351
|
Doyle LJ, Betz BL, Weigelin HC, Procop GW, Cook JR. Comparison of real‐time PCR vs PCR with fragment length analysis for the detection of
CALR
mutations in suspected myeloproliferative neoplasms. Int J Lab Hematol 2019; 41:e139-e141. [DOI: 10.1111/ijlh.13040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Laura J. Doyle
- Pathology and Laboratory Medicine Institute Cleveland Clinic Cleveland Ohio
| | - Bryan L. Betz
- University of Michigan School of Medicine Ann Arbor Michigan
| | | | - Gary W. Procop
- Pathology and Laboratory Medicine Institute Cleveland Clinic Cleveland Ohio
| | - James R. Cook
- Pathology and Laboratory Medicine Institute Cleveland Clinic Cleveland Ohio
| |
Collapse
|
352
|
Palumbo GA, Stella S, Pennisi MS, Pirosa C, Fermo E, Fabris S, Cattaneo D, Iurlo A. The Role of New Technologies in Myeloproliferative Neoplasms. Front Oncol 2019; 9:321. [PMID: 31106152 PMCID: PMC6498877 DOI: 10.3389/fonc.2019.00321] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
The hallmark of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) is the presence of a driver mutation in JAK2, CALR, or MPL gene. These genetic alterations represent a key feature, useful for diagnostic, prognostic and therapeutical approaches. Molecular biology tests are now widely available with different specificity and sensitivity. Recently, the allele burden quantification of driver mutations has become a useful tool, both for prognostication and efficacy evaluation of therapies. Moreover, other sub-clonal mutations have been reported in MPN patients, which are associated with poorer prognosis. ASXL1 mutation appears to be the worst amongst them. Both driver and sub-clonal mutations are now taken into consideration in new prognostic scoring systems and may be better investigated using next generation sequence (NGS) technology. In this review we summarize the value of NGS and its contribution in providing a comprehensive picture of mutational landscape to guide treatment decisions. Finally, discussing the role that NGS has in defining the potential risk of disease development, we forecast NGS as the standard molecular biology technique for evaluating these patients.
Collapse
Affiliation(s)
- Giuseppe A Palumbo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Stefania Stella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Stella Pennisi
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Cristina Pirosa
- Postgraduate School of Hematology, University of Catania, Catania, Italy
| | - Elisa Fermo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Fabris
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Myeloproliferative Syndromes Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
353
|
Plo I. "Mixed" Myeloproliferative Neoplasm Due to Co-Occurrence of Different Driver Mutations. Acta Haematol 2019; 141:268-270. [PMID: 30999313 DOI: 10.1159/000498979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Isabelle Plo
- INSERM, UMR1170, Laboratory of Excellence GR-Ex, Villejuif, France,
- Université Paris XI, UMR1009, Gustave Roussy, Villejuif, France,
- Gustave Roussy, Villejuif, France,
| |
Collapse
|
354
|
Tirrò E, Stella S, Massimino M, Zammit V, Pennisi MS, Vitale SR, Romano C, Di Gregorio S, Puma A, Di Raimondo F, Stagno F, Manzella L. Colony-Forming Cell Assay Detecting the Co-Expression of JAK2V617F and BCR-ABL1 in the Same Clone: A Case Report. Acta Haematol 2019; 141:261-267. [PMID: 30965317 DOI: 10.1159/000496821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
BCR-ABL1-negative myeloproliferative disorders and chronic myeloid leukaemia are haematologic malignancies characterised by single and mutually exclusive genetic alterations. Nevertheless, several patients co-expressing the JAK2V617F mutation and the BCR-ABL1 transcript have been described in the literature. We report the case of a 61-year-old male who presented with an essential thrombocythaemia phenotype and had a subsequent diagnosis of chronic phase chronic myeloid leukaemia. Colony-forming assays demonstrated the coexistence of 2 different haematopoietic clones: one was positive for the JAK2V617F mutation and the other co-expressed both JAK2V617F and the BCR-ABL1 fusion gene. No colonies displayed the BCR-ABL1 transcript alone. These findings indicate that the JAK2V617F mutation was the founding genetic alteration of the disease, followed by the acquisition of the BCR-ABL1 chimeric oncogene. Our data support the hypothesis that a heterozygous JAK2V617F clone may have favoured the bi-clonal nature of this myeloproliferative disorder, generating clones harbouring a second transforming genetic event.
Collapse
MESH Headings
- Amino Acid Substitution
- Colony-Forming Units Assay
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Leukemic
- Humans
- Janus Kinase 2/biosynthesis
- Janus Kinase 2/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Mutation, Missense
- Thrombocythemia, Essential/enzymology
- Thrombocythemia, Essential/genetics
- Thrombocythemia, Essential/pathology
Collapse
Affiliation(s)
- Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy,
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy,
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Valentina Zammit
- Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Francesco Di Raimondo
- Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Fabio Stagno
- Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy
| |
Collapse
|
355
|
Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, Flodr P, Hubackova S, Bartek J, Hodny Z, Divoky V. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene 2019; 38:5627-5642. [PMID: 30967632 PMCID: PMC6756199 DOI: 10.1038/s41388-019-0813-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory and oncogenic signaling converge in disease evolution of BCR–ABL-negative myeloproliferative neoplasms, clonal hematopoietic stem cell disorders characterized by gain-of-function mutation in JAK2 kinase (JAK2V617F), with highest prevalence in patients with polycythemia vera (PV). Despite the high risk, DNA-damaging inflammatory microenvironment, PV progenitors tend to preserve their genomic stability over decades until their progression to post-PV myelofibrosis/acute myeloid leukemia. Using induced pluripotent stem cells-derived CD34+ progenitor-enriched cultures from JAK2V617F+ PV patient and from JAK2 wild-type healthy control, CRISPR-modified HEL cells and patients’ bone marrow sections from different disease stages, we demonstrate that JAK2V617F induces an intrinsic IFNγ- and NF-κB-associated inflammatory program, while suppressing inflammation-evoked DNA damage both in vitro and in vivo. We show that cells with JAK2V617F tightly regulate levels of inflammatory cytokines-induced reactive oxygen species, do not fully activate the ATM/p53/p21waf1 checkpoint and p38/JNK MAPK stress pathway signaling when exposed to inflammatory cytokines, suppress DNA single-strand break repair genes’ expression yet overexpress the dual-specificity phosphatase (DUSP) 1. RNAi-mediated knock-down and pharmacological inhibition of DUSP1, involved in p38/JNK deactivation, in HEL cells reveals growth addiction to DUSP1, consistent with enhanced DNA damage response and apoptosis in DUSP1-inhibited parental JAK2V617F+ cells, but not in CRISPR-modified JAK2 wild-type cells. Our results indicate that the JAK2V617F+ PV progenitors utilize DUSP1 activity as a protection mechanism against DNA damage accumulation, promoting their proliferation and survival in the inflammatory microenvironment, identifying DUSP1 as a potential therapeutic target in PV.
