351
|
Pelosi E, Castelli G, Testa U. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis 2015; 55:336-46. [PMID: 26460257 DOI: 10.1016/j.bcmd.2015.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
Studies of xenotransplantation of bone marrow and blood cells of AML patients have supported the existence of rare leukemic stem cells, able to initiate and maintain the leukemic process and bearing the typical leukemic abnormalities. LSCs possess self-renewal capacity and are responsible for the growth of the more differentiated leukemic progeny in the bone marrow and in the blood. These cells are more resistant than bulk leukemic cells to anti-leukemic drugs, thus survive to treatment and are, at a large extent, responsible for leukemia relapse. During the last two decades, considerable progresses have been made in the understanding of the peculiar cellular and molecular properties of LSCs. In this context, particularly relevant was the discovery of several membrane markers, selectively or preferentially expressed on LSCs. These membrane markers offer now unique opportunities to identify LSCs and to distinguish them from normal HSCs, to monitor the response of the various anti-leukemic treatments at the level of the LSC compartment, to identify relevant therapeutic targets. Concerning this last point, the most promising therapeutic targets are CD33 and CD123.
Collapse
Affiliation(s)
- Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| |
Collapse
|
352
|
Zhang Y, Liu R, Fan D, Shi R, Yang M, Miao Q, Deng ZQ, Qian J, Zhen Y, Xiong D, Wang J. The novel structure make LDM effectively remove CD123+ AML stem cells in combination with interleukin 3. Cancer Biol Ther 2015; 16:1514-25. [PMID: 26186454 DOI: 10.1080/15384047.2015.1071733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CD123 became a therapeutic target for acute myelocytic leukemia(AML) because of its overexpression only on AML stem cells. It is α subunit of interleukin-3 (multi-CSF, IL3) receptor. Lidamycin(LDM) is a novel antibiotic composed of an apoprotein (LDP) and a chromophore (AE). We cloned, expressed and isolated IL3LDP fusion protein first then assembled with AE in vitro. We found that131/132 amino acids of IL3 were the key factors for IL3 fusion protein stability and I131L/F132L mutation effectively improved the IL3 fusion protein stability. The toxicity of IL3LDM to CD123+ tumor cells was 2-10 times compared to LDM alone and 10000 times compared to ADR. Meanwhile, IL3LDM impaired the colony-forming ability of CD123+ stem-like cells but not to CD123 negative normal cord blood cells. Three drug delivery methods in vivo were adopted: prophylactic treatment and single/multiple-dosing administration. The tumor-free survival extended to 120 d and cancer cell invasion significantly decreased after IL3LDM continuous multiple treated. Moreover, IL3LDM had been shown to modulate apoptosis by arrested cell cycle in G2/M phase. Therefore, IL3LDM is expected to be a new drug for leukemia target therapy.
Collapse
Affiliation(s)
- Yanjun Zhang
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| | - Rong Liu
- b Department of biochemistry ; Microbiology and Immunology ; Faculty of Medicine ; University of Ottawa ; Ottawa , ON Canada
| | - Dongmei Fan
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| | - Rizan Shi
- c Institute of Medicinal Biotechnology Academy of Medical Sciences & Peking Union Medical College ; Beijing , China
| | - Ming Yang
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| | - Qingfang Miao
- d Department of Pharmacology ; Shanxi Medical University ; Taiyuan, Shanxi , PR China
| | - Zhao-Qun Deng
- e Affiliated People's Hospital of Jiangsu University ; Zhenjiang, Jiangsu , PR China
| | - Jun Qian
- e Affiliated People's Hospital of Jiangsu University ; Zhenjiang, Jiangsu , PR China
| | - Yongsu Zhen
- d Department of Pharmacology ; Shanxi Medical University ; Taiyuan, Shanxi , PR China
| | - Dongsheng Xiong
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| | - Jianxiang Wang
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| |
Collapse
|
353
|
Abstract
In this issue of Cancer Cell, Cole and colleagues report a non-mutant mitochondrial protein (ClpP) that is overexpressed in a wide range of acute myeloid leukemia (AML) cases, but not in normal hematopoietic precursors. This finding suggests a potentially unique therapeutic targeting opportunity for this difficult-to-treat disease.
