351
|
Abstract
Cardiovascular genetic counselors provide guidance to people facing the reality or prospect of inherited cardiovascular conditions. Key activities in this role include discussing clinical cardiac screening for at-risk family members and offering genetic testing. Psychological factors often influence whether patients choose to have genetic testing and how they understand and communicate the results to at-risk relatives, so psychological counseling increases the impact of genetic education and medical recommendations. This work reviews the literature on the factors that influence patient decisions about cardiovascular genetic testing and the psychological impact of results on people who opt to test. It also models use of a psychological framework to apply themes from the literature to routine cardiovascular genetic counseling practice. Modifications of the framework are provided to show how it can be adapted to serve the needs of both new and experienced genetic counselors.
Collapse
Affiliation(s)
- Julia Platt
- Stanford Center for Inherited Cardiovascular Disease, Falk Cardiovascular Research Center, Stanford, California 94305, USA
| |
Collapse
|
352
|
Sidhwani P, Leerberg DM, Boezio GLM, Capasso TL, Yang H, Chi NC, Roman BL, Stainier DYR, Yelon D. Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development 2020; 147:dev185900. [PMID: 32439760 PMCID: PMC7328156 DOI: 10.1242/dev.185900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/27/2020] [Indexed: 01/06/2023]
Abstract
Physical forces are important participants in the cellular dynamics that shape developing organs. During heart formation, for example, contractility and blood flow generate biomechanical cues that influence patterns of cell behavior. Here, we address the interplay between function and form during the assembly of the cardiac outflow tract (OFT), a crucial connection between the heart and vasculature that develops while circulation is under way. In zebrafish, we find that the OFT expands via accrual of both endocardial and myocardial cells. However, when cardiac function is disrupted, OFT endocardial growth ceases, accompanied by reduced proliferation and reduced addition of cells from adjacent vessels. The flow-responsive TGFβ receptor Acvrl1 is required for addition of endocardial cells, but not for their proliferation, indicating distinct modes of function-dependent regulation for each of these essential cell behaviors. Together, our results indicate that cardiac function modulates OFT morphogenesis by triggering endocardial cell accumulation that induces OFT lumen expansion and shapes OFT dimensions. Moreover, these morphogenetic mechanisms provide new perspectives regarding the potential causes of cardiac birth defects.
Collapse
Affiliation(s)
- Pragya Sidhwani
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dena M Leerberg
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia L M Boezio
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Teresa L Capasso
- Department of Human Genetics, Graduate School of Public Health, and Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hongbo Yang
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Beth L Roman
- Department of Human Genetics, Graduate School of Public Health, and Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
353
|
Keller BB, Kowalski WJ, Tinney JP, Tobita K, Hu N. Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease. J Cardiovasc Dev Dis 2020; 7:E23. [PMID: 32545681 PMCID: PMC7344498 DOI: 10.3390/jcdd7020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.
Collapse
Affiliation(s)
- Bradley B. Keller
- Cincinnati Children’s Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - William J. Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Joseph P. Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Kimimasa Tobita
- Department of Medical Affairs, Abiomed Japan K.K., Muromachi Higashi Mitsui Bldg, Tokyo 103-0022, Japan;
| | - Norman Hu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
354
|
Abstract
Despite evidence that deleterious variants in the same genes are implicated across multiple neurodevelopmental and neuropsychiatric disorders, there has been considerable interest in identifying genes that, when mutated, confer risk that is largely specific for autism spectrum disorder (ASD). Here, we review the findings and limitations of recent efforts to identify relatively “autism-specific” genes, efforts which focus on rare variants of large effect size that are thought to account for the observed phenotypes. We present a divergent interpretation of published evidence; discuss practical and theoretical issues related to studying the relationships between rare, large-effect deleterious variants and neurodevelopmental phenotypes; and describe potential future directions of this research. We argue that there is currently insufficient evidence to establish meaningful ASD specificity of any genes based on large-effect rare-variant data.
Collapse
|
355
|
Li X, Shi G, Li Y, Zhang X, Xiang Y, Wang T, Li Y, Chen H, Fu Q, Zhang H, Wang B. 15q11.2 deletion is enriched in patients with total anomalous pulmonary venous connection. J Med Genet 2020; 58:jmedgenet-2019-106608. [PMID: 32376791 DOI: 10.1136/jmedgenet-2019-106608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION CNV is a vital pathogenic factor of congenital heart disease (CHD). However, few CNVs have been reported for total anomalous pulmonary venous connection (TAPVC), which is a rare form of CHD. Using case-control study, we identified 15q11.2 deletion associated with TAPVC. We then used a TAPVC trio as model to reveal possible molecular basis of 15q11.2 microdeletion. METHODS CNVplex and Chromosomal Microarray were used to identify and validate CNVs in samples from 231 TAPVC cases and 200 healthy controls from Shanghai Children's Medical Center. In vitro cardiomyocyte differentiation of induced pluripotent stem cells from peripheral blood mononuclear cells for a TAPVC trio with paternal inherited 15q11.2 deletion was performed to characterise the effect of the deletion on cardiomyocyte differentiation and gene expression. RESULTS The 15q11.2 microdeletion was significantly enriched in patients with TAPVC compared with healthy control (13/231 in patients vs 0/200 in controls, p=5.872×10-2, Bonferroni adjusted) using Fisher's exact test. Induced pluripotent stem cells from the proband could not differentiate into normal cardiomyocyte. Transcriptomic analysis identified a number of differentially expressed genes in the 15q11.2 deletion carriers of the family. TAPVC disease-causing genes such as PITX2, NKX2-5 and ANKRD1 showed significantly higher expression in the proband compared with her healthy mother. Knockdown of TUBGCP5 could lead to abnormal cardiomyocyte differentiation. CONCLUSION We discovered that the 15q11.2 deletion is significantly associated with TAPVC. Gene expression profile that might arise from 15q11.2 deletion for a TAPVC family was characterised using cell experiments.
