351
|
Horn H, Slaby BM, Jahn MT, Bayer K, Moitinho-Silva L, Förster F, Abdelmohsen UR, Hentschel U. An Enrichment of CRISPR and Other Defense-Related Features in Marine Sponge-Associated Microbial Metagenomes. Front Microbiol 2016; 7:1751. [PMID: 27877161 PMCID: PMC5099237 DOI: 10.3389/fmicb.2016.01751] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022] Open
Abstract
Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, clustered regularly interspaced short palindromic repeats, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.
Collapse
Affiliation(s)
- Hannes Horn
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean ResearchKiel, Germany; Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of WürzburgWürzburg, Germany
| | - Beate M Slaby
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean ResearchKiel, Germany; Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of WürzburgWürzburg, Germany
| | - Martin T Jahn
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean ResearchKiel, Germany; Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of WürzburgWürzburg, Germany
| | - Kristina Bayer
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Lucas Moitinho-Silva
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW, Australia
| | - Frank Förster
- Department of Bioinformatics, University of WürzburgWürzburg, Germany; Center for Computational and Theoretical Biology, University of WürzburgWürzburg, Germany
| | - Usama R Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of WürzburgWürzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Minia UniversityMinia, Egypt
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean ResearchKiel, Germany; Christian-Albrechts-Universität zu KielKiel, Germany
| |
Collapse
|
352
|
How to transform a recalcitrant Paenibacillus strain: From culture medium to restriction barrier. J Microbiol Methods 2016; 131:135-143. [PMID: 27780731 DOI: 10.1016/j.mimet.2016.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/11/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022]
Abstract
Paenibacillus riograndensis SBR5T is a plant growth-promoting bacterium isolated from the wheat rhizosphere. Its recalcitrance to genetic manipulation is a major bottleneck for molecular studies, as has been reported for other Paenibacillus environmental isolates. An efficient electroporation protocol was established by evaluating diverse parameters and optimizing the culture medium, culture growth phase, electroporation solution, recovery medium, DNA input, and electric field strength. Efficiencies of approximately 2.8×104transformantsμg-1 of plasmid DNA were obtained. The optimized protocol was tested with other Paenibacillus species, and the relevance of bypassing the restriction DNA defense system to transform Paenibacillus was highlighted. This protocol is the tool needed to deepen molecular studies with this strain and will aid in the manipulation of other new environmental isolates that also exhibit recalcitrant transformation difficulties.
Collapse
|
353
|
van Houte S, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev 2016; 80:745-63. [PMID: 27412881 PMCID: PMC4981670 DOI: 10.1128/mmbr.00011-16] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria have a range of distinct immune strategies that provide protection against bacteriophage (phage) infections. While much has been learned about the mechanism of action of these defense strategies, it is less clear why such diversity in defense strategies has evolved. In this review, we discuss the short- and long-term costs and benefits of the different resistance strategies and, hence, the ecological conditions that are likely to favor the different strategies alone and in combination. Finally, we discuss some of the broader consequences, beyond resistance to phage and other genetic elements, resulting from the operation of different immune strategies.
Collapse
Affiliation(s)
- Stineke van Houte
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Angus Buckling
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Edze R Westra
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
354
|
Ee R, Lim YL, Yin WF, See-Too WS, Roberts RJ, Chan KG. Novel Methyltransferase Recognition Motif Identified in Chania multitudinisentens RB-25(T) gen. nov., sp. nov. Front Microbiol 2016; 7:1362. [PMID: 27630623 PMCID: PMC5005818 DOI: 10.3389/fmicb.2016.01362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robson Ee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | | | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
355
|
Ershova AS, Rusinov IS, Spirin SA, Karyagina AS, Alexeevski AV. Role of Restriction-Modification Systems in Prokaryotic Evolution and Ecology. BIOCHEMISTRY (MOSCOW) 2016; 80:1373-86. [PMID: 26567582 DOI: 10.1134/s0006297915100193] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Restriction-modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution of the specificity of R-M systems. This review focuses on the influence of R-M systems on evolution and ecology of prokaryotes.
Collapse
Affiliation(s)
- A S Ershova
- Belozerksy Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
356
|
Bubendorfer S, Krebes J, Yang I, Hage E, Schulz TF, Bahlawane C, Didelot X, Suerbaum S. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat Commun 2016; 7:11995. [PMID: 27329939 PMCID: PMC4917963 DOI: 10.1038/ncomms11995] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Recombination plays a dominant role in the evolution of the bacterial pathogen Helicobacter pylori, but its dynamics remain incompletely understood. Here we use an in vitro transformation system combined with genome sequencing to study chromosomal integration patterns after natural transformation. A single transformation cycle results in up to 21 imports, and repeated transformations generate a maximum of 92 imports (8% sequence replacement). Import lengths show a bimodal distribution with averages of 28 and 1,645 bp. Reanalysis of paired H. pylori genomes from chronically infected people demonstrates the same bimodal import pattern in vivo. Restriction endonucleases (REases) of the recipient bacteria fail to inhibit integration of homeologous DNA, independently of methylation. In contrast, REases limit the import of heterologous DNA. We conclude that restriction-modification systems inhibit the genomic integration of novel sequences, while they pose no barrier to homeologous recombination, which reconciles the observed stability of the H. pylori gene content and its highly recombinational population structure. Uptake and integration of exogenous DNA into the bacterial genome play an important role in the evolution of the pathogen Helicobacter pylori. Here, the authors describe a bimodal pattern of chromosomal integration and show how restriction-modification systems limit the import of heterologous DNA.
Collapse
Affiliation(s)
- Sebastian Bubendorfer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Elias Hage
- DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Institute of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Thomas F Schulz
- DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Institute of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christelle Bahlawane
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, Norfolk Place, London W2 1PG, UK
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
357
|
Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems? mSystems 2016; 1:mSystems00009-16. [PMID: 27822532 PMCID: PMC5069764 DOI: 10.1128/msystems.00009-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
The evolution of bacterial pathogens, their plasticity and ability to rapidly change and adapt to new surroundings are crucial for understanding the epidemiology and public health. With the application of genomics, it became clear that horizontal gene transfer played a key role in evolution. To understand the evolution and diversification of pathogens, we need to understand the processes that drive the horizontal gene transfer. Restriction-modification systems are thought to cause rearrangements within the chromosome, as well as act as a barrier to horizontal gene transfer. However, here we show that the correlation between restriction-modification systems and evolution in other bacterial species does not apply to Salmonella enterica subsp. enterica. In summary, from this work, we conclude that other mechanisms might be involved in controlling and shaping the evolution of Salmonella enterica subsp. enterica. Salmonella enterica subsp. enterica bacteria are highly diverse foodborne pathogens that are subdivided into more than 1,500 serovars. The diversity is believed to result from mutational evolution, as well as intra- and interspecies recombination that potentially could be influenced by restriction-modification (RM) systems. The aim of this study was to investigate whether RM systems were linked to the evolution of Salmonella enterica subsp. enterica. The study included 221 Salmonella enterica genomes, of which 68 were de novo sequenced and 153 were public available genomes from ENA. The data set covered 97 different serovars of Salmonella enterica subsp. enterica and an additional five genomes from four other Salmonella subspecies as an outgroup for constructing the phylogenetic trees. The phylogenetic trees were constructed based on multiple alignment of core genes, as well as the presence or absence of pangenes. The topology of the trees was compared to the presence of RM systems, antimicrobial resistance (AMR) genes, Salmonella pathogenicity islands (SPIs), and plasmid replicons. We did not observe any correlation between evolution and the RM systems in S. enterica subsp. enterica. However, sublineage correlations and serovar-specific patterns were observed. Additionally, we conclude that plasmid replicons, SPIs, and AMR were all better correlated to serovars than to RM systems. This study suggests a limited influence of RM systems on the evolution of Salmonella enterica subsp. enterica, which could be due to the conjugational mode of horizontal gene transfer in Salmonella. Thus, we conclude that other factors must be involved in shaping the evolution of bacteria. IMPORTANCE The evolution of bacterial pathogens, their plasticity and ability to rapidly change and adapt to new surroundings are crucial for understanding the epidemiology and public health. With the application of genomics, it became clear that horizontal gene transfer played a key role in evolution. To understand the evolution and diversification of pathogens, we need to understand the processes that drive the horizontal gene transfer. Restriction-modification systems are thought to cause rearrangements within the chromosome, as well as act as a barrier to horizontal gene transfer. However, here we show that the correlation between restriction-modification systems and evolution in other bacterial species does not apply to Salmonella enterica subsp. enterica. In summary, from this work, we conclude that other mechanisms might be involved in controlling and shaping the evolution of Salmonella enterica subsp. enterica.