Collapse
Affiliation(s)
- Karilyn Larkin
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, B302 Starling-Loving Hall, 320 West 10(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
354
|
de Witte MA, Kierkels GJJ, Straetemans T, Britten CM, Kuball J. Orchestrating an immune response against cancer with engineered immune cells expressing αβTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge. Cancer Immunol Immunother 2015; 64:893-902. [PMID: 25990073 PMCID: PMC4481298 DOI: 10.1007/s00262-015-1710-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/04/2015] [Indexed: 12/20/2022]
Abstract
Over half a century ago, the first allogeneic stem cell transplantation (allo-SCT) initiated cellular immunotherapy. For several decades, little progress was made, and toxicity of allo-SCT remained a major challenge. However, recent breakthroughs have opened new avenues to further develop this modality and to provide less toxic and equally efficient interventions for patients suffering from hematological or solid malignancies. Current novel cellular immune interventions include ex vivo expansion and adoptive transfer of tumor-infiltrating immune cells or administration of drugs which antagonize tolerizing mechanisms. Alternatively, transfer of immune cells engineered to express defined T cell receptors (TCRs) and chimeric antigen receptors (CARs) has shown its potential. A valuable addition to ‘engineered’ adaptive immunity has emerged recently through the improved understanding of how innate immune cells can attack cancer cells without substantial side effects. This has enabled the development of transplantation platforms with limited side effects allowing early immune interventions as well as the design of engineered immune cells expressing innate immune receptors. Here, we focus on innate immune interventions and their orchestration with TCR- and CAR-engineered immune cells. In addition, we discuss how the exploitation of the full potential of cellular immune interventions is influenced by regulatory frameworks. Finally, we highlight and discuss substantial differences in the current landscape of clinical trials in Europe as compared to the USA. The aim is to stimulate international efforts to support regulatory authorities and funding agencies, especially in Europe, to create an environment that will endorse the development of engineered immune cells for the benefit of patients.
Collapse
Affiliation(s)
- Moniek A de Witte
- Department of Hematology, University Medical Center Utrecht, Room Number Q05.4.301, PO Box 85500, 3508, GA, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
355
|
Minagawa K, Zhou X, Mineishi S, Di Stasi A. Seatbelts in CAR therapy: How Safe Are CARS? Pharmaceuticals (Basel) 2015; 8:230-49. [PMID: 26110321 PMCID: PMC4491658 DOI: 10.3390/ph8020230] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022] Open
Abstract
T-cells genetically redirected with a chimeric antigen receptor (CAR) to recognize tumor antigens and kill tumor cells have been infused in several phase 1 clinical trials with success. Due to safety concerns related to on-target/off-tumor effects or cytokine release syndrome, however, strategies to prevent or abate serious adverse events are required. Pharmacologic therapies; suicide genes; or novel strategies to limit the cytotoxic effect only to malignant cells are under active investigations. In this review, we summarize results and toxicities of investigations employing CAR redirected T-cells, with a focus on published strategies to grant safety of this promising cellular application.
Collapse
Affiliation(s)
- Kentaro Minagawa
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| | - Xiaoou Zhou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030-2399, USA.
| | - Shin Mineishi
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| | - Antonio Di Stasi
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
356
|
Reikvam H, Hoang TTV, Bruserud Ø. Emerging therapeutic targets in human acute myeloid leukemia (part 2) – bromodomain inhibition should be considered as a possible strategy for various patient subsets. Expert Rev Hematol 2015; 8:315-27. [DOI: 10.1586/17474086.2015.1036025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
357
|
Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood 2015; 125:3466-76. [PMID: 25887778 DOI: 10.1182/blood-2014-11-612721] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/09/2015] [Indexed: 12/20/2022] Open
Abstract
T cells expressing a chimeric antigen receptor (CAR) can produce dramatic results in lymphocytic leukemia patients; however, therapeutic strategies for myeloid leukemia remain limited. Folate receptor β (FRβ) is a myeloid-lineage antigen expressed on 70% of acute myeloid leukemia (AML) patient samples. Here, we describe the development and evaluation of the first CARs specific for human FRβ (m909) in vitro and in vivo. m909 CAR T cells exhibited selective activation and lytic function against engineered C30-FRβ as well as endogenous FRβ(+) AML cell lines in vitro. In mouse models of human AML, m909 CAR T cells mediated the regression of engrafted FRβ(+) THP1 AML in vivo. In addition, we demonstrated that treatment of AML with all-trans retinoic acid (ATRA) enhanced FRβ expression, resulting in improved immune recognition by m909 CAR T cells. Because many cell surface markers are shared between AML blasts and healthy hematopoietic stem and progenitor cells (HSCs), we evaluated FRβ expression and recognition of HSCs by CAR T cells. m909 CAR T cells were not toxic against healthy human CD34(+) HSCs in vitro. Our results indicate that FRβ is a promising target for CAR T-cell therapy of AML, which may be augmented by combination with ATRA.
