351
|
Pierucci-Alves F, Akoyev V, Stewart JC, Wang LH, Janardhan KS, Schultz BD. Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 2011; 85:442-51. [PMID: 21593481 PMCID: PMC3159534 DOI: 10.1095/biolreprod.111.090860] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/03/2011] [Accepted: 04/25/2011] [Indexed: 11/01/2022] Open
Abstract
Nearly all male cystic fibrosis (CF) patients exhibit tissue abnormalities in the reproductive tract, a condition that renders them azoospermic and infertile. Two swine CF models have been reported recently that include respiratory and digestive manifestations that are comparable to human CF. The goal of this study was to determine the phenotypic changes that may be present in the vas deferens of these swine CF models. Tracts from CFTR(-/-) and CFTR(ΔF508/ΔF508) neonates revealed partial or total vas deferens and/or epididymis atresia at birth, while wild-type littermates were normal. Histopathological analysis revealed a range of tissue abnormalities and disruptions in tubular organization. Vas deferens epithelial cells were isolated and electrophysiological results support that CFTR(-/-) monolayers can exhibit Na(+) reabsorption but reveal no anion secretion following exposure to cAMP-generating compounds, suggesting that CFTR-dependent Cl(-) and/or HCO(3)(-) transport is completely impaired. SLC26A3 and SLC26A6 immunoreactivities were detected in all experimental groups, indicating that these two chloride-bicarbonate exchangers were present, but were either unable to function or their activity is electroneutral. In addition, no signs of increased mucus synthesis and/or secretion were present in the male excurrent ducts of these CF models. Results demonstrate a causal link between CFTR mutations and duct abnormalities that are manifested at birth.
Collapse
|
352
|
Defective fluid secretion from submucosal glands of nasal turbinates from CFTR-/- and CFTR (ΔF508/ΔF508) pigs. PLoS One 2011; 6:e24424. [PMID: 21935358 PMCID: PMC3164206 DOI: 10.1371/journal.pone.0024424] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/09/2011] [Indexed: 11/23/2022] Open
Abstract
Background Cystic fibrosis (CF), caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion. Methodology/Principal Findings Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area), more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands). Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls) in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland) were as follows: 3 µM forskolin: 9.2±2.2 vs. 0.6±0.3; 1 µM carbachol: 143.5±35.5 vs. 52.2±10.3; 3 µM forskolin + 0.1 µM carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CFΔF508/ΔF508 with CFTR-/- piglets and found significantly greater forskolin-stimulated secretion rates in the ΔF508 vs. the null piglets (1.4±0.8, n = 4 vs. 0.2±0.1, n = 7). An unexpected age effect was also discovered: the ratio of secretion to 3 µM forskolin vs. 1 µM carbachol was ∼4 times greater in adult than in neonatal nasal glands. Conclusions/Significance These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ΔF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections.
Collapse
|
353
|
Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 2011; 13:1133-45. [PMID: 21839853 DOI: 10.1016/j.micinf.2011.07.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/05/2023]
Abstract
Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models.
Collapse
|
354
|
Goss CH, Muhlebach MS. Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 2011; 10:298-306. [PMID: 21719362 DOI: 10.1016/j.jcf.2011.06.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/27/2011] [Accepted: 06/03/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is one of the earliest bacteria detected in infants and children with cystic fibrosis (CF). The rise of methicillin resistant S. aureus (MRSA) in the last 10 years has caused a lot of attention to this organism. RESULTS The aim of this review is to provide a general overview of methicillin sensitive S. aureus (MSSA) and MRSA, discuss special aspects of S. aureus in cystic fibrosis, and to review treatment concepts. Microbiology of the organism will be reviewed along with data regarding the epidemiology of both MSSA and MRSA. Antibiotic treatments both in regards to acute management and eradication of MSSA and MRSA will be reviewed. Prophylaxis of MSSA in CF remains controversial. Treatment with anti-staphylococcal agents reduces the infection rate with MSSA but may lead to a higher rate of infection with P. aeruginosa. In regards to MRSA, there is a paucity of clinical data regarding approaches to eradication. CONCLUSIONS To advance the care of CF patients, controlled clinical trials are urgently needed to find the optimal approach to treating CF patients who are infected with either MSSA or MRSA.