Collapse
|
358
|
Hull CM, Bevilacqua PC. Discriminating Self and Non-Self by RNA: Roles for RNA Structure, Misfolding, and Modification in Regulating the Innate Immune Sensor PKR. Acc Chem Res 2016; 49:1242-9. [PMID: 27269119 DOI: 10.1021/acs.accounts.6b00151] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pathogens are recognized by the innate immune system in part via their unique and complex RNA signatures. A key sensor in human innate immunity is the RNA-activated protein kinase, protein kinase R (PKR), which has two double-stranded RNA (dsRNA) binding motifs (dsRBMs) at its N-terminus. Early studies described PKR as being activated potently by long stretches of perfect dsRNA, a signature typical of viruses. More recently, we and others have found that PKR is also activated by RNAs having structural defects such as bulges and internal loops. This Account describes advances in our understanding of the ability of PKR to detect diverse foreign RNAs and how that recognition plays significant roles in discriminating self from non-self. The experiments discussed employ a wide range of techniques including activation assays, native polyacrylamide gel electrophoresis (PAGE), protein footprinting, and small-angle X-ray scattering (SAXS). We discuss how misfolding and dimerization of RNA lead to activation of PKR. We also present recent findings on the activation of PKR by varied bacterial functional RNAs including ribozymes and riboswitches, which are among the few structured RNAs known to interact with PKR in a site-specific manner. Molecular models for how these structured RNAs activate PKR are provided. Studies by SAXS revealed that PKR straightens bent RNAs. Most external and internal RNA cellular modifications introduced in vitro and found naturally, such as the m7G cap and m6A group, abrogate activation of PKR, but other modifications, such as 5'-ppp and 2'-fluoro groups, are immunostimulatory and potential anticancer agents. Genome-wide studies of RNA folding in vitro and in vivo have provided fresh insights into general differences in RNA structure among bacteria, viruses, and human. These studies suggest that in vivo, cellular human RNAs are less folded than once thought, unwound by helicases, destabilized by m6A modifications, and often bound up with proteins, all conditions known to abrogate activation of PKR. It thus appears that non-self RNAs are detected as unmodified, naked RNAs with appreciable secondary and tertiary structure. Observation that PKR is activated by structured but otherwise diverse RNAs is consistent both with the broad-spectrum nature of innate immunity and the nonspecific recognition of RNA by the dsRBM family. These findings provide a possible explanation for the apparent absence of protein-free structured human RNAs, such as ribozymes and riboswitches.
Collapse
Affiliation(s)
- Chelsea M. Hull
- Department of Chemistry and Center for RNA Molecular
Biology and ‡Department of
Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry and Center for RNA Molecular
Biology and ‡Department of
Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
359
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
360
|
Abstract
The H-NS (heat-stable nucleoid structuring) protein affects both nucleoid compaction and global gene regulation. H-NS appears to act primarily as a silencer of AT-rich genetic material acquired by horizontal gene transfer. As such, it is key in the regulation of most genes involved in virulence and in adaptation to new environmental niches. Here we review recent progress in understanding the biochemistry of H-NS and how xenogeneic silencing affects bacterial evolution. We highlight the strengths and weaknesses of some of the models proposed in H-NS-mediated nucleoprotein complex formation. Based on recent single-molecule studies, we also propose a novel mode of DNA compaction by H-NS termed intrabridging to explain over two decades of observations of the H-NS molecule.
Collapse
Affiliation(s)
- Kamna Singh
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada;
| | - Joshua N Milstein
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Ontario L5L 1C6, Canada.,Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | | |
Collapse
|
361
|
Wang X, Wood TK. Cryptic prophages as targets for drug development. Drug Resist Updat 2016; 27:30-8. [PMID: 27449596 DOI: 10.1016/j.drup.2016.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
Abstract
Bacterial chromosomes may contain up to 20% phage DNA that encodes diverse proteins ranging from those for photosynthesis to those for autoimmunity; hence, phages contribute greatly to the metabolic potential of pathogens. Active prophages carrying genes encoding virulence factors and antibiotic resistance can be excised from the host chromosome to form active phages and are transmissible among different bacterial hosts upon SOS responses. Cryptic prophages are artifacts of mutagenesis in which lysogenic phage are captured in the bacterial chromosome: they may excise but they do not form active phage particles or lyse their captors. Hence, cryptic prophages are relatively permanent reservoirs of genes, many of which benefit pathogens, in ways we are just beginning to discern. Here we explore the role of active prophage- and cryptic prophage-derived proteins in terms of (i) virulence, (ii) antibiotic resistance, and (iii) antibiotic tolerance; antibiotic tolerance occurs as a result of the non-heritable phenotype of dormancy which is a result of activation of toxins of toxin/antitoxin loci that are frequently encoded in cryptic prophages. Therefore, cryptic prophages are promising targets for drug development.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, United States; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802-4400, United States.
| |
Collapse
|
362
|
Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci U S A 2016; 113:5658-63. [PMID: 27140615 DOI: 10.1073/pnas.1603257113] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Restriction-modification (R-M) systems are often regarded as bacteria's innate immune systems, protecting cells from infection by mobile genetic elements (MGEs). Their diversification has been recently associated with the emergence of particularly virulent lineages. However, we have previously found more R-M systems in genomes carrying more MGEs. Furthermore, it has been suggested that R-M systems might favor genetic transfer by producing recombinogenic double-stranded DNA ends. To test whether R-M systems favor or disfavor genetic exchanges, we analyzed their frequency with respect to the inferred events of homologous recombination and horizontal gene transfer within 79 bacterial species. Genetic exchanges were more frequent in bacteria with larger genomes and in those encoding more R-M systems. We created a recognition target motif predictor for Type II R-M systems that identifies genomes encoding systems with similar restriction sites. We found more genetic exchanges between these genomes, independently of their evolutionary distance. Our results reconcile previous studies by showing that R-M systems are more abundant in promiscuous species, wherein they establish preferential paths of genetic exchange within and between lineages with cognate R-M systems. Because the repertoire and/or specificity of R-M systems in bacterial lineages vary quickly, the preferential fluxes of genetic transfer within species are expected to constantly change, producing time-dependent networks of gene transfer.
Collapse
|
363
|
Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc Biol Sci 2016. [PMID: 26224708 DOI: 10.1098/rspb.2015.1270] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is a form of adaptive sequence-specific immunity in microbes. This system offers unique opportunities for the study of coevolution between bacteria and their viral pathogens, bacteriophages. A full understanding of the coevolutionary dynamics of CRISPR-Cas requires knowing the magnitude of the cost of resisting infection. Here, using the gram-positive bacterium Streptococcus thermophilus and its associated virulent phage 2972, a well-established model system harbouring at least two type II functional CRISPR-Cas systems, we obtained different fitness measures based on growth assays in isolation or in pairwise competition. We measured the fitness cost associated with different components of this adaptive immune system: the cost of Cas protein expression, the constitutive cost of increasing immune memory through additional spacers, and the conditional costs of immunity during phage exposure. We found that Cas protein expression is particularly costly, as Cas-deficient mutants achieved higher competitive abilities than the wild-type strain with functional Cas proteins. Increasing immune memory by acquiring up to four phage-derived spacers was not associated with fitness costs. In addition, the activation of the CRISPR-Cas system during phage exposure induces significant but small fitness costs. Together these results suggest that the costs of the CRISPR-Cas system arise mainly due to the maintenance of the defence system. We discuss the implications of these results for the evolution of CRISPR-Cas-mediated immunity.
