351
|
The brain microenvironment negatively regulates miRNA-768-3p to promote K-ras expression and lung cancer metastasis. Sci Rep 2014; 3:2392. [PMID: 23928793 PMCID: PMC3738968 DOI: 10.1038/srep02392] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/16/2013] [Indexed: 01/02/2023] Open
Abstract
The brain microenvironment promotes metastasis through mechanisms that remain elusive. Co-culture of lung cancer cells with astrocytes - the most abundant cell type within the metastatic brain niche – lead to downregulation of miRNA-768-3p which drives K-ras expression and key signaling pathways, enhances cell viability and promotes chemotherapeutic resistance. Vector-based forced expression of miRNA-768-3p complementary sequence or a chemically-engineered miRNA-768-3p inhibitor recapitulated the astrocyte effect to increase tumor cell viability. The miRNA-768-3p inhibitor targeted the K-ras 3′-UTR as demonstrated by increased luminescence from a luciferase reporter and strikingly increased the K-ras protein and the downstream effectors ERK1/2 and B-Raf. miRNA-768-3p was reduced in patient brain metastases compared to normal brain tissue and was lower in patient tissue from brain metastases compared to same-patient primary tumour tissue. The brain microenvironment negatively regulates miRNA-768-3p to enhance K-ras and promote metastasis. We propose that therapeutic replacement of the metastasis suppressor miRNA-768-3p holds clinical promise.
Collapse
|
352
|
Zhao J, Kelnar K, Bader AG. In-depth analysis shows synergy between erlotinib and miR-34a. PLoS One 2014; 9:e89105. [PMID: 24551227 PMCID: PMC3925231 DOI: 10.1371/journal.pone.0089105] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/20/2014] [Indexed: 11/18/2022] Open
Abstract
Tyrosine kinase inhibitors directed against epidermal growth factor receptor (EGFR-TKI), such as erlotinib, are effective in a limited fraction of non-small cell lung cancer (NSCLC). However, the majority of NSCLC and other cancer types remain resistant. Therapeutic miRNA mimics modeled after endogenous tumor suppressor miRNAs inhibit tumor growth by repressing multiple oncogenes at once and, therefore, may be used to augment drug sensitivity. Here, we investigated the relationship of miR-34a and erlotinib and determined the therapeutic activity of the combination in NSCLC cells with primary and acquired erlotinib resistance. The drug combination was also tested in a panel of hepatocellular carcinoma cells (HCC), a cancer type known to be refractory to erlotinib. Using multiple analytical approaches, drug-induced inhibition of cancer cell proliferation was determined to reveal additive, antagonistic or synergistic effects. Our data show a strong synergistic interaction between erlotinib and miR-34a mimics in all cancer cells tested. Synergy was observed across a range of different dose levels and drug ratios, reducing IC50 dose requirements for erlotinib and miR-34a by up to 46-fold and 13-fold, respectively. Maximal synergy was detected at dosages that provide a high level of cancer cell inhibition beyond the one that is induced by the single agents alone and, thus, is of clinical relevance. The data suggest that a majority of NSCLC and other cancers previously not suited for erlotinib may prove sensitive to the drug when used in combination with a miR-34a-based therapy.
Collapse
Affiliation(s)
- Jane Zhao
- Mirna Therapeutics, Inc., Austin, Texas, United States of America
| | - Kevin Kelnar
- Mirna Therapeutics, Inc., Austin, Texas, United States of America
| | - Andreas G. Bader
- Mirna Therapeutics, Inc., Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
353
|
Luo C, Weber CEM, Osen W, Bosserhoff AK, Eichmüller SB. The role of microRNAs in melanoma. Eur J Cell Biol 2014; 93:11-22. [PMID: 24602414 DOI: 10.1016/j.ejcb.2014.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
Melanoma is the most dangerous form of skin cancer, being largely resistant to conventional therapies at advanced stages. Understanding the molecular mechanisms behind this disease might be the key for the development of novel therapeutic strategies. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control gene expression, thereby regulating various cellular signaling pathways involved in the initiation and progression of different cancer types, including melanoma. In this review, we summarize approaches for the identification of candidate miRNAs and their target genes and review the functions of miRNAs in melanoma. Finally, we highlight the recent progress in pre-clinical use of miRNAs as prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Chonglin Luo
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Claudia E M Weber
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wolfram Osen
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Stefan B Eichmüller
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
354
|
Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, Bobbitt K, Rempel SA, Hasselbach L, Mikkelsen T, Slavin S, Brodie C. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 2014; 4:346-61. [PMID: 23548312 PMCID: PMC3712579 DOI: 10.18632/oncotarget.868] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as potential cancer therapeutics; however, their clinical use is hindered by lack of effective delivery mechanisms to tumor sites. Mesenchymal stem cells (MSCs) have been shown to migrate to experimental glioma and to exert anti-tumor effects by delivering cytotoxic compounds. Here, we examined the ability of MSCs derived from bone marrow, adipose tissue, placenta and umbilical cord to deliver synthetic miRNA mimics to glioma cells and glioma stem cells (GSCs). We examined the delivery of miR-124 and miR-145 mimics as glioma cells and GSCs express very low levels of these miRNAs. Using fluorescently labeled miRNA mimics and in situ hybridization, we demonstrated that all the MSCs examined delivered miR-124 and miR-145 mimics to co-cultured glioma cells and GSCs via gap junction- dependent and independent processes. The delivered miR-124 and miR-145 mimics significantly decreased the luciferase activity of their respected reporter target genes, SCP-1 and Sox2, and decreased the migration of glioma cells and the self-renewal of GSCs. Moreover, MSCs delivered Cy3-miR-124 mimic to glioma xenografts when administered intracranially. These results suggest that MSCs can deliver synthetic exogenous miRNA mimics to glioma cells and GSCs and may provide an efficient route of therapeutic miRNA delivery in vivo.
Collapse
Affiliation(s)
- Hae Kyung Lee
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Tamim S, Vo DT, Uren PJ, Qiao M, Bindewald E, Kasprzak WK, Shapiro BA, Nakaya HI, Burns SC, Araujo PR, Nakano I, Radek AJ, Kuersten S, Smith AD, Penalva LOF. Genomic analyses reveal broad impact of miR-137 on genes associated with malignant transformation and neuronal differentiation in glioblastoma cells. PLoS One 2014; 9:e85591. [PMID: 24465609 PMCID: PMC3899048 DOI: 10.1371/journal.pone.0085591] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/05/2013] [Indexed: 02/05/2023] Open
Abstract
miR-137 plays critical roles in the nervous system and tumor development; an increase in its expression is required for neuronal differentiation while its reduction is implicated in gliomagenesis. To evaluate the potential of miR-137 in glioblastoma therapy, we conducted genome-wide target mapping in glioblastoma cells by measuring the level of association between PABP and mRNAs in cells transfected with miR-137 mimics vs. controls via RIPSeq. Impact on mRNA levels was also measured by RNASeq. By combining the results of both experimental approaches, 1468 genes were found to be negatively impacted by miR-137--among them, 595 (40%) contain miR-137 predicted sites. The most relevant targets include oncogenic proteins and key players in neurogenesis like c-KIT, YBX1, AKT2, CDC42, CDK6 and TGFβ2. Interestingly, we observed that several identified miR-137 targets are also predicted to be regulated by miR-124, miR-128 and miR-7, which are equally implicated in neuronal differentiation and gliomagenesis. We suggest that the concomitant increase of these four miRNAs in neuronal stem cells or their repression in tumor cells could produce a robust regulatory effect with major consequences to neuronal differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Saleh Tamim
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Dat T. Vo
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Philip J. Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Mei Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eckart Bindewald
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Wojciech K. Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, California
| | - Helder I. Nakaya
- Department of Clinical Analyses and Toxicology, Institute of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suzanne C. Burns
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Patricia R. Araujo
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ichiro Nakano
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Agnes J. Radek
- Epicentre (An Illumina Company), Madison, Wisconsin, United States of America
| | - Scott Kuersten
- Epicentre (An Illumina Company), Madison, Wisconsin, United States of America
| | - Andrew D. Smith
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Luiz O. F. Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
356
|
Kelnar K, Peltier HJ, Leatherbury N, Stoudemire J, Bader AG. Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates. Anal Chem 2014; 86:1534-42. [PMID: 24397447 PMCID: PMC3982984 DOI: 10.1021/ac403044t] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MRX34, a microRNA (miRNA)-based therapy for cancer, has recently entered clinical trials as the first clinical candidate in its class. It is a liposomal nanoparticle loaded with a synthetic mimic of the tumor suppressor miRNA miR-34a as the active pharmaceutical ingredient. To understand the pharmacokinetic properties of the drug and to rationalize an optimal dosing regimen in the clinic, a method is needed to quantitatively detect the miRNA mimic. Here, we report the development and qualification of a quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay in support of pharmacokinetic and toxicokinetic assessments in the nonhuman primate. Detection and quantification were performed on total ribonucleic acid (RNA) isolated from whole blood. The qualified range of the standard curve spans 6 orders of magnitude from 2.5 × 10(-7) to 2.5 × 10(-1) ng per reverse transcription (RT) reaction, corresponding to an estimated blood concentration from 6.2 × 10(-5) to 6.2 × 10(1) ng/mL. Our results demonstrate that endogenous as well as the exogenous miR-34a can be accurately and precisely quantified. The assay was used to establish the pharmacokinetic profile of MRX34, showing a favorable residence time and exposure of the miRNA mimic in whole blood from nonhuman primates.