Collapse
|
355
|
Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, Rogan MP, Davis GJ, Dohrn CL, Wohlford-Lenane C, Taft PJ, Rector MV, Hornick E, Nassar BS, Samuel M, Zhang Y, Richter SS, Uc A, Shilyansky J, Prather RS, McCray PB, Zabner J, Welsh MJ, Stoltz DA. The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med 2011; 3:74ra24. [PMID: 21411740 DOI: 10.1126/scitranslmed.3001868] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. The most common CF-associated mutation is ΔF508, which deletes a phenylalanine in position 508. In vitro studies indicate that the resultant protein, CFTR-ΔF508, is misprocessed, although the in vivo consequences of this mutation remain uncertain. To better understand the effects of the ΔF508 mutation in vivo, we produced CFTR(ΔF508/ΔF508) pigs. Our biochemical, immunocytochemical, and electrophysiological data on CFTR-ΔF508 in newborn pigs paralleled in vitro predictions. They also indicated that CFTR(ΔF508/ΔF508) airway epithelia retain a small residual CFTR conductance, with maximal stimulation producing ~6% of wild-type function. Cyclic adenosine 3',5'-monophosphate (cAMP) agonists were less potent at stimulating current in CFTR(Δ)(F508/)(Δ)(F508) epithelia, suggesting that quantitative tests of maximal anion current may overestimate transport under physiological conditions. Despite residual CFTR function, four older CFTR(ΔF508/ΔF508) pigs developed lung disease similar to human CF. These results suggest that this limited CFTR activity is insufficient to prevent lung or gastrointestinal disease in CF pigs. These data also suggest that studies of recombinant CFTR-ΔF508 misprocessing predict in vivo behavior, which validates its use in biochemical and drug discovery experiments. These findings help elucidate the molecular pathogenesis of the common CF mutation and will guide strategies for developing new therapeutics.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Itani OA, Chen JH, Karp PH, Ernst S, Keshavjee S, Parekh K, Klesney-Tait J, Zabner J, Welsh MJ. Human cystic fibrosis airway epithelia have reduced Cl- conductance but not increased Na+ conductance. Proc Natl Acad Sci U S A 2011; 108:10260-10265. [PMID: 21646513 PMCID: PMC3121869 DOI: 10.1073/pnas.1106695108] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF) lung disease. CFTR is expressed in airway epithelia, but how CF alters electrolyte transport across airway epithelia has remained uncertain. Recent studies of a porcine model showed that in vivo, excised, and cultured CFTR(-/-) and CFTR(ΔF508/ΔF508) airway epithelia lacked anion conductance, and they did not hyperabsorb Na(+). Therefore, we asked whether Cl(-) and Na(+) conductances were altered in human CF airway epithelia. We studied differentiated primary cultures of tracheal/bronchial epithelia and found that transepithelial conductance (Gt) under basal conditions and the cAMP-stimulated increase in Gt were markedly attenuated in CF epithelia compared with non-CF epithelia. These data reflect loss of the CFTR anion conductance. In CF and non-CF epithelia, the Na(+) channel inhibitor amiloride produced similar reductions in Gt and Na(+) absorption, indicating that Na(+) conductance in CF epithelia did not exceed that in non-CF epithelia. Consistent with previous reports, adding amiloride caused greater reductions in transepithelial voltage and short-circuit current in CF epithelia than in non-CF epithelia; these changes are attributed to loss of a Cl(-) conductance. These results indicate that Na(+) conductance was not increased in these cultured CF tracheal/bronchial epithelia and point to loss of anion transport as key to airway epithelial dysfunction in CF.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- Departments of Internal Medicine
- The Howard Hughes Medical Institute, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | - Philip H. Karp
- Departments of Internal Medicine
- The Howard Hughes Medical Institute, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | | | - Shaf Keshavjee
- Toronto Lung Transplant Program,University of Toronto, Toronto, ON, Canada M5G 2C4
| | | | | | | | - Michael J. Welsh
- Departments of Internal Medicine
- Molecular Physiology and Biophysics and
- The Howard Hughes Medical Institute, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| |
Collapse
|
357
|
|
358
|
Martens CJ, Inglis SK, Valentine VG, Garrison J, Conner GE, Ballard ST. Mucous solids and liquid secretion by airways: studies with normal pig, cystic fibrosis human, and non-cystic fibrosis human bronchi. Am J Physiol Lung Cell Mol Physiol 2011; 301:L236-46. [PMID: 21622844 DOI: 10.1152/ajplung.00388.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand how airways produce thick airway mucus, nonvolatile solids were measured in liquid secreted by bronchi from normal pig, cystic fibrosis (CF) human, and non-CF human lungs. Bronchi were exposed to various secretagogues and anion secretion inhibitors to induce a range of liquid volume secretion rates. In all three groups, the relationship of solids concentration (percent nonvolatile solids) to liquid volume secretion rate was curvilinear, with higher solids concentration associated with lower rates of liquid volume secretion. In contrast, the secretion rates of solids mass and water mass as functions of liquid volume secretion rates exhibited positive linear correlations. The y-intercepts of the solids mass-liquid volume secretion relationships for all three groups were positive, thus accounting for the higher solids concentrations in airway liquid at low rates of secretion. Predictive models derived from the solids mass and water mass linear equations fit the experimental percent solids data for the three groups. The ratio of solids mass secretion to liquid volume secretion was 5.2 and 2.4 times higher for CF bronchi than for pig and non-CF bronchi, respectively. These results indicate that normal pig, non-CF human, and CF human bronchi produce a high-percent-solids mucus (>8%) at low rates of liquid volume secretion (≤1.0 μl·cm(-2)·h(-1)). However, CF bronchi produce mucus with twice the percent solids (~8%) of pig or non-CF human bronchi at liquid volume secretion rates ≥4.0 μl·cm(-2)·h(-1).
Collapse
Affiliation(s)
- Chelsea J Martens
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | | | |
Collapse
|
359
|
Rousseau K, Cardwell JM, Humphrey E, Newton R, Knight D, Clegg P, Thornton DJ. Muc5b is the major polymeric mucin in mucus from thoroughbred horses with and without airway mucus accumulation. PLoS One 2011; 6:e19678. [PMID: 21602926 PMCID: PMC3094342 DOI: 10.1371/journal.pone.0019678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria.