Collapse
Affiliation(s)
- Pedro F Vale
- Centre for Immunity, Infection, and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | - Guillaume Lafforgue
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| | - Francois Gatchitch
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| | | | - Sylvain Moineau
- GREB and Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Québec, Canada G1V 0A6 Département de biochimie, de microbiologie et de bio-informatique and PROTEO, Faculté des sciences et de génie, Université Laval, Québec, Canada G1V 0A6
| | - Sylvain Gandon
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| |
Collapse
|
364
|
Characterization of eukaryotic DNA N(6)-methyladenine by a highly sensitive restriction enzyme-assisted sequencing. Nat Commun 2016; 7:11301. [PMID: 27079427 PMCID: PMC4835550 DOI: 10.1038/ncomms11301] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/13/2016] [Indexed: 01/08/2023] Open
Abstract
Although extensively studied in prokaryotes, the prevalence and significance of DNA N(6)-methyladenine (6mA or m(6)dA) in eukaryotes had been underappreciated until recent studies, which have demonstrated that 6mA regulates gene expression as a potential heritable mark. To interrogate 6mA sites at single-base resolution, we report DA-6mA-seq (DpnI-Assisted N(6)-methylAdenine sequencing), an approach that uses DpnI to cleave methylated adenine sites in duplex DNA. We find that DpnI cuts other sequence motifs besides the canonical GATC restriction sites, thereby expanding the utility of this method. DA-6mA-seq achieves higher sensitivity with nanograms of input DNA and lower sequencing depth than conventional approaches. We study 6mA at base resolution in the Chlamydomonas genome and apply the new method to two other eukaryotic organisms, Plasmodium and Penicillium. Combined with conventional approaches, our method further shows that most 6mA sites are fully methylated on both strands of DNA at various sequence contexts.
Collapse
|
365
|
A role for the bacterial GATC methylome in antibiotic stress survival. Nat Genet 2016; 48:581-6. [PMID: 26998690 PMCID: PMC4848143 DOI: 10.1038/ng.3530] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 02/24/2016] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is an increasingly serious public health threat1. Understanding pathways allowing bacteria to survive antibiotic stress may unveil new therapeutic targets2–8. We explore the role of the bacterial epigenome in antibiotic stress survival using classical genetic tools and single-molecule real-time sequencing to characterize genomic methylation kinetics. We find that Escherichia coli survival under antibiotic pressure is severely compromised without adenine methylation at GATC sites. While the adenine methylome remains stable during drug stress, without GATC methylation, methyl-dependent mismatch repair (MMR) is deleterious, and fueled by the drug-induced error-prone polymerase PolIV, overwhelms cells with toxic DNA breaks. In multiple E. coli strains, including pathogenic and drug-resistant clinical isolates, DNA adenine methyltransferase deficiency potentiates antibiotics from the β-lactam and quinolone classes. This work indicates that the GATC methylome provides structural support for bacterial survival during antibiotics stress and suggests targeting bacterial DNA methylation as a viable approach to enhancing antibiotic activity.
Collapse
|
366
|
Goldberg GW, Marraffini LA. Resistance and tolerance to foreign elements by prokaryotic immune systems - curating the genome. Nat Rev Immunol 2016; 15:717-24. [PMID: 26494050 DOI: 10.1038/nri3910] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To engage in adaptive symbioses or genetic exchange, organisms must interact with foreign, non-self elements despite the risks of predation and parasitism. By surveying the interface between self and non-self, immune systems can help ensure the benevolence of these interactions without isolating their hosts altogether. In this Essay, we examine prokaryotic restriction-modification and CRISPR-Cas (clustered, regularly interspaced palindromic repeat-CRISPR-associated proteins) activities and discuss their analogy to mammalian immune pathways. We further explain how their capacities for resistance and tolerance are optimized to reduce parasitism and immunopathology during encounters with non-self.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, USA
| |
Collapse
|
367
|
Werbowy O, Kaczorowski T. Plasmid pEC156, a Naturally Occurring Escherichia coli Genetic Element That Carries Genes of the EcoVIII Restriction-Modification System, Is Mobilizable among Enterobacteria. PLoS One 2016; 11:e0148355. [PMID: 26848973 PMCID: PMC4743918 DOI: 10.1371/journal.pone.0148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Type II restriction-modification systems are ubiquitous in prokaryotes. Some of them are present in naturally occurring plasmids, which may facilitate the spread of these systems in bacterial populations by horizontal gene transfer. However, little is known about the routes of their dissemination. As a model to study this, we have chosen an Escherichia coli natural plasmid pEC156 that carries the EcoVIII restriction modification system. The presence of this system as well as the cis-acting cer site involved in resolution of plasmid multimers determines the stable maintenance of pEC156 not only in Escherichia coli but also in other enterobacteria. We have shown that due to the presence of oriT-type F and oriT-type R64 loci it is possible to mobilize pEC156 by conjugative plasmids (F and R64, respectively). The highest mobilization frequency was observed when pEC156-derivatives were transferred between Escherichia coli strains, Enterobacter cloacae and Citrobacter freundii representing coliform bacteria. We found that a pEC156-derivative with a functional EcoVIII restriction-modification system was mobilized in enterobacteria at a frequency lower than a plasmid lacking this system. In addition, we found that bacteria that possess the EcoVIII restriction-modification system can efficiently release plasmid content to the environment. We have shown that E. coli cells can be naturally transformed with pEC156-derivatives, however, with low efficiency. The transformation protocol employed neither involved chemical agents (e.g. CaCl2) nor temperature shift which could induce plasmid DNA uptake.
Collapse
Affiliation(s)
- Olesia Werbowy
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
- * E-mail:
| |
Collapse
|
368
|
Pleška M, Qian L, Okura R, Bergmiller T, Wakamoto Y, Kussell E, Guet C. Bacterial Autoimmunity Due to a Restriction-Modification System. Curr Biol 2016; 26:404-9. [DOI: 10.1016/j.cub.2015.12.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/08/2015] [Accepted: 12/10/2015] [Indexed: 01/25/2023]
|
369
|
Casadesús J. Bacterial DNA Methylation and Methylomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:35-61. [PMID: 27826834 DOI: 10.1007/978-3-319-43624-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Formation of C5-methylcytosine, N4-methylcytosine, and N6-methyladenine in bacterial genomes is postreplicative and involves transfer of a methyl group from S-adenosyl-methionine to a base embedded in a specific DNA sequence context. Most bacterial DNA methyltransferases belong to restriction-modification systems; in addition, "solitary" or "orphan" DNA methyltransferases are frequently found in the genomes of bacteria and phage. Base methylation can affect the interaction of DNA-binding proteins with their cognate sites, either by a direct effect (e.g., steric hindrance) or by changes in DNA topology. In both Alphaproteobacteria and Gammaproteobacteria, the roles of DNA base methylation are especially well known for N6-methyladenine, including control of chromosome replication, nucleoid segregation, postreplicative correction of DNA mismatches, cell cycle-coupled transcription, formation of bacterial cell lineages, and regulation of bacterial virulence. Technical procedures that permit genome-wide analysis of DNA methylation are nowadays expanding our knowledge of the extent, evolution, and physiological significance of bacterial DNA methylation.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, Seville, 41080, Spain.
| |
Collapse
|
370
|
Kolek J, Sedlar K, Provaznik I, Patakova P. Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:14. [PMID: 26793273 PMCID: PMC4719659 DOI: 10.1186/s13068-016-0436-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Butanol is currently one of the most discussed biofuels. Its use provides many benefits in comparison to bio-ethanol, but the price of its fermentative production is still high. Genetic improvements could help solve many problems associated with butanol production during ABE fermentation, such as its toxicity, low concentration achievable in the cultivation medium, the need for a relatively expensive substrate, and many more. Clostridium pasteurianum NRRL B-598 is non-type strain producing butanol, acetone, and a negligible amount of ethanol. Its main benefits are high oxygen tolerance, utilization of a wide range of carbon and nitrogen sources, and the availability of its whole genome sequence. However, there is no established method for the transfer of foreign DNA into this strain; this is the next step necessary for progress in its use for butanol production. RESULTS We have described functional protocols for conjugation and transformation of the bio-butanol producer C. pasteurianum NRRL B-598 by foreign plasmid DNA. We show that the use of unmethylated plasmid DNA is necessary for efficient transformation or successful conjugation. Genes encoding DNA methylation and those for restriction-modification systems and antibiotic resistance were searched for in the whole genome sequence and their homologies with other clostridial bacteria were determined. Furthermore, activity of described novel type I restriction system was proved experimentally. The described electrotransformation protocol achieved an efficiency 1.2 × 10(2) cfu/μg DNA after step-by-step optimization and an efficiency of 1.6 × 10(2) cfu/μg DNA was achieved by the sonoporation technique using a standard laboratory ultrasound bath. The highest transformation efficiency was achieved using a combination of these approaches; sono/electroporation led to an increase in transformation efficiency, to 5.3 × 10(2) cfu/μg DNA. CONCLUSIONS Both Dam and Dcm methylations are detrimental for transformation of C. pasteurianum NRRL B-598. Methods for conjugation, electroporation, sonoporation, and a combined method for sono/electroporation were established for this strain. The methods described could be used for genetic improvement of this strain, which is suitable for bio-butanol production.