Collapse
Affiliation(s)
- Kevin Kelnar
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, Texas 78701, United States
| | | | | | | | | |
Collapse
|
357
|
Polonyi C, Alshiekh A, Sarsam LA, Clausén M, Elmroth SKC. Cisplatin-induced duplex dissociation of complementary and destabilized short GG-containing duplex RNAs. Dalton Trans 2014; 43:11941-9. [DOI: 10.1039/c4dt00213j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of a series of small size RNAs towards mono-aquated cisplatin was monitored using UV/vis spectroscopy. Subtle changes of local melting behavior were found to influence metal binding kinetics, with an increase in reactivity following central destabilization.
Collapse
Affiliation(s)
- Christopher Polonyi
- Biochemistry and Structural Biology
- KILU
- Lund University
- SE-221 00 Lund, Sweden
| | - Alak Alshiekh
- Biochemistry and Structural Biology
- KILU
- Lund University
- SE-221 00 Lund, Sweden
| | - Lamya A. Sarsam
- Biochemistry and Structural Biology
- KILU
- Lund University
- SE-221 00 Lund, Sweden
| | - Maria Clausén
- Biochemistry and Structural Biology
- KILU
- Lund University
- SE-221 00 Lund, Sweden
| | - Sofi K. C. Elmroth
- Biochemistry and Structural Biology
- KILU
- Lund University
- SE-221 00 Lund, Sweden
| |
Collapse
|
358
|
The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. ADVANCES IN GENETICS 2014; 85:149-99. [PMID: 24880735 DOI: 10.1016/b978-0-12-800271-1.00003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenously expressed transcripts that are posttranscriptionally regulated by the same microRNAs (miRNAs) will, in principle, compete for the binding of their shared small noncoding RNA regulators and modulate each other's abundance. Recently, the levels of some coding as well as noncoding transcripts have indeed been found to be regulated in this way. Transcripts that engage in such regulatory interactions are referred to as competitive endogenous RNAs (ceRNAs). This novel layer of posttranscriptional regulation has been shown to contribute to diverse aspects of organismal and cellular biology, despite the number of functionally characterized ceRNAs being as yet relatively low. Importantly, increasing evidence suggests that the dysregulation of some ceRNA interactions is associated with disease etiology, most preeminently with cancer. Here we review how posttranscriptional regulation by miRNAs contributes to the cross-talk between transcripts and review examples of known ceRNAs by highlighting the features underlying their interactions and what might be their biological relevance.
Collapse
|
359
|
Abstract
Personalized medicine comprises the genetic information together with the phenotypic and environmental factors to yield healthcare tailored to an individual and removes the limitations of the "one-size-fits-all" therapy approach. This provides the opportunity to translate therapies from bench to clinic, to diagnose and predict disease, and to improve patient-tailored treatments based on the unique signatures of a patient's disease and further to identify novel treatment schedules. Nowadays, tiny noncoding RNAs, called microRNAs, have captured the spotlight in molecular biology with highlights like their involvement in DNA translational control, their impression on mRNA and protein expression levels, and their ability to reprogram molecular signaling pathways in cancer. Realizing their pivotal roles in drug resistance, they emerged as diagnostic targets orchestrating drug response in individualized therapy examples. It is not premature to think that researchers could have the US Food and Drug Administration (FDA)-approved kit-based assays for miRNA analysis in the near future. We think that miRNAs are ready for prime time.
Collapse
|
360
|
Shi M, Xie D, Gaod Y, Xie K. Targeting miRNAs for pancreatic cancer therapy. Curr Pharm Des 2014; 20:5279-5286. [PMID: 24479803 PMCID: PMC4113604 DOI: 10.2174/1381612820666140128210443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the United States and has a median 5-year survival rate less than 5%. Although surgery offers the best chance for a cure for pancreatic cancer, less than 20% of patients are eligible for potentially curative resection, because in most cases, the cancer has already spread locally or to distant organs at diagnosis, precluding resection. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal regulators of posttranscriptional gene expression. Extensive studies of miRNAs over the past several years have revealed that the expression of miRNAs is frequently deregulated in pancreatic cancer patients and that this deregulation contributes to the pathogenesis and aggressiveness of the disease. Currently, investigators are studying the use of miRNAs as diagnostic and/or prognostic biomarkers and therapeutic tools for pancreatic cancer. Rapid discovery of many miRNA targets and their relevant pathways has contributed to the development of miRNA-based therapeutics. In particular, the transcription factor Forkhead box M1 (FOXM1) is overexpressed in the majority of cancer patients, including those with pancreatic cancer. This overexpression is implicated to have a role in tumorigenesis, progression, and metastasis. This important role of FOXM1 affirms its usefulness in therapeutic interventions for pancreatic cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of miRNAs and FOXM1 in pancreatic cancer development and describe the roles of the miRNA-FOXM1 signaling pathway in pancreatic cancer initiation and progression. Additionally, we describe some of the technical challenges in the use of the miRNA-FOXM1 signaling pathway in pancreatic cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
361
|
Domingo-Gonzalez R, Moore BB. Innate Immunity Post-Hematopoietic Stem Cell Transplantation: Focus on Epigenetics. ACTA ACUST UNITED AC 2014; 5:189-197. [PMID: 26709355 DOI: 10.3233/nib-140079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of gene expression is important for normal biological processes like immune cell development, immune responses, and differentiation from hematopoietic stem cells. Furthermore, it is well understood that epigenetic mechanisms can include methylation, histone modification, and more recently, microRNAs. Interestingly, aberrant epigenetic modification can also promote pathology in many diseases like cancer. The effects of methylation on gene expression and its resulting phenotype have been extensively studied. In this review, we discuss the inhibition of innate immunity that occurs in humans and animal models post-stem cell transplant. In addition, we highlight the changes methylation and microRNA profiles have on regulating pulmonary innate immune responses in the context of hematopoietic stem cell transplantation in experimental animal models.
Collapse
Affiliation(s)
| | - Bethany B Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA ; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
362
|
Amato F, Tomaiuolo R, Borbone N, Elce A, Amato J, D'Errico S, De Rosa G, Mayol L, Piccialli G, Oliviero G, Castaldo G. Design, synthesis and biochemical investigation, by in vitro luciferase reporter system, of peptide nucleic acids as new inhibitors of miR-509-3p involved in the regulation of cystic fibrosis disease-gene expression. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00257h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
363
|
Bronisz A, Wang Y, Nowicki MO, Peruzzi P, Ansari K, Ogawa D, Balaj L, De Rienzo G, Mineo M, Nakano I, Ostrowski MC, Hochberg F, Weissleder R, Lawler SE, Chiocca EA, Godlewski J. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 2013; 74:738-750. [PMID: 24310399 DOI: 10.1158/0008-5472.can-13-2650] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles have emerged as important mediators of intercellular communication in cancer, including by conveying tumor-promoting microRNAs between cells, but their regulation is poorly understood. In this study, we report the findings of a comparative microRNA profiling and functional analysis in human glioblastoma that identifies miR-1 as an orchestrator of extracellular vesicle function and glioblastoma growth and invasion. Ectopic expression of miR-1 in glioblastoma cells blocked in vivo growth, neovascularization, and invasiveness. These effects were associated with a role for miR-1 in intercellular communication in the microenvironment mediated by extracellular vesicles released by cancer stem-like glioblastoma cells. An extracellular vesicle-dependent phenotype defined by glioblastoma invasion, neurosphere growth, and endothelial tube formation was mitigated by loading miR-1 into glioblastoma-derived extracellular vesicles. Protein cargo in extracellular vesicles was characterized to learn how miR-1 directed extracellular vesicle function. The mRNA encoding Annexin A2 (ANXA2), one of the most abundant proteins in glioblastoma-derived extracellular vesicles, was found to be a direct target of miR-1 control. In addition, extracellular vesicle-derived miR-1 along with other ANXA2 extracellular vesicle networking partners targeted multiple pro-oncogenic signals in cells within the glioblastoma microenvironment. Together, our results showed how extracellular vesicle signaling promotes the malignant character of glioblastoma and how ectopic expression of miR-1 can mitigate this character, with possible implications for how to develop a unique miRNA-based therapy for glioblastoma management.