Collapse
Affiliation(s)
- J Stetka
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Vyhlidalova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - L Lanikova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - P Koralkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - J Gursky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - A Hlusi
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Flodr
- Department of Clinical and Molecular Pathology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - S Hubackova
- Laboratory of Molecular Therapy, Institute of Biotechnology, BIOCEV, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - J Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark. .,Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic. .,Division of Genome Biology, Department of Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Z Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.
| | - V Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
356
|
Fukuda Y, Araki M, Yamamoto K, Morishita S, Inano T, Misawa K, Ochiai T, Edahiro Y, Imai M, Yasuda H, Gotoh A, Ohsaka A, Komatsu N. Evidence for prevention of renal dysfunction associated with primary myelofibrosis by cytoreductive therapy. Haematologica 2019; 104:e506-e509. [PMID: 30948490 DOI: 10.3324/haematol.2018.208876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yasutaka Fukuda
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo
| | - Kouji Yamamoto
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka.,Department of Biostatistics, Yokohama City University School of Medicine, Kanagawa
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo
| | - Tadaaki Inano
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| | - Kyohei Misawa
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| | - Tomonori Ochiai
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| | - Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| | - Misa Imai
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Yasuda
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| | - Akihiko Gotoh
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| |
Collapse
|
357
|
Wang Y, Zuo X. Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine X 2019; 1:100005. [PMID: 33604548 PMCID: PMC7885877 DOI: 10.1016/j.cytox.2019.100005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
MPN is a chronic inflammation-driven tumor model. Many cytokines are involved in pathogenesis and progression of MPN. IL-1β, TNF-α, IL-6, IL-8, VEGF, PDGF, TGF-β and IFNs are critical in MPN. Cytokine directed therapy could be an alternative treatment for MPN in future.
Classical myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). MPN has been defined as a chronic inflammation-driven tumor model. It is clear that there is a close link between chronic inflammation and MPN pathogenesis. Several studies have demonstrated cytokine profiles in MPN patients. Other studies have used cell lines or animal models aiming to clarify the underlying mechanism of cytokines in the pathogenesis of MPN. However, important questions remain: (1) among all these cytokines, which are more predictive? and (2) which are more critical? In this review, we summarize cytokines that have been investigated in MPN and highlight several cytokines that may be more significant in MPN. We suggest that cytokines are more critical in PMF than PV or ET. These cytokines include IL-1β, TNF-α, IL-6, IL-8, VEGF, PDGF, IFNs and TGF-β, all of which should be more closely investigated in MPN. Based on our extensive literature search, several key factors have emerged in our understanding of MPN: first, TNF-α could correlate with MPN progression including PMF, PV and ET. IL-1β plays a role in PMF progression, while it showed no relation with PV or ET. Second, IL-8 could be a prognostic factor for PMF, and IL-6 could be important for MPN progression. Third, VEGF and PDGF play an indirect role in MPN development and their inhibitors could be effective. Fourth, different subtypes of IFNs could have different effects in MPN. Finally, TGF-β is closely linked to MF, although the data are inconsistent. Agents that have targeted these cytokines described above are already in clinical trials, and some of them have even been used to treat MPN patients. Taken together, it will be critical to continue to investigate the precise role of these cytokines in the pathogenesis and progression of MPN.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, PR China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, PR China
| |
Collapse
|
358
|
Nurden AT. Acquired Glanzmann thrombasthenia: From antibodies to anti-platelet drugs. Blood Rev 2019; 36:10-22. [PMID: 31010659 DOI: 10.1016/j.blre.2019.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
In contrast to the inherited platelet disorder given by mutations in the ITGA2B and ITGB3 genes, mucocutaneous bleeding from a spontaneous inhibition of normally expressed αIIbβ3 characterizes acquired Glanzmann thrombasthenia (GT). Classically, it is associated with autoantibodies or paraproteins that block platelet aggregation without causing a fall in platelet count. However, inhibitory antibodies to αIIbβ3 are widely associated with primary immune thrombocytopenia (ITP), occur in secondary ITP associated with leukemia and related disorders, solid cancers and myeloma, other autoimmune diseases, following organ transplantation while cytoplasmic dysregulation of αIIbβ3 function features in myeloproliferative and myelodysplastic syndromes. Antibodies to αIIbβ3 occur during viral and bacterial infections, while drug-dependent antibodies reacting with αIIbβ3 are a special case. Direct induction of acquired GT is a feature of therapies that block platelets in coronary artery disease. This review looks at these conditions, emphasizing molecular mechanisms, therapy, patient management and future directions for research.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| |
Collapse
|
359
|
Sashida G, Oshima M, Iwama A. Deregulated Polycomb functions in myeloproliferative neoplasms. Int J Hematol 2019; 110:170-178. [PMID: 30706327 DOI: 10.1007/s12185-019-02600-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
Polycomb proteins function in the maintenance of gene silencing via post-translational modifications of histones and chromatin compaction. Genetic and biochemical studies have revealed that the repressive function of Polycomb repressive complexes (PRCs) in transcription is counteracted by the activating function of Trithorax-group complexes; this balance fine-tunes the expression of genes critical for development and tissue homeostasis. The function of PRCs is frequently dysregulated in various cancer cells due to altered expression or recurrent somatic mutations in PRC genes. The tumor suppressive functions of EZH2-containing PRC2 and a PRC2-related protein ASXL1 have been investigated extensively in the pathogenesis of hematological malignancies, including myeloproliferative neoplasms (MPN). BCOR, a component of non-canonical PRC1, suppresses various hematological malignancies including MPN. In this review, we focus on recent findings on the role of PRCs in the pathogenesis of MPN and the therapeutic impact of targeting the pathological functions of PRCs in MPN.