Collapse
Affiliation(s)
- Jan Kolek
- />Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Karel Sedlar
- />Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
| | - Ivo Provaznik
- />Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
| | - Petra Patakova
- />Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
371
|
Kwiatek A, Mrozek A, Bacal P, Piekarowicz A, Adamczyk-Popławska M. Type III Methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 Regulates Biofilm Formation and Interactions with Human Cells. Front Microbiol 2015; 6:1426. [PMID: 26733970 PMCID: PMC4685087 DOI: 10.3389/fmicb.2015.01426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022] Open
Abstract
Neisseria gonorrhoeae is the etiological factor of the sexually transmitted gonorrhea disease that may lead, under specific conditions, to systemic infections. The gonococcal genome encodes many restriction modification (RM) systems, which main biological role is to defend the pathogen from potentially harmful foreign DNA. However, RM systems seem also to be involved in several other functions. In this study, we examined the effect of inactivation the N. gonorrhoeae FA1090 ngoAXmod gene encoding M.NgoAX methyltransferase on the global gene expression, biofilm formation, interactions with human epithelial host cells and overall bacterial growth. Expression microarrays showed at least a twofold deregulation of a total of 121 genes in the NgoAX knock-out mutant compared to the wild-type (wt) strain under standard grow conditions. Genes with changed expression levels encoded mostly proteins involved in cell metabolism, DNA replication and repair or regulating cellular processes and signaling (such as cell wall/envelop biogenesis). As determined by the assay with crystal violet, the NgoAX knock-out strain formed a slightly larger biofilm biomass per cell than the wt strain. Live biofilm observations showed that the biofilm formed by the gonococcal ngoAXmod gene mutant is more relaxed, dispersed and thicker than the one formed by the wt strain. This more relaxed feature of the biofilm, in respect to adhesion and bacterial interactions, can be involved in pathogenesis. Moreover, the overall adhesion of mutant bacterial cells to human cells was lower than adhesion of the wt gonococci [adhesion index = 0.672 (±0.2) and 2.15 (±1.53), respectively]; yet, a higher number of mutant than wt bacteria were found inside the Hec-1-B epithelial cells [invasion index = 3.38 (±0.93) × 105 for mutant and 4.67 (±3.09) × 104 for the wt strain]. These results indicate that NgoAX knock-out cells have lower ability to attach to human cells, but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.
Collapse
Affiliation(s)
- Agnieszka Kwiatek
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Agnieszka Mrozek
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Pawel Bacal
- Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw Warsaw, Poland
| | - Andrzej Piekarowicz
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | |
Collapse
|
372
|
Rusinov I, Ershova A, Karyagina A, Spirin S, Alexeevski A. Lifespan of restriction-modification systems critically affects avoidance of their recognition sites in host genomes. BMC Genomics 2015; 16:1084. [PMID: 26689194 PMCID: PMC4687349 DOI: 10.1186/s12864-015-2288-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/11/2015] [Indexed: 01/10/2023] Open
Abstract
Background Avoidance of palindromic recognition sites of Type II restriction-modification (R-M) systems was shown for many R-M systems in dozens of prokaryotic genomes. However the phenomenon has not been investigated systematically for all presently available genomes and annotated R-M systems. We have studied all known recognition sites in thousands of prokaryotic genomes and found factors that influence their avoidance. Results Only Type II R-M systems consisting of independently acting endonuclease and methyltransferase (called ‘orthodox’ here) cause avoidance of their sites, both palindromic and asymmetric, in corresponding prokaryotic genomes; the avoidance takes place for ~ 50 % of 1774 studied cases. It is known that prokaryotes can acquire and lose R-M systems. Thus it is possible to talk about the lifespan of an R-M system in a genome. We have shown that the recognition site avoidance correlates with the lifespan of R-M systems. The sites of orthodox R-M systems that are encoded in host genomes for a long time are avoided more often (up to 100 % in certain cohorts) than the sites of recently acquired ones. We also found cases of site avoidance in absence of the corresponding R-M systems in the genome. An analysis of closely related bacteria shows that such avoidance can be a trace of lost R-M systems. Sites of Type I, IIС/G, IIM, III, and IV R-M systems are not avoided in vast majority of cases. Conclusions The avoidance of orthodox Type II R-M system recognition sites in prokaryotic genomes is a widespread phenomenon. Presence of an R-M system without an underrepresentation of its site may indicate that the R-M system was acquired recently. At the same time, a significant underrepresentation of a site may be a sign of presence of the corresponding R-M system in this organism or in its ancestors for a long time. The drastic difference between site avoidance for orthodox Type II R-M systems and R-M systems of other types can be explained by a higher rate of specificity changes or a less self-toxicity of the latter. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2288-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivan Rusinov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Anna Ershova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia. .,Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Anna Karyagina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia. .,Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Sergey Spirin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Scientific Research Institute for System Studies, the Russian Academy of Science (NIISI RAS), Moscow, 117281, Russia.
| | - Andrei Alexeevski
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Scientific Research Institute for System Studies, the Russian Academy of Science (NIISI RAS), Moscow, 117281, Russia.
| |
Collapse
|
373
|
Sawant P, Eissenberger K, Karier L, Mascher T, Bramkamp M. A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress. Environ Microbiol 2015; 18:2705-20. [PMID: 26530236 DOI: 10.1111/1462-2920.13110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/27/2023]
Abstract
In ever-changing natural environments, bacteria are continuously challenged with numerous biotic and abiotic stresses. Accordingly, they have evolved both specific and more general mechanisms to counteract stress-induced damage and ensure survival. In the soil habitat of Bacillus subtilis, peptide antibiotics and bacteriophages are among the primary stressors that affect the integrity of the cytoplasmic membrane. Dynamin-like proteins (DLPs) play a major role in eukaryotic membrane re-modelling processes, including antiviral activities, but the function of the corresponding bacterial homologues was so far poorly understood. Here, we report on the protective function of a bacterial DLP, DynA from B. subtilis. We provide evidence that DynA plays an important role in a membrane surveillance system that counteracts membrane pore formation provoked by antibiotics and phages. In unstressed cells, DynA is a highly dynamic membrane-associated protein. Upon membrane damage, DynA localizes into large and static assemblies, where DynA acts locally to counteract stress-induced pores, presumably by inducing lipid bilayer fusion and sealing membrane gaps. Thus, lack of DynA increases the sensitivity to antibiotic exposure and phage infection. Taken together, our work suggests that DynA, and potentially other bacterial DLPs, contribute to the innate immunity of bacteria against membrane stress.
Collapse
Affiliation(s)
- Prachi Sawant
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Kristina Eissenberger
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Laurence Karier
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Thorsten Mascher
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
374
|
Abstract
Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I) RNA editing by the adenine deaminase acting on RNA (ADAR) enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.
Collapse
Affiliation(s)
- Mary A. O’Connell
- CEITEC Masaryk University, Brno, Czech Republic
- * E-mail: (MAO); (LPK)
| | - Niamh M. Mannion
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liam P. Keegan
- CEITEC Masaryk University, Brno, Czech Republic
- * E-mail: (MAO); (LPK)
| |
Collapse
|
375
|
Rezulak M, Borsuk I, Mruk I. Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system. Nucleic Acids Res 2015; 44:2646-60. [PMID: 26656489 PMCID: PMC4824078 DOI: 10.1093/nar/gkv1331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022] Open
Abstract
Restriction-modification (R-M) systems are highly prevalent among bacteria and archaea, and appear to play crucial roles in modulating horizontal gene transfer and protection against phage. There is much to learn about these diverse enzymes systems, especially their regulation. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). Their activities need to be finely balanced in vivo Some R-M systems rely on specialized transcription factors called C (controller) proteins. These proteins play a vital role in the temporal regulation of R-M gene expression, and function to indirectly modulate the horizontal transfer of their genes across the species. We report novel regulation of a C-responsive R-M system that involves a C protein of a poorly-studied structural class - C.Csp231I. Here, the C and REase genes share a bicistronic transcript, and some of the transcriptional auto-control features seen in other C-regulated R-M systems are conserved. However, separate tandem promoters drive most transcription of the REase gene, a distinctive property not seen in other tested C-linked R-M systems. Further, C protein only partially controls REase expression, yet plays a role in system stability and propagation. Consequently, high REase activity was observed after deletion of the entire C gene, and cells bearing the ΔC R-M system were outcompeted in mixed culture assays by those with the WT R-M system. Overall, our data reveal unexpected regulatory variation among R-M systems.