Collapse
Affiliation(s)
- Karine Rousseau
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Emma Humphrey
- Department of Musculoskeletal Biology, University of Liverpool, Neston, United Kingdom
| | - Richard Newton
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, United Kingdom
| | - David Knight
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Peter Clegg
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- Department of Musculoskeletal Biology, University of Liverpool, Neston, United Kingdom
| | - David J. Thornton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
360
|
Lorentzen D, Durairaj L, Pezzulo AA, Nakano Y, Launspach J, Stoltz DA, Zamba G, McCray PB, Zabner J, Welsh MJ, Nauseef WM, Bánfi B. Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions. Free Radic Biol Med 2011; 50:1144-50. [PMID: 21334431 PMCID: PMC3070840 DOI: 10.1016/j.freeradbiomed.2011.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/31/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
A recently discovered enzyme system produces antibacterial hypothiocyanite (OSCN(-)) in the airway lumen by oxidizing the secreted precursor thiocyanate (SCN(-)). Airway epithelial cultures have been shown to secrete SCN(-) in a CFTR-dependent manner. Thus, reduced SCN(-) availability in the airway might contribute to the pathogenesis of cystic fibrosis (CF), a disease caused by mutations in the CFTR gene and characterized by an airway host defense defect. We tested this hypothesis by analyzing the SCN(-) concentration in the nasal airway surface liquid (ASL) of CF patients and non-CF subjects and in the tracheobronchial ASL of CFTR-ΔF508 homozygous pigs and control littermates. In the nasal ASL, the SCN(-) concentration was ~30-fold higher than in serum independent of the CFTR mutation status of the human subject. In the tracheobronchial ASL of CF pigs, the SCN(-) concentration was somewhat reduced. Among human subjects, SCN(-) concentrations in the ASL varied from person to person independent of CFTR expression, and CF patients with high SCN(-) levels had better lung function than those with low SCN(-) levels. Thus, although CFTR can contribute to SCN(-) transport, it is not indispensable for the high SCN(-) concentration in ASL. The correlation between lung function and SCN(-) concentration in CF patients may reflect a beneficial role for SCN(-).
Collapse
Affiliation(s)
- Daniel Lorentzen
- Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Immunology Program, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Lakshmi Durairaj
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Yoko Nakano
- Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Janice Launspach
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - David A. Stoltz
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Gideon Zamba
- Department of Biostatistics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Paul B. McCray
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Michael J. Welsh
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Howard Hughes Medical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - William M. Nauseef
- Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Immunology Program, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Dept. of Veterans Affairs, Iowa City VA Medical Center, Iowa City, Iowa 52242, USA
| | - Botond Bánfi
- Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Correspondence to: Botond Bánfi, M.D. Ph.D., Inflammation Program, University of Iowa Carver College of Medicine, 2501 Crosspark Road, Coralville, IA 52241, USA, , tel.: 1-319-335-4228, fax.: 1-319-335-4194
| |
Collapse
|
361
|
Chang EH, Lacruz RS, Bromage TG, Bringas P, Welsh MJ, Zabner J, Paine ML. Enamel pathology resulting from loss of function in the cystic fibrosis transmembrane conductance regulator in a porcine animal model. Cells Tissues Organs 2011; 194:249-54. [PMID: 21525720 DOI: 10.1159/000324248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a phosphorylation- and ATP-regulated anion channel. CFTR expression and activity is frequently associated with an anion exchanger (AE) such as AE2 coded by the Slc4a2 gene. Mice null for Cftr and mice null for Slc4a2 have enamel defects, and there are some case reports of enamel anomalies in patients with CF. In this study we demonstrate that both Cftr and AE2 expression increased significantly during the rat enamel maturation stage versus the earlier secretory stage (5.6- and 2.9-fold, respectively). These qPCR data im- ply that there is a greater demand for Cl(-) and bicarbonate (HCO₃⁻) transport during the maturation stage of enamel formation, and that this is, at least in part, provided by changes in Cftr and AE2 expression. In addition, the enamel phenotypes of 2 porcine models of CF, CFTR-null, and CFTR-ΔF508 have been examined using backscattered electron microscopy in a scanning electron microscope. The enamel of newborn CFTR-null and CFTR-ΔF508 animals is hypomineralized. Together, these data provide a molecular basis for interpreting enamel disease associated with disruptions to CFTR and AE2 expression.
Collapse
Affiliation(s)
- Eugene H Chang
- Department of Otolaryngology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | |
Collapse
|
362
|
Sibley CD, Surette MG. The polymicrobial nature of airway infections in cystic fibrosis: Cangene Gold Medal Lecture. Can J Microbiol 2011; 57:69-77. [PMID: 21326348 DOI: 10.1139/w10-105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbial communities characterize the airways of cystic fibrosis (CF) patients. Members of these diverse and dynamic communities can be thought of as pathogens, benign commensals, or synergens--organisms not considered pathogens in the traditional sense but with the capacity to alter the pathogenesis of the community through microbe-microbe or polymicrobe-host interactions. Very few bacterial pathogens have been implicated as clinically relevant in CF; however, the CF airway microbiome can be a reservoir of previously unrecognized but clinically relevant organisms. A combination of culture-dependent and culture-independent approaches provides a more comprehensive perspective of CF microbiology than either approach alone. Here we review these concepts, highlight the future challenges for CF microbiology, and discuss the implications for the management of CF airway infections. We suggest that the success of treatment interventions for chronic CF lung disease will rely on the context of the microbes within microbial communities. The microbiology of CF airways may serve as a model to investigate the emergent properties of other clinically relevant microbial communities in the human body.