Collapse
Affiliation(s)
- Agnieszka Bronisz
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Molecular and Cellular Biochemistry, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Yan Wang
- Department of Neurological Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Michal O Nowicki
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurological Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Pierpaolo Peruzzi
- Department of Neurological Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Khairul Ansari
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daisuke Ogawa
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurological Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Leonora Balaj
- Neuroscience Center at Massachusetts General Hospital, Charlestown, MA 02129
| | - Gianluca De Rienzo
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Mineo
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ichiro Nakano
- Department of Neurological Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Michael C Ostrowski
- Department of Molecular and Cellular Biochemistry, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Fred Hochberg
- Neuroscience Center at Massachusetts General Hospital, Charlestown, MA 02129
| | - Ralph Weissleder
- Neuroscience Center at Massachusetts General Hospital, Charlestown, MA 02129
| | - Sean E Lawler
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurological Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurological Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jakub Godlewski
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurological Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
364
|
Atarod S, Dickinson AM. MicroRNAs: The Missing Link in the Biology of Graft-Versus-Host Disease? Front Immunol 2013; 4:420. [PMID: 24348483 PMCID: PMC3845018 DOI: 10.3389/fimmu.2013.00420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023] Open
Abstract
Graft-versus-host disease (GVHD) is still the major complication of allogeneic hematopoietic stem cell transplantation. Despite extensive studies in understanding the pathophysiology of GVHD, its pathogenesis remains unclear. Recently, important functions of microRNAs have been demonstrated in various autoimmune diseases and cancers such as psoriasis and lymphoma. This review highlights the need to investigate the role of microRNAs in GVHD and hypothesizes that microRNAs may be one of the missing links in our understanding of GVHD, with the potential for novel therapeutics.
Collapse
Affiliation(s)
- Sadaf Atarod
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Anne Mary Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
365
|
Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Qian J, Gu J, Chang L, Ge D, Chu Y. PA28gamma emerges as a novel functional target of tumour suppressor microRNA-7 in non-small-cell lung cancer. Br J Cancer 2013; 110:353-62. [PMID: 24281003 PMCID: PMC3899764 DOI: 10.1038/bjc.2013.728] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/12/2013] [Accepted: 10/23/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNA-7 (miR-7) has been reported to be a tumour suppressor gene. However, whether it has a role in the growth of non-small-cell lung cancer (NSCLC) and what is its target involved in the tumour growth is still under investigation. METHODS NSCLC tissue sample, NSCLC cell lines and tissue microarray were investigated in this study. Total RNA, miRNA and protein were used for RT-PCR and western blot analysis. Immunohistochemistry was performed in tissues microarray. Cell culture and intervention experiments were performed in vitro and in vivo. Bioinformatics prediction, western blot and luciferase assay were identified the target of miR-7. RESULTS In this study, we found that the expression of miR-7 was significantly downregulated not only in NSCLC cell lines, but also in human NSCLC tissues compared with the matched adjacent tissues. Restoration of its expression through miR-7 mimics in A549 and H1299 NSCLC cells inhibited cell proliferation, colony formation, and cell-cycle progression in vitro. More importantly, the tumorigenicity in nude mice was reduced after administration of miR-7 in vivo. In advance, through bioinformatic analysis, luciferase assay and western blot, we identified a novel target of miR-7, PA28gamma (a proteasome activator) to be enrolled in the regulation with tumour. PA28gamma mRNA and protein levels are markedly upregulated in NSCLC cell lines and tumour samples, exhibiting a strong inverse relation with that of miR-7. In addition, knockdown of PA28gamma induced similar effects as overexpression of miR-7 in NSCLC cells. Furthermore, miR-7 overexpression or silencing of PA28gamma reduced the cyclinD1 expression at mRNA and protein level in NSCLC cell lines. CONCLUSION All these findings strongly imply that the overexpression of PA28gamma resulted from miR-7 downexpression in NSCLC has an important role in promoting cancer cell progress and consequently results in NSCLC growth. Thus, strategies targeting PA28gamma and/or miR-7 may become promising molecular therapies in NSCLC treatment.
Collapse
Affiliation(s)
- S Xiong
- 1] Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China [2] Biotherapy Research Center of Fudan University, Shanghai, People's Republic of China [3] Department of Hematology/Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Y Zheng
- 1] Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China [2] Biotherapy Research Center of Fudan University, Shanghai, People's Republic of China
| | - P Jiang
- Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - R Liu
- 1] Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China [2] Biotherapy Research Center of Fudan University, Shanghai, People's Republic of China
| | - X Liu
- Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - J Qian
- Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - J Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - L Chang
- Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - D Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Y Chu
- 1] Department of Immunology and Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China [2] Biotherapy Research Center of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
366
|
D'Ippolito E, Iorio MV. MicroRNAs and triple negative breast cancer. Int J Mol Sci 2013; 14:22202-20. [PMID: 24284394 PMCID: PMC3856060 DOI: 10.3390/ijms141122202] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a very aggressive tumor subtype, which still lacks specific markers for an effective targeted therapy. Despite the common feature of negativity for the three most relevant receptors (ER, PgR and HER2), TNBC is a very heterogeneous disease where different subgroups can be recognized, and both gene and microRNA profiling studies have recently been carried out to dissect the different molecular entities. Moreover, several microRNAs playing a crucial role in triple negative breast cancer biology have been identified, providing the experimental basis for a possible therapeutic application. Indeed, the causal involvement of microRNAs in breast cancer and the possible use of these small noncoding RNA molecules as biomarkers has been extensively studied with promising results. Their application as therapeutic tools might represent an innovative approach, especially for a tumor subgroup still lacking an efficient and specific therapy such as TNBC. In this review, we summarize our knowledge on the most important microRNAs described in TNBC.
Collapse
Affiliation(s)
- Elvira D'Ippolito
- Start Up Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, Milan 20133, Italy.
| | | |
Collapse
|
367
|
MicroRNAs in Head and Neck Cancer. Int J Dent 2013; 2013:650218. [PMID: 24260035 PMCID: PMC3821954 DOI: 10.1155/2013/650218] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022] Open
Abstract
microRNAs (miRs) are small noncoding single-stranded RNAs, about 19–25 nucleotides long. They have been shown to be capable of altering mRNA expression; thus some are oncogenic or tumour suppressive in nature and are regulated by cellular and epigenetic factors. The molecular pathogenic pathway of many cancers has been modified since the discovery of miRs. Head and neck squamous cell carcinoma (HNSCC), the sixth most common cancer in the world, has recently been associated with infection by the human papillomavirus (HPV). miR expression profiles are altered in the transition from dysplasia to carcinoma, with some changes being specific to the underlying risk factor. This difference is particularly significant in HPV-positive HNSCC where host miRs are modulated by the virus, creating a different profile to HPV-negative HNSCC. Saliva, as an easily collected proximal biofluid containing numerous miRs, presents an attractive noninvasive diagnostic tool in detecting HNSCC and determining prognosis. Furthermore, miRs may play a role in the analysis of surgical margins for residual tumour extension and in the development of novel miR-based therapeutic targets and agents.
Collapse
|
368
|
MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer. Radiol Oncol 2013; 47:311-8. [PMID: 24294175 PMCID: PMC3814275 DOI: 10.2478/raon-2013-0062] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/20/2013] [Indexed: 12/11/2022] Open
Abstract
Background Non-coding RNAs (ncRNAs) are key regulatory molecules in cellular processes, and are potential biomarkers in many diseases. Currently, microRNAs and long non-coding RNAs are being pursued as diagnostic and prognostic biomarkers, and as therapeutic tools in cancer, since their expression profiling is able to distinguish different cancer types and classify their sub-types. Conclusions There are numerous studies confirming involvement of ncRNAs in cancer initiation, development and progression, but have only been recently identified as new diagnostic and prognostic tools. This can be beneficial in future medical cancer treatment options, since ncRNAs are natural antisense interactors included in regulation of many genes connected to survival and proliferation. Research is directed in development of useful markers for diagnosis and prognosis in cancer and in developing new RNA-based cancer therapies, of which some are already in clinical trials.