Collapse
Affiliation(s)
- Monika Rezulak
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Izabela Borsuk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
376
|
Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone. mBio 2015; 6:e01602-15. [PMID: 26578678 PMCID: PMC4659465 DOI: 10.1128/mbio.01602-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located. IMPORTANCE DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone.
Collapse
|
377
|
Abstract
DNA N(6)-adenine methylation (N(6)-methyladenine; 6mA) in prokaryotes functions primarily in the host defence system. The prevalence and significance of this modification in eukaryotes had been unclear until recently. Here, we discuss recent publications documenting the presence of 6mA in Chlamydomonas reinhardtii, Drosophila melanogaster and Caenorhabditis elegans; consider possible roles for this DNA modification in regulating transcription, the activity of transposable elements and transgenerational epigenetic inheritance; and propose 6mA as a new epigenetic mark in eukaryotes.
Collapse
|
378
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
379
|
Dawoud TM, Jiang T, Mandal RK, Ricke SC, Kwon YM. Improving the efficiency of transposon mutagenesis in Salmonella enteritidis by overcoming host-restriction barriers. Mol Biotechnol 2015; 56:1004-10. [PMID: 24973023 DOI: 10.1007/s12033-014-9779-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transposon mutagenesis using transposome complex is a powerful method for functional genomics analysis in diverse bacteria by creating a large number of random mutants to prepare a genome-saturating mutant library. However, strong host restriction barriers can lead to limitations with species- or strain-specific restriction-modification systems. The purpose of this study was to enhance the transposon mutagenesis efficiency of Salmonella Enteritidis to generate a larger number of random insertion mutants. Host-adapted Tn5 DNA was used to form a transposome complex, and this simple approach significantly and consistently improved the efficiency of transposon mutagenesis, resulting in a 46-fold increase in the efficiency as compared to non-adapted transposon DNA fragments. Random nature of Tn5 insertions was confirmed by high-throughput sequencing of the Tn5-junction sequences. The result based on S. Enteritidis in this study should find broad applications in preparing a comprehensive mutant library of other species using transposome complex.
Collapse
Affiliation(s)
- Turki M Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA,
| | | | | | | | | |
Collapse
|
380
|
Sneppen K, Semsey S, Seshasayee ASN, Krishna S. Restriction modification systems as engines of diversity. Front Microbiol 2015; 6:528. [PMID: 26082758 PMCID: PMC4451750 DOI: 10.3389/fmicb.2015.00528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
Restriction modification (RM) systems provide protection against a broad spectrum of phages. However, the likelihood of a phage permanently bypassing this can be as high as 0.1 per infection (Korona et al., 1993) which makes for a relatively weak defense. Here we argue that, apart from providing such transient defenses, RM systems can facilitate long-term coexistence of many bacterial strains. We show that this diversity can be as large as the burst size of the phage but no larger-a curious correspondence between a number at the level of species and another number at the level of individuals. Such a highly diverse and stably coexisting ecosystem is robust to substantial variation in both bacterial growth rates and strength of their RM systems, which might be one reason why quite weak RM systems exist in the wild.
Collapse
Affiliation(s)
- Kim Sneppen
- Center for Models of Life, Niels Bohr Institute Copenhagen, Denmark
| | - Szabolcs Semsey
- Center for Models of Life, Niels Bohr Institute Copenhagen, Denmark
| | | | - Sandeep Krishna
- Center for Models of Life, Niels Bohr Institute Copenhagen, Denmark ; National Centre for Biological Sciences Bangalore, India ; Simons Centre for the Study of Living Machines, National Centre for Biological Sciences Bangalore, India
| |
Collapse
|
381
|
Seib KL, Jen FEC, Tan A, Scott AL, Kumar R, Power PM, Chen LT, Wu HJ, Wang AHJ, Hill DMC, Luyten YA, Morgan RD, Roberts RJ, Maiden MCJ, Boitano M, Clark TA, Korlach J, Rao DN, Jennings MP. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N(6)-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res 2015; 43:4150-62. [PMID: 25845594 PMCID: PMC4417156 DOI: 10.1093/nar/gkv219] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 01/03/2023] Open
Abstract
Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N(6)-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N(6)-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5'-CGY M6A: G-3'), ModA12 (exemplified by M.Nme77I, M.Nme18I and M.Nme579II) (5'-AC M6A: CC-3') and ModD1 (exemplified by M.Nme579I) (5'-CC M6A: GC-3'). Restriction inhibition assays and mutagenesis confirmed the SMRT methylome analysis. The ModA11 site is complex and atypical and is dependent on the type of pyrimidine at the central position, in combination with the bases flanking the core recognition sequence 5'-CGY M6A: G-3'. The observed efficiency of methylation in the modA11 strain (MC58) genome ranged from 4.6% at 5'-GCGC M6A: GG-3' sites, to 100% at 5'-ACGT M6A: GG-3' sites. Analysis of the distribution of modified sites in the respective genomes shows many cases of association with intergenic regions of genes with altered expression due to phasevarion switching.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Adeana L Scott
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Peter M Power
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Li-Tzu Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hsing-Ju Wu
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
382
|
Rua CPJ, Gregoracci GB, Santos EO, Soares AC, Francini-Filho RB, Thompson F. Potential metabolic strategies of widely distributed holobionts in the oceanic archipelago of St Peter and St Paul (Brazil). FEMS Microbiol Ecol 2015; 91:fiv043. [PMID: 25873456 DOI: 10.1093/femsec/fiv043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2015] [Indexed: 11/13/2022] Open
Abstract
Sponges are one of the most complex symbiotic communities and while the taxonomic composition of associated microbes has been determined, the biggest challenge now is to uncover their functional role in symbiosis. We investigated the microbiota of two widely distributed sponge species, regarding both their taxonomic composition and their functional roles. Samples of Didiscus oxeata and Scopalina ruetzleri were collected in the oceanic archipelago of St Peter and St Paul and analysed through metagenomics. Sequences generated by 454 pyrosequencing and Ion Torrent were taxonomically and functionally annotated on the MG-RAST server using the GenBank and SEED databases, respectively. Both communities exhibit equivalence in core functions, interestingly played by the most abundant taxa in each community. Conversely, the microbial communities differ in composition, taxonomic diversity and potential metabolic strategies. Functional annotation indirectly suggests differences in preferential pathways of carbon, nitrogen and sulphur metabolisms, which may indicate different metabolic strategies.