Collapse
Affiliation(s)
- Christopher D Sibley
- Department of Microbiology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
363
|
Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther 2011; 18:996-1005. [DOI: 10.1038/gt.2011.55] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
364
|
Piedrahita JA, Olby N. Perspectives on transgenic livestock in agriculture and biomedicine: an update. Reprod Fertil Dev 2011; 23:56-63. [PMID: 21366981 DOI: 10.1071/rd10246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has been 30 years since the first transgenic mouse was generated and 26 years since the first example of transferring the technology to livestock was published. While there was tremendous optimism in those initial years, with most convinced that genetically modified animals would play a significant role in agricultural production, that has not come to be. So at first sight one could conclude that this technology has, to a large extent, failed. On the contrary, it is believed that it has succeeded beyond our original expectations, and we are now at what is perhaps the most exciting time in the development and implementation of these technologies. The original goals, however, have drastically changed and it is now biomedical applications that are playing a central role in pushing both technical and scientific developments. The combination of advances in somatic cell nuclear transfer, the development of induced pluripotent stem cells and the completion of the sequencing of most livestock genomes ensures a bright and exciting future for this field, not only in livestock but also in companion animal species.
Collapse
Affiliation(s)
- Jorge A Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| | | |
Collapse
|
365
|
Griesenbach U, Alton EW. Current Status and Future Directions of Gene and Cell Therapy for Cystic Fibrosis. BioDrugs 2011; 25:77-88. [DOI: 10.2165/11586960-000000000-00000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
366
|
de Bentzmann S, Plésiat P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol 2011; 13:1655-65. [PMID: 21450006 DOI: 10.1111/j.1462-2920.2011.02469.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa, a Gram-negative environmental species and an opportunistic microorganism, establishes itself in vulnerable patients, such as those with cystic fibrosis or hospitalized in intensive care units. It has become a major cause of nosocomial infections worldwide (about 10% of all such infections in most European Union hospitals) and a serious threat to Public Health. The overuse and misuse of antibiotics have also led to the selection of resistant strains against which very few therapeutic options exist. How an environmental species can cause human infections remains a key question that still needs elucidation despite the incredibly high progress that has been made in the P. aeruginosa biology over the past decades. The workshop belonging to Current trends in Biomedicine series, which was held under the sponsorship of the Universidad International de Andalucia between the 8th and the 10th November 2010 brought in the most recent advances in the environmental life of P. aeruginosa, the human P. aeruginosa infections, the new animal models to study Pseudomonas infections, the new genetic aspects including metabolomics, genomics and bioinformatics and the community lifestyle named biofilm that accounts for P. aeruginosa persistence in humans. This workshop organized by Soeren Molin (Danemark), Juan-Luis Ramos (Spain) and Sophie de Bentzmann (France) gathered 46 researchers coming from 11 European and American countries in a small format and was hosted in the 'Sede Antonio Machado' in Baeza. It was organized in seven sessions covering animal models for P. aeruginosa pathogenesis, resistance to drugs, regulatory potency including small RNA, two component systems, extracytoplasmic function sigma factors and trancriptional regulators, new therapies emerging from dissection of molecular mechanisms, and evolutionary mechanisms of P. aeruginosa strains in patients.
Collapse
Affiliation(s)
- Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS - Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France.
| | | |
Collapse
|
367
|
Sinn PL, Anthony RM, McCray PB. Genetic therapies for cystic fibrosis lung disease. Hum Mol Genet 2011; 20:R79-86. [PMID: 21422098 DOI: 10.1093/hmg/ddr104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of gene therapy for cystic fibrosis (CF) lung disease is to efficiently and safely express the CF transmembrane conductance regulator (CFTR) in the appropriate pulmonary cell types. Although CF patients experience multi-organ disease, the chronic bacterial lung infections and associated inflammation are the primary cause of shortened life expectancy. Gene transfer-based therapeutic approaches are feasible, in part, because the airway epithelium is directly accessible by aerosol delivery or instillation. Improvements in standard delivery vectors and the development of novel vectors, as well as emerging technologies and new animal models, are propelling exciting new research forward. Here, we review recent developments that are advancing this field of investigation.