Collapse
Affiliation(s)
- Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
360
|
Genetic predisposition to MDS: clinical features and clonal evolution. Blood 2019; 133:1071-1085. [PMID: 30670445 DOI: 10.1182/blood-2018-10-844662] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndrome (MDS) typically presents in older adults with the acquisition of age-related somatic mutations, whereas MDS presenting in children and younger adults is more frequently associated with germline genetic predisposition. Germline predisposition is increasingly recognized in MDS presenting at older ages as well. Although each individual genetic disorder is rare, as a group, the genetic MDS disorders account for a significant subset of MDS in children and young adults. Because many patients lack overt syndromic features, genetic testing plays an important role in the diagnostic evaluation. This review provides an overview of syndromes associated with genetic predisposition to MDS, discusses implications for clinical evaluation and management, and explores scientific insights gleaned from the study of MDS predisposition syndromes. The effects of germline genetic context on the selective pressures driving somatic clonal evolution are explored. Elucidation of the molecular and genetic pathways driving clonal evolution may inform surveillance and risk stratification, and may lead to the development of novel therapeutic strategies.
Collapse
|
361
|
Martínez-Calle N, Pascual M, Ordoñez R, Enériz ESJ, Kulis M, Miranda E, Guruceaga E, Segura V, Larráyoz MJ, Bellosillo B, Calasanz MJ, Besses C, Rifón J, Martín-Subero JI, Agirre X, Prosper F. Epigenomic profiling of myelofibrosis reveals widespread DNA methylation changes in enhancer elements and ZFP36L1 as a potential tumor suppressor gene that is epigenetically regulated. Haematologica 2019; 104:1572-1579. [PMID: 30655376 PMCID: PMC6669145 DOI: 10.3324/haematol.2018.204917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
In this study we interrogated the DNA methylome of myelofibrosis patients using high-density DNA methylation arrays. We detected 35,215 differentially methylated CpG, corresponding to 10,253 genes, between myelofibrosis patients and healthy controls. These changes were present both in primary and secondary myelofibrosis, which showed no differences between them. Remarkably, most differentially methylated CpG were located outside gene promoter regions and showed significant association with enhancer regions. This aberrant enhancer hypermethylation was negatively correlated with the expression of 27 genes in the myelofibrosis cohort. Of these, we focused on the ZFP36L1 gene and validated its decreased expression and enhancer DNA hypermethylation in an independent cohort of patients and myeloid cell-lines. In vitro reporter assay and 5’-azacitidine treatment confirmed the functional relevance of hyper-methylation of ZFP36L1 enhancer. Furthermore, in vitro rescue of ZFP36L1 expression had an impact on cell proliferation and induced apoptosis in SET-2 cell line indicating a possible role of ZFP36L1 as a tumor suppressor gene in myelofibrosis. Collectively, we describe the DNA methylation profile of myelofibrosis, identifying extensive changes in enhancer elements and revealing ZFP36L1 as a novel candidate tumor suppressor gene.
Collapse
Affiliation(s)
- Nicolás Martínez-Calle
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Marien Pascual
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Raquel Ordoñez
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Edurne San José Enériz
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Marta Kulis
- Fundació Clínic per a la Recerca Biomèdica, Barcelona
| | - Estíbaliz Miranda
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Elisabeth Guruceaga
- Unidad de Bioinformática, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona
| | - Víctor Segura
- Unidad de Bioinformática, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona
| | | | | | - María José Calasanz
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid.,CIMA Laboratory of Diagnostics, Universidad de Navarra, Pamplona
| | - Carles Besses
- Departmento de Hematología, Hospital del Mar, Barcelona
| | - José Rifón
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid.,Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona
| | - José I Martín-Subero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona.,Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid.,Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona
| |
Collapse
|
362
|
Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML. Leukemia 2018; 33:1373-1386. [PMID: 30575820 DOI: 10.1038/s41375-018-0334-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023]
Abstract
Transformation of post-myeloproliferative neoplasms into secondary (s) AML exhibit poor clinical outcome. In addition to increased JAK-STAT and PI3K-AKT signaling, post-MPN sAML blast progenitor cells (BPCs) demonstrate increased nuclear β-catenin levels and TCF7L2 (TCF4) transcriptional activity. Knockdown of β-catenin or treatment with BC2059 that disrupts binding of β-catenin to TBL1X (TBL1) depleted nuclear β-catenin levels. This induced apoptosis of not only JAKi-sensitive but also JAKi-persister/resistant post-MPN sAML BPCs, associated with attenuation of TCF4 transcriptional targets MYC, BCL-2, and Survivin. Co-targeting of β-catenin and JAK1/2 inhibitor ruxolitinib (rux) synergistically induced lethality in post-MPN sAML BPCs and improved survival of mice engrafted with human sAML BPCs. Notably, co-treatment with BET protein degrader ARV-771 and BC2059 also synergistically induced apoptosis and improved survival of mice engrafted with JAKi-sensitive or JAKi-persister/resistant post-MPN sAML cells. These preclinical findings highlight potentially promising anti-post-MPN sAML activity of the combination of β-catenin and BETP antagonists against post-MPN sAML BPCs.
Collapse
|
363
|
Mambet C, Babosova O, Defour JP, Leroy E, Necula L, Stanca O, Tatic A, Berbec N, Coriu D, Belickova M, Kralova B, Lanikova L, Vesela J, Pecquet C, Saussoy P, Havelange V, Diaconu CC, Divoky V, Constantinescu SN. Cooccurring JAK2 V617F and R1063H mutations increase JAK2 signaling and neutrophilia in myeloproliferative neoplasms. Blood 2018; 132:2695-2699. [PMID: 30377194 DOI: 10.1182/blood-2018-04-843060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Cristina Mambet
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Molecular Profiling of Myeloproliferative Neoplasms and Acute Leukemia (MyeloAL) Program, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Olga Babosova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jean-Philippe Defour
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Department of Clinical Biology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Emilie Leroy
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laura Necula
- Molecular Profiling of Myeloproliferative Neoplasms and Acute Leukemia (MyeloAL) Program, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Oana Stanca
- Department of Hematology, Coltea Clinical Hospital, Bucharest, Romania
- Department of Radiology, Oncology, and Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Aurelia Tatic
- Department of Radiology, Oncology, and Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Nicoleta Berbec
- Department of Hematology, Coltea Clinical Hospital, Bucharest, Romania
- Department of Radiology, Oncology, and Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniel Coriu
- Department of Radiology, Oncology, and Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Barbora Kralova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; and
| | - Lucie Lanikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pascale Saussoy
- Department of Clinical Biology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Violaine Havelange
- Service of Hematology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Carmen C Diaconu
- Molecular Profiling of Myeloproliferative Neoplasms and Acute Leukemia (MyeloAL) Program, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; and
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Molecular Profiling of Myeloproliferative Neoplasms and Acute Leukemia (MyeloAL) Program, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| |
Collapse
|
364
|
Abstract
PURPOSE OF REVIEW Cytopenias, particularly anemia, are frequently encountered in patients with myelofibrosis. Management of cytopenias in myelofibrosis can be very challenging because current therapeutic interventions are only of modest efficacy and ruxolitinib, the only approved drug for myelofibrosis, is myelosuppressive. Yet, dose optimization of ruxolitinib is important for its survival benefit in patients with advanced disease. We sought to summarize the data on treatments for cytopenias available at present and review promising agents in development and emerging strategies. RECENT FINDINGS The activin receptor ligand traps hold considerable promise for the treatment of anemia and could represent an attractive combination strategy with ruxolitinib. Low-dose thalidomide, which could offset both anemia and thrombocytopenia caused by ruxolitinib, represents another potential partner for ruxolitinib. The anti-fibrotic agent PRM-151 produced sustained improvements in cytopenias in some patients, and further data on this drug are eagerly awaited. Finally, several preclinical leads with translational potential are worthy of clinical investigation as strategies to halt/reverse bone marrow fibrosis and thereby improve cytopenias. Cytopenias remain a significant hurdle in myelofibrosis management, but several novel investigational agents hold considerable promise for the future.