Collapse
Affiliation(s)
- Cintia P J Rua
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Gustavo B Gregoracci
- Av. Alm. Saldanha da Gama, 89 - Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Santos, CEP 11030-400, Brazil
| | - Eidy O Santos
- Av. Nossa Senhora das Graças, 50 - Divisão de Metrologia Aplicada a Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Xerém, CEP 25250-020, Brazil
| | - Ana Carolina Soares
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Ronaldo B Francini-Filho
- Rua da Mangueira, s/nº - Centro de Ciências Aplicadas e Educação, Departamento de Engenharia e Meio Ambiente, Campus IV - Litoral Norte - Universidade Federal da Paraíba (UFPB), Rio Tinto, PB, CEP 58297-000, Brazil
| | - Fabiano Thompson
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| |
Collapse
|
383
|
Ouellette M, Jackson L, Chimileski S, Papke RT. Genome-wide DNA methylation analysis of Haloferax volcanii H26 and identification of DNA methyltransferase related PD-(D/E)XK nuclease family protein HVO_A0006. Front Microbiol 2015; 6:251. [PMID: 25904898 PMCID: PMC4389544 DOI: 10.3389/fmicb.2015.00251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/13/2015] [Indexed: 01/16/2023] Open
Abstract
Restriction-modification (RM) systems have evolved to protect the cell from invading DNAs and are composed of two enzymes: a DNA methyltransferase and a restriction endonuclease. Although RM systems are present in both archaeal and bacterial genomes, DNA methylation in archaea has not been well defined. In order to characterize the function of RM systems in archaeal species, we have made use of the model haloarchaeon Haloferax volcanii. A genomic DNA methylation analysis of H. volcanii strain H26 was performed using PacBio single molecule real-time (SMRT) sequencing. This analysis was also performed on a strain of H. volcanii in which an annotated DNA methyltransferase gene HVO_A0006 was deleted from the genome. Sequence analysis of H26 revealed two motifs which are modified in the genome: C(m4)TAG and GCA(m6)BN6VTGC. Analysis of the ΔHVO_A0006 strain indicated that it exhibited reduced adenine methylation compared to the parental strain and altered the detected adenine motif. However, protein domain architecture analysis and amino acid alignments revealed that HVO_A0006 is homologous only to the N-terminal endonuclease region of Type IIG RM proteins and contains a PD-(D/E)XK nuclease motif, suggesting that HVO_A0006 is a PD-(D/E)XK nuclease family protein. Further bioinformatic analysis of the HVO_A0006 gene demonstrated that the gene is rare among the Halobacteria. It is surrounded by two transposition genes suggesting that HVO_A0006 is a fragment of a Type IIG RM gene, which has likely been acquired through gene transfer, and affects restriction-modification activity by interacting with another RM system component(s). Here, we present the first genome-wide characterization of DNA methylation in an archaeal species and examine the function of a DNA methyltransferase related gene HVO_A0006.
Collapse
Affiliation(s)
- Matthew Ouellette
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Laura Jackson
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Scott Chimileski
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
384
|
Genome Modification in Enterococcus faecalis OG1RF Assessed by Bisulfite Sequencing and Single-Molecule Real-Time Sequencing. J Bacteriol 2015; 197:1939-51. [PMID: 25825433 DOI: 10.1128/jb.00130-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged, reducing treatment options for these infections. MDR E. faecalis strains have large genomes containing mobile genetic elements (MGEs) that harbor genes for antibiotic resistance and virulence determinants. Bacteria commonly possess genome defense mechanisms to block MGE acquisition, and we hypothesize that these mechanisms have been compromised in MDR E. faecalis. In restriction-modification (R-M) defense, the bacterial genome is methylated at cytosine (C) or adenine (A) residues by a methyltransferase (MTase), such that nonself DNA can be distinguished from self DNA. A cognate restriction endonuclease digests improperly modified nonself DNA. Little is known about R-M in E. faecalis. Here, we use genome resequencing to identify DNA modifications occurring in the oral isolate OG1RF. OG1RF has one of the smallest E. faecalis genomes sequenced to date and possesses few MGEs. Single-molecule real-time (SMRT) and bisulfite sequencing revealed that OG1RF has global 5-methylcytosine (m5C) methylation at 5'-GCWGC-3' motifs. A type II R-M system confers the m5C modification, and disruption of this system impacts OG1RF electrotransformability and conjugative transfer of an antibiotic resistance plasmid. A second DNA MTase was poorly expressed under laboratory conditions but conferred global N(4)-methylcytosine (m4C) methylation at 5'-CCGG-3' motifs when expressed in Escherichia coli. Based on our results, we conclude that R-M can act as a barrier to MGE acquisition and likely influences antibiotic resistance gene dissemination in the E. faecalis species. IMPORTANCE The horizontal transfer of antibiotic resistance genes among bacteria is a critical public health concern. Enterococcus faecalis is an opportunistic pathogen that causes life-threatening infections in humans. Multidrug resistance acquired by horizontal gene transfer limits treatment options for these infections. In this study, we used innovative DNA sequencing methodologies to investigate how a model strain of E. faecalis discriminates its own DNA from foreign DNA, i.e., self versus nonself discrimination. We also assess the role of an E. faecalis genome modification system in modulating conjugative transfer of an antibiotic resistance plasmid. These results are significant because they demonstrate that differential genome modification impacts horizontal gene transfer frequencies in E. faecalis.
Collapse
|
385
|
Sánchez-Romero MA, Cota I, Casadesús J. DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 2015; 25:9-16. [PMID: 25818841 DOI: 10.1016/j.mib.2015.03.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Formation of C(5)-methyl-cytosine, N(4)-methyl-cytosine, and N(6)-methyl-adenine in bacterial genomes is postreplicative, and occurs at specific targets. Base methylation can modulate the interaction of DNA-binding proteins with their cognate sites, and controls chromosome replication, correction of DNA mismatches, cell cycle-coupled transcription, and formation of epigenetic lineages by phase variation. During four decades, the roles of DNA methylation in bacterial physiology have been investigated by analyzing the contribution of individual methyl groups or small methyl group clusters to the control of DNA-protein interactions. Nowadays, single-molecule real-time sequencing can analyze the DNA methylation of the entire genome (the 'methylome'). Bacterial methylomes provide a wealth of information on the methylation marks present in bacterial genomes, and may open a new era in bacterial epigenomics.
Collapse
Affiliation(s)
| | - Ignacio Cota
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Seville, Spain
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Seville, Spain.
| |
Collapse
|
386
|
Improving transformation of Staphylococcus aureus belonging to the CC1, CC5 and CC8 clonal complexes. PLoS One 2015; 10:e0119487. [PMID: 25807379 PMCID: PMC4373697 DOI: 10.1371/journal.pone.0119487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/13/2015] [Indexed: 12/24/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen found in hospital and community environments that can cause serious infections. A major barrier to genetic manipulations of clinical isolates has been the considerable difficulty in transforming these strains with foreign plasmids, such as those from E. coli, in part due to the type I and IV Restriction Modification (R-M) barriers. Here we combine a Plasmid Artificial Modification (PAM) system with DC10B E. coli cells (dcm mutants) to bypass the barriers of both type I and IV R-M of S. aureus, thus allowing E. coli plasmid DNA to be transformed directly into clinical MRSA strains MW2, N315 and LAC, representing three of the most common clonal complexes. Successful transformation of clinical S. aureus isolates with E. coli-derived plasmids should greatly increase the ability to genetically modify relevant S. aureus strains and advance our understanding of S. aureus pathogenesis.
Collapse
|
387
|
Wons E, Mruk I, Kaczorowski T. Relaxed specificity of prokaryotic DNA methyltransferases results in DNA site-specific modification of RNA/DNA heteroduplexes. J Appl Genet 2015; 56:539-546. [PMID: 25787880 DOI: 10.1007/s13353-015-0279-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023]
Abstract
RNA/DNA hybrid duplexes regularly occur in nature, for example in transcriptional R loops. Their susceptibility to modification by DNA-specific or RNA-specific enzymes is, thus, a biologically relevant question, which, in addition, has possible biotechnological implications. In this study, we investigated the activity of four isospecific DNA methyltransferases (M.EcoVIII, M.LlaCI, M.HindIII, M.BstZ1II) toward an RNA/DNA duplex carrying one 5'-AAGCUU-3'/3'-TTCGAA-5' target sequence. The analyzed enzymes belong to the β-group of adenine N6-methyltransferases and recognize the palindromic DNA sequence 5'-AAGCTT-3'/3'-TTCGAA-5'. Under standard conditions, none of these isospecific enzymes could detectibly methylate the RNA/DNA duplex. However, the addition of agents that generally relax specificity, such as dimethyl sulfoxide (DMSO) and glycerol, resulted in substantial methylation of the RNA/DNA duplex by M.EcoVIII and M.LlaCI. Only the DNA strand of the RNA/DNA duplex was methylated. The same was not observed for M.HindIII or M.BstZ1II. This is, to our knowledge, the first report that demonstrates such activity by prokaryotic DNA methyltransferases. Possible applications of these findings in a laboratory practice are also discussed.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
388
|
Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evol Biol 2015; 15:43. [PMID: 25881094 PMCID: PMC4372072 DOI: 10.1186/s12862-015-0324-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
Background Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes. Results We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system. Conclusions Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
389
|
Furmanek-Blaszk B, Sektas M. The SfaNI restriction-modification system from Enterococcus faecalis NEB215 is located on a putative mobile genetic element. FEMS Microbiol Lett 2015; 362:fnv028. [PMID: 25724535 DOI: 10.1093/femsle/fnv028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2015] [Indexed: 01/21/2023] Open
Abstract
A type IIS restriction-modification (R-M) system SfaNI from Enterococcus faecalis NEB215 has been characterized. The sfaNIM gene was cloned by the methylase selection method. Methyltransferase SfaNI, a protein of 695 amino acids, consists of two domains responsible for different DNA-strand recognition and modification, and a putative DNA-binding HTH domain located in the N-terminal part of the protein. The sfaNIR gene, located adjacent to the gene of the cognate modification methyltransferases, encodes a protein of 648 amino acids. The enzyme has been purified to apparent homogeneity and its biochemical characteristics have been described. The R-M system SfaNI is flanked by a transposase gene at its 5(') end, and a cassette chromosome recombinase (ccr) gene complex, encoding serine recombinases CcrA and CcrB, at the 3(') end. Both proteins are specifically involved in genome rearrangement and are widely distributed among staphylococcal species. These results suggested that the R-M system SfaNI is present on the putative mobile element.