Collapse
|
358
|
The role of stem cell transplantation for chronic myelogenous leukemia in the 21st century. Blood 2015; 125:3230-5. [PMID: 25852053 DOI: 10.1182/blood-2014-10-567784] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/21/2015] [Indexed: 12/13/2022] Open
Abstract
The introduction of tyrosine kinase inhibitors (TKIs), a treatment of chronic myelogenous leukemia (CML), has largely replaced curative strategies based on allogeneic stem cell transplantation (SCT). Nevertheless, SCT still remains an option for accelerated/blastic-phase and selected chronic-phase CML. Transplant outcomes can be optimized by peritransplant TKIs, conditioning regimen, BCR-ABL monitoring, and relapse management. Controversies exist in transplant timing, pediatric CML, alternative donors, and economics. SCT continues to serve as a platform of "operational cure" for CML with TKIs and immunotherapies.
Collapse
|
359
|
Ramos NR, Mo CC, Karp JE, Hourigan CS. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia. J Clin Med 2015; 4:665-95. [PMID: 25932335 PMCID: PMC4412468 DOI: 10.3390/jcm4040665] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023] Open
Abstract
The limited sensitivity of the historical treatment response criteria for acute myeloid leukemia (AML) has resulted in a different paradigm for treatment compared with most other cancers presenting with widely disseminated disease. Initial cytotoxic induction chemotherapy is often able to reduce tumor burden to a level sufficient to meet the current criteria for "complete" remission. Nevertheless, most AML patients ultimately die from their disease, most commonly as clinically evident relapsed AML. Despite a variety of available salvage therapy options, prognosis in patients with relapsed or refractory AML is generally poor. In this review, we outline the commonly utilized salvage cytotoxic therapy interventions and then highlight novel investigational efforts currently in clinical trials using both pathway-targeted agents and immunotherapy based approaches. We conclude that there is no current standard of care for adult relapsed or refractory AML other than offering referral to an appropriate clinical trial.
Collapse
Affiliation(s)
- Nestor R. Ramos
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, USA; E-Mail:
- Department of Hematology-Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA; E-Mail:
| | - Clifton C. Mo
- Department of Hematology-Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA; E-Mail:
| | - Judith E. Karp
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; E-Mail:
| | - Christopher S. Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, USA; E-Mail:
| |
Collapse
|
360
|
Geiger TL, Rubnitz JE. New approaches for the immunotherapy of acute myeloid leukemia. DISCOVERY MEDICINE 2015; 19:275-284. [PMID: 25977190 PMCID: PMC4628787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Acute myeloid leukemia (AML) is a set of related diseases characterized by the immortalization and uncontrolled expansion of myeloid precursor cells. Core therapy for AML has remained unchanged for nearly 30 years, and survival rates remain unsatisfactory. However, advances in the immunotherapy of AML have created opportunities for improved outcomes. Enforcing a tumor-specific immune response through the re-direction of the adaptive immune system, which links remarkable specificity with potent cytotoxic effector functions, has proven particularly compelling. This may be coupled with immune checkpoint blockade and conventional therapies for optimal effect. Engineered antibodies are currently in use in AML and the repertoire of available therapeutics will expand. NK cells have shown effectiveness in this disease. New methods to optimize their activation and the targeting of AML show potential. Most significantly, adoptive immunotherapy with tumor-specific T cells, and particularly T cells re-directed using genetically introduced TCR or chimeric antigen receptors, have demonstrated promise. Each of these approaches has unique benefits and challenges that we explore in this review.