Collapse
|
365
|
Greenfield G, McPherson S, Mills K, McMullin MF. The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms. J Transl Med 2018; 16:360. [PMID: 30558676 PMCID: PMC6296062 DOI: 10.1186/s12967-018-1729-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
The myeloproliferative neoplasms (MPN), polycythaemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are linked by a propensity to thrombosis formation and a risk of leukaemic transformation. Activation of cytokine independent signalling through the JAK/STAT cascade is a feature of these disorders. A point mutation in exon 14 of the JAK2 gene resulting in the formation of the JAK2 V617F transcript occurs in 95% of PV patients and around 50% of ET and PMF patients driving constitutive activation of the JAK/STAT pathway. Mutations in CALR or MPL are present as driving mutations in the majority of remaining ET and PMF patients. Ruxolitinib is a tyrosine kinase inhibitor which inhibits JAK1 and JAK2. It is approved for use in intermediate and high risk PMF, and in PV patients who are resistant or intolerant to hydroxycarbamide. In randomised controlled trials it has demonstrated efficacy in spleen volume reduction and symptom burden reduction with a moderate improvement in overall survival in PMF. In PV, there is demonstrated benefit in haematocrit control and spleen volume. Despite these benefits, there is limited impact to induce complete haematological remission with normalisation of blood counts, reduce the mutant allele burden or reverse bone marrow fibrosis. Clonal evolution has been observed on ruxolitinib therapy and transformation to acute leukaemia can still occur. This review will concentrate on understanding the clinical and molecular effects of ruxolitinib in MPN. We will focus on understanding the limitations of JAK inhibition and the challenges to improving therapeutic efficacy in these disorders. We will explore the demonstrated benefits and disadvantages of ruxolitinib in the clinic, the role of genomic and clonal variability in pathogenesis and response to JAK inhibition, epigenetic changes which impact on response to therapy, the role of DNA damage and the role of inflammation in these disorders. Finally, we will summarise the future prospects for improving therapy in MPN in the JAK inhibition era.
Collapse
Affiliation(s)
- Graeme Greenfield
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | - Suzanne McPherson
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | - Ken Mills
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | | |
Collapse
|
366
|
Cortés AA, Diaz RA, Hernández-Campo P, Gorrochategui J, Primo D, Robles A, Morales ML, Ballesteros J, Rapado I, Gallardo M, Linares M, Martínez-López J. Ruxolitinib in combination with prednisone and nilotinib exhibit synergistic effects in human cells lines and primary cells from myeloproliferative neoplasms. Haematologica 2018; 104:937-946. [PMID: 30545926 PMCID: PMC6518898 DOI: 10.3324/haematol.2018.201038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Ruxolitinib is the front-line non-palliative treatment for myelofibrosis (MF). However, a significant number of patients lose or present suboptimal response, are resistant or have unacceptable toxicity. In an attempt to improve response and avoid the adverse effects of this drug, we evaluated the combination of 17 drugs with ruxolitinib in ex vivo models of peripheral blood mononuclear cells from MF patients and cell lines. We found that the combination ruxolitinib and nilotinib had a synergistic effect against MF cells (ΔEC50 nilotinib, -21.6%). Moreover, the addition of prednisone to combined ruxolitinib/nilotinib improved the synergistic effect in all MF samples studied. We evaluated the molecular mechanisms of combined ruxolitinib/nilotinib/prednisone and observed inhibition of JAK/STAT (STAT5, 69.2+11.8% inhibition) and MAPK (ERK, 29.4+4.5% inhibition) signaling pathways. Furthermore, we found that the triple therapy combination inhibited collagen protein and COL1A1 gene expression in human bone marrow mesenchymal cells. Taken together, we provide evidence that combined ruxolitinib/nilotinib/prednisone is a potential therapy for MF, possibly through the anti-fibrotic effect of nilotinib, the immunomodulatory effect of ruxolitinib and prednisone, and the anti-proliferative effect of ruxolitinib. This combination will be further investigated in a phase Ib/II clinical trial in MF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - María Luz Morales
- Hematology Service, Hospital Universitario 12 de Octubre.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO)
| | | | | | - Miguel Gallardo
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO)
| | - María Linares
- Hematology Service, Hospital Universitario 12 de Octubre.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO).,Universidad Complutense de Madrid, Madrid, Spain
| | - Joaquín Martínez-López
- Hematology Service, Hospital Universitario 12 de Octubre.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO).,Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
367
|
Gill H, Ip HW, Yim R, Tang WF, Pang HH, Lee P, Leung GMK, Li J, Tang K, So JCC, Leung RYY, Li J, Panagioutou G, Lam CCK, Kwong YL. Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis. Ann Hematol 2018; 98:869-879. [PMID: 30515541 DOI: 10.1007/s00277-018-3563-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Current prognostication in myelofibrosis (MF) is based on clinicopathological features and mutations in a limited number of driver genes. The impact of other genetic mutations remains unclear. We evaluated for mutations in a myeloid panel of 54 genes using next-generation sequencing. Multivariate Cox regression analysis was used to determine prognostic factors for overall survival (OS) and leukaemia-free survival (LFS), based on mutations of these genes and relevant clinical and haematological features. One hundred and one patients (primary MF, N = 70; secondary MF, N = 31) with a median follow-up of 49 (1-256) months were studied. For the entire cohort, inferior OS was associated with male gender (P = 0.04), age > 65 years (P = 0.04), haemoglobin < 10 g/dL (P = 0.001), CUX1 mutation (P = 0.003) and TP53 mutation (P = 0.049); and inferior LFS was associated with male gender (P = 0.03), haemoglobin < 10 g/dL (P = 0.04) and SRSF2 mutations (P = 0.008). In primary MF, inferior OS was associated with male gender (P = 0.03), haemoglobin < 10 g/dL (P = 0.002), platelet count < 100 × 109/L (P = 0.02), TET2 mutation (P = 0.01) and CUX1 mutation (P = 0.01); and inferior LFS was associated with haemoglobin < 10 g/dL (P = 0.02), platelet count < 100 × 109/L (P = 0.02), TET2 mutations (P = 0.01) and CUX1 mutations (P = 0.04). These results showed that clinical and haematological features and genetic mutations should be considered in MF prognostication.