Collapse
Affiliation(s)
- Patrick L Sinn
- Program in Gene Therapy, Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
368
|
|
369
|
|
370
|
Khansaheb M, Choi JY, Joo NS, Yang YM, Krouse M, Wine JJ. Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands. Am J Physiol Lung Cell Mol Physiol 2011; 300:L370-9. [DOI: 10.1152/ajplung.00372.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et al. J Clin Invest 120: 3161–3166, 2010). To further define features of SubP-mediated gland secretion, we optically measured secretion rates from individual adult porcine glands in isolated tracheal tissues in response to mucosal capsaicin and serosal SubP. Mucosal capsaicin (EC50 = 19 μM) stimulated low rates of secretion that were partially inhibited by tetrodotoxin and by inhibitors for muscarinic, VIP, and SubP receptors, suggesting reflex stimulation of secretion by multiple transmitters. Secretion in response to mucosal capsaicin was inhibited by CFTRinh-172, but not by niflumic acid. Serosal SubP (EC50 = 230 nM) stimulated 10-fold more secretion than mucosal capsaicin, with a Vmax similar to that of carbachol. Secretion rates peaked within 5 min and then declined to a lower sustained rate. SubP-stimulated secretion was inhibited 75% by bumetanide, 53% by removal of HCO3−, and 85% by bumetanide + removal of HCO3−; it was not inhibited by atropine but was inhibited by niflumic acid, clotrimazole, BAPTA-AM, nominally Ca2+-free bath solution, and the adenylate cyclase inhibitor MDL-12330A. Ratiometric measurements of fura 2 fluorescence in dissociated gland cells showed that SubP and carbachol increased intracellular Ca2+ concentration by similar amounts. SubP produced rapid volume loss by serous and mucous cells, expansion of gland lumina, mucus flow, and exocytosis but little or no contraction of myoepithelial cells. These and prior results suggest that SubP stimulates pig gland secretion via CFTR- and Ca2+-activated Cl− channels.
Collapse
Affiliation(s)
- Monal Khansaheb
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jae Young Choi
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
- Department of Otorhinolaryngology, Yonsei University, and
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Yu-Mi Yang
- Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Mauri Krouse
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
371
|
Abstract
The airway epithelium represents the first point of contact for inhaled foreign organisms. The protective arsenal of the airway epithelium is provided in the form of physical barriers and a vast array of receptors and antimicrobial compounds that constitute the innate immune system. Many of the known innate immune receptors, including the Toll-like receptors and nucleotide oligomerization domain-like receptors, are expressed by the airway epithelium, which leads to the production of proinflammatory cytokines and chemokines that affect microorganisms directly and recruit immune cells, such as neutrophils and T cells, to the site of infection. The airway epithelium also produces a number of resident antimicrobial proteins, such as lysozyme, lactoferrin, and mucins, as well as a swathe of cationic proteins. Dysregulation of the airway epithelial innate immune system is associated with a number of medical conditions that can result in compromised immunity and chronic inflammation of the lung. This review focuses on the innate immune capabilities of the airway epithelium and its role in protecting the lung from infection as well as the outcomes when its function is compromised.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
372
|
The Cystic Fibrosis Neutrophil: A Specialized Yet Potentially Defective Cell. Arch Immunol Ther Exp (Warsz) 2011; 59:97-112. [DOI: 10.1007/s00005-011-0113-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/27/2010] [Indexed: 12/20/2022]
|
373
|
Balch WE, Roth DM, Hutt DM. Emergent properties of proteostasis in managing cystic fibrosis. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004499. [PMID: 21421917 DOI: 10.1101/cshperspect.a004499] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cystic fibrosis (CF) is a consequence of defective recognition of the multimembrane spanning protein cystic fibrosis conductance transmembrane regulator (CFTR) by the protein homeostasis or proteostasis network (PN) (Hutt and Balch (2010). Like many variant proteins triggering misfolding diseases, mutant CFTR has a complex folding and membrane trafficking itinerary that is managed by the PN to maintain proteome balance and this balance is disrupted in human disease. The biological pathways dictating the folding and function of CFTR in health and disease are being studied by numerous investigators, providing a unique opportunity to begin to understand and therapeutically address the role of the PN in disease onset, and its progression during aging. We discuss the general concept that therapeutic management of the emergent properties of the PN to control the energetics of CFTR folding biology may provide significant clinical benefit.
Collapse
Affiliation(s)
- William E Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
374
|
Abstract
In the past three decades, scientists have had immense success in identifying genes and their variants that contribute to an array of diseases. While the identification of such genetic variants has informed our knowledge of the etiologic bases of diseases, there continues to be a substantial gap in our understanding of the factors that modify disease severity. Monogenic diseases provide an opportunity to identify modifiers as they have uniform etiology, detailed phenotyping of affected individuals, and familial clustering. Cystic fibrosis (CF) is among the more common life-shortening recessive disorders that displays wide variability in clinical features and survival. Considerable progress has been made in elucidating the contribution of genetic and nongenetic factors to CF. Allelic variation in CFTR, the gene responsible for CF, correlates with some aspects of the disease. However, lung function, neonatal intestinal obstruction, diabetes, and anthropometry display strong genetic control independent of CFTR, and candidate gene studies have revealed genetic modifiers underlying these traits. The application of genome-wide techniques holds great promise for the identification of novel genetic variants responsible for the heritable features and complications of CF. Since the genetic modifiers are known to alter the course of disease, their protein products become immediate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
375
|
Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV, Reznikov LR, Launspach JL, Chaloner K, Zabner J, Welsh MJ. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell 2011; 143:911-23. [PMID: 21145458 DOI: 10.1016/j.cell.2010.11.029] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/31/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR⁻(/)⁻ epithelia showed markedly reduced Cl⁻ and HCO₃⁻ transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR⁻(/)⁻ pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl⁻ conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl⁻ and HCO₃⁻ in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.