Collapse
Affiliation(s)
- Xiaoliang Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Xiang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Teng Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanxin Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Department of Obestetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
356
|
Ji W, Ferdman D, Copel J, Scheinost D, Shabanova V, Brueckner M, Khokha MK, Ment LR. De novo damaging variants associated with congenital heart diseases contribute to the connectome. Sci Rep 2020; 10:7046. [PMID: 32341405 PMCID: PMC7184603 DOI: 10.1038/s41598-020-63928-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Congenital heart disease (CHD) survivors are at risk for neurodevelopmental disability (NDD), and recent studies identify genes associated with both disorders, suggesting that NDD in CHD survivors may be of genetic origin. Genes contributing to neurogenesis, dendritic development and synaptogenesis organize neural elements into networks known as the connectome. We hypothesized that NDD in CHD may be attributable to genes altering both neural connectivity and cardiac patterning. To assess the contribution of de novo variants (DNVs) in connectome genes, we annotated 229 published NDD genes for connectome status and analyzed data from 3,684 CHD subjects and 1,789 controls for connectome gene mutations. CHD cases had more protein truncating and deleterious missense DNVs among connectome genes compared to controls (OR = 5.08, 95%CI:2.81-9.20, Fisher's exact test P = 6.30E-11). When removing three known syndromic CHD genes, the findings remained significant (OR = 3.69, 95%CI:2.02-6.73, Fisher's exact test P = 1.06E-06). In CHD subjects, the top 12 NDD genes with damaging DNVs that met statistical significance after Bonferroni correction (PTPN11, CHD7, CHD4, KMT2A, NOTCH1, ADNP, SMAD2, KDM5B, NSD2, FOXP1, MED13L, DYRK1A; one-tailed binomial test P ≤ 4.08E-05) contributed to the connectome. These data suggest that NDD in CHD patients may be attributable to genes that alter both cardiac patterning and the connectome.
Collapse
Affiliation(s)
- Weizhen Ji
- Departments of Pediatrics, New Haven, CT, USA
| | | | - Joshua Copel
- Departments of Pediatrics, New Haven, CT, USA
- Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT, USA
| | | | | | - Martina Brueckner
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
- Yale Combined Program in Biological and Biomedical Sciences, New Haven, CT, USA
| | - Mustafa K Khokha
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
| | - Laura R Ment
- Departments of Pediatrics, New Haven, CT, USA.
- Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA.
| |
Collapse
|
357
|
Zhao MT, Shao NY, Garg V. Subtype-specific cardiomyocytes for precision medicine: Where are we now? Stem Cells 2020; 38:822-833. [PMID: 32232889 DOI: 10.1002/stem.3178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/12/2022]
Abstract
Patient-derived pluripotent stem cells (PSCs) have greatly transformed the current understanding of human heart development and cardiovascular disease. Cardiomyocytes derived from personalized PSCs are powerful tools for modeling heart disease and performing patient-based cardiac toxicity testing. However, these PSC-derived cardiomyocytes (PSC-CMs) are a mixed population of atrial-, ventricular-, and pacemaker-like cells in the dish, hindering the future of precision cardiovascular medicine. Recent insights gleaned from the developing heart have paved new avenues to refine subtype-specific cardiomyocytes from patients with known pathogenic genetic variants and clinical phenotypes. Here, we discuss the recent progress on generating subtype-specific (atrial, ventricular, and nodal) cardiomyocytes from the perspective of embryonic heart development and how human pluripotent stem cells will expand our current knowledge on molecular mechanisms of cardiovascular disease and the future of precision medicine.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
358
|
Asoglu MR, Cutting EM, Ozdemir H, Higgs AS, Siegel GB, Turan OM, Turan S. The rate of undetectable genetic causes by Cell-free DNA test in congenital heart defects. J Matern Fetal Neonatal Med 2020; 35:1484-1490. [PMID: 32338089 DOI: 10.1080/14767058.2020.1757643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The study aimed to estimate the rate of genetic causes that were undetectable by Cell-free DNA (cfDNA) test in prenatally diagnosed congenital heart defect (CHD) cases based on an assumption that cfDNA would accurately detect common aneuploidies including trisomy 21/18/13/45X, and del22q11.2.Methods: This study included prenatally diagnosed CHD cases with diagnostic genetic results. The possibility of false-positive/negative results from cfDNA testing was discarded. Thus, cfDNA results would be positive in common aneuploidies or del22q11.2 and negative in normal diagnostic genetic testing results or other genetic conditions. The rate of genetic causes that were undetectable by cfDNA test was estimated for all cases as well as for CHD subgroups.Results: Of 302 cases, 98 (34.8%) had a type of genetic abnormalities, with 67 having common aneuploidies or del22q11.2 and 31 having other genetic conditions. The rate of genetic causes that were undetectable by cfDNA test in CHD cases was 13.2% among those with assumingly negative cfDNA screen results and 10.3% among the entire study population. These rates were similar between CHD subgroups (p > .05). The rate of genetic causes that were undetectable by cfDNA test was higher in the non-isolated cases than in the isolated ones among those with assumingly negative-screen results (20.5% and 9.9%, respectively, p = .025).Conclusion: In prenatally diagnosed CDH cases, a significant number of chromosomal abnormalities are still identified after diagnostic testing even if cfDNA screen is negative, and thus it is important to extensively counsel patients with negative cfDNA screen carrying a CHD-affected fetus.
Collapse
Affiliation(s)
- Mehmet Resit Asoglu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Cutting
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Halis Ozdemir
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amanda S Higgs
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Ozhan M Turan
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sifa Turan
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
359
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
360
|
Gug C, Gorduza EV, Lăcătuşu A, Vaida MA, Bîrsăşteanu F, Puiu M, Stoicănescu D. CHARGE syndrome associated with de novo (I1460Rfs *15) frameshift mutation of CHD7 gene in a patient with arteria lusoria and horseshoe kidney. Exp Ther Med 2020; 20:479-485. [PMID: 32509017 PMCID: PMC7271729 DOI: 10.3892/etm.2020.8683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
CHARGE syndrome is an autosomal dominant condition caused by mutations in the chromodomain helicase DNA binding protein 7 (CHD7) gene. The present study reported on the case of a 16-month-old female with plurimalformative syndrome, whose etiology was identified by clinical whole-exome sequencing (WES) analysis. Clinical and follow-up assessments identified multiple craniofacial dysmorphisms, congenital defects and functional symptoms, including dysphagia and Marcus Gunn jaw winking synkinesis. Trio-WES analysis was performed for the patient and their parents and the presence of CHARGE syndrome was further indicated using single-molecule real-time sequencing. A de novo pathogenic variant, c.4379_4380del (p.Ile1460Argfs*15), was identified in exon 19 of the CHD7 gene, which resulted in a premature translational stop signal. Trio-WES analysis was used for further investigation, indicating that neither of the patient's parents had the mutation and confirming its de novo nature. To the best of our knowledge, the case of the present study was the first reported case of CHARGE syndrome in Romania with congenital defects including an aberrant right subclavian artery and a horseshoe kidney. CHARGE syndrome was diagnosed in the patient based on the pathogenic mutation in the CHD7 gene. To the best of our knowledge, the present case report is the first to suggest that the CHD7 gene variant is associated with CHARGE syndrome.