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ho-Wan Ip
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Rita Yim
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Fai Tang
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Herbert H Pang
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Paul Lee
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Garret M K Leung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jamilla Li
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen Tang
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jason C C So
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Rock Y Y Leung
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Jun Li
- The Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Gianni Panagioutou
- Systems Biology Group, School of Biological Sciences, The University of Hong Kong, Hong Kong, China.,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Yok-Lam Kwong
- Department of Medicine, The University of Hong Kong, Hong Kong, China. .,Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
368
|
Characterization of a human induced Pluripotent Stem (iPS) cell line (INCABRi002-A) derived from a primary myelofibrosis patient harboring the 5-bp insertion in CALR and the p.W146X mutation in TP53. Stem Cell Res 2018; 33:130-134. [DOI: 10.1016/j.scr.2018.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 01/14/2023] Open
|
369
|
JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation. Leukemia 2018; 33:995-1010. [PMID: 30470838 DOI: 10.1038/s41375-018-0295-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
Pegylated interferon-α (peg-IFNa) treatment induces molecular responses (MR) in patients with myeloproliferative neoplasms (MPNs), including partial MR (PMR) in 30-40% of patients. Here, we compared the efficacy of IFNa treatment in JAK2V617F- vs. calreticulin (CALR)-mutated cells and investigated the mechanisms of differential response. Retrospective analysis of MPN patients treated with peg-IFNa demonstrated that patients harboring the JAK2V617F mutation were more likely to achieve PMR than those with mutated CALR (p = 0.004), while there was no significant difference in hematological response. In vitro experiments confirmed an upregulation of IFN-stimulated genes in JAK2V617F-positive 32D cells as well as patient samples (peripheral blood mononuclear cells and CD34+ hematopoietic stem cells) compared to their CALR-mutated counterparts, and higher IFNa doses were needed to achieve the same IFNa response in CALR- as in JAK2V617F-mutant 32D cells. Additionally, Janus-activated kinase-1 (JAK1) and signal transducers and activators of transcription 1 (STAT1) showed constitutive phosphorylation in JAK2V617F-mutated but not CALR-mutated cells, indicating priming towards an IFNa response. Moreover, IFN-induced growth arrest was counteracted by selective JAK1 inhibition but enhanced by JAK2 inhibition. In conclusion, our data suggest that, clinically, higher doses of IFNa are needed in CALR-mutated vs. JAK2V617F-positive patients and we suggest a model of JAK2V617F-JAK1/STAT1 crosstalk leading to a priming of JAK2V617F-positive cells to IFNa resulting in differential sensitivity.
Collapse
|
370
|
Pacilli A, Rotunno G, Mannarelli C, Fanelli T, Pancrazzi A, Contini E, Mannelli F, Gesullo F, Bartalucci N, Fattori GC, Paoli C, Vannucchi AM, Guglielmelli P. Mutation landscape in patients with myelofibrosis receiving ruxolitinib or hydroxyurea. Blood Cancer J 2018; 8:122. [PMID: 30467377 PMCID: PMC6250726 DOI: 10.1038/s41408-018-0152-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Refractoriness to ruxolitinib in patients with myelofibrosis (MF) was associated with clonal evolution; however, whether genetic instability is promoted by ruxolitinib remains unsettled. We evaluated the mutation landscape in 71 MF patients receiving ruxolitinib (n = 46) and hydroxyurea (n = 25) and correlated with response. A spleen volume response (SVR) was obtained in 57% and 12%, respectively. Highly heterogenous patterns of mutation acquisition/loss and/or changes of variant allele frequency (VAF) were observed in the 2 patient groups without remarkable differences. In patients receiving ruxolitinib, driver mutation type and high-molecular risk profile (HMR) at baseline did not impact on response rate, while HMR and sole ASXL1 mutations predicted for SVR loss at 3 years. In patients with SVR, a decrease of ≥ 20% of JAK2V617F VAF predicted for SVR duration. VAF increase of non-driver mutations and clonal progression at follow-up correlated with SVR loss and treatment discontinuation, and clonal progression also predicted for shorter survival. These data indicate that (i) ruxolitinib does not appreciably promote clonal evolution compared with hydroxyurea, (ii) VAF increase of pre-existing and/or (ii) acquisition of new mutations while on treatment correlated with higher rate of discontinuation and/or death, and (iv) reduction of JAK2V617F VAF associated with SVR duration.