Collapse
|
369
|
Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing. PLoS One 2013; 8:e76288. [PMID: 24098464 PMCID: PMC3788729 DOI: 10.1371/journal.pone.0076288] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
microRNAs (miRNAs) are non-coding small RNAs (sRNAs) capable of negatively regulating gene expression. Recently, microRNA-like small RNAs (milRNAs) were discovered in several filamentous fungi but not yet in Trichoderma reesei, an industrial filamentous fungus that can secrete abundant hydrolases. To explore the presence of milRNA in T. reesei and evaluate their expression under induction of cellulose, two T. reesei sRNA libraries of cellulose induction (IN) and non-induction (CON) were generated and sequenced using Solexa sequencing technology. A total of 726 and 631 sRNAs were obtained from the IN and CON samples, respectively. Global expression analysis showed an extensively differential expression of sRNAs in T. reesei under the two conditions. Thirteen predicted milRNAs were identified in T. reesei based on the short hairpin structure analysis. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. Computational analysis predicted a number of potential targets relating to many processes including regulation of enzyme expression. The presence and differential expression of T. reesei milRNAs imply that milRNA might play a role in T. reesei growth and cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.
Collapse
|
370
|
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013. [PMID: 24079833 DOI: 10.1146/annurev-pathol- 012513-104715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that typically inhibit the translation and stability of messenger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell-cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell, and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of miRNA genomics, biogenesis, and function, we discuss the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies.
Collapse
Affiliation(s)
- Gianpiero Di Leva
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210; ,
| | | | | |
Collapse
|
371
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that typically inhibit the translation and stability of messenger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell-cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell, and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of miRNA genomics, biogenesis, and function, we discuss the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies.
Collapse
Affiliation(s)
- Gianpiero Di Leva
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Michela Garofalo
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Carlo M. Croce
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
372
|
Ahmad N, Haider S, Jagannathan S, Anaissie E, Driscoll JJ. MicroRNA theragnostics for the clinical management of multiple myeloma. Leukemia 2013; 28:732-8. [PMID: 24714346 DOI: 10.1038/leu.2013.262] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Theragnostics represent cutting-edge, multi-disciplinary strategies that combine diagnostics with therapeutics in order to generate personalized therapies that improve patient outcome. In oncology, the approach is aimed at more accurate diagnosis of cancer, optimization of patient selection to identify those most likely to benefit from a specific therapy and to generate effective therapeutics that enhance patient survival. MicroRNAs (miRNAs) are master regulators of the human genome that orchestrate myriad cellular pathways to control growth during physiologic and pathologic conditions. Compelling evidence shows that miRNA deregulation promotes events linked to tumor initiation, metastasis and drug resistance as seen in multiple myeloma (MM), an invariably fatal hematologic malignancy. miRNAs are readily detected in body fluids, for example, serum, plasma, urine, as well as circulating tumor cells to demonstrate their potential as readily accessible, non-invasive diagnostic and prognostic biomarkers and potential therapeutics. Specific miRNAs are aberrantly expressed early in myelomagenesis and may more readily detect high-risk disease than current methods. Although only recently discovered miRNAs have rapidly advanced from preclinical studies to evaluation in human clinical trials. The development of miRNA theragnostics should provide widely applicable tools for the targeted delivery of personalized medicines to improve the outcome of patients with MM.
Collapse
Affiliation(s)
- N Ahmad
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S Haider
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S Jagannathan
- 1] Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] The Vontz Center for Molecular Studies, Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E Anaissie
- 1] Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J J Driscoll
- 1] Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA [3] The Vontz Center for Molecular Studies, Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA [4] Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
373
|
Tomasetti M, Neuzil J, Dong L. MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta Gen Subj 2013; 1840:1441-53. [PMID: 24016605 DOI: 10.1016/j.bbagen.2013.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Mitochondria, essential to the cell homeostasis maintenance, are central to the intrinsic apoptotic pathway and their dysfunction is associated with multiple diseases. Recent research documents that microRNAs (miRNAs) regulate important signalling pathways in mitochondria, and many of these miRNAs are deregulated in various diseases including cancers. SCOPE OF REVIEW In this review, we summarise the role of miRNAs in the regulation of the mitochondrial bioenergetics/function, and discuss the role of miRNAs modulating the various metabolic pathways resulting in tumour suppression and their possible therapeutic applications. MAJOR CONCLUSIONS MiRNAs have recently emerged as key regulators of metabolism and can affect mitochondria by modulating mitochondrial proteins coded by nuclear genes. They were also found in mitochondria. Reprogramming of the energy metabolism has been postulated as a major feature of cancer. Modulation of miRNAs levels may provide a new therapeutic approach for the treatment of mitochondria-related pathologies, including neoplastic diseases. GENERAL SIGNIFICANCE The elucidation of the role of miRNAs in the regulation of mitochondrial activity/bioenergetics will deepen our understanding of the molecular aspects of various aspects of cell biology associated with the genesis and progression of neoplastic diseases. Eventually, this knowledge may promote the development of innovative pharmacological interventions. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60020, Italy.
| | - Jiri Neuzil
- Apoptosis Research Group, School of Medical Science and Griffith Health Institute, Griffith University, Southport, Qld 4222, Australia; Molecular Therapy Group, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 4 142 20, Czech Republic
| | - Lanfeng Dong
- Apoptosis Research Group, School of Medical Science and Griffith Health Institute, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
374
|
Wang Z, Han J, Cui Y, Zhou X, Fan K. miRNA-21 inhibition enhances RANTES and IP-10 release in MCF-7 via PIAS3 and STAT3 signalling and causes increased lymphocyte migration. Biochem Biophys Res Commun 2013; 439:384-9. [PMID: 23998932 DOI: 10.1016/j.bbrc.2013.08.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are a class of small endogenous gene regulators that have been implicated in various developmental and pathological processes. However, the precise identities and functions of miRNAs involved in antitumor immunity are not yet well understood. miRNA-21 is an oncogenic miRNA that can be detected in various tumours. In this study, we report that a miRNA-21 inhibitor enhances the release of chemoattractants RANTES and IP-10 in the MCF-7 breast cancer cell line and results in increased lymphocyte migration. Thus, miRNA-21 is a potential therapeutic target for cancer immunotherapy. We further demonstrated that PIAS3, a protein inhibitor of activated STAT3, is a target of miRNA-21 in MCF-7. Thus, miRNA-21 is a novel miRNA regulating immune cell recruitment, which acts at least in part via its inhibition of PIAS3 expression and oncogenic STAT3 signalling in tumour cells.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, Shandong, PR China; Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech-Drugs, Ministry of Health, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, PR China
| | | | | | | | | |
Collapse
|
375
|
Van Roosbroeck K, Pollet J, Calin GA. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn 2013; 13:183-204. [PMID: 23477558 DOI: 10.1586/erm.12.134] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) are transcripts that have no apparent protein-coding capacity; however, many ncRNAs have been found to play a major biological role in human physiology. Their deregulation is implicated in many human diseases, but their exact roles are only beginning to be elucidated. Nevertheless, ncRNAs are extensively studied as a novel source of biomarkers, and the fact that they can be detected in body fluids makes them extremely suitable for this purpose. The authors mainly focus on ncRNAs as biomarkers in cancer, but also touch on other human diseases such as cardiovascular diseases, autoimmune diseases, neurological disorders and infectious diseases. The authors discuss the established methods and provide a selection of emerging new techniques that can be used to detect and quantify ncRNAs. Finally, the authors discuss ncRNAs as a new strategy for therapeutic interventions.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | | | | |
Collapse
|
376
|
Piva R, Spandidos DA, Gambari R. From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment (Review). Int J Oncol 2013; 43:985-94. [PMID: 23939688 PMCID: PMC3829774 DOI: 10.3892/ijo.2013.2059] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a family of small non-coding RNAs that regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation, depending on the degree of complementarity with target mRNA sequences. miRNAs play a crucial role in cancer. In the case of breast tumors, several studies have demonstrated a correlation between: i) the expression profile of oncogenic miRNAs (oncomiRs) or tumor suppressor miRNAs and ii) the tumorigenic potential of triple-negative [estrogen receptor (ER), progesterone receptor (PR) and Her2/neu] primary breast cancers. Among the miRNAs involved in breast cancer, miR-221 plays a crucial role for the following reasons: i) miR-221 is significantly overexpressed in triple-negative primary breast cancers; ii) the oncosuppressor p27
Kip1
, a validated miR-221 target, is downregulated in aggressive cancer cell lines; and iii) the upregulation of a key transcription factor, Slug, appears to be crucial, since it binds to the miR-221/miR-222 promoter and is responsible for the high expression of the miR-221/miR-222 cluster in breast cancer cells. A Slug/miR-221 network has been suggested, linking miR-221 activity with the downregulation of a Slug repressor, leading to Slug/miR-221 upregulation and p27
Kip1
downregulation. Interference with this process can be achieved using antisense miRNA (antagomiR) molecules targeting miR-221, inducing the down-regulation of Slug and the upregulation of p27
Kip1
.