Collapse
Affiliation(s)
- Terrence L. Geiger
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
361
|
Abstract
Despite longstanding efforts in basic research and clinical studies, the prognosis for patients with acute myeloid leukemia (AML) remains poor. About half of the patients are not medically fit for intensive induction therapy to induce a complete remission and are treated with palliative treatment concepts. The patients medically fit for intensive induction therapy have a high complete remission rate but the majority suffers from relapse due to chemo-refractory leukemic cells. Allogeneic stem cell transplantation as post-remission therapy can significantly reduce the likelihood of relapse, but it is associated with a high rate of morbidity and mortality. Novel therapeutic concepts are therefore urgently sought after. During recent years, the focus has shifted towards the development of novel immunotherapeutic strategies. Some of the most promising are drug-conjugated monoclonal antibodies, T-cell engaging antibody constructs, adoptive transfer with chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination. Here, we review recent progress in these four fields and speculate about the optimal time points during the course of AML treatment for their application.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Christina Krupka
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Thomas Köhnke
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Marion Subklewe
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany.
| |
Collapse
|
362
|
CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 2015; 29:1637-47. [PMID: 25721896 DOI: 10.1038/leu.2015.52] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/05/2015] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
Patients with chemo-refractory acute myeloid leukemia (AML) have a dismal prognosis. Chimeric antigen receptor T (CART) cell therapy has produced exciting results in CD19+ malignancies and may overcome many of the limitations of conventional leukemia therapies. We developed CART cells to target CD33 (CART33) using the anti-CD33 single chain variable fragment used in gemtuzumab ozogamicin (clone My96) and tested the activity and toxicity of these cells. CART33 exhibited significant effector functions in vitro and resulted in eradication of leukemia and prolonged survival in AML xenografts. CART33 also resulted in human lineage cytopenias and reduction of myeloid progenitors in xenograft models of hematopoietic toxicity, suggesting that permanently expressed CD33-specific CART cells would have unacceptable toxicity. To enhance the viability of CART33 as an option for AML, we designed a transiently expressed mRNA anti-CD33 CAR. Gene transfer was carried out by electroporation into T cells and resulted in high-level expression with potent but self-limited activity against AML. Thus our preclinical studies show potent activity of CART33 and indicate that transient expression of anti-CD33 CAR by RNA modification could be used in patients to avoid long-term myelosuppression. CART33 therapy could be used alone or as part of a preparative regimen prior to allogeneic transplantation in refractory AML.
Collapse
|
363
|
CD123 and its potential clinical application in leukemias. Life Sci 2015; 122:59-64. [DOI: 10.1016/j.lfs.2014.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022]
|
364
|
Casucci M, Hawkins RE, Dotti G, Bondanza A. Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunol Immunother 2015; 64:123-30. [PMID: 25488419 PMCID: PMC11028535 DOI: 10.1007/s00262-014-1641-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023]
Abstract
The recent successes of clinical trials with T cells genetically modified with either clonal T cell receptors or chimeric antigen receptors have also highlighted their potential toxicities. The aim of this focused review was to describe the adverse events observed in these clinical trials and to link them to the complex biology of genetically targeted T cells. Finally, strategies to overcome these toxicities will be proposed and discussed, including the use of suicide genes and other innovative gene therapy strategies.
Collapse
Affiliation(s)
- Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Robert E. Hawkins
- Cancer Research UK, Department of Medical Oncology, University of Manchester and Christie Hospital NHS Foundation Trust, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, 6621 Fannin St. MC 3-3320, Houston, TX 77030 USA
| | - Attilio Bondanza
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
365
|
Shalabi H, Angiolillo A, Fry TJ. Beyond CD19: Opportunities for Future Development of Targeted Immunotherapy in Pediatric Relapsed-Refractory Acute Leukemia. Front Pediatr 2015; 3:80. [PMID: 26484338 PMCID: PMC4589648 DOI: 10.3389/fped.2015.00080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/18/2015] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been used as a targeted approach in cancer therapy. Relapsed and refractory acute leukemia in pediatrics has been difficult to treat with conventional therapy due to dose-limiting toxicities. With the recent success of CD 19 CAR in pediatric patients with B cell acute lymphoblastic leukemia (ALL), this mode of therapy has become a very attractive option for these patients with high-risk disease. In this review, we will discuss current treatment paradigms of pediatric acute leukemia and potential therapeutic targets for additional high-risk populations, including T cell ALL, AML, and infant ALL.