Collapse
Affiliation(s)
- Beata Furmanek-Blaszk
- Department of Microbiology, University of Gdansk, 80-308 Gdansk, Wita Stwosza 59, Poland
| | - Marian Sektas
- Department of Microbiology, University of Gdansk, 80-308 Gdansk, Wita Stwosza 59, Poland
| |
Collapse
|
390
|
Lu Z, Breidt F. Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity. Front Microbiol 2015; 6:67. [PMID: 25741324 PMCID: PMC4330901 DOI: 10.3389/fmicb.2015.00067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
A novel phage, Φ241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH ≤ 3.7) and salinity (≥5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7) or the 2 O antigen-negative mutants of O157:H7 strain, 43895Δper (also lacking H7 antigen) and F12 (still expressing H7 antigen). However, the phage was able to lyse a per-complemented strain (43895ΔperComp) which expresses O157 antigen. These results indicated that phage Φ241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3, or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage Φ241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment.
Collapse
Affiliation(s)
- Zhongjing Lu
- Department of Molecular and Cellular Biology, Kennesaw State UniversityKennesaw, GA, USA
| | - Fred Breidt
- USDA Agricultural Research Service – Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
391
|
Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M, Plummer PJ. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol 2015; 5:782. [PMID: 25642218 PMCID: PMC4294202 DOI: 10.3389/fmicb.2014.00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain's association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences' Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902) and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176). Several notable differences were discovered that distinguished the methylome of IA3902 from that of 11168 and 81-176: identification of motifs novel to IA3902, genome-specific hypo- and hypermethylated regions, strain level variability in genes methylated, and differences in the types of methylation motifs present in each strain. These observations suggest a possible role of methylation in the contrasting disease presentations of these three C. jejuni strains. In addition, the methylation profiles between IA3902 and a luxS mutant were explored to determine if variations in methylation patterns could be identified that might explain the role of LuxS-dependent methyl recycling in IA3902 abortifacient potential.
Collapse
Affiliation(s)
- Kathy T Mou
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| | - Usha K Muppirala
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | | | | | - Paul J Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| |
Collapse
|
392
|
Koonin EV, Wolf YI. Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus-host coevolution. MOLECULAR BIOSYSTEMS 2015; 11:20-7. [PMID: 25238531 PMCID: PMC5875448 DOI: 10.1039/c4mb00438h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas is an adaptive immunity system in prokaryotes that functions via a unique mechanism which involves incorporation of foreign DNA fragments into CRISPR arrays and subsequent utilization of transcripts of these inserts (known as spacers) as guide RNAs to cleave the cognate selfish element genome. Multiple attempts have been undertaken to explore the coevolution of viruses and microbial hosts carrying CRISPR-Cas using mathematical models that employ either systems of differential equations or an agent-based approach, or combinations thereof. Analysis of these models reveals highly complex co-evolutionary dynamics that ensues from the combination of the heritability of the CRISPR-mediated adaptive immunity with the existence of different degrees of immunity depending on the number of cognate spacers and the cost of carrying a CRISPR-Cas locus. Depending on the details of the models, a variety of testable, sometimes conflicting predictions have been made on the dependence of the degree of immunity and the benefit of maintaining CRISPR-Cas on the abundance and diversity of hosts and viruses. Some of these predictions have already been directly validated experimentally. In particular, both the reality of the virus-host arms race, with viruses escaping resistance and hosts reacquiring it through the capture of new spacers, and the fitness cost of CRISPR-Cas due to the curtailment of beneficial HGT have been reproduced in the laboratory. However, to test the predictions of the models more specifically, detailed studies of coevolving populations of microbes and viruses both in nature and in the laboratory are essential. Such analyses are expected to yield disagreements with the predictions of the current, oversimplified models and to trigger a new round of theoretical developments.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
393
|
Pollak AJ, Chin AT, Reich NO. Distinct facilitated diffusion mechanisms by E. coli Type II restriction endonucleases. Biochemistry 2014; 53:7028-37. [PMID: 25350874 DOI: 10.1021/bi501110r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The passive search by proteins for particular DNA sequences involving nonspecific DNA is essential for gene regulation, DNA repair, phage defense, and diverse epigenetic processes. Distinct mechanisms contribute to these searches, and it remains unresolved as to which mechanism or blend of mechanisms best suits a particular protein and, more importantly, its biological role. To address this, we compare the translocation properties of two well-studied bacterial restriction endonucleases (ENases), EcoRI and EcoRV. These dimeric, magnesium-dependent enzymes hydrolyze related sites (EcoRI ENase, 5'-GAATTC-3'; EcoRV ENase, 5'-GATATC-3'), leaving overhangs and blunt DNA segments, respectively. Here, we demonstrate that the extensive sliding by EcoRI ENase, involving sliding up to ∼600 bp prior to dissociating from the DNA, contrasts with a larger reliance on hopping mechanism(s) by EcoRV ENase. The mechanism displayed by EcoRI ENase results in a highly thorough search of DNA, whereas the EcoRV ENase mechanism results in an extended, yet less rigorous, interrogation of DNA sequence space. We describe how these mechanistic distinctions are complemented by other aspects of these endonucleases, such as the 10-fold higher in vivo concentrations of EcoRI ENase compared to that of EcoRV ENase. Further, we hypothesize that the highly diverse enzyme arsenal that bacteria employ against foreign DNA involves seemingly similar enzymes that rely on distinct but complementary search mechanisms. Our comparative approach reveals how different proteins utilize distinct site-locating strategies.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Chemistry and Biochemistry, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | | | | |
Collapse
|
394
|
Cinelli T, Moscetti I, Marchi G. PsasM2I, a type II restriction-modification system in Pseudomonas savastanoi pv. savastanoi: differential distribution of carrier strains in the environment and the evolutionary history of homologous RM systems in the Pseudomonas syringae complex. MICROBIAL ECOLOGY 2014; 68:842-858. [PMID: 25008981 DOI: 10.1007/s00248-014-0451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
A type II restriction-modification system was found in a native plasmid of Pseudomonas savastanoi pv. savastanoi MLLI2. Functional analysis of the methyltransferase showed that the enzyme acts by protecting the DNA sequence CTGCAG from cleavage. Restriction endonuclease expression in recombinant Escherichia coli cells resulted in mutations in the REase sequence or transposition of insertion sequence 1A in the coding sequence, preventing lethal gene expression. Population screening detected homologous RM systems in other P. savastanoi strains and in the Pseudomonas syringae complex. An epidemiological survey carried out by sampling olive and oleander knots in two Italian regions showed an uneven diffusion of carrier strains, whose presence could be related to a selective advantage in maintaining the RM system in particular environments or subpopulations. Moreover, carrier strains can coexist in the same orchards, plants, and knot tissues with non-carriers, revealing unexpected genetic variability on a very small spatial scale. Phylogenetic analysis of the RM system and housekeeping gene sequences in the P. syringae complex demonstrated the ancient acquisition of the RM systems. However, the evolutionary history of the gene complex also showed the involvement of horizontal gene transfer between related strains and recombination events.