Collapse
Affiliation(s)
- Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, Ferrara University, Ferrara, Italy
| | | | | |
Collapse
|
377
|
Li X, Chen YT, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, Huang WC. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One 2013; 8:e70987. [PMID: 23951060 PMCID: PMC3739799 DOI: 10.1371/journal.pone.0070987] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/25/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA or miR) inhibition of oncogenic related pathways has been shown to be a promising therapeutic approach for cancer. Aberrant lipid and cholesterol metabolism is involved in prostate cancer development and progression to end-stage disease. We recently demonstrated that a key transcription factor for lipogenesis, sterol regulatory element-binding protein-1 (SREBP-1), induced fatty acid and lipid accumulation and androgen receptor (AR) transcriptional activity, and also promoted prostate cancer cell growth and castration resistance. SREBP-1 was overexpressed in human prostate cancer and castration-resistant patient specimens. These experimental and clinical results indicate that SREBP-1 is a potential oncogenic transcription factor in prostate cancer. In this study, we identified two miRNAs, miR-185 and 342, that control lipogenesis and cholesterogenesis in prostate cancer cells by inhibiting SREBP-1 and 2 expression and down-regulating their targeted genes, including fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Both miR-185 and 342 inhibited tumorigenicity, cell growth, migration and invasion in prostate cancer cell culture and xenograft models coincident with their blockade of lipogenesis and cholesterogenesis. Intrinsic miR-185 and 342 expression was significantly decreased in prostate cancer cells compared to non-cancerous epithelial cells. Restoration of miR-185 and 342 led to caspase-dependent apoptotic death in prostate cancer cells. The newly identified miRNAs, miR-185 and 342, represent a novel targeting mechanism for prostate cancer therapy.
Collapse
Affiliation(s)
- Xiangyan Li
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Yi-Ting Chen
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sajni Josson
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Nishit K. Mukhopadhyay
- Cancer Biology Program, Departments of Surgery, Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jayoung Kim
- Cancer Biology Program, Departments of Surgery, Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Michael R. Freeman
- Cancer Biology Program, Departments of Surgery, Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Wen-Chin Huang
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
378
|
Muthiah M, Park IK, Cho CS. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert Opin Drug Deliv 2013; 10:1259-73. [PMID: 23826971 DOI: 10.1517/17425247.2013.798640] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Micro RNAs (miRNA) are 21 - 23 nucleotides long and regulate the expression of coding genes by binding imperfectly with their 3' UTR region. The miRNA profile is altered in pathological processes, making miRNAs good targets for drug therapy. Restoration of down-regulated miRNA or inhibition of overexpressed miRNA to return miRNA to its normal state is the basis of miRNA-based therapy. This review focuses on nanocarriers used for the delivery of miRNA that confer physical stability to the unstable RNA structure, protect the RNA from nuclease degradation and aid in effective silencing of target genes. AREAS COVERED The necessity of the nanocarrier for the delivery of the miRNA is emphasized and the recent research on liposome-, metal- and polymer-mediated miRNA delivery for the inhibition or replacement of the disease-related miRNA is summarized. EXPERT OPINION The size, charge and surface properties of nanocarriers have to be tuned to ensure effective and safe delivery of the miRNA in clinical practice. The immune responses related to the nanocarriers and the double-stranded nucleotide delivery remain to be addressed. Also, the binding of miRNAs to non-specific targets has to be studied in more detail because miRNAs have multiple targets due to partial binding unlike siRNA.
Collapse
Affiliation(s)
- Muthunarayanan Muthiah
- Chonnam National University Medical School, Research Institute of Medical Sciences, Department of Biomedical Science, Gwangju, South Korea.
| | | | | |
Collapse
|
379
|
Shi Z, Zhang J, Qian X, Han L, Zhang K, Chen L, Liu J, Ren Y, Yang M, Zhang A, Pu P, Kang C. AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Res 2013; 73:5519-31. [PMID: 23811941 DOI: 10.1158/0008-5472.can-13-0280] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extensive involvement of miRNAs in cancer pathobiology has opened avenues for drug development based on oncomir inhibition. Dicer is the core enzyme in miRNA processing that cleaves the terminal loop of precursor microRNAs (pre-miRNAs) to generate mature miRNA duplexes. Using the three-dimensional structure of the Dicer binding site on the pre-miR-21 oncomir, we conducted an in silico high-throughput screen for small molecules that block miR-21 maturation. By this method, we identified a specific small-molecule inhibitor of miR-21, termed AC1MMYR2, which blocked the ability of Dicer to process pre-miR-21 to mature miR-21. AC1MMYR2 upregulated expression of PTEN, PDCD4, and RECK and reversed epithelial-mesenchymal transition via the induction of E-cadherin expression and the downregulation of mesenchymal markers, thereby suppressing proliferation, survival, and invasion in glioblastoma, breast cancer, and gastric cancer cells. As a single agent in vivo, AC1MMYR2 repressed tumor growth, invasiveness, and metastasis, increasing overall host survival with no observable tissue cytotoxicity in orthotopic models. Our results offer a novel, high-throughput method to screen for small-molecule inhibitors of miRNA maturation, presenting AC1MMYR2 as a broadly useful candidate antitumor drug.
Collapse
Affiliation(s)
- Zhendong Shi
- Tianjin Medical University General Hospital, 154, Anshan Road, Heping, Tianjin 300052, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
MicroRNAs as therapeutic targets in chemoresistance. Drug Resist Updat 2013; 16:47-59. [PMID: 23757365 DOI: 10.1016/j.drup.2013.05.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
Despite substantial progress in understanding the cancer signaling network, effective therapies remain scarce due to insufficient disruption of oncogenic pathways, drug resistance and drug-induced toxicity. New and more creative approaches are therefore required for the treatment of cancer. MicroRNAs (miRNAs) are a family of small noncoding RNAs that regulate gene expression by sequence-selective targeting of mRNAs, leading to a translational repression or mRNA degradation. Experimental evidence demonstrates that dysregulation of specific miRNAs leads to drug resistance in different cancers and correction of these miRNAs using miRNA mimics or antagomiRs can normalize the gene regulatory network and signaling pathways and sensitize cancerous cells to chemotherapy. Therefore, miRNA-based gene therapy provides an attractive anti-tumor approach for integrated cancer therapy. Here, we will discuss the involvement of microRNAs in chemotherapy resistance and focus on recent advancements in the development and delivery of miRNA-based cancer therapeutics.
Collapse
|
381
|
Peruzzi P, Bronisz A, Nowicki MO, Wang Y, Ogawa D, Price R, Nakano I, Kwon CH, Hayes J, Lawler SE, Ostrowski MC, Chiocca EA, Godlewski J. MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro Oncol 2013; 15:1212-24. [PMID: 23733246 DOI: 10.1093/neuonc/not055] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Polycomb Repressor Complex (PRC) is an epigenetic regulator of transcription whose action is mediated by 2 protein complexes, PRC1 and PRC2. PRC is oncogenic in glioblastoma, where it is involved in cancer stem cell maintenance and radioresistance. METHODS We used a set of glioblastoma patient samples, glioma stem cells, and neural stem cells from a mouse model of glioblastoma. We characterized gene/protein expression and cellular phenotypes by quantitative PCR/Western blotting and clonogenic, cell-cycle, and DNA damage assays. We performed overexpression/knockdown studies by lentiviral infection and microRNA/small interfering RNA oligonucleotide transfection. RESULTS We show that microRNA-128 (miR-128) directly targets mRNA of SUZ12, a key component of PRC2, in addition to BMI1, a component of PRC1 that we previously showed as a target as well. This blocks the partially redundant functions of PRC1/PRC2, thereby significantly reducing PRC activity and its associated histone modifications. MiR-128 and SUZ12/BMI1 show opposite expression in human glioblastomas versus normal brain and in glioma stemlike versus neural stem cells. Furthermore, miR-128 renders glioma stemlike cells less radioresistant by preventing the radiation-induced expression of both PRC components. Finally, miR-128 expression is significantly reduced in neural stem cells from the brain of young, presymptomatic mice in our mouse model of glioblastoma. This suggests that loss of miR-128 expression in brain is an early event in gliomagenesis. Moreover, knockdown of miR-128 expression in nonmalignant mouse and human neural stem cells led to elevated expression of PRC components and increased clonogenicity. CONCLUSIONS MiR-128 is an important suppressor of PRC activity, and its absence is an early event in gliomagenesis.