Collapse
Affiliation(s)
- Haneen Shalabi
- Center for Cancer and Blood Disorders, Children's National Medical Center , Washington, DC , USA
| | - Anne Angiolillo
- Center for Cancer and Blood Disorders, Children's National Medical Center , Washington, DC , USA
| | - Terry J Fry
- Hematologic Malignancies Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
366
|
Buckley SA, Walter RB. Antigen-specific immunotherapies for acute myeloid leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:584-595. [PMID: 26637776 DOI: 10.1182/asheducation-2015.1.584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antigen-specific immunotherapies have emerged as important components of curative treatment algorithms for many cancers. In acute myeloid leukemia (AML), success has been less obvious. Nonetheless, among the few drugs shown to improve survival in recent randomized trials is the CD33 antibody-drug conjugate gemtuzumab ozogamicin. Significant antileukemic activity is also well documented for radioimmunoconjugates targeting CD33, CD45, or CD66. These therapeutics can intensify conditioning before hematopoietic cell transplantation, but their effect on patient outcomes needs clarification. Emerging data now suggest clinical antileukemic activity of several novel antibodies and perhaps some adoptive T-cell immunotherapies and vaccines. In parallel, numerous other agents targeting a wider variety of antigens are currently being explored. However, the antigenic heterogeneity characteristic of AML is a considerable limitation for all these therapeutics, and many important questions related to the ideal target antigen(s), disease situation in which to use these therapies, most suitable patient populations, exact treatment modalities, and details of supportive care needs remain open. Addressing such questions in upcoming studies will be required to ensure that antigen-directed therapies become an effective tool in AML, a disease for which outcomes with standard "3 + 7"-based chemotherapy have remained unsatisfactory in many patients.
Collapse
Affiliation(s)
| | - Roland B Walter
- Department of Medicine, Division of Hematology, and Department of Epidemiology, University of Washington, Seattle, WA; and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
367
|
Sasine JP, Schiller GJ. Emerging strategies for high-risk and relapsed/refractory acute myeloid leukemia: Novel agents and approaches currently in clinical trials. Blood Rev 2015; 29:1-9. [DOI: 10.1016/j.blre.2014.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 07/11/2014] [Indexed: 01/26/2023]
|
368
|
Regression of established renal cell carcinoma in nude mice using lentivirus-transduced human T cells expressing a human anti-CAIX chimeric antigen receptor. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14003. [PMID: 27119093 PMCID: PMC4782938 DOI: 10.1038/mto.2014.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 12/24/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a tumor-associated antigen and marker of hypoxia that is overexpressed on > 90% of clear-cell type renal cell carcinoma (RCC) but not on neighboring normal kidney tissue. Here, we report on the construction of two chimeric antigen receptors (CARs) that utilize a carbonic anhydrase (CA) domain mapped, human single chain antibody (scFv G36) as a targeting moiety but differ in their capacity to provide costimulatory signaling for optimal T cell proliferation and tumor cell killing. The resulting anti-CAIX CARs were expressed on human primary T cells via lentivirus transduction. CAR-transduced T cells (CART cells) expressing second-generation G36-CD28-TCRζ exhibited more potent in vitro antitumor effects on CAIX(+) RCC cells than first-generation G36-CD8-TCRζ including cytotoxicity, cytokine secretion, proliferation, and clonal expansion. Adoptive G36-CD28-TCRζ CART cell therapy combined with high-dose interleukin (IL)-2 injection also lead to superior regression of established RCC in nude mice with evidence of tumor cell apoptosis and tissue necrosis. These results suggest that the fully human G36-CD28-TCRζ CARs should provide substantial improvements over first-generation mouse anti-CAIX CARs in clinical use through reduced human anti-mouse antibody responses against the targeting scFv and administration of lower doses of T cells during CART cell therapy of CAIX(+) RCC.