Collapse
Affiliation(s)
- Annalisa Pacilli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Giada Rotunno
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Carmela Mannarelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | | | - Alessandro Pancrazzi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Elisa Contini
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Francesco Mannelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Francesca Gesullo
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Niccolò Bartalucci
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | | | - Chiara Paoli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Alessandro M Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy.
| | - Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| |
Collapse
|
371
|
Rossi C, Zini R, Rontauroli S, Ruberti S, Prudente Z, Barbieri G, Bianchi E, Salati S, Genovese E, Bartalucci N, Guglielmelli P, Tagliafico E, Rosti V, Barosi G, Vannucchi AM, Manfredini R. Role of TGF-β1/miR-382-5p/SOD2 axis in the induction of oxidative stress in CD34+ cells from primary myelofibrosis. Mol Oncol 2018; 12:2102-2123. [PMID: 30259659 PMCID: PMC6275274 DOI: 10.1002/1878-0261.12387] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by an excessive production of pro-inflammatory cytokines resulting in chronic inflammation and genomic instability. Besides the driver mutations in JAK2, MPL, and CALR genes, the deregulation of miRNA expression may also contribute to the pathogenesis of PMF. To this end, we recently reported the upregulation of miR-382-5p in PMF CD34+ cells. In order to unveil the mechanistic details of the role of miR-382-5p in pathogenesis of PMF, we performed gene expression profiling of CD34+ cells overexpressing miR-382-5p. Among the downregulated genes, we identified superoxide dismutase 2 (SOD2), which is a predicted target of miR-382-5p. Subsequently, we confirmed miR-382-5p/SOD2 interaction by luciferase assay and we showed that miR-382-5p overexpression in CD34+ cells causes the decrease in SOD2 activity leading to reactive oxygen species (ROS) accumulation and oxidative DNA damage. In addition, our data indicate that inhibition of miR-382-5p in PMF CD34+ cells restores SOD2 function, induces ROS disposal, and reduces DNA oxidation. Since the pro-inflammatory cytokine transforming growth factor-β1 (TGF-β1) is a key player in PMF pathogenesis, we further investigated the effect of TGF-β1 on ROS and miR-382-5p levels. Our data showed that TGF-β1 treatment enhances miR-382-5p expression and reduces SOD2 activity leading to ROS accumulation. Finally, inhibition of TGF-β1 signaling in PMF CD34+ cells by galunisertib significantly reduced miR-382-5p expression and ROS accumulation and restored SOD2 activity. As a whole, this study reports that TGF-β1/miR-382-5p/SOD2 axis deregulation in PMF cells is linked to ROS overproduction that may contribute to enhanced oxidative stress and inflammation. Our results suggest that galunisertib may represent an effective drug reducing abnormal oxidative stress induced by TGF-β1 in PMF patients. DATABASE LINKING: GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103464.
Collapse
Affiliation(s)
- Chiara Rossi
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Roberta Zini
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Sebastiano Rontauroli
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Samantha Ruberti
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Zelia Prudente
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Greta Barbieri
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Elisa Bianchi
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Simona Salati
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Elena Genovese
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Italy
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Italy
| | - Rossella Manfredini
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | | |
Collapse
|
372
|
Bacher U, Shumilov E, Flach J, Porret N, Joncourt R, Wiedemann G, Fiedler M, Novak U, Amstutz U, Pabst T. Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J 2018; 8:113. [PMID: 30420667 PMCID: PMC6232163 DOI: 10.1038/s41408-018-0148-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Given the vast phenotypic and genetic heterogeneity of acute and chronic myeloid malignancies, hematologists have eagerly awaited the introduction of next-generation sequencing (NGS) into the routine diagnostic armamentarium to enable a more differentiated disease classification, risk stratification, and improved therapeutic decisions. At present, an increasing number of hematologic laboratories are in the process of integrating NGS procedures into the diagnostic algorithms of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs). Inevitably accompanying such developments, physicians and molecular biologists are facing unexpected challenges regarding the interpretation and implementation of molecular genetic results derived from NGS in myeloid malignancies. This article summarizes typical challenges that may arise in the context of NGS-based analyses at diagnosis and during follow-up of myeloid malignancies.
Collapse
Affiliation(s)
- Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Evgenii Shumilov
- Department of Hematology and Medical Oncology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Naomi Porret
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raphael Joncourt
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gertrud Wiedemann
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Fiedler
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ursula Amstutz
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
373
|
Megakaryocyte Contribution to Bone Marrow Fibrosis: many Arrows in the Quiver. Mediterr J Hematol Infect Dis 2018; 10:e2018068. [PMID: 30416700 PMCID: PMC6223581 DOI: 10.4084/mjhid.2018.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
In Primary Myelofibrosis (PMF), megakaryocyte dysplasia/hyperplasia determines the release of inflammatory cytokines that, in turn, stimulate stromal cells and induce bone marrow fibrosis. The pathogenic mechanism and the cells responsible for progression to bone marrow fibrosis in PMF are not completely understood. This review article aims to provide an overview of the crucial role of megakaryocytes in myelofibrosis by discussing the role and the altered secretion of megakaryocyte-derived soluble factors, enzymes and extracellular matrices that are known to induce bone marrow fibrosis.
Collapse
|
374
|
Zimran E, Keyzner A, Iancu-Rubin C, Hoffman R, Kremyanskaya M. Novel treatments to tackle myelofibrosis. Expert Rev Hematol 2018; 11:889-902. [PMID: 30324817 DOI: 10.1080/17474086.2018.1536538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite the dramatic progress made in the treatment of patients with myelofibrosis since the introduction of the JAK1/2 inhibitor ruxolitinib, a therapeutic option that can modify the natural history of the disease and prevent evolution to blast-phase is still lacking. Recent investigational treatments including immunomodulatory drugs and histone deacetylase inhibitors benefit some patients but these effects have proven modest at best. Several novel agents do show promising activity in preclinical studies and early-phase clinical trials. We will illustrate a snapshot view of where the management of myelofibrosis is evolving, in an era of personalized medicine and advanced molecular diagnostics. Areas covered: A literature search using MEDLINE and recent meeting abstracts was performed using the keywords below. It focused on therapies in active phases of development based on their scientific and preclinical rationale with the intent to highlight agents that have novel biological effects. Expert commentary: The most mature advances in treatment of myelofibrosis are the development of second-generation JAK1/2 inhibitors and improvements in expanding access to donors for transplantation. In addition, there are efforts to identify drugs that target pathways other than JAK/STAT signaling that might improve the survival of myelofibrosis patients, and limit the need for stem-cell transplantation.