Collapse
Affiliation(s)
- Cristina Gug
- Department of Microscopic Morphology, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Eusebiu Vlad Gorduza
- Prenatal Diagnosis Department, Cuza Voda Obstetrics-Gynecology Clinical Hospital, 700038 Iasi, Romania.,Department of Medical Genetics, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adrian Lăcătuşu
- Department of Pediatrics, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Adriana Vaida
- Department of Anatomy and Embryology, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florin Bîrsăşteanu
- Department of Radiology and Medical Imaging, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Maria Puiu
- Department of Microscopic Morphology, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dorina Stoicănescu
- Department of Microscopic Morphology, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
361
|
Peyvandi S, Baer RJ, Chambers CD, Norton ME, Rajagopal S, Ryckman KK, Moon-Grady A, Jelliffe-Pawlowski LL, Steurer MA. Environmental and Socioeconomic Factors Influence the Live-Born Incidence of Congenital Heart Disease: A Population-Based Study in California. J Am Heart Assoc 2020; 9:e015255. [PMID: 32306820 PMCID: PMC7428546 DOI: 10.1161/jaha.119.015255] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The development of congenital heart disease (CHD) is multifactorial with genetic and environmental influences. We sought to determine the relationship between socioeconomic and environmental factors with the incidence of CHD among live‐born infants in California and to determine whether maternal comorbidities are in the causal pathway. METHODS AND RESULTS This was a population‐based cohort study in California (2007–2012). The primary outcome was having significant CHD. Predictors included socioeconomic status and environmental exposure to pollutants determined by U.S. Census data. A social deprivation index and environmental exposure index was assigned based on neighborhood socioeconomic variables, categorized into 4 quartiles. Quartile 1 was the best with the least exposure to pollutants and social deprivation, and quartile 4 was the worst. Multivariate logistic regression and mediation analyses were performed. Among 2 419 651 live‐born infants, the incidence of CHD was 3.2 per 1000 live births. The incidence of CHD was significantly higher among those in quartile 4 compared with quartile 1 (social deprivation index: 0.35% versus 0.29%; odds ratio [OR], 1.31; 95% CI, 1.21–1.41; environmental exposure index: 0.35% versus 0.29%; OR, 1.23; 95% CI, 1.15–1.31) after adjusting for maternal race/ethnicity and age and accounting for the relationship between the 2 primary predictors. Maternal comorbidities explained 13% (95% CI, 10%–20%) of the relationship between social deprivation index and environmental exposure index with the incidence of CHD. CONCLUSIONS Increased social deprivation and exposure to environmental pollutants are associated with the incidence of live‐born CHD in California. Maternal comorbidities explain some, but not all, of this relationship. These findings identify targets for social policy initiatives to minimize health disparities.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Division of Cardiology Department of Pediatrics University of California San Francisco Benioff Children's Hospital San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Rebecca J Baer
- Obstetrics, Gynecology and Reproductive Sciences University of California San Francisco Benioff Children's Hospital San Francisco CA.,California Preterm Birth Initiative University of California San Francisco Benioff Children's Hospital San Francisco CA.,Department of Pediatrics University of California San Diego La Jolla CA
| | | | - Mary E Norton
- Obstetrics, Gynecology and Reproductive Sciences University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Satish Rajagopal
- Division of Critical Care University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Kelli K Ryckman
- Department of Epidemiology College of Public Health University of Iowa Iowa City IA
| | - Anita Moon-Grady
- Division of Cardiology Department of Pediatrics University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Laura L Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics University of California San Francisco Benioff Children's Hospital San Francisco CA.,California Preterm Birth Initiative University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Martina A Steurer
- Division of Critical Care University of California San Francisco Benioff Children's Hospital San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco Benioff Children's Hospital San Francisco CA.,California Preterm Birth Initiative University of California San Francisco Benioff Children's Hospital San Francisco CA
| |
Collapse
|
362
|
Garcia AM, Beatty JT, Nakano SJ. Heart failure in single right ventricle congenital heart disease: physiological and molecular considerations. Am J Physiol Heart Circ Physiol 2020; 318:H947-H965. [PMID: 32108525 PMCID: PMC7191494 DOI: 10.1152/ajpheart.00518.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Because of remarkable surgical and medical advances over the past several decades, there are growing numbers of infants and children living with single ventricle congenital heart disease (SV), where there is only one functional cardiac pumping chamber. Nevertheless, cardiac dysfunction (and ultimately heart failure) is a common complication in the SV population, and pharmacological heart failure therapies have largely been ineffective in mitigating the need for heart transplantation. Given that there are several inherent risk factors for ventricular dysfunction in the setting of SV in addition to probable differences in molecular adaptations to heart failure between children and adults, it is perhaps not surprising that extrapolated adult heart failure medications have had limited benefit in children with SV heart failure. Further investigations into the molecular mechanisms involved in pediatric SV heart failure may assist with risk stratification as well as development of targeted, efficacious therapies specific to this patient population. In this review, we present a brief overview of SV anatomy and physiology, with a focus on patients with a single morphological right ventricle requiring staged surgical palliation. Additionally, we discuss outcomes in the current era, risk factors associated with the progression to heart failure, present state of knowledge regarding molecular alterations in end-stage SV heart failure, and current therapeutic interventions. Potential avenues for improving SV outcomes, including identification of biomarkers of heart failure progression, implications of personalized medicine and stem cell-derived therapies, and applications of novel models of SV disease, are proposed as future directions.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Jonathan-Thomas Beatty
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
363
|
Edwards JJ, Rouillard AD, Fernandez NF, Wang Z, Lachmann A, Shankaran SS, Bisgrove BW, Demarest B, Turan N, Srivastava D, Bernstein D, Deanfield J, Giardini A, Porter G, Kim R, Roberts AE, Newburger JW, Goldmuntz E, Brueckner M, Lifton RP, Seidman CE, Chung WK, Tristani-Firouzi M, Yost HJ, Ma’ayan A, Gelb BD. Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects. JACC Basic Transl Sci 2020; 5:376-386. [PMID: 32368696 PMCID: PMC7188873 DOI: 10.1016/j.jacbts.2020.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
Genetic variants are the primary driver of congenital heart disease (CHD) pathogenesis. However, our ability to identify causative variants is limited. To identify causal CHD genes that are associated with specific molecular functions, the study used prior knowledge to filter de novo variants from 2,881 probands with sporadic severe CHD. This approach enabled the authors to identify an association between left ventricular outflow tract obstruction lesions and genes associated with the WAVE2 complex and regulation of small GTPase-mediated signal transduction. Using CRISPR zebrafish knockdowns, the study confirmed that WAVE2 complex proteins brk1, nckap1, and wasf2 and the regulators of small GTPase signaling cul3a and racgap1 are critical to cardiac development.