Collapse
|
369
|
Maude SL, Shpall EJ, Grupp SA. Chimeric antigen receptor T-cell therapy for ALL. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:559-564. [PMID: 25696911 DOI: 10.1182/asheducation-2014.1.559] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Relapsed and refractory leukemias pose substantial challenges in both children and adults, with very little progress being made in more than a decade. Targeted immunotherapy using chimeric antigen receptor (CAR)-modified T cells has emerged as a potent therapy with an innovative mechanism. Dramatic clinical responses with complete remission rates as high as 90% have been reported using CAR-modified T cells directed against the B-cell-specific antigen CD19 in patients with relapsed/refractory acute lymphoblastic leukemia. Supraphysiologic T-cell proliferation, a hallmark of this therapy, contributes to both efficacy and the most notable toxicity, cytokine release syndrome, posing a unique challenge for toxicity management. Further studies are necessary to identify additional targets, standardize approaches to cytokine release syndrome management, and determine the durability of remissions.
Collapse
Affiliation(s)
| | | | - Stephan A Grupp
- Division of Oncology and Department of Pathology, The Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| |
Collapse
|
370
|
He SZ, Busfield S, Ritchie DS, Hertzberg MS, Durrant S, Lewis ID, Marlton P, McLachlan AJ, Kerridge I, Bradstock KF, Kennedy G, Boyd AW, Yeadon TM, Lopez AF, Ramshaw HS, Iland H, Bamford S, Barnden M, DeWitte M, Basser R, Roberts AW. A Phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk Lymphoma 2014; 56:1406-15. [DOI: 10.3109/10428194.2014.956316] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
371
|
Kenderian SS, Ruella M, Gill S, Kalos M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer Res 2014; 74:6383-9. [PMID: 25371415 DOI: 10.1158/0008-5472.can-14-1530] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several decades of humoral immunotherapy using monoclonal antibodies and cellular immunotherapy using hematopoietic cell transplantation have recently culminated in a successful merger: the development and clinical application of genetically engineered antibody-T cell chimeras. Also known as chimeric antigen receptor T cells (CAR T cells), these entities combine the exquisite antigen specificity of antibodies with the polyfunctionality and potency of cellular immunity and are a prime example of the potential for synthetic biology to treat disease. CAR T cells overcome several of the biologic obstacles that have historically hampered immunotherapy while providing fundamental mechanistic insights into cellular immunology and revealing new challenges in genetic engineering and target selection. Results from early-phase CAR T-cell-based clinical trials demonstrate the significant potential for this approach to affect dramatic and complete clinical responses while revealing novel toxicities associated with activation of potent and specific antitumor immunity.
Collapse
Affiliation(s)
- Saad Sirop Kenderian
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Marco Ruella
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saar Gill
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Kalos
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
372
|
Jonnalagadda M, Mardiros A, Urak R, Wang X, Hoffman LJ, Bernanke A, Chang WC, Bretzlaff W, Starr R, Priceman S, Ostberg JR, Forman SJ, Brown CE. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol Ther 2014; 23:757-68. [PMID: 25366031 DOI: 10.1038/mt.2014.208] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 10/17/2014] [Indexed: 12/22/2022] Open
Abstract
The success of adoptive therapy using chimeric antigen receptor (CAR)-expressing T cells partly depends on optimal CAR design. CARs frequently incorporate a spacer/linker region based on the constant region of either IgG1 or IgG4 to connect extracellular ligand-binding with intracellular signaling domains. Here, we evaluated the potential for the IgG4-Fc linker to result in off-target interactions with Fc gamma receptors (FcγRs). As proof-of-principle, we focused on a CD19-specific scFv-IgG4-CD28-zeta CAR and found that, in contrast to CAR-negative cells, CAR+ T cells bound soluble FcγRs in vitro and did not engraft in NSG mice. We hypothesized that mutations to avoid FcγR binding would improve CAR+ T cell engraftment and antitumor efficacy. Thus, we generated CD19-specific CARs with IgG4-Fc spacers that had either been mutated at two sites (L235E; N297Q) within the CH2 region (CD19R(EQ)) or incorporated a CH2 deletion (CD19Rch2Δ). These mutations reduced binding to soluble FcγRs without altering the ability of the CAR to mediate antigen-specific lysis. Importantly, CD19R(EQ) and CD19Rch2Δ T cells exhibited improved persistence and more potent CD19-specific antilymphoma efficacy in NSG mice. Together, these studies suggest that optimal CAR function may require the elimination of cellular FcγR interactions to improve T cell persistence and antitumor responses.