Collapse
Affiliation(s)
- Eran Zimran
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Alla Keyzner
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Camelia Iancu-Rubin
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Ronald Hoffman
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Marina Kremyanskaya
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| |
Collapse
|
375
|
Rare type 1-like and type 2-like calreticulin mutants induce similar myeloproliferative neoplasms as prevalent type 1 and 2 mutants in mice. Oncogene 2018; 38:1651-1660. [PMID: 30846848 DOI: 10.1038/s41388-018-0538-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/03/2018] [Accepted: 09/23/2018] [Indexed: 01/14/2023]
Abstract
Frameshift mutations in the calreticulin (CALR) gene are present in 30% of essential thrombocythemia and myelofibrosis patients. The two most frequent mutations are CALR del52 (type 1, approximately 60%) and CALR ins5 (type 2, around 30%), but many other rarer mutations exist accounting each for less than 2% of all CALR mutations. Most of them are structurally classified as type 1-like and type 2-like CALR mutations according to the absence or presence of a residual wild-type calcium-binding motif and the modification of the alpha-helix structure. Yet, several key questions remain unanswered, especially the reason of such low frequencies of these other mutations. In an attempt to investigate specific pathogenic differences between type 1-like and type 2-like CALR mutations and del52 and ins5, we modeled two type 1-like (del34 and del46) and one type 2-like (del19) mutations in cell lines and in mice. All CALR mutants constitutively activate JAK2 and STAT5/3/1 in a similar way in the presence of the thrombopoietin receptor (MPL) and induced cytokine-independent cell growth but to a lesser extent with rare mutants over time. This correlates with reduced expression levels of rare CALR mutants compared to del52 and ins5. Lethally irradiated mice that were engrafted with bone marrow transduced with the different CALR mutations developed thrombocytosis, but to a much lesser extent with ins5 and the type 2-like CALR mutation. In contrast to type 2-like mice, type 1-like mice developed marked myelofibrosis and splenomegaly 10 months after engraftment. Similar to del52, type 1-like CALR mutations induced an expansion at an early stage of hematopoiesis compared to ins5 and type 2-like mutation. Thus, type 1-like and type 2-like CALR mutants structurally and functionally resemble del52 and ins5 mutants, respectively.
Collapse
|
376
|
Mutant molecular chaperone activates cytokine receptor as a homomultimer. Oncotarget 2018; 9:35201-35202. [PMID: 30443286 PMCID: PMC6219661 DOI: 10.18632/oncotarget.26221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023] Open
|
377
|
Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo. Blood Cancer J 2018; 8:94. [PMID: 30287855 PMCID: PMC6172224 DOI: 10.1038/s41408-018-0133-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/24/2018] [Accepted: 09/05/2018] [Indexed: 01/14/2023] Open
Abstract
Polycythemia vera is characterized by the acquisition of the JAK2V617F mutation. Recommended treatments include hydroxyurea and interferon-alpha. Several groups have reported a reduction in the JAK2 mutant allele burden in interferon-treated patients, but significance of this observation is questioned. We characterized the activity of ropeginterferon alpha-2b, a novel form of interferon-alpha recently shown to be safe and efficacious in polycythemia vera. Ropeginterferon was able to inhibit the proliferation of the HEL, UKE-1, and UT-7 JAK2-mutant cell lines while sparing JAK2-wild-type UT-7 and normal CD34+ cells growth. In vitro treatment of erythroid progenitors derived from PV patients showed that ropeginterferon could considerably inhibit the growth of endogenous erythroid colonies, a hallmark of polycythemia vera. Finally, we could study in sequential samples the clonal architecture of erythroid progenitors derived from patients included in a randomized study comparing hydroxyurea to ropeginterferon. After 1 year of treatment with ropeginterferon, the ratio of JAK2-mutated to wild-type colonies grown from bone marrow progenitors was reduced by 64%, compared to 25% in patients receiving hydroxyurea. This study shows that ropeginterferon has a potent targeted activity against JAK2-mutant cells and is able to drastically reduce the proportion of malignant progenitors in patients treated with this drug.
Collapse
|
378
|
Chronic Myeloproliferative Neoplasms: Some Remaining Challenges. Hemasphere 2018; 2:e147. [PMID: 30887010 PMCID: PMC6407801 DOI: 10.1097/hs9.0000000000000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
379
|
Langabeer SE. Incidental abnormal bone marrow signal on magnetic resonance imaging and reflexive testing for the JAK2 V617F mutation. Quant Imaging Med Surg 2018; 8:881-882. [PMID: 30306066 DOI: 10.21037/qims.2018.08.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
380
|
Mughal TI, Lion T, Abdel-Wahab O, Mesa R, Scherber RM, Perrotti D, Mauro M, Verstovsek S, Saglio G, Van Etten RA, Kralovics R. Precision immunotherapy, mutational landscape, and emerging tools to optimize clinical outcomes in patients with classical myeloproliferative neoplasms. Hematol Oncol 2018; 36:740-748. [PMID: 30074634 DOI: 10.1002/hon.2537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022]
Abstract
Following the 47th American Society of Hematology Meeting in 2005, the late John Goldman and Tariq Mughal commenced a conference, the 1st Post-ASH Workshop, which brought together clinicians and scientists, to accelerate the adoption of new therapies for patients with myeloproliferative neoplasms (MPNs). The concept began with recognition of the CML success story following imatinib therapy, the discovery of JAK2V617F , and the demonstration that BCR-ABL1-negative MPNs are driven by abnormal JAK2 activation. This review is based on the presentations and deliberations at the XIIth Post-ASH Workshop on BCR-ABL1 positive and negative MPNs that took place on December 12 to 13, 2017, in Atlanta, Georgia, immediately following the 59th American Society of Hematology Meeting. We have selected some of the translational research and clinical topics, rather than an account of the proceedings. We discuss the role of immunotherapy in MPNs and the impact of the mutational landscape on TKI treatment in CML. We also consider how we might reduce TKI cardiovascular side effects, the potential role of nutrition as adjunctive nonpharmacologic intervention to reduce chronic inflammation in MPNs, and novel investigational therapies for MPNs.