Collapse
Key Words
- CHD, congenital heart disease
- CORUM, Comprehensive Resource of Mammalian Protein Complexes
- CRISPR, clustered regularly interspaced short palindromic repeats
- CTD, conotruncal defect
- GOBP, Gene Ontology biological processes
- HHE, high heart expression
- HLHS, hypoplastic left heart syndrome
- HTX, heterotaxy
- LVOTO, left ventricular outflow tract obstruction
- MGI, Mouse Genome Informatics
- PCGC, Pediatric Cardiac Genomics Consortium
- PPI, protein-protein interaction
- congenital heart disease
- systems biology
- translational genomics
Collapse
Affiliation(s)
- Jonathan J. Edwards
- Department of Pediatrics, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew D. Rouillard
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicolas F. Fernandez
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sunita S. Shankaran
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Brent W. Bisgrove
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Bradley Demarest
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
| | - Daniel Bernstein
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - John Deanfield
- Department of Cardiology, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Alessandro Giardini
- Department of Cardiology, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - George Porter
- Department of Pediatrics, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Kim
- Section of Cardiothoracic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Amy E. Roberts
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts
| | - Jane W. Newburger
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - H. Joseph Yost
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
364
|
Application of next-generation sequencing for the diagnosis of fetuses with congenital heart defects. Curr Opin Obstet Gynecol 2020; 31:132-138. [PMID: 30608255 DOI: 10.1097/gco.0000000000000520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Congenital heart defects (CHDs) are the most common type of birth defects, and are thought to result from genetic-environmental interactions. Currently, karyotype and chromosomal microarray analyses are the primary methods used to detect chromosomal abnormalities and copy number variations in fetuses with CHD. Recently, with the introduction of next-generation sequencing (NGS) in prenatal diagnosis, gene mutations have been identified in cases of CHD. The purpose of this review is to summarize current studies about the genetic cause of fetal CHD, paying particular attention to the application of NGS for fetuses with CHD. RECENT FINDINGS In addition to chromosomal abnormalities, gene mutations are an important genetic cause of fetal CHD. Furthermore, incidences of pathogenic mutations in fetuses with CHD are associated with the presence of other structural anomalies, but are irrelevant to the categories of CHD. SUMMARY Gene mutations are important causes of fetal CHD and NGS should be applied to all fetuses with normal karyotype and copy number variations, regardless of whether the CHD is isolated or syndromic.
Collapse
|
365
|
Marek‐Yagel D, Bolkier Y, Barel O, Vardi A, Mishali D, Katz U, Salem Y, Abudi S, Nayshool O, Kol N, Raas‐Rothschild A, Rechavi G, Anikster Y, Pode‐Shakked B. A founder truncating variant in
GDF1
causes autosomal‐recessive right isomerism and associated congenital heart defects in multiplex Arab kindreds. Am J Med Genet A 2020; 182:987-993. [DOI: 10.1002/ajmg.a.61509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Dina Marek‐Yagel
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
| | - Yoav Bolkier
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Pediatric Cardiology UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
| | - Amir Vardi
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Department of Pediatric Cardiac Intensive Care, Edmond Safra International Congenital Heart CenterEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - David Mishali
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Department of Pediatric Cardiac Intensive Care, Edmond Safra International Congenital Heart CenterEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Uriel Katz
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Pediatric Cardiology UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Yishay Salem
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Pediatric Cardiology UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Shachar Abudi
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
| | - Omri Nayshool
- Sheba Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
| | - Nitzan Kol
- Sheba Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
| | - Annick Raas‐Rothschild
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Gideon Rechavi
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Sheba Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center Tel‐Hashomer Israel
| | - Yair Anikster
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center Tel‐Hashomer Israel
| | - Ben Pode‐Shakked
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Talpiot Medical Leadership ProgramSheba Medical Center Tel‐Hashomer Israel
| |
Collapse
|
366
|
Nees SN, Chung WK. The genetics of isolated congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:97-106. [PMID: 31876989 PMCID: PMC8211463 DOI: 10.1002/ajmg.c.31763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
The genetic mechanisms underlying congenital heart disease (CHD) are complex and remain incompletely understood. The majority of patients with CHD have an isolated heart defect without other organ system involvement, but the genetic basis of isolated CHD has been even more difficult to elucidate compared to syndromic CHD. Our understanding of the genetics of isolated CHD is advancing in large part due to advances in next generation sequencing, and the list of genes associated with CHD is rapidly expanding. Variants in hundreds of genes have been identified that may cause or contribute to CHD, but a genetic cause can still only be identified in about 20-30% of patients. Identifying a genetic cause for CHD can have an impact on clinical outcomes and prognosis and thus it is important for clinicians to understand when and what to test in patients with isolated CHD. This chapter reviews some of the known genetic mechanisms that contribute to isolated inherited and sporadic CHD as well as recommendations for evaluation and genetic testing in patients with isolated CHD.
Collapse
Affiliation(s)
- Shannon N Nees
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
367
|
Congenital heart diseases: genetics, non-inherited risk factors, and signaling pathways. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-0050-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Congenital heart diseases (CHDs) are the most common congenital anomalies with an estimated prevalence of 8 in 1000 live births. CHDs occur as a result of abnormal embryogenesis of the heart. Congenital heart diseases are associated with significant mortality and morbidity. The damage of the heart is irreversible due to a lack of regeneration potential, and usually, the patients may require surgical intervention. Studying the developmental biology of the heart is essential not only in understanding the mechanisms and pathogenesis of congenital heart diseases but also in providing us with insight towards developing new preventive and treatment methods.
Main body
The etiology of congenital heart diseases is still elusive. Both genetic and environmental factors have been implicated to play a role in the pathogenesis of the diseases. Recently, cardiac transcription factors, cardiac-specific genes, and signaling pathways, which are responsible for early cardiac morphogenesis have been extensively studied in both human and animal experiments but leave much to be desired. The discovery of novel genetic methods such as next generation sequencing and chromosomal microarrays have led to further study the genes, non-coding RNAs and subtle chromosomal changes, elucidating their implications to the etiology of congenital heart diseases. Studies have also implicated non-hereditary risk factors such as rubella infection, teratogens, maternal age, diabetes mellitus, and abnormal hemodynamics in causing CHDs.
These etiological factors raise questions on multifactorial etiology of CHDs. It is therefore important to endeavor in research based on finding the causes of CHDs. Finding causative factors will enable us to plan intervention strategies and mitigate the consequences associated with CHDs. This review, therefore, puts forward the genetic and non-genetic causes of congenital heart diseases. Besides, it discusses crucial signaling pathways which are involved in early cardiac morphogenesis. Consequently, we aim to consolidate our knowledge on multifactorial causes of CHDs so as to pave a way for further research regarding CHDs.
Conclusion
The multifactorial etiology of congenital heart diseases gives us a challenge to explicitly establishing specific causative factors and therefore plan intervention strategies. More well-designed studies and the use of novel genetic technologies could be the way through the discovery of etiological factors implicated in the pathogenesis of congenital heart diseases.