Collapse
Affiliation(s)
- Jeng-Haur Chen
- Department of Internal Medicine, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Abstract
Animal models of human diseases are critical for dissecting mechanisms of pathophysiology and developing therapies. In the context of cystic fibrosis (CF), mouse models have been the dominant species by which to study CF disease processes in vivo for the past two decades. Although much has been learned through these CF mouse models, limitations in the ability of this species to recapitulate spontaneous lung disease and several other organ abnormalities seen in CF humans have created a need for additional species on which to study CF. To this end, pig and ferret CF models have been generated by somatic cell nuclear transfer and are currently being characterized. These new larger animal models have phenotypes that appear to closely resemble human CF disease seen in newborns, and efforts to characterize their adult phenotypes are ongoing. This chapter will review current knowledge about comparative lung cell biology and cystic fibrosis transmembrane conductance regulator (CFTR) biology among mice, pigs, and ferrets that has implications for CF disease modeling in these species. We will focus on methods used to compare the biology and function of CFTR between these species and their relevance to phenotypes seen in the animal models. These cross-species comparisons and the development of both the pig and the ferret CF models may help elucidate pathophysiologic mechanisms of CF lung disease and lead to new therapeutic approaches.
Collapse
Affiliation(s)
- John T Fisher
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | | |
Collapse
|
377
|
Abstract
Cystic fibrosis is one of the most common life-limiting inherited disorders. Its clinical impact manifests chiefly in the lung, pancreas, gastrointestinal tract and sweat glands, with lung disease typically being most detrimental to health. The median age for survival has increased dramatically over the past decades, largely thanks to advances in understanding of the mechanisms and consequences of disease, leading to the development of better therapies and treatment regimes. The discovery of dysregulated protein biomarkers linked to cystic fibrosis has contributed considerably to this end. This article outlines clinical trials targeting known protein biomarkers, and the current and future contributions of proteomic techniques to cystic fibrosis research. The treatments described range from those designed to provide functional copies of the mutant protein responsible for cystic fibrosis, to others addressing the associated symptoms of chronic inflammation. Preclinical research has employed proteomics to help elucidate pathways and processes implicated in disease that might present opportunities for therapy or prognosis. Global analyses of cystic fibrosis have detected the differential expression of proteins involved in inflammation, proteolytic activity and oxidative stress, which are recognized symptoms of the cystic fibrosis phenotype. The dysregulation of other processes, such as the complement and mitochondrial systems, has also been implicated. A number of studies have focused specifically on proteins that interact with the cystic fibrosis protein, with the goal of restoring its normal proteostasis. Consequently, proteins involved in synthesis, folding, degradation, translocation and localization of the protein have been identified as potential therapeutic targets. Cystic fibrosis patients are prone to lung infections that are thought to contribute to chronic inflammation, and thus proteomic studies have also searched for microbiological biomarkers to use in early infection diagnosis or as indicators of virulence. The review concludes by proposing a future role for proteomics in the high-throughput validation of protein biomarkers under consideration as outcome measures for use in clinical trials and routine disease monitoring.
Collapse
|
378
|
Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci U S A 2010; 107:20571-5. [PMID: 21059918 DOI: 10.1073/pnas.1015281107] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
People with cystic fibrosis (CF) exhibit growth defects. That observation has been attributed, in part, to decreased insulin-like growth factor 1 (IGF1) levels, and the reduction has been blamed on malnutrition and pulmonary inflammation. However, patients with CF already have a reduced weight at birth, a manifestation not likely secondary to poor nutrition or inflammation. We found that, like humans, CF pigs were smaller than non-CF littermates and had lower IGF1 levels. To better understand the basis of IGF1 reduction, we studied newborn pigs and found low IGF1 levels within 12 h of birth. Moreover, humerus length and bone mineral content were decreased, consistent with less IGF1 activity in utero. These findings led us to test newborn humans with CF, and we found that they also had reduced IGF1 levels. Discovering lower IGF1 levels in newborn pigs and humans indicates that the decrease is not solely a consequence of malnutrition or pulmonary inflammation and that loss of cystic fibrosis transmembrane conductance regulator function has a more direct effect. Consistent with this hypothesis, we discovered reduced growth hormone release in organotypic pituitary slice cultures of newborn CF pigs. These findings may explain the long-standing observation that CF newborns are smaller than non-CF babies and why some patients with good clinical status fail to reach their growth potential. The results also suggest that measuring IGF1 levels might be of value as a biomarker to predict disease severity or the response to therapeutics. Finally, they raise the possibility that IGF1 supplementation beginning in infancy might be beneficial in CF.