Collapse
Affiliation(s)
- Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Raisch J, Darfeuille-Michaud A, Nguyen HTT. Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol 2013; 19:2985-2996. [PMID: 23716978 PMCID: PMC3662938 DOI: 10.3748/wjg.v19.i20.2985] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs, a key class of gene expression regulators, have emerged as crucial players in various biological processes such as cellular proliferation and differentiation, development and apoptosis. In addition, microRNAs are coming to light as crucial regulators of innate and adaptive immune responses, and their abnormal expression and/or function in the immune system have been linked to multiple human diseases including inflammatory disorders, such as inflammatory bowel disease, and cancers. In this review, we discuss our current understanding of microRNAs with a focus on their role and mode of action in regulating the immune system during inflammation and carcinogenesis.
Collapse
|
383
|
Qiu S, Huang D, Yin D, Li F, Li X, Kung HF, Peng Y. Suppression of tumorigenicity by microRNA-138 through inhibition of EZH2-CDK4/6-pRb-E2F1 signal loop in glioblastoma multiforme. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1697-707. [PMID: 23707559 DOI: 10.1016/j.bbadis.2013.05.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/05/2013] [Accepted: 05/13/2013] [Indexed: 01/19/2023]
Abstract
Deregulation of microRNAs (miRNAs) is implicated in tumor progression. We attempt to identify the tumor suppressive miRNA not only down-regulated in glioblastoma multiforme (GBM) but also potent to inhibit the oncogene EZH2, and then investigate the biological function and pathophysiologic role of the candidate miRNA in GBM. In this study, we show that miRNA-138 is reduced in both GBM clinical specimens and cell lines, and is effective to inhibit EZH2 expression. Moreover, high levels of miR-138 are associated with long overall and progression-free survival of GBM patients from The Cancer Genome Atlas dataset (TCGA) data portal. Ectopic expression of miRNA-138 effectively inhibits GBM cell proliferation in vitro and tumorigenicity in vivo through inducing cell cycles G1/S arrest. Mechanism investigation reveals that miRNA-138 acquires tumor inhibition through directly targeting EZH2, CDK6, E2F2 and E2F3. Moreover, an EZH2-mediated signal loop, EZH2-CDK4/6-pRb-E2F1, is probably involved in GBM tumorigenicity, and this loop can be blocked by miRNA-138. Additionally, miRNA-138 negatively correlates to mRNA levels of EZH2 and CDK6 among GBM clinical samples from both TCGA and our small amount datasets. In conclusion, our data demonstrate a tumor suppressive role of miRNA-138 in GBM tumorigenicity, suggesting a potential application in GBM therapy.
Collapse
Affiliation(s)
- Shuwei Qiu
- Department of Neurology, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
384
|
Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, Inazawa J, Kozaki KI. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 2013; 8:e62757. [PMID: 23690952 PMCID: PMC3653886 DOI: 10.1371/journal.pone.0062757] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022] Open
Abstract
Recently, the epithelial-to-mesenchymal transition (EMT) has been demonstrated to contribute to normal and disease processes including cancer progression. To explore EMT-suppressive microRNAs (miRNAs), we established a cell-based reporter system using a stable clone derived from a pancreatic cancer cell line, Panc1, transfected with a reporter construct containing a promoter sequence of CDH1/E-cadherin in the 5′ upstream region of the ZsGreen1 reporter gene. Then, we performed function-based screening with 470 synthetic double-stranded RNAs (dsRNAs) mimicking human mature miRNAs using the system and identified miR-655 as a novel EMT-suppressive miRNA. Overexpression of miR-655 not only induced the upregulation of E-cadherin and downregulation of typical EMT-inducers but also suppressed migration and invasion of mesenchymal-like cancer cells accompanied by a morphological shift toward the epithelial phenotype. In addition, we found a significant correlation between miR-655 expression and a better prognosis in esophageal squamous cell carcinoma (ESCC). Moreover, ZEB1 and TGFBR2, which are essential components of the TGF-b signaling pathway, were identified as direct targets of miR-655, suggesting that the activation of the TGF-b-ZEB1-E-cadherin axis by aberrant downregulation of miR-655 may accelerate cancer progression.
Collapse
MESH Headings
- Antigens, CD
- Base Sequence
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Epithelial-Mesenchymal Transition/genetics
- Genes, Reporter/genetics
- Homeodomain Proteins/genetics
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Phenotype
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases/genetics
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Signal Transduction/genetics
- Transcription Factors/genetics
- Zinc Finger E-box-Binding Homeobox 1
Collapse
Affiliation(s)
- Yosuke Harazono
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Endo
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Narikazu Uzawa
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Esophagogastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Harada
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Genome Medicine, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (KK); (JI)
| | - Ken-ichi Kozaki
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Therapeutic Genomics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Genome Medicine, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (KK); (JI)
| |
Collapse
|
385
|
Araldi E, Chamorro-Jorganes A, van Solingen C, Fernández-Hernando C, Suárez Y. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Curr Vasc Pharmacol 2013:CVP-EPUB-20130513-3. [PMID: 23713860 PMCID: PMC3883893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 06/02/2023]
Abstract
Atherosclerosis (also known as arteriosclerotic vascular disease) is a chronic inflammatory disease of the arterial wall, characterized by the formation of lipid-laden lesions. The activation of endothelial cells at atherosclerotic lesion-prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. The lesion experiences the following steps: foam cell formation, fatty streak accumulation, migration and proliferation of vascular smooth muscle cells, and fibrous cap formation. Finally, the rupture of the unstable fibrous cap causes thrombosis in complications of advanced lesions that lead to unstable coronary syndromes, myocardial infarction and stroke. MicroRNAs have recently emerged as a novel class of gene regulators at the post-transcriptional level. Several functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by microRNAs and are described in the present review as well as their potential therapeutic application.
Collapse
Affiliation(s)
- Elisa Araldi
- New York University School of Medicine, 522 First Avenue, Smilow 703, New York, NY 10016.
| | | | | | | | | |
Collapse
|
386
|
Micro-ribonucleic acids in head and neck cancer: an introduction. The Journal of Laryngology & Otology 2013; 127 Suppl 2:S2-7. [PMID: 23611715 DOI: 10.1017/s0022215113000753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND METHODS Head and neck cancer is the sixth most common cancer worldwide. Advances in management have not greatly altered overall survival. Over the last decade, there have been significant scientific advances in our knowledge of cell cycle regulation and the complex oncogenic processes. MicroRNAs are small, non-coding RNAs which are integral to the regulation of gene expression and which play a part in carcinogenesis. The literature on the role of microRNA in head and neck cancer is reviewed. OBJECTIVE To introduce the role and significance of microRNAs in head and neck cancer. RESULTS The possibilities of incorporating microRNAs into clinical practice are discussed, including their potential role in diagnosis, prognosis, prediction of metastatic spread, therapy and tumour surveillance. CONCLUSION Discoveries in expression profiling of microRNA in head and neck oncology promise advancements in the diagnosis, prognosis and therapy of these cancers.
Collapse
|
387
|
MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacol Res 2013; 75:15-27. [PMID: 23603154 DOI: 10.1016/j.phrs.2013.04.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 12/11/2022]
Abstract
Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific microRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions.