Collapse
|
368
|
Ito S, Chapman KA, Kisling M, John AS. Genetic considerations for adults with congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:149-153. [PMID: 32052945 DOI: 10.1002/ajmg.c.31777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/30/2023]
Abstract
Congenital heart disease (CHD) remains the most common birth defect, with an estimated incidence of approximately 1% of all births. The population of adults with CHD is growing rapidly with advances in medical care. Overall survival to adulthood in the current era estimated to exceed 90%. Genetic causes of CHD can be classified into several broad categories: (a) chromosomal aneuploidy, (b) large chromosomal deletion or duplication, (c) single gene mutation, and (d) copy number variation. However, only 20-30% of CHD cases have an established etiology characterized by either genetic abnormalities or environmental factors. The role of genetics in the field of adult CHD is only increasing. More adult patients with CHD are seeking genetic counseling to understand the etiology of their underlying CHD and the risks to future offspring. A multidisciplinary approach is essential to provide appropriate counseling to patients regarding indications for genetic testing and interpretations of results. Novel advances with precision medicine may soon enable clinicians to individualize therapies for a comprehensive approach to the care of adult patients with CHD.
Collapse
Affiliation(s)
- Seiji Ito
- Division of Pediatric Cardiology, Children's National Health System, Washington, District of Columbia
| | - Kimberly A Chapman
- Children's National Rare Disease Institute, Children's National Health System, Washington, District of Columbia
| | - Monisha Kisling
- Children's National Rare Disease Institute, Children's National Health System, Washington, District of Columbia
| | - Anitha S John
- Division of Pediatric Cardiology, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
369
|
Goldmuntz E. 22q11.2 deletion syndrome and congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:64-72. [PMID: 32049433 DOI: 10.1002/ajmg.c.31774] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/19/2023]
Abstract
The 22q11.2 deletion syndrome has an estimated prevalence of 1 in 4-6,000 livebirths. The phenotype varies widely; the most common features include: facial dysmorphia, hypocalcemia, palate and speech disorders, feeding and gastrointestinal disorders, immunodeficiency, recurrent infections, neurodevelopmental and psychiatric disorders, and congenital heart disease. Approximately 60-80% of patients have a cardiac malformation most commonly including a subset of conotruncal defects (tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B), conoventricular and/or atrial septal defects, and aortic arch anomalies. Cardiac patients with a 22q11.2 deletion do not generally experience higher mortality upon surgical intervention but suffer more peri-operative complications than their non-syndromic counterparts. New guidelines suggest screening for a 22q11.2 deletion in the patient with tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B, conoventricular septal defects as well as those with an isolated aortic arch anomaly. Early identification of a 22q11.2 deletion in the neonate or infant when other syndromic features may not be apparent allows for timely parental screening for reproductive counseling and anticipatory evaluation of cardiac and noncardiac features. Screening the at-risk child or adult allows for important age-specific clinical, neurodevelopmental, psychiatric, and reproductive issues to be addressed.
Collapse
Affiliation(s)
- Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
370
|
Zimmerman M, Sable C. Congenital heart disease in low-and-middle-income countries: Focus on sub-Saharan Africa. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:36-46. [PMID: 32026623 DOI: 10.1002/ajmg.c.31769] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The etiology of congenital heart disease (CHD) is multifactorial. The birth prevalence of CHD is shaped by a wide variety of maternal, fetal, and neonatal risk factors, along with the rates of prenatal diagnosis and terminations of pregnancy, all of which have geographic variability Epidemiology data availability from low-and-middle-income countries (LMIC) on CHD prevalence, morbidity, and mortality are far more limited than from high income countries. Data on specific genetic, environmental, and prenatal risk associated with CHD are almost nonexistent. In this article, we will focus on defining what data are available, genetic risk factors, birth and overall prevalence, morbidity, and the impact of limited access to interventions, both surgery and cardiac catheterizations. We will highlight CHD in sub-Saharan Africa to detail epidemiology studies in the poorest regions of the world. Existing literature as well as estimates from the Global Burden of Disease Study (http://ghdx.healthdata.org) form the basis for this review. The intersection of poverty, high fertility rates, and limited access to care results in a unique profile of CHD in LMIC. CHD is not a preventable disease (by most standards), so early detection and access are our key interventions to improve the dire outcomes for children in low-resources settings of the world.
Collapse
Affiliation(s)
| | - Craig Sable
- Children's National Health System, Washington, District of Columbia
| |
Collapse
|
371
|
Axelrod JD. Planar cell polarity signaling in the development of left–right asymmetry. Curr Opin Cell Biol 2020; 62:61-69. [DOI: 10.1016/j.ceb.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
|
372
|
Sevim Bayrak C, Zhang P, Tristani-Firouzi M, Gelb BD, Itan Y. De novo variants in exomes of congenital heart disease patients identify risk genes and pathways. Genome Med 2020; 12:9. [PMID: 31941532 PMCID: PMC6961332 DOI: 10.1186/s13073-019-0709-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background Congenital heart disease (CHD) affects ~ 1% of live births and is the most common birth defect. Although the genetic contribution to the CHD has been long suspected, it has only been well established recently. De novo variants are estimated to contribute to approximately 8% of sporadic CHD. Methods CHD is genetically heterogeneous, making pathway enrichment analysis an effective approach to explore and statistically validate CHD-associated genes. In this study, we performed novel gene and pathway enrichment analyses of high-impact de novo variants in the recently published whole-exome sequencing (WES) data generated from a cohort of CHD 2645 parent-offspring trios to identify new CHD-causing candidate genes and mutations. We performed rigorous variant- and gene-level filtrations to identify potentially damaging variants, followed by enrichment analyses and gene prioritization. Results Our analyses revealed 23 novel genes that are likely to cause CHD, including HSP90AA1, ROCK2, IQGAP1, and CHD4, and sharing biological functions, pathways, molecular interactions, and properties with known CHD-causing genes. Conclusions Ultimately, these findings suggest novel genes that are likely to be contributing to CHD pathogenesis.
Collapse
Affiliation(s)
- Cigdem Sevim Bayrak
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Itan
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
373
|
Helle E, Pihkala J, Turunen R, Ruotsalainen H, Tuupanen S, Koskenvuo J, Ojala T. Rare Variants in Genes Associated With Cardiomyopathy Are Not Common in Hypoplastic Left Heart Syndrome Patients With Myocardial Dysfunction. Front Pediatr 2020; 8:596840. [PMID: 33194928 PMCID: PMC7661485 DOI: 10.3389/fped.2020.596840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Myocardial dysfunction is a known risk factor for morbidity and mortality in hypoplastic left heart syndrome (HLHS). Variants in some transcription factor and contractility genes, which are known to cause cardiomyopathy, have previously been associated with impaired right ventricular function in some HLHS patients. The care of HLHS patients is resource demanding. Identifying genetic variants associated with myocardial dysfunction would be helpful in tailoring the follow-up and therapeutic strategies. We tested whether a commercial cardiomyopathy gene panel could serve as a diagnostic tool in a Finnish cohort of HLHS patients with impaired right ventricular function to identify potentially pathogenic variants associated with poor prognosis. None of the patients had pathogenic or likely pathogenic variants in the studied cardiomyopathy-associated genes. Thus, our approach of performing a cardiomyopathy gene panel to identify pathogenic variants as directly causal or as modifiers for worse outcomes in hypoplastic left heart syndrome is not useful in clinical practice at the moment.