Collapse
|
379
|
Green DM, McDougal KE, Blackman SM, Sosnay PR, Henderson LB, Naughton KM, Collaco JM, Cutting GR. Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients. Respir Res 2010; 11:140. [PMID: 20932301 PMCID: PMC2964615 DOI: 10.1186/1465-9921-11-140] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/08/2010] [Indexed: 12/22/2022] Open
Abstract
Background Lung infection by various organisms is a characteristic feature of cystic fibrosis (CF). CFTR genotype effects acquisition of Pseudomonas aeruginosa (Pa), however the effect on acquisition of other infectious organisms that frequently precede Pa is relatively unknown. Understanding the role of CFTR in the acquisition of organisms first detected in patients may help guide symptomatic and molecular-based treatment for CF. Methods Lung infection, defined as a single positive respiratory tract culture, was assessed for 13 organisms in 1,381 individuals with CF. Subjects were divided by predicted CFTR function: 'Residual': carrying at least one partial function CFTR mutation (class IV or V) and 'Minimal' those who do not carry a partial function mutation. Kaplan-Meier estimates were created to assess CFTR effect on age of acquisition for each organism. Cox proportional hazard models were performed to control for possible cofactors. A separate Cox regression was used to determine whether defining infection with Pa, mucoid Pa or Aspergillus (Asp) using alternative criteria affected the results. The influence of severity of lung disease at the time of acquisition was evaluated using stratified Cox regression methods by lung disease categories. Results Subjects with 'Minimal' CFTR function had a higher hazard than patients with 'Residual' function for acquisition of 9 of 13 organisms studied (HR ranging from 1.7 to 3.78 based on the organism studied). Subjects with minimal CFTR function acquired infection at a younger age than those with residual function for 12 of 13 organisms (p-values ranging: < 0.001 to 0.017). Minimal CFTR function also associated with younger age of infection when 3 alternative definitions of infection with Pa, mucoid Pa or Asp were employed. Risk of infection is correlated with CFTR function for 8 of 9 organisms in patients with good lung function (>90%ile) but only 1 of 9 organisms in those with poorer lung function (<50%ile). Conclusions Residual CFTR function correlates with later onset of respiratory tract infection by a wide spectrum of organisms frequently cultured from CF patients. The protective effect conferred by residual CFTR function is diminished in CF patients with more advanced lung disease.
Collapse
Affiliation(s)
- Deanna M Green
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
380
|
Lee RJ, Foskett JK. cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 2010; 120:3137-48. [PMID: 20739756 DOI: 10.1172/jci42992] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), which is caused by mutations in CFTR, affects many tissues, including the lung. Submucosal gland serous acinar cells are primary sites of fluid secretion and CFTR expression in the lung. Absence of CFTR in these cells may contribute to CF lung pathogenesis by disrupting fluid secretion. Here, we have isolated primary serous acinar cells from wild-type and CFTR-/- pigs and humans without CF to investigate the cellular mechanisms and regulation of fluid secretion by optical imaging. Porcine and human serous cells secrete fluid in response to vasoactive intestinal polypeptide (VIP) and other agents that raise intracellular cAMP levels; here, we have demonstrated that this requires CFTR and a cAMP-dependent rise in intracellular Ca2+ concentration ([Ca2+]i). Importantly, cAMP induced the release of Ca2+ from InsP3-sensitive Ca2+ stores also responsive to cAMP-independent agonists such as cholinergic, histaminergic, and purinergic agonists that stimulate CFTR-independent fluid secretion. This provides two types of synergism that strongly potentiated cAMP-mediated fluid secretion but differed in their CFTR dependencies. First, CFTR-dependent secretion was strongly potentiated by low VIP and carbachol concentrations that individually were unable to stimulate secretion. Second, higher VIP concentrations more strongly potentiated the [Ca2+]i responses, enabling ineffectual levels of cholinergic stimulation to strongly activate CFTR-independent fluid secretion. These results identify important molecular mechanisms of cAMP-dependent secretion, including a requirement for Ca2+ signaling, and suggest new therapeutic approaches to correct defective submucosal gland secretion in CF.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | |
Collapse
|
381
|
Joo NS, Cho HJ, Khansaheb M, Wine JJ. Hyposecretion of fluid from tracheal submucosal glands of CFTR-deficient pigs. J Clin Invest 2010; 120:3161-6. [PMID: 20739758 DOI: 10.1172/jci43466] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) results from mutations that disrupt CF transmembrane conductance regulator (CFTR), an anion channel found mainly in apical membranes of epithelial cells. CF leads to chronic infection of the airways with normally innocuous bacteria and fungi. Hypotheses to explain the pathophysiology of CF airways have been difficult to test because mouse models of CF do not develop human-like airway disease. The recent production of pigs lacking CFTR and pigs expressing the most common CF-causing CFTR mutant, DeltaF508, provide another model that might help clarify the pathophysiology of CF airway disease. Here, we studied individual submucosal glands from 1-day-old piglets in situ in explanted tracheas, using optical methods to monitor mucus secretion rates from multiple glands in parallel. Secretion rates from control piglets (WT and CFTR+/-) and piglets with CF-like disease (CFTR-/- and CFTR-/DeltaF508) were measured under 5 conditions: unstimulated (to determine basal secretion), stimulated with forskolin, stimulated with carbachol, stimulated with substance P, and, as a test for synergy, stimulated with forskolin and a low concentration of carbachol. Glands from piglets with CF-like disease responded qualitatively to all agonists like glands from human patients with CF, producing virtually no fluid in response to stimulation with forskolin and substantially less in response to all other agonists except carbachol. These data are a step toward determining whether gland secretory defects contribute to CF airway disease.