Collapse
|
388
|
Chen SM, Chen HC, Chen SJ, Huang CY, Chen PY, Wu TWE, Feng LY, Tsai HC, Lui TN, Hsueh C, Wei KC. MicroRNA-495 inhibits proliferation of glioblastoma multiforme cells by downregulating cyclin-dependent kinase 6. World J Surg Oncol 2013; 11:87. [PMID: 23594394 PMCID: PMC3655862 DOI: 10.1186/1477-7819-11-87] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 03/26/2013] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most aggressive type of glioma and carries the poorest chances of survival. There is therefore an urgent need to understand the mechanisms of glioma tumorigenesis and develop or improve therapeutics. The aim of this study was to assess the possible prognostic value of cyclin-dependent kinase 6 (CDK6) and the effects of microRNA-495 (miR-495) manipulation on CDK6 expression and cell survival in glioma cells. Methods Analyses of clinical specimens from GBM patients were used. Expression of CDK6 was analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry. Expression of CDK6 was also analyzed after over-expression of miR-495 in T98 cells; both cell proliferation and RB phosphorylation were examined. Cell proliferation, cell cycle distribution, and RB phosphorylation were also examined after knockdown of CDK6 in U87-MG and T98 cells. Results Analyses of clinical specimens from GBM patients identified that CDK6 is significantly expressed in gliomas. CDK6 antigen expression was higher in tumor cores and margins than in adjacent normal brain tissues, and higher levels of CDK6 expression in the tumor margin correlated with decreased survival. Over-expression of miR-495 in T98 cells downregulated the expression of CDK6 and inhibited retinoblastoma phosphorylation, and knockdown of CDK6 in U87-MG and T98 cells by siRNAs resulted in cell cycle arrest at the G1/S transition and inhibition of cell proliferation. Conclusions This study revealed miR-495 is down-regulated in glioma tissues. Furthermore, miR-495 regulated CDK6 expression and involved in glioma cell growth inhibition, which indicated the possible role of miR-495 in tumor progression.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No.259 Wen-Hwa 1st Rd, Kweishan 333, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
389
|
Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res 2013; 319:1575-85. [PMID: 23562653 DOI: 10.1016/j.yexcr.2013.02.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 01/15/2023]
Abstract
Decrease in expression of the tumor suppressor microRNA-138 (miR-138) correlates well with an increase in telomerase activity in many human cancers. The ability of almost all human cancer cells to grow indefinitely is dependent on presence of telomerase activity. The catalytic component of human telomerase reverse transcriptase (hTERT) regulates telomerase activity in most of the human cancers including malignant neuroblastoma. We observed an indirect increase in the expression of miR-138 after the transfection with hTERT short hairpin RNA (shRNA) plasmid in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines. Transfection with hTERT shRNA plasmid followed by treatment with the flavonoid apigenin (APG) further increased expression of miR-138. Direct transfection with miR-138 mimic was more powerful than transfection with hTERT shRNA plasmid in potentiating efficacy of APG for decreasing cell viability and colony formation capability of both cell lines. Upregulation of miR-138 was also more effective than down regulation of hTERT in enhancing efficacy of APG for induction of apoptosis in malignant neuroblastoma cells in vitro and in vivo. We delineated that apoptosis occurred with induction of molecular components of the extrinsic and intrinsic pathways in SK-N-DZ and SK-N-BE2 cells both in vitro and in vivo. In conclusion, these results demonstrate that direct miR-138 overexpression is more powerful than hTERT down regulation in enhancing pro-apoptotic effect of APG for controlling growth of human malignant neuroblastoma in cell culture and animal models.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | |
Collapse
|
390
|
Ahmad J, Hasnain SE, Siddiqui MA, Ahamed M, Musarrat J, Al-Khedhairy AA. MicroRNA in carcinogenesis & cancer diagnostics: a new paradigm. Indian J Med Res 2013; 137:680-94. [PMID: 23703335 PMCID: PMC3724248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small 22-25 nucleotides long non-coding RNAs, that are conserved during evolution, and control gene expression in metazoan animals, plants, viruses, and bacteria primarily at post-transcriptional and transcriptional levels. MiRNAs ultimately regulate target gene expression by degrading the corresponding mRNA and/or inhibiting their translation. Currently, the critical functions of miRNAs have been established in regulating immune system, cell proliferation, differentiation and development, cancer and cell cycle by as yet unknown control mechanism. MiRNAs play an essential role in malignancy, and as tumour suppressors and oncogenes. Thus, discovery of new miRNAs will probably change the landscape of cancer genetics. Significantly different miRNA profiles can be assigned to various types of tumours, which could serve as phenotypic signatures for different cancers for their exploitation in cancer diagnostics, prognostics and therapeutics. If miRNA profiles can accurately predict malignancies, this technology could be exploited as a tool to surmount the diagnostic challenges. This review provides comprehensive and systematic information on miRNA biogenesis and their implications in human health.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Seyed E. Hasnain
- School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, India,Reprint requests: Dr Seyed E. Hasnain, School of Biological Sciences, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016, India e-mail:
| | - Maqsood A. Siddiqui
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Javed Musarrat
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia,Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh, India
| | | |
Collapse
|
391
|
Aravalli RN. Development of MicroRNA Therapeutics for Hepatocellular Carcinoma. Diagnostics (Basel) 2013; 3:170-91. [PMID: 26835673 PMCID: PMC4665582 DOI: 10.3390/diagnostics3010170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer and is the third leading cause of cancer-related deaths worldwide. Treatment options for HCC are very limited, as it is often diagnosed at a late stage. Recent studies have demonstrated that microRNAs (miRNAs), a class of non-coding RNAs, are aberrantly expressed in HCC. Some of these were shown to be functionally involved in carcinogenesis and tumor progression, suggesting that miRNAs can serve as novel molecular targets for HCC therapy. Several promising studies have recently demonstrated the therapeutic potential of miRNAs in animal models and in reducing the viral load in hepatitis C patients. In this review, these advances and strategies for modulating miRNAs for in vivo therapeutic delivery and replacement therapy are discussed.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, University of Minnesota Medical School, MMC 292 Mayo Memorial Building, 420 Delaware Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
392
|
Squadrito ML, Etzrodt M, De Palma M, Pittet MJ. MicroRNA-mediated control of macrophages and its implications for cancer. Trends Immunol 2013; 34:350-9. [PMID: 23498847 DOI: 10.1016/j.it.2013.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 12/15/2022]
Abstract
Deregulation of microRNAs (miRNAs) can drive oncogenesis, tumor progression, and metastasis by acting cell-autonomously in cancer cells. However, solid tumors are also infiltrated by large amounts of non-neoplastic stromal cells, including macrophages, which express several active miRNAs. Tumor-associated macrophages (TAMs) enhance angiogenic, immunosuppressive, invasive, and metastatic programming of neoplastic tissue and reduce host survival. Here, we review the role of miRNAs (including miR-155, miR-146, and miR-511) in the control of macrophage production and activation, and examine whether reprogramming miRNA activity in TAMs and/or their precursors might be effective for controlling tumor progression.
Collapse
Affiliation(s)
- Mario Leonardo Squadrito
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
393
|
Tagliaferri P, Rossi M, Di Martino MT, Amodio N, Leone E, Gulla A, Neri A, Tassone P. Promises and challenges of MicroRNA-based treatment of multiple myeloma. Curr Cancer Drug Targets 2013; 12:838-46. [PMID: 22671926 PMCID: PMC3504921 DOI: 10.2174/156800912802429355] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/05/2011] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) recently emerged with a key role in multiple myeloma (MM) pathophysiology and are considered important regulators of MM cell growth and survival. Since miRNAs can act either as oncogenes or tumour suppressors, the potential of targeting the miRNA network arises as a novel therapeutic approach for human cancer. Potential strategies based on miRNA therapeutics basically rely on miRNA inhibition or miRNA replacement approaches and take benefit respectively from the use of antagomirs or synthetic miRNAs as well as from lipid-based nanoparticles which allow an efficient miRNA-delivery. The availability of experimental in vivo platforms which recapitulate the growth of MM cells within the specific human bone marrow microenvironment in immunocompromised mice (SCID-hu and SCID-synth-hu) provides powerful systems for development of miRNA-based therapeutics in MM. Preliminary findings on the anti-MM activity of synthetic miRNAs in such experimental models offer a proof-of-principle that miRNA therapeutics is a promising opportunity for this still incurable disease representing the rationale for a new venue of investigation in this specific field.