Collapse
Affiliation(s)
- Tamara Cinelli
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144, Firenze, Italy,
| | | | | |
Collapse
|
395
|
Cavanagh JP, Hjerde E, Holden MTG, Kahlke T, Klingenberg C, Flægstad T, Parkhill J, Bentley SD, Sollid JUE. Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals. J Antimicrob Chemother 2014; 69:2920-7. [PMID: 25038069 PMCID: PMC4195474 DOI: 10.1093/jac/dku271] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Staphylococcus haemolyticus is an emerging cause of nosocomial infections, primarily affecting immunocompromised patients. A comparative genomic analysis was performed on clinical S. haemolyticus isolates to investigate their genetic relationship and explore the coding sequences with respect to antimicrobial resistance determinants and putative hospital adaptation. METHODS Whole-genome sequencing was performed on 134 isolates of S. haemolyticus from geographically diverse origins (Belgium, 2; Germany, 10; Japan, 13; Norway, 54; Spain, 2; Switzerland, 43; UK, 9; USA, 1). Each genome was individually assembled. Protein coding sequences (CDSs) were predicted and homologous genes were categorized into three types: Type I, core genes, homologues present in all strains; Type II, unique core genes, homologues shared by only a subgroup of strains; and Type III, unique genes, strain-specific CDSs. The phylogenetic relationship between the isolates was built from variable sites in the form of single nucleotide polymorphisms (SNPs) in the core genome and used to construct a maximum likelihood phylogeny. RESULTS SNPs in the genome core regions divided the isolates into one major group of 126 isolates and one minor group of isolates with highly diverse genomes. The major group was further subdivided into seven clades (A-G), of which four (A-D) encompassed isolates only from Europe. Antimicrobial multiresistance was observed in 77.7% of the collection. High levels of homologous recombination were detected in genes involved in adherence, staphylococcal host adaptation and bacterial cell communication. CONCLUSIONS The presence of several successful and highly resistant clones underlines the adaptive potential of this opportunistic pathogen.
Collapse
Affiliation(s)
- Jorunn Pauline Cavanagh
- Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, Norstruct, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Tim Kahlke
- Department of Chemistry, Norstruct, UiT The Arctic University of Norway, Tromsø, Norway
| | - Claus Klingenberg
- Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trond Flægstad
- Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Stephen D Bentley
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0SP, UK
| | | |
Collapse
|
396
|
Barnes HE, Liu G, Weston CQ, King P, Pham LK, Waltz S, Helzer KT, Day L, Sphar D, Yamamoto RT, Forsyth RA. Selective microbial genomic DNA isolation using restriction endonucleases. PLoS One 2014; 9:e109061. [PMID: 25279840 PMCID: PMC4184833 DOI: 10.1371/journal.pone.0109061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022] Open
Abstract
To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment.
Collapse
Affiliation(s)
- Helen E. Barnes
- FLIR Systems, Inc., La Jolla, California, United States of America
| | - Guohong Liu
- FLIR Systems, Inc., La Jolla, California, United States of America
| | | | - Paula King
- FLIR Systems, Inc., La Jolla, California, United States of America
| | - Long K. Pham
- FLIR Systems, Inc., La Jolla, California, United States of America
| | - Shannon Waltz
- FLIR Systems, Inc., La Jolla, California, United States of America
| | | | - Laura Day
- FLIR Systems, Inc., La Jolla, California, United States of America
| | - Dan Sphar
- FLIR Systems, Inc., La Jolla, California, United States of America
| | | | - R. Allyn Forsyth
- FLIR Systems, Inc., La Jolla, California, United States of America
| |
Collapse
|
397
|
Oliveira PH, Touchon M, Rocha EPC. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 2014; 42:10618-31. [PMID: 25120263 PMCID: PMC4176335 DOI: 10.1093/nar/gku734] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/21/2023] Open
Abstract
The roles of restriction-modification (R-M) systems in providing immunity against horizontal gene transfer (HGT) and in stabilizing mobile genetic elements (MGEs) have been much debated. However, few studies have precisely addressed the distribution of these systems in light of HGT, its mechanisms and its vectors. We analyzed the distribution of R-M systems in 2261 prokaryote genomes and found their frequency to be strongly dependent on the presence of MGEs, CRISPR-Cas systems, integrons and natural transformation. Yet R-M systems are rare in plasmids, in prophages and nearly absent from other phages. Their abundance depends on genome size for small genomes where it relates with HGT but saturates at two occurrences per genome. Chromosomal R-M systems might evolve under cycles of purifying and relaxed selection, where sequence conservation depends on the biochemical activity and complexity of the system and total gene loss is frequent. Surprisingly, analysis of 43 pan-genomes suggests that solitary R-M genes rarely arise from the degradation of R-M systems. Solitary genes are transferred by large MGEs, whereas complete systems are more frequently transferred autonomously or in small MGEs. Our results suggest means of testing the roles for R-M systems and their associations with MGEs.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| | - Marie Touchon
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
398
|
López-Pérez M, Gonzaga A, Ivanova EP, Rodriguez-Valera F. Genomes of Alteromonas australica, a world apart. BMC Genomics 2014; 15:483. [PMID: 24942065 PMCID: PMC4119200 DOI: 10.1186/1471-2164-15-483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. There are genomes available of the species Alteromonas macleodii from different locations around the world and an Alteromonas sp. isolated from a sediment in Korea. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea. RESULTS Although these two strains belong to a clearly different species from A. macleodii, the overall synteny is well preserved and the flexible genomic islands seem to code for equivalent functions and be located at similar positions. Actually the genomes of all the Alteromonas species known to date seem to preserve synteny quite well with the only exception of the sediment isolate SN2. Among the specific metabolic features found for the A. australica isolates there is the degradation of xylan and production of cellulose as extracellular polymeric substance by DE170 or the potential ethanol/methanol degradation by H17T. CONCLUSIONS The genomes of the two A. australica isolates are not more different than those of strains of A. macleodii isolated from the same sample. Actually the recruitment from metagenomes indicates that all the available genomes are found in most tropical-temperate marine samples analyzed and that they live in consortia of several species and multiple clones within each. Overall the hydrolytic activities of the Alteromonas genus as a whole are impressive and fit with its known capabilities to exploit sudden inputs of organic matter in their environment.
Collapse
Affiliation(s)
| | | | | | - Francisco Rodriguez-Valera
- División de Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, San Juan, 03550 Alicante, Spain.
| |
Collapse
|
399
|
Cherry KE, Hearn WE, Seshie OYK, Singleton TL. Identification of Tf1 integration events in S. pombe under nonselective conditions. Gene 2014; 542:221-31. [PMID: 24680781 DOI: 10.1016/j.gene.2014.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 12/01/2022]
Abstract
Integration of retroviral elements into the host genome is a phenomena observed among many classes of retroviruses. Much information concerning the integration of retroviral elements has been documented based on in vitro analysis or expression of selectable markers. To identify possible Tf1 integration events within silent regions of the Schizosaccharomyces pombe genome, we focused on performing an in vivo genome-wide analysis of Tf1 integration events from the nonselective phase of the retrotransposition assay. We analyzed 1000 individual colonies streaked from four independent Tf1 transposed patches under nonselection conditions. Our analysis detected a population of G418(S)/neo(+) Tf1 integration events that would have been overlooked during the selective phase of the assay. Further RNA analysis from the G418(S)/neo(+) clones revealed 50% of clones expressing the neo selectable marker. Our data reveals Tf1's ability to insert within silent regions of S. pombe's genome.
Collapse
Affiliation(s)
- Kristina E Cherry
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Willis E Hearn
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Osborne Y K Seshie
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Teresa L Singleton
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| |
Collapse
|
400
|
Chen P, Jeannotte R, Weimer BC. Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier. Trends Microbiol 2014; 22:292-300. [PMID: 24725482 DOI: 10.1016/j.tim.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023]
Abstract
Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases - those lacking the cognate restriction endonuclease - facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis including new predictive bioinformatics approaches that can be verified with traditional scientific rigor. Sequencing technologies that detect modification coupled with mass spectrometry to discover new adducts is a powerful tactic to study bacterial epigenetics, which is poised to make novel and far-reaching discoveries that link biological significance and the bacterial epigenome.
Collapse
Affiliation(s)
- Poyin Chen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile
| | - Richard Jeannotte
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile; Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile.
| |
Collapse
|