Collapse
Affiliation(s)
- Emmi Helle
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Research Programs Unit, Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Pihkala
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riitta Turunen
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sari Tuupanen
- Blueprint Genetics, Helsinki, Finland.,Blueprint Genetics, San Francisco, CA, United States
| | - Juha Koskenvuo
- Blueprint Genetics, Helsinki, Finland.,Blueprint Genetics, San Francisco, CA, United States
| | - Tiina Ojala
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
374
|
Genetics of Congenital Heart Disease. Biomolecules 2019; 9:biom9120879. [PMID: 31888141 PMCID: PMC6995556 DOI: 10.3390/biom9120879] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that are important for heart development. Recent studies have shown genes encoding chromatin modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the development of new therapies to improve patient outcomes.
Collapse
|
375
|
Zhao Y, Kang X, Gao F, Guzman A, Lau RP, Biniwale R, Wadehra M, Reemtsen B, Garg M, Halnon N, Quintero-Rivera F, Van Arsdell G, Coppola G, Nelson SF, Touma M. Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot. J Mol Med (Berl) 2019; 97:1711-1722. [PMID: 31834445 DOI: 10.1007/s00109-019-01857-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
The phenotypic spectrum of congenital heart defects (CHDs) is contributed by both genetic and environmental factors. Their interactions are profoundly heterogeneous but may operate on common pathways as in the case of hypoxia signaling during postnatal heart development in the context of CHDs. Tetralogy of Fallot (TOF) is the most common cyanotic (hypoxemic) CHD. However, how the hypoxic environment contributes to TOF pathogenesis after birth is poorly understood. We performed Genome-wide transcriptome analysis on right ventricle outflow tract (RVOT) specimens from cyanotic and noncyanotic TOF. Co-expression network analysis identified gene modules specifically associated with clinical diagnosis and hypoxemia status in the TOF hearts. In particular, hypoxia-dependent induction of myocyte proliferation is associated with E2F1-mediated cell cycle regulation and repression of the WNT11-RB1 axis. Genes enriched in epithelial mesenchymal transition (EMT), fibrosis, and sarcomere were also repressed in cyanotic TOF patients. Importantly, transcription factor analysis of the hypoxia-regulated modules suggested CREB1 as a putative regulator of hypoxia/WNT11-RB1 circuit. The study provides a high-resolution landscape of transcriptome programming associated with TOF phenotypes and unveiled hypoxia-induced regulatory circuit in cyanotic TOF. Hypoxia-induced cardiomyocyte proliferation involves negative modulation of CREB1 activity upstream of the WNT11-RB1 axis. KEY MESSAGES: Genetic and environmental factors contribute to congenital heart defects (CHDs). How hypoxia contributes to Tetralogy of Fallot (TOF) pathogenesis after birth is unclear. Systems biology-based analysis revealed distinct molecular signature in CHDs. Gene expression modules specifically associated with cyanotic TOF were uncovered. Key regulatory circuits induced by hypoxia in TOF pathogenesis after birth were unveiled.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, MDCC-B2-375, Los Angeles, CA, 90095, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California, Los Angeles, CA, USA
| | - Xuedong Kang
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, MDCC-B2-375, Los Angeles, CA, 90095, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California, Los Angeles, CA, USA
| | - Fuying Gao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alejandra Guzman
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, MDCC-B2-375, Los Angeles, CA, 90095, USA
| | - Ryan P Lau
- Department of Pathology and Laboratory Medicine, Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Reshma Biniwale
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Brian Reemtsen
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Meena Garg
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, MDCC-B2-375, Los Angeles, CA, 90095, USA
| | - Nancy Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, MDCC-B2-375, Los Angeles, CA, 90095, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Glen Van Arsdell
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, MDCC-B2-375, Los Angeles, CA, 90095, USA.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Institute of Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, MDCC-B2-375, Los Angeles, CA, 90095, USA. .,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California, Los Angeles, CA, USA. .,Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Institute of Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Department of Pediatrics, Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,The Molecular Biology Institute, University of California, Los Angeles, CA, USA. .,Eli and Edythe Stem Cell Institute, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
376
|
Affiliation(s)
- Adrianna Matos-Nieves
- From the Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH (A.M.-N., J.Y., V.G.)
| | - Jun Yasuhara
- From the Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH (A.M.-N., J.Y., V.G.)
| | - Vidu Garg
- From the Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH (A.M.-N., J.Y., V.G.).,Department of Pediatrics and Department of Molecular Genetics, Ohio State University, Columbus (V.G.)
| |
Collapse
|
377
|
Deniz E, Jonas S, Khokha MK, Choma MA. Quantitative Phenotyping of Xenopus Embryonic Heart Pathophysiology Using Hemoglobin Contrast Subtraction Angiography to Screen Human Cardiomyopathies. Front Physiol 2019; 10:1197. [PMID: 31620018 PMCID: PMC6763566 DOI: 10.3389/fphys.2019.01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/03/2019] [Indexed: 01/09/2023] Open
Abstract
Congenital heart disease (CHD) is a significant cause of mortality in infants and adults. Currently human genomic analysis has identified a number of candidate genes in these patients. These genes span diverse categories of gene function suggesting that despite the similarity in cardiac lesion, the underlying pathophysiology may be different. In fact, patients with similar CHDs can have drastically different outcomes, including a dramatic decrease in myocardial function. To test these human candidate genes for their impact on myocardial function, we need efficient animals models of disease. For this purpose, we paired Xenopus tropicalis with our microangiography technique, hemoglobin contrast subtraction angiography (HCSA). To demonstrate the gene-teratogen-physiology relationship, we modeled human cardiomyopathy in tadpoles. First we depleted the sarcomeric protein myosin heavy chain 6 (myh6) expression using morpholino oligos. Next, we exposed developing embryos to the teratogen ethanol and in both conditions showed varying degrees of cardiac dysfunction. Our results demonstrate that HCSA can distinguish biomechanical phenotypes in the context of gene dysfunction or teratogen. This approach can be used to screen numerous candidate CHD genes or suspected teratogens for their effect on cardiac function.