Collapse
Affiliation(s)
- Mahesh Jonnalagadda
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Armen Mardiros
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Lauren J Hoffman
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Alyssa Bernanke
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - William Bretzlaff
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Renate Starr
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Saul Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Julie R Ostberg
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
373
|
Zhou J, Chng WJ. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia. World J Stem Cells 2014; 6:473-484. [PMID: 25258669 PMCID: PMC4172676 DOI: 10.4252/wjsc.v6.i4.473] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/22/2014] [Accepted: 08/30/2014] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Jianbiao Zhou, Wee-Joo Chng, Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| | - Wee-Joo Chng
- Jianbiao Zhou, Wee-Joo Chng, Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| |
Collapse
|
374
|
Barnkob MS, Simon C, Olsen LR. Characterizing the human hematopoietic CDome. Front Genet 2014; 5:331. [PMID: 25309582 PMCID: PMC4174859 DOI: 10.3389/fgene.2014.00331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022] Open
Abstract
In this study, we performed extensive semi-automated data collection from the primary and secondary literature in an effort to characterize the expression of all membrane proteins within the CD scheme on hematopoietic cells. Utilizing over 6000 data points across 305 CD molecules on 206 cell types, we seek to give a preliminary characterization of the “human hematopoietic CDome.” We encountered severe gaps in the knowledge of CD protein expression, mostly resulting from incomplete and unstructured data generation, which we argue inhibit both basic research as well as therapies seeking to target membrane proteins. We detail these shortcomings and propose strategies to overcome these issues. Analyzing the available data, we explore the functional characteristics of the CD molecules both individually and across the groups of hematopoietic cells on which they are expressed. We compare protein and mRNA data for a subset of CD molecules, and explore cell functions in the context of CD protein expression. We find that the presence and function of CD molecules serve as good indicators for the overall function of the cells that express them, suggesting that increasing our knowledge about the cellular CDome may serve to stratify cells on a more functional level.
Collapse
Affiliation(s)
- Mike Stein Barnkob
- Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark Odense, Denmark
| | - Christian Simon
- Disease Systems Biology, Novo Nordisk Center for Protein Research, University of Copenhagen Copenhagen, Denmark ; Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark Lyngby, Denmark
| | - Lars Rønn Olsen
- Department of Biology, Bioinformatics Centre, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
375
|
Krakow EF, Bergeron J, Lachance S, Roy DC, Delisle JS. Harnessing the power of alloreactivity without triggering graft-versus-host disease: how non-engrafting alloreactive cellular therapy might change the landscape of acute myeloid leukemia treatment. Blood Rev 2014; 28:249-61. [PMID: 25228333 DOI: 10.1016/j.blre.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022]
Abstract
Human leukocyte antigen-mismatched leukocyte infusions outside of the context of transplantation are a promising strategy for acute myeloid leukemia. Recent studies using such non-engrafting alloreactive cellular therapy (NEACT) revealed that survival of elderly patients increased from 10% to 39% when NEACT was given following chemotherapy, and that durable complete remissions were achieved in about a third of patients with relapsed or chemorefractory disease. We review the clinical reports of different NEACT approaches to date and describe how although T-cell and NK alloreactivity could generate immediate anti-leukemic effects, long-term disease control may be achieved by stimulating recipient-derived T-cell responses against tumor-associated antigens. Other variables likely impacting NEACT such as the release of pro-inflammatory cytokines from donor-host bidirectional alloreactivity and the choice of chemotherapeutics as well as future avenues for improving NEACT, such as optimizing the cell dose and potential synergies with adjuvant pharmacologic immune checkpoint blockade, are discussed.
Collapse
Affiliation(s)
- Elizabeth F Krakow
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Julie Bergeron
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Silvy Lachance
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Denis-Claude Roy
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| |
Collapse
|
376
|
Frolova O, Benito J, Brooks C, Wang RY, Korchin B, Rowinsky EK, Cortes J, Kantarjian H, Andreeff M, Frankel AE, Konopleva M. SL-401 and SL-501, targeted therapeutics directed at the interleukin-3 receptor, inhibit the growth of leukaemic cells and stem cells in advanced phase chronic myeloid leukaemia. Br J Haematol 2014; 166:862-74. [PMID: 24942980 DOI: 10.1111/bjh.12978] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022]
Abstract
While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin-3 receptor (IL3R, CD123) is highly expressed on CD34(+) /CD38(-) BCR-ABL1(+) CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)-IL3 fusion proteins SL-401 (DT388 -IL3) and SL-501 (DT388 -IL3[K116W]) could eradicate these stem cells. SL-401 and SL-501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI-resistant KBM5-STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL-401 and SL-501 decreased the absolute numbers of viable CD34(+) /CD38(-) /CD123(+) CML progenitor cells by inducing apoptosis. IL3-targeting agents reduced clonogenic growth and diminished the fraction of primitive long-term culture-initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI-resistant CML blast crisis. These data suggest that the DT-IL3 fusion proteins, SL-401 and SL-501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk.