Collapse
Affiliation(s)
- P Tagliaferri
- Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University and T. Campanella Cancer Center, Salvatore Venuta Campus, Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
394
|
Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia 2013; 56:444-56. [PMID: 23135222 DOI: 10.1007/s00125-012-2768-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/09/2012] [Indexed: 12/23/2022]
Abstract
There is no cure for diabetic nephropathy and the molecular mechanisms underlying disease aetiology remain poorly understood. While current paradigms for clinical management of diabetic nephropathy are useful in delaying disease onset and preventing its progression, they do not do so for a significant proportion of diabetic individuals, who eventually end up developing renal failure. Thus, novel therapeutic targets are needed for the treatment and prevention of the disease. MicroRNAs (miRNAs), a class of non-coding RNAs that negatively regulate gene expression, have recently been identified as attractive targets for therapeutic intervention. It is widely recognised that dysregulation of miRNA expression or action contributes to the development of a number of different human diseases, and evidence of a role for miRNAs in the aetiology of diabetic nephropathy is emerging. The discovery that modulation of miRNA expression in vivo is feasible, combined with recent results from successful clinical trials using this technology, opens the way for future novel therapeutic applications. For instance, inhibition of miRNAs that are commonly upregulated in diabetic nephropathy decreases albuminuria and mesangial matrix accumulation in animal models, suggesting that a therapeutic agent against these molecules may help to prevent the development of diabetic nephropathy. Certain challenges, including the development of safe and reliable delivery systems, remain to be overcome before miRNA-based therapeutics become a reality. However, the findings accumulated to date, in conjunction with newly emerging results, are expected to yield novel insights into the complex pathogenesis of diabetic nephropathy, and may eventually lead to the identification of improved therapeutic targets for treatment of this disease.
Collapse
Affiliation(s)
- M L Alvarez
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 North Fifth St, Phoenix, AZ 85004, USA
| | | |
Collapse
|
395
|
Fujita Y, Takeshita F, Kuwano K, Ochiya T. RNAi Therapeutic Platforms for Lung Diseases. Pharmaceuticals (Basel) 2013; 6:223-50. [PMID: 24275949 PMCID: PMC3816685 DOI: 10.3390/ph6020223] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/19/2013] [Accepted: 02/01/2013] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi) is rapidly becoming an important method for analyzing gene functions in many eukaryotes and holds promise for the development of therapeutic gene silencing. The induction of RNAi relies on small silencing RNAs, which affect specific messenger RNA (mRNA) degradation. Two types of small RNA molecules, i.e. small interfering RNAs (siRNAs) and microRNAs (miRNAs), are central to RNAi. Drug discovery studies and novel treatments of siRNAs are currently targeting a wide range of diseases, including various viral infections and cancers. Lung diseases in general are attractive targets for siRNA therapeutics because of their lethality and prevalence. In addition, the lung is anatomically accessible to therapeutic agents via the intrapulmonary route. Recently, increasing evidence indicates that miRNAs play an important role in lung abnormalities, such as inflammation and oncogenesis. Therefore, miRNAs are being targeted for therapeutic purposes. In this review, we present strategies for RNAi delivery and discuss the current state-of-the-art RNAi-based therapeutics for various lung diseases.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, 104-0045, Japan; E-Mails: (Y.F.); (F.T.)
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 105-8461, Japan; E-Mail: (K.K.)
| | - Fumitaka Takeshita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, 104-0045, Japan; E-Mails: (Y.F.); (F.T.)
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 105-8461, Japan; E-Mail: (K.K.)
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, 104-0045, Japan; E-Mails: (Y.F.); (F.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3542-2511; Fax: +81-3-5565-0727
| |
Collapse
|
396
|
MicroRNA: A new approach to treat different endotypes of nasal polyps. Med Hypotheses 2013; 80:213. [DOI: 10.1016/j.mehy.2012.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/09/2012] [Indexed: 11/20/2022]
|
397
|
Völler D, Ott C, Bosserhoff A. MicroRNAs in malignant melanoma. Clin Biochem 2013; 46:909-17. [PMID: 23360785 DOI: 10.1016/j.clinbiochem.2013.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, and the incidence of melanoma has been increasing faster than that of most other cancers. While the survival rate following surgical resection of early-stage primary tumors is nearly 100%, the survival of patients with metastasized tumors is strongly reduced, likely due to resistance to conventional therapies. Therefore, it is important to use new molecular approaches to develop new biomarkers to better prevent and diagnose melanoma. MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression via repression of translation or direct degradation of their complementary mRNA. In this review, we summarize our current understanding of the involvement of miRNAs and their corresponding targets in melanomagenesis as well as the potential use of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Daniel Völler
- Institute of Pathology, Molecular Pathology, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
398
|
Modulation of cancer traits by tumor suppressor microRNAs. Int J Mol Sci 2013; 14:1822-42. [PMID: 23325049 PMCID: PMC3565350 DOI: 10.3390/ijms14011822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression. In mammalian cells, miRNAs typically suppress mRNA stability and/or translation through partial complementarity with target mRNAs. Each miRNA can regulate a wide range of mRNAs, and a single mRNA can be regulated by multiple miRNAs. Through these complex regulatory interactions, miRNAs participate in many cellular processes, including carcinogenesis. By altering gene expression patterns, cancer cells can develop specific phenotypes that allow them to proliferate, survive, secure oxygen and nutrients, evade immune recognition, invade other tissues and metastasize. At the same time, cancer cells acquire miRNA signature patterns distinct from those of normal cells; the differentially expressed miRNAs contribute to enabling the cancer traits. Over the past decade, several miRNAs have been identified, which functioned as oncogenic miRNAs (oncomiRs) or tumor-suppressive miRNAs (TS-miRNAs). In this review, we focus specifically on TS-miRNAs and their effects on well-established cancer traits. We also discuss the rising interest in TS-miRNAs in cancer therapy.
Collapse
|
399
|
Qiu S, Lin S, Hu D, Feng Y, Tan Y, Peng Y. Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients. J Transl Med 2013; 11:1. [PMID: 23281771 PMCID: PMC3564822 DOI: 10.1186/1479-5876-11-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/26/2012] [Indexed: 01/27/2023] Open
Abstract
Background Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these—such as diabetes, cancer, and inherited inborn metabolic diseases—have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Methods Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Results Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D), and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E). The establishment of a specialised institution to fill the gaps in this area is warranted. Conclusion The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended.
Collapse
Affiliation(s)
- Shuwei Qiu
- Department of Neurology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | | | | | | | | | | |
Collapse
|
400
|
Qiu S, Lin S, Hu D, Feng Y, Tan Y, Peng Y. Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients. J Transl Med 2013; 11:10. [PMID: 23302469 PMCID: PMC3551827 DOI: 10.1186/1479-5876-11-10] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 01/07/2013] [Indexed: 12/29/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with poor clinical outcome. Identification and development of new markers could be beneficial for the diagnosis and prognosis of GBM patients. Deregulation of microRNAs (miRNAs or miRs) is involved in GBM. Therefore, we attempted to identify and develop specific miRNAs as prognostic and predictive markers for GBM patient survival. Methods Expression profiles of miRNAs and genes and the corresponding clinical information of 480 GBM samples from The Cancer Genome Atlas (TCGA) dataset were downloaded and interested miRNAs were identified. Patients’ overall survival (OS) and progression-free survival (PFS) associated with interested miRNAs and miRNA-interactions were performed by Kaplan-Meier survival analysis. The impacts of miRNA expressions and miRNA-interactions on survival were evaluated by Cox proportional hazard regression model. Biological processes and network of putative and validated targets of miRNAs were analyzed by bioinformatics. Results In this study, 6 interested miRNAs were identified. Survival analysis showed that high levels of miR-326/miR-130a and low levels of miR-323/miR-329/miR-155/miR-210 were significantly associated with long OS of GBM patients, and also showed that high miR-326/miR-130a and low miR-155/miR-210 were related with extended PFS. Moreover, miRNA-323 and miRNA-329 were found to be increased in patients with no-recurrence or long time to progression (TTP). More notably, our analysis revealed miRNA-interactions were more specific and accurate to discriminate and predict OS and PFS. This interaction stratified OS and PFS related with different miRNA levels more detailed, and could obtain longer span of mean survival in comparison to that of one single miRNA. Moreover, miR-326, miR-130a, miR-155, miR-210 and 4 miRNA-interactions were confirmed for the first time as independent predictors for survival by Cox regression model together with clinicopathological factors: Age, Gender and Recurrence. Plus, the availability and rationality of the miRNA-interaction as predictors for survival were further supported by analysis of network, biological processes, KEGG pathway and correlation analysis with gene markers. Conclusions Our results demonstrates that miR-326, miR-130a, miR-155, miR-210 and the 4 miRNA-interactions could serve as prognostic and predictive markers for survival of GBM patients, suggesting a potential application in improvement of prognostic tools and treatments.
Collapse
Affiliation(s)
- Shuwei Qiu
- Department of Neurology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | | | | | | | | | | |
Collapse
|