primary motor and somatosensory cortices as monkeys performed a reaching task, for up to 2 years. Intriguingly, despite a steady turnover in the recorded neurons, the low-dimensional latent dynamics remained stable. The stability allowed reliable decoding of behavioral features for the entire timespan, while fixed decoders based directly on the recorded neural activity degraded substantially. We posit that stable latent cortical dynamics within the manifold are the fundamental building blocks underlying consistent behavioral execution.
Collapse
Affiliation(s)
- Juan A Gallego
- Neural and Cognitive Engineering Group, Center for Automation and Robotics, Spanish National Research Council, Arganda del Rey, Spain.
- Department of Physiology, Northwestern University, Chicago, IL, USA.
- Department of Bioengineering, Imperial College London, London, UK.
| | - Matthew G Perich
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raeed H Chowdhury
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sara A Solla
- Department of Physiology, Northwestern University, Chicago, IL, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
| | - Lee E Miller
- Department of Physiology, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, and Shirley Ryan Ability Lab, Chicago, IL, USA.
| |
Collapse
|
354
|
Lee CR, Najafizadeh L, Margolis DJ. Investigating learning-related neural circuitry with chronic in vivo optical imaging. Brain Struct Funct 2020; 225:467-480. [PMID: 32006147 DOI: 10.1007/s00429-019-02001-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Fundamental aspects of brain function, including development, plasticity, learning, and memory, can take place over time scales of days to years. Chronic in vivo imaging of neural activity with cellular resolution is a powerful method for tracking the long-term activity of neural circuits. We review recent advances in our understanding of neural circuit function from diverse brain regions that have been enabled by chronic in vivo cellular imaging. Insight into the neural basis of learning and decision-making, in particular, benefit from the ability to acquire longitudinal data from genetically identified neuronal populations, deep brain areas, and subcellular structures. We propose that combining chronic imaging with further experimental and computational innovations will advance our understanding of the neural circuit mechanisms of brain function.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
355
|
Kandori H. Retinal Proteins: Photochemistry and Optogenetics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
356
|
Suzuki T, Morimoto N, Akaike A, Osakada F. Multiplex Neural Circuit Tracing With G-Deleted Rabies Viral Vectors. Front Neural Circuits 2020; 13:77. [PMID: 31998081 PMCID: PMC6967742 DOI: 10.3389/fncir.2019.00077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
Neural circuits interconnect to organize large-scale networks that generate perception, cognition, memory, and behavior. Information in the nervous system is processed both through parallel, independent circuits and through intermixing circuits. Analyzing the interaction between circuits is particularly indispensable for elucidating how the brain functions. Monosynaptic circuit tracing with glycoprotein (G) gene-deleted rabies viral vectors (RVΔG) comprises a powerful approach for studying the structure and function of neural circuits. Pseudotyping of RVΔG with the foreign envelope EnvA permits expression of transgenes such as fluorescent proteins, genetically-encoded sensors, or optogenetic tools in cells expressing TVA, a cognate receptor for EnvA. Trans-complementation with rabies virus glycoproteins (RV-G) enables trans-synaptic labeling of input neurons directly connected to the starter neurons expressing both TVA and RV-G. However, it remains challenging to simultaneously map neuronal connections from multiple cell populations and their interactions between intermixing circuits solely with the EnvA/TVA-mediated RV tracing system in a single animal. To overcome this limitation, here, we multiplexed RVΔG circuit tracing by optimizing distinct viral envelopes (oEnvX) and their corresponding receptors (oTVX). Based on the EnvB/TVB and EnvE/DR46-TVB systems derived from the avian sarcoma leukosis virus (ASLV), we developed optimized TVB receptors with lower or higher affinity (oTVB-L or oTVB-H) and the chimeric envelope oEnvB, as well as an optimized TVE receptor with higher affinity (oTVE-H) and its chimeric envelope oEnvE. We demonstrated independence of RVΔG infection between the oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems and in vivo proof-of-concept for multiplex circuit tracing from two distinct classes of layer 5 neurons targeting either other cortical or subcortical areas. We also successfully labeled common input of the lateral geniculate nucleus to both cortico-cortical layer 5 neurons and inhibitory neurons of the mouse V1 with multiplex RVΔG tracing. These oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems allow for differential labeling of distinct circuits to uncover the mechanisms underlying parallel processing through independent circuits and integrated processing through interaction between circuits in the brain.
Collapse
Affiliation(s)
- Toshiaki Suzuki
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Akinori Akaike
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
357
|
Allende Motz AM, Czerski J, Adams DE, Durfee C, Bartels R, Field J, Hoy CL, Squier J. Two-dimensional random access multiphoton spatial frequency modulated imaging. OPTICS EXPRESS 2020; 28:405-424. [PMID: 32118968 PMCID: PMC7053501 DOI: 10.1364/oe.378460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/17/2023]
Abstract
Spatial frequency modulated imaging (SPIFI) enables the use of an extended excitation source for linear and nonlinear imaging with single element detection. To date, SPIFI has only been used with fixed excitation source geometries. Here, we explore the potential for the SPIFI method when a spatial light modulator (SLM) is used to program the excitation source, opening the door to a more versatile, random access imaging environment. In addition, an in-line, quantitative pulse compensation and measurement scheme is demonstrated using a new technique, spectral phase and amplitude retrieval and compensation (SPARC). This enables full characterization of the light exposure conditions at the focal plane of the random access imaging system, an important metric for optimizing, and reporting imaging conditions within specimens.