Collapse
Affiliation(s)
- Engin Deniz
- Department of Pediatrics, Yale University, New Haven, CT, United States
| | - Stephan Jonas
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Mustafa K Khokha
- Department of Pediatrics, Yale University, New Haven, CT, United States.,Department of Genetics, Yale University, New Haven, CT, United States
| | - Michael A Choma
- Department of Pediatrics, Yale University, New Haven, CT, United States.,Department of Diagnostic Radiology, Yale University, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Department of Applied Physics, Yale University, New Haven, CT, United States
| |
Collapse
|
378
|
Cruz-Lemini M, Nieto-Castro B, Luna-Garcia J, Juarez-Martinez I, Martínez-Rivera M, Bermudez-Rojas MDLL, Rebolledo-Fernández C, Cruz-Martinez R. Prenatal diagnosis of congenital heart defects: experience of the first Fetal Cardiology Unit in Mexico. J Matern Fetal Neonatal Med 2019; 34:1529-1534. [PMID: 31257961 DOI: 10.1080/14767058.2019.1638905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The purpose of this article was to describe our experience with the prenatal diagnosis of CHD in patients referred to our Fetal Cardiology Unit. METHODS Prospective cohort study of consecutive fetuses referred for advanced fetal echocardiography to our Fetal Cardiology Unit during a 3-year period (September 2015-September 2018). RESULTS Totally 809 fetuses were evaluated, with 1263 fetal advanced echocardiographies performed. Suspected cardiac abnormality was the most common indication for referral (62.2%). Only 7.3% of patients had known morbidities or risk factors for CHD. Mean gestational age at first examination was 25.6 ± 6.4 weeks. A total of 528 (65.3%) fetuses were found to have a cardiac defect: 40.7% had isolated CHD while 24.6% had associated anomalies. The most common defects found were ventricular septal defects (20.3%), followed by conotruncal defects (9.7%), hypoplastic left heart syndrome (9.3%), fetal arrhythmias (8.9%), and venous anomalies (8.7%). 31.6% presented abnormal genetic studies, the most frequent being Down syndrome (23/212, 10.8%), followed by DiGeorge syndrome (11/212, 5.2%). CONCLUSIONS Prenatal screening and diagnosis of CHD in Mexico are feasible, with suspected cardiac abnormality being the main reason for referral to a specialized Fetal Cardiology Unit. Efforts must be made to make screening available to the general population in the first and second trimesters of pregnancy by fetal medicine or trained specialists, in order to identify fetal CHD and offer advanced echocardiography, genetic studies, timely fetal cardiac intervention in selected cases, and delivery in tertiary centers, to improve overall survival.
Collapse
Affiliation(s)
- Monica Cruz-Lemini
- Fetal Medicine Mexico, Fetal Surgery Unit, Children and Women's Specialty Hospital of Queretaro, Queretaro, Mexico
| | - Belen Nieto-Castro
- Fetal Medicine Mexico, Fetal Surgery Unit, Children and Women's Specialty Hospital of Queretaro, Queretaro, Mexico
| | - Jonahtan Luna-Garcia
- Fetal Medicine Mexico, Fetal Surgery Unit, Children and Women's Specialty Hospital of Queretaro, Queretaro, Mexico
| | - Israel Juarez-Martinez
- Fetal Medicine Mexico, Fetal Surgery Unit, Children and Women's Specialty Hospital of Queretaro, Queretaro, Mexico
| | | | | | - Carlos Rebolledo-Fernández
- Fetal Medicine Mexico, Fetal Surgery Unit, Children and Women's Specialty Hospital of Queretaro, Queretaro, Mexico
| | - Rogelio Cruz-Martinez
- Fetal Medicine Mexico, Fetal Surgery Unit, Children and Women's Specialty Hospital of Queretaro, Queretaro, Mexico
| |
Collapse
|
379
|
Pan J, Hu J, Qi X, Xu L. Association study of a functional variant of TNF-α gene and serum TNF-α level with the susceptibility of congenital heart disease in a Chinese population. Postgrad Med J 2019; 95:547-551. [PMID: 31324728 DOI: 10.1136/postgradmedj-2019-136621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is among the leading causes of infant death worldwide. Although shortage of folate has been found potentially to contribute to CHD in the embryo, the aetiology of CHD was not completely understood. Inflammation and altered immune processes are involved in all forms of cardiac malformation, including CHD. Tumour necrosis factor-α (TNF-α), was involved in the pathogenesis of multiple kinds of heart diseases. However, no studies have systematically evaluated the associations of genetic variants of TNF-α with susceptibility of CHD. METHODS A case-control study was conducted to evaluate the associations between tagSNPs of TNF-α and CHD susceptibility. Serum level of TNF-α was assessed using ELISA. The dual luciferase reporter assay was used to evaluate the functional significance of variant rs1800629 on TNF-α transcriptional activity. RESULTS We found rs1800629 was significantly correlated with increased CHD susceptibility (OR: 1.72, 95% CI 1.26 to 2.36, p=0.001). Serum levels of TNF-α were significantly higher in CHD group (9.09±1.90 pg/mL) than that in control group (6.12±1.56 pg/mL, p<0.001). The AA genotype and AG genotype of rs1800629 was associated with higher serum TNF-α level, compared with GG genotype. The dual luciferase reporter assay showed that promoter activity was significantly increased by 57% and 76% for plasmids containing the minor A allele compared with the major G allele in H9c2 and HEK 293T, respectively. CONCLUSION These results indicate that higher level of serum TNF-α increases risk of CHD, while TNF-α rs1800629 A allele might contribute to higher risk for CHD due to the increase in TNF-α expression.
Collapse
Affiliation(s)
- Jun Pan
- Pediatrics, Taihe Hospital, Shiyan, China
| | - Jiang Hu
- Oncology, Taihe Hospital, Shiyan, China
| | - Xusheng Qi
- Pediatrics, Taihe Hospital, Shiyan, China
| | - Liqin Xu
- Pediatrics, Taihe Hospital, Shiyan, China
| |
Collapse
|
380
|
Histone H2B monoubiquitination regulates heart development via epigenetic control of cilia motility. Proc Natl Acad Sci U S A 2019; 116:14049-14054. [PMID: 31235600 DOI: 10.1073/pnas.1808341116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic analyses of patients with congenital heart disease (CHD) have identified significant contribution from mutations affecting cilia genes and chromatin remodeling genes; however, the mechanism(s) connecting chromatin remodeling to CHD is unknown. Histone H2B monoubiquitination (H2Bub1) is catalyzed by the RNF20 complex consisting of RNF20, RNF40, and UBE2B. Here, we show significant enrichment of loss-of-function mutations affecting H2Bub1 in CHD patients (enrichment 6.01, P = 1.67 × 10-03), some of whom had abnormal laterality associated with ciliary dysfunction. In Xenopus, knockdown of rnf20 and rnf40 results in abnormal heart looping, defective development of left-right (LR) asymmetry, and impaired cilia motility. Rnf20, Rnf40, and Ube2b affect LR patterning and cilia synergistically. Examination of global H2Bub1 level in Xenopus embryos shows that H2Bub1 is developmentally regulated and requires Rnf20. To examine gene-specific H2Bub1, we performed ChIP-seq of mouse ciliated and nonciliated tissues and showed tissue-specific H2Bub1 marks significantly enriched at cilia genes including the transcription factor Rfx3 Rnf20 knockdown results in decreased levels of rfx3 mRNA in Xenopus, and exogenous rfx3 can rescue the Rnf20 depletion phenotype. These data suggest that Rnf20 functions at the Rfx3 locus regulating cilia motility and cardiac situs and identify H2Bub1 as an upstream transcriptional regulator controlling tissue-specific expression of cilia genes. Our findings mechanistically link the two functional gene ontologies that have been implicated in human CHD: chromatin remodeling and cilia function.