Collapse
Affiliation(s)
- Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California 94305-2130, USA
| | | | | | | |
Collapse
|
382
|
Li H, Ganta S, Fong P. Altered ion transport by thyroid epithelia from CFTR(-/-) pigs suggests mechanisms for hypothyroidism in cystic fibrosis. Exp Physiol 2010; 95:1132-44. [PMID: 20729267 DOI: 10.1113/expphysiol.2010.054700] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Subclinical hypothyroidism has been linked to cystic fibrosis, and the cystic fibrosis transmembrane conductance regulator (CFTR) shown to be expressed in the thyroid. The thyroid epithelium secretes Cl⁻ and absorbs Na(+) in response to cAMP. Chloride secretion may provide a counter-ion for the SLC26A4 (pendrin)-mediated I⁻ secretion which is required for the first step of thyroid hormonogenesis, thyroglobulin iodination. In contrast, few models exist to explain a role for Na(+) absorption. Whether CFTR mediates the secretory Cl⁻ current in thyroid epithelium has not been directly addressed. We used thyroids from a novel pig CFTR(-/-) model, generated primary pig thyroid epithelial cell cultures (pThECs), analysed these cultures for preservation of thyroid-specific transcripts and proteins, and monitored the following parameters: (1) the Cl⁻ secretory response to the cAMP agonist, isoprenaline; and (2) the amiloride-sensitive Na(+) current. Baseline short-circuit current (I(sc)) did not differ between CFTR(+/+) and CFTR(-/-) cultures. Serosal isoprenaline increased I(sc) in CFTR(+/+), but not CFTR(-/-), monolayers. Compared with CFTR(+/+) thyroid cultures, amiloride-sensitive Na(+) absorption measured in CFTR(-/-) pThECs represented a greater fraction of the resting I(sc). However, levels of transcripts encoding epithelial sodium channel (ENaC) subunits did not differ between CFTR(+/+) and CFTR(-/-) pThECs. Immunoblot analysis verified ENaC subunit protein expression, but quantification indicated no difference in expression levels. Our studies definitively demonstrate that CFTR mediates cAMP-stimulated Cl⁻ secretion in a well-differentiated thyroid culture model and that knockout of CFTR promotes increased Na(+) absorption by a mechanism other than increased ENaC expression. These findings suggest several models for the mechanism of cystic fibrosis-associated hypothyroidism.
Collapse
Affiliation(s)
- Hui Li
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, 1600 Denison Avenue, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
383
|
Taylor-Cousar JL, Von Kessel KA, Young R, Nichols DP. Potential of anti-inflammatory treatment for cystic fibrosis lung disease. J Inflamm Res 2010; 3:61-74. [PMID: 22096358 PMCID: PMC3218732 DOI: 10.2147/jir.s8875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-shortening genetic disorder in Caucasians. With improved diagnosis and treatment, survival has steadily increased. Unfortunately, the overwhelming majority of patients still die from respiratory failure caused by structural damage resulting from airway obstruction, recurrent infection, and inflammation. Here, we discuss the role of inflammation and the development of anti-inflammatory therapies to treat CF lung disease. The inflammatory host response is the least addressed component of CF airway disease at this time. Current challenges in both preclinical and clinical investigation make the identification of suitable anti-inflammatory drugs more difficult. Despite this, many researchers are making significant progress toward this goal and the CF research community has reason to believe that new therapies will emerge from these efforts.
Collapse
|
384
|
Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB, Welsh MJ. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 2010; 182:1251-61. [PMID: 20622026 DOI: 10.1164/rccm.201004-0643oc] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Although airway abnormalities are common in patients with cystic fibrosis (CF), it is unknown whether they are all secondary to postnatal infection and inflammation, which characterize the disease. OBJECTIVES To learn whether loss of the cystic fibrosis transmembrane conductance regulator (CFTR) might affect major airways early in life, before the onset of inflammation and infection. METHODS We studied newborn CFTR⁻(/)⁻ pig trachea, using computed tomography (CT) scans, pathology, and morphometry. We retrospectively analyzed trachea CT scans in young children with CF and also previously published data of infants with CF. MEASUREMENTS AND MAIN RESULTS We discovered three abnormalities in the porcine CF trachea. First, the trachea and mainstem bronchi had a uniformly small caliber and cross-sections of trachea were less circular than in controls. Second, trachealis smooth muscle had an altered bundle orientation and increased transcripts in a smooth muscle gene set. Third, submucosal gland units occurred with similar frequency in the mucosa of CF and control airways, but CF submucosal glands were hypoplastic and had global reductions in tissue-specific transcripts. To learn whether any of these changes occurred in young patients with CF, we examined CT scans from children 2 years of age and younger, and found that CF tracheas were less circular in cross-section, but lacked differences in lumen area. However, analysis of previously published morphometric data showed reduced tracheal lumen area in neonates with CF. CONCLUSIONS Our findings in newborn CF pigs and young patients with CF suggest that airway changes begin during fetal life and may contribute to CF pathogenesis and clinical disease during postnatal life.
Collapse
|
385
|
|