Collapse
Affiliation(s)
- Olga Frolova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Rambaldi A, Biagi E, Bonini C, Biondi A, Introna M. Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches. Leukemia 2014; 29:1-10. [PMID: 24919807 DOI: 10.1038/leu.2014.189] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 12/19/2022]
Abstract
When treatment fails, the clinical outcome of acute leukemia patients is usually very poor, particularly when failure occurs after transplantation. A second allogeneic stem cell transplant could be envisaged as an effective and feasible salvage option in younger patients having a late relapse and an available donor. Unmanipulated or minimally manipulated donor T cells may also be effective in a minority of patients but the main limit remains the induction of severe graft-versus-host disease. This clinical complication has brought about a huge research effort that led to the development of leukemia-specific T-cell therapy aiming at the direct recognition of leukemia-specific rather than minor histocompatibility antigens. Despite a great scientific interest, the clinical feasibility of such an approach has proven to be quite problematic. To overcome this limitation, more research has moved toward the choice of targeting commonly expressed hematopoietic specific antigens by the genetic modification of unselected T cells. The best example of this is represented by the anti-CD19 chimeric antigen receptor (CD19.CAR) T cells. As a possible alternative to the genetic manipulation of unselected T cells, specific T-cell subpopulations with in vivo favorable homing and long-term survival properties have been genetically modified by CAR molecules. Finally, the use of naturally cytotoxic effector cells such as natural killer and cytokine-induced killer cells has been proposed in several clinical trials. The clinical development of these latter cells could also be further expanded by additional genetic modifications using the CAR technology.
Collapse
Affiliation(s)
- A Rambaldi
- Hematology and Bone Marrow Transplant Unit and Center of Cell Therapy 'G. Lanzani', Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - E Biagi
- Department of Pediatrics, M Tettamanti Research Center, Laboratory of Cell therapy 'S. Verri' University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - C Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - A Biondi
- Department of Pediatrics, M Tettamanti Research Center, Laboratory of Cell therapy 'S. Verri' University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - M Introna
- Hematology and Bone Marrow Transplant Unit and Center of Cell Therapy 'G. Lanzani', Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
378
|
Tettamanti S, Biondi A, Biagi E, Bonnet D. CD123 AML targeting by chimeric antigen receptors: A novel magic bullet for AML therapeutics? Oncoimmunology 2014; 3:e28835. [PMID: 25083319 PMCID: PMC4106165 DOI: 10.4161/onci.28835] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/09/2014] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) modified T cells have emerged as powerful tools for controlling leukemias. We recently showed that anti-CD123 CAR-expressing cytokine-induced killer T cell treatment is an effective immunotherapeutic approach to eradicate Acute Myeloid Leukemia (AML) cells. Here, we discuss how this genetically modified cell-based strategy could be relevant to the field of AML therapeutics.
Collapse
Affiliation(s)
- Sarah Tettamanti
- Centro di Ricerca "Matilde Tettamanti"; Department of Pediatrics; San Gerardo Hospital; University of Milano-Bicocca; Monza, Italy
| | - Andrea Biondi
- Centro di Ricerca "Matilde Tettamanti"; Department of Pediatrics; San Gerardo Hospital; University of Milano-Bicocca; Monza, Italy
| | - Ettore Biagi
- Centro di Ricerca "Matilde Tettamanti"; Department of Pediatrics; San Gerardo Hospital; University of Milano-Bicocca; Monza, Italy
| | - Dominique Bonnet
- Cancer Research UK; London Research Institute; Haematopoietic Stem Cell Laboratory; London, UK
| |
Collapse
|