Collapse
|
381
|
Geddes GC, Syverson E, Earing MG. Three year experience of a clinical cardiovascular genetics program for infants with congenital heart disease. CONGENIT HEART DIS 2019; 14:832-837. [PMID: 31222963 PMCID: PMC6851694 DOI: 10.1111/chd.12817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To describe the first 3 years of experience of having an inpatient "cardiogenetics" program which involves medical geneticist assessment of infants with major congenital heart disease (CHD) requiring surgical intervention in the first year of life. PATIENTS Patients less than a year of age admitted to Children's Hospital of Wisconsin's Herma Heart Institute for surgical intervention for CHD seen by the cardiogenetics program. Patients with major trisomies (13, 18, and 21) were excluded. OUTCOME MEASURES Utilization and yield of genetic testing, and diagnostic rate were assessed as outcome measures and compared to a baseline time period and a genetic testing protocol time period. RESULTS There were 201 infants with CHD evaluated by the cardiogenetics program over 3 years. A total of patients 46 patients of the 196 who underwent genetic testing had multiple tests completed. This is a significant decrease from the baseline (247/329, P < .0001) and from the genetic testing protocol (29/81, P < .0387) time periods. The diagnostic rate was 33% which is significantly increased compared to the baseline rate of 15% (80/524, P < .0001) and trends toward a significant increase during the testing protocol rate (25/113, P = .0520). The number of dual diagnosis increased to 9 of 201 compared to the baseline (2/524) and the genetic testing protocol (1/113) time periods. The rate of incidental diagnoses altering care increased to 6 of 201 from the baseline (1/524) and the genetic testing protocol (1/113) time periods. CONCLUSION An inpatient cardiogenetics program significantly increases the diagnostic rate, the detection of complex phenotypes with dual diagnoses, the identification of incidental genetic diagnoses associated with changes in care, and significantly decreases the likelihood of multiple tests being completed on an individual patient. Increased medical geneticist involvement in programs that care for infants with CHD should be encouraged to improve patient care and genetic testing utilization.
Collapse
Affiliation(s)
- Gabrielle C Geddes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.,Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Erin Syverson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.,Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Michael G Earing
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.,Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
382
|
De Backer J, Bondue A, Budts W, Evangelista A, Gallego P, Jondeau G, Loeys B, Peña ML, Teixido-Tura G, van de Laar I, Verstraeten A, Roos Hesselink J. Genetic counselling and testing in adults with congenital heart disease: A consensus document of the ESC Working Group of Grown-Up Congenital Heart Disease, the ESC Working Group on Aorta and Peripheral Vascular Disease and the European Society of Human Genetics. Eur J Prev Cardiol 2019; 27:1423-1435. [DOI: 10.1177/2047487319854552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thanks to a better knowledge of the genetic causes of many diseases and an improvement in genetic testing techniques, genetics has gained an important role in the multidisciplinary approach to diagnosis and management of congenital heart disease and aortic pathology. With the introduction of strategies for precision medicine, it is expected that this will only increase further in the future. Because basic knowledge of the indications, the opportunities as well as the limitations of genetic testing is essential for correct application in clinical practice, this consensus document aims to give guidance to care-providers involved in the follow-up of adults with congenital heart defects and/or with hereditary aortic disease. This paper is the result of a collaboration between the ESC Working Group of Grown-Up Congenital Heart Disease, the ESC Working Group on Aorta and Peripheral Vascular Disease and the European Society of Human Genetics. Throughout the document, the importance of correct counseling in the process of genetic testing is emphasized, indications and timing for genetic studies are discussed as well as the technical modalities of genetic testing. Finally, the most important genetic diseases in adult congenital heart disease and aortic pathology are also discussed.
Collapse
Affiliation(s)
- Julie De Backer
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Belgium
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group
| | - Antoine Bondue
- Department of Cardiology, Université Libre de Bruxelles, Belgium
| | - Werner Budts
- Congenital and Structural Cardiology, University Hospitals Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Arturo Evangelista
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, VHIR. CIBER-CV, Barcelona, Spain
| | - Pastora Gallego
- Department of Cardiology, Hospital Universitario Virgen del Rocio, Spain
| | - Guillaume Jondeau
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group
- Centre National Maladie Rare pour le Syndrome de Marfan et Apparentés, Hôpital Bichat, France
| | - Bart Loeys
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Belgium
- Department of Human Genetics, Radboud University Medical Center, the Netherlands
| | - Maria L Peña
- Department of Cardiology, Hospital Universitario Virgen del Rocio, Spain
| | - Gisela Teixido-Tura
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, VHIR. CIBER-CV, Barcelona, Spain
| | - Ingrid van de Laar
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group
- Department of Clinical Genetics, Erasmus MC, the Netherlands
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Belgium
- Department of Human Genetics, Radboud University Medical Center, the Netherlands
| | - Jolien Roos Hesselink
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group
- Department of Cardiology, Erasmus MC, the Netherlands
| |
Collapse
|
383
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the significant advances in the testing, interpretation, and diagnosis of genetic abnormalities in critically ill children and to emphasize that pediatric intensivists are uniquely positioned to search for genetic diagnoses in these patients. RECENT FINDINGS Ten years following the first clinical diagnosis made through whole exome sequencing, we remain in the dark about the function of roughly 75% of our genes. However, steady advancements in molecular techniques, particularly next-generation sequencing, have spurred a rapid expansion of our understanding of the genetic underpinnings of severe congenital diseases. This has resulted in not only improved clinical diagnostics but also a greater availability of research programs actively investigating rare, undiagnosed diseases. In this background, the scarcity of clinical geneticists compels nongeneticists to familiarize themselves with the types of patients that could benefit from genetic testing, interpretations of test results as well as the available resources for these patients. SUMMARY When caring for seriously ill children, critical care pediatricians should actively seek the possibility of an underlying genetic cause for their patients' conditions. This is true even in instances when a child has a descriptive diagnosis without a clear underlying molecular genetic mechanism. By promoting such diagnostics, in both clinical and research settings, pediatric intensivists can advance the care of their patients, improve the quality of information provided to families, and contribute to the knowledge of broad fields in medicine.
Collapse
|