Collapse
Affiliation(s)
- Alyssa M. Allende Motz
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| | - John Czerski
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| | - Daniel E. Adams
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| | - Charles Durfee
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| | - Randy Bartels
- Department of Electrical Engineering, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
- Department of Biomedical Engineering, and Molecular Biology, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
| | - Jeff Field
- Department of Electrical Engineering, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
- Department of Biomedical Engineering, and Molecular Biology, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
- Microscope Imaging Network Foundation Core Facility, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
| | | | - Jeff Squier
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
358
|
Bayne T, Seth AK, Massimini M. Are There Islands of Awareness? Trends Neurosci 2020; 43:6-16. [DOI: 10.1016/j.tins.2019.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
|
359
|
Lu Y, Zhou XE, Gao X, Wang N, Xia R, Xu Z, Leng Y, Shi Y, Wang G, Melcher K, Xu HE, He Y. Crystal structure of heliorhodopsin 48C12. Cell Res 2019; 30:88-90. [PMID: 31879417 PMCID: PMC6951262 DOI: 10.1038/s41422-019-0266-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yang Lu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - X Edward Zhou
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Xiang Gao
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yu Leng
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yuying Shi
- Laboratory of Neuroscience, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Guangfu Wang
- Laboratory of Neuroscience, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Karsten Melcher
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - H Eric Xu
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.,Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
360
|
Wu X, Zhu X, Chong P, Liu J, Andre LN, Ong KS, Brinson K, Mahdi AI, Li J, Fenno LE, Wang H, Hong G. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc Natl Acad Sci U S A 2019; 116:26332-26342. [PMID: 31811026 PMCID: PMC6936518 DOI: 10.1073/pnas.1914387116] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Optogenetics, which uses visible light to control the cells genetically modified with light-gated ion channels, is a powerful tool for precise deconstruction of neural circuitry with neuron-subtype specificity. However, due to limited tissue penetration of visible light, invasive craniotomy and intracranial implantation of tethered optical fibers are usually required for in vivo optogenetic modulation. Here we report mechanoluminescent nanoparticles that can act as local light sources in the brain when triggered by brain-penetrant focused ultrasound (FUS) through intact scalp and skull. Mechanoluminescent nanoparticles can be delivered into the blood circulation via i.v. injection, recharged by 400-nm photoexcitation light in superficial blood vessels during circulation, and turned on by FUS to emit 470-nm light repetitively in the intact brain for optogenetic stimulation. Unlike the conventional "outside-in" approaches of optogenetics with fiber implantation, our method provides an "inside-out" approach to deliver nanoscopic light emitters via the intrinsic circulatory system and switch them on and off at any time and location of interest in the brain without extravasation through a minimally invasive ultrasound interface.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Xingjun Zhu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Paul Chong
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Junlang Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Louis N. Andre
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Kyrstyn S. Ong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Kenneth Brinson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Ali I. Mahdi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Jiachen Li
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Lief E. Fenno
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Psychiatry, Stanford University, Stanford, CA 94305
| | - Huiliang Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Psychiatry, Stanford University, Stanford, CA 94305
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
361
|
Nakajima M, Schmitt LI. Understanding the circuit basis of cognitive functions using mouse models. Neurosci Res 2019; 152:44-58. [PMID: 31857115 DOI: 10.1016/j.neures.2019.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023]
Abstract
Understanding how cognitive functions arise from computations occurring in the brain requires the ability to measure and perturb neural activity while the relevant circuits are engaged for specific cognitive processes. Rapid technical advances have led to the development of new approaches to transiently activate and suppress neuronal activity as well as to record simultaneously from hundreds to thousands of neurons across multiple brain regions during behavior. To realize the full potential of these approaches for understanding cognition, however, it is critical that behavioral conditions and stimuli are effectively designed to engage the relevant brain networks. Here, we highlight recent innovations that enable this combined approach. In particular, we focus on how to design behavioral experiments that leverage the ever-growing arsenal of technologies for controlling and measuring neural activity in order to understand cognitive functions.
Collapse
Affiliation(s)
- Miho Nakajima
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - L Ian Schmitt
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Brain Science, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
362
|
Frankland PW, Josselyn SA, Köhler S. The neurobiological foundation of memory retrieval. Nat Neurosci 2019; 22:1576-1585. [PMID: 31551594 DOI: 10.1038/s41593-019-0493-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Memory retrieval involves the interaction between external sensory or internally generated cues and stored memory traces (or engrams) in a process termed 'ecphory'. While ecphory has been examined in human cognitive neuroscience research, its neurobiological foundation is less understood. To the extent that ecphory involves 'reawakening' of engrams, leveraging recently developed technologies that can identify and manipulate engrams in rodents provides a fertile avenue for examining retrieval at the level of neuronal ensembles. Here we evaluate emerging neuroscientific research of this type, using cognitive theory as a guiding principle to organize and interpret initial findings. Our Review highlights the critical interaction between engrams and retrieval cues (environmental or artificial) for memory accessibility and retrieval success. These findings also highlight the intimate relationship between the mechanisms important in forming engrams and those important in their recovery, as captured in the cognitive notion of 'encoding specificity'. Finally, we identify several questions that currently remain unanswered.
Collapse
Affiliation(s)
- Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada. .,Department of Psychology, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Stefan Köhler
- Department of Psychology, University of Western Ontario, London, Ontario, Canada. .,The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
363
|
Reardon S. Hallucinations implanted in mouse brains using light. Nature 2019; 571:459-460. [DOI: 10.1038/d41586-019-02220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|