Collapse
Affiliation(s)
| | - Thomas Lion
- Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | | | - Ruben Mesa
- UT Health San Antonio Cancer Center, San Antonio, TX, USA
| | | | - Danilo Perrotti
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Michael Mauro
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Robert Kralovics
- Research Center for Molecular Medicine of the Austrian Academy of Science, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
381
|
Helbig G. Classical Philadelphia-negative myeloproliferative neoplasms: focus on mutations and JAK2 inhibitors. Med Oncol 2018; 35:119. [PMID: 30074114 PMCID: PMC6096973 DOI: 10.1007/s12032-018-1187-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Classical Philadelphia- negative myeloproliferative neoplasms (MPNs) encompass three main myeloid malignancies: polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). Phenotype-driver mutations in Janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL) genes are mutually exclusive and occur with a variable frequency. Driver mutations influence disease phenotype and prognosis. PV patients with JAK2 exon 14 mutation do not differ in number of thrombotic events, risk of leukemic and fibrotic transformation, and overall survival to those with JAK2 exon 12 mutation. Type 2-like CALR-mutated ET patients have lower risk of thrombosis if compared with those carrying JAK2 or type 1-like CALR mutation. For ET, overall survival is comparable between patients with JAK2 and either type 1-like and type 2-like CALR mutations. For MF, better OS is demonstrated for patients harboring a type 1-like CALR mutation than those with type 2-like CALR or JAK2. The discovery of driver mutations in MPNs has prompted the development of molecularly targeted therapy. Among JAK2 inhibitors, ruxolitinib (RUX) has been approved for (1) treatment of intermediate-2 and high-risk MF and (2) PV patients who are resistant to or intolerant to hydroxyurea. RUX reduces spleen size and alleviates disease symptoms in a proportion of MF patients. RUX in MF leads to prolonged survival and reduces risk of death. RUX controls hematocrit, reduces spleen size and alleviates symptoms in PV. Adverse events of RUX are moderate, however, its long-term use may be associated with opportunistic infections. Trials with other JAK2 inhibitors are ongoing.
Collapse
Affiliation(s)
- Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Medical University of Silesia, Dąbrowski street 25, 40-032, Katowice, Poland.
| |
Collapse
|
382
|
Jørgensen MA, Holmström MO, Martinenaite E, Riley CH, Hasselbalch HC, Andersen MH. Spontaneous T-cell responses against Arginase-1 in the chronic myeloproliferative neoplasms relative to disease stage and type of driver mutation. Oncoimmunology 2018; 7:e1468957. [PMID: 30228936 DOI: 10.1080/2162402x.2018.1468957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/11/2023] Open
Abstract
Compelling evidence supports the existence of a profound immune dysregulation in patients with chronic myeloproliferative neoplasms (MPN). Increased Arginase-1 expression has been described in MPN patients and in solid cancers. This increase contributes to an immunosuppressive tumor microenvironment in MPN patients because of L-arginine depletion by Arginase-1-expressing regulatory cells and cancer cells, which subsequently limits the activation of circulating effector cells. In the present study, we demonstrate that Arginase-1-derived peptides are recognized by T cells among peripheral mononuclear blood cells from MPN patients. We characterized the Arginase-1-specific T cells as being CD4+ and found that the magnitude of response to the Arginase-1 peptides depends on disease stage. Activation of Arginase-1-specific T cells by vaccination could be an attractive novel immunotherapeutic approach to targeting malignant and suppressive cells in MPN patients in combination with other immunotherapeutics.
Collapse
Affiliation(s)
- Mia Aaboe Jørgensen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Deparmtent of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
383
|
Palandri F, Catani L, Bonifacio M, Benevolo G, Heidel F, Palumbo GA, Crugnola M, Abruzzese E, Bartoletti D, Polverelli N, Bergamaschi M, Tiribelli M, Iurlo A, Breccia M, Cavazzini F, Tieghi A, Binotto G, Isidori A, Martino B, D'Adda M, Bosi C, Sabattini E, Vitolo U, Aversa F, Ibatici A, Lemoli RM, Sgherza N, Cuneo A, Martinelli G, Semenzato G, Cavo M, Vianelli N, Sapienza MR, Latagliata R. Ruxolitinib in elderly patients with myelofibrosis: impact of age and genotype. A multicentre study on 291 elderly patients. Br J Haematol 2018; 183:35-46. [PMID: 30010187 DOI: 10.1111/bjh.15497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023]
Abstract
Ruxolitinib is a JAK1/2 inhibitor that may control myelofibrosis (MF)-related splenomegaly and symptoms and can be prescribed regardless of age. While aging is known to correlate with worse prognosis, no specific analysis is available to confirm that ruxolitinib is suitable for use in older populations. A clinical database was created in 23 European Haematology Centres and retrospective data on 291 MF patients treated with ruxolitinib when aged ≥65 years were analysed in order to assess the impact of age and molecular genotype on responses, toxicities and survival. Additional mutations were evaluated by a next generation sequencing (NGS) approach in 69 patients with available peripheral blood samples at the start of ruxolitinib treatment. Compared to older (age 65-74 years) patients, elderly (≥75 years) showed comparable responses to ruxolitinib, but higher rates of drug-induced anaemia and thrombocytopenia and worse survival. Nonetheless, the ruxolitinib discontinuation rate was comparable in the two age groups. Number and types of molecular abnormalities were comparable across age groups. However, the presence of high molecular risk (HMR) mutations significantly affected survival, counterbalancing the effect of aging. Indeed, elderly patients with <2 HMR mutated genes had a comparable survival to older patients with ≥2 HMR mutations. Given that responses were not influenced by age, older age per se should not be a limitation for ruxolitinib administration. NGS analysis of HMR mutations also confirmed a strong predictive value in elderly patients.
Collapse
Affiliation(s)
- Francesca Palandri
- Institute of Haematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lucia Catani
- Institute of Haematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Giulia Benevolo
- Division of Haematology, Città della Salute e della Scienza Hospital, Torino, Italy
| | - Florian Heidel
- Internal Medicine II, Haematology and Oncology, Friedrich-Schiller-University Medical Centre, Jena, Germany
| | - Giuseppe A Palumbo
- Division of Haematology, AOU "Policlinico-V. Emanuele", University of Catania, Catania, Italy
| | - Monica Crugnola
- Division of Haematology, Azienda Ospedaliero-Universitaria di Parma, Udine, Italy
| | | | - Daniela Bartoletti
- Institute of Haematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Nicola Polverelli
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Micaela Bergamaschi
- Clinic of Haematology, Department of Internal Medicine (DiMI), IRCCS AOU San Martino-IST, Genova, Italy
| | - Mario Tiribelli
- Division of Haematology and BMT, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Alessandra Iurlo
- Haematology Division, IRCCS Ca' Granda - Maggiore Policlinico Hospital Foundation, University of Milan, Milan, Italy
| | - Massimo Breccia
- Division of Cellular Biotechnologies and Haematology, University Sapienza, Roma, Italy
| | | | - Alessia Tieghi
- Division of Haematology, Azienda Ospedaliera-IRCSS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Gianni Binotto
- Unit of Haematology and Clinical Immunology, University of Padova, Padova, Italy
| | - Alessandro Isidori
- Haematology and Stem Cell Transplant Centre, AORMN Hospital, Pesaro, Italy
| | - Bruno Martino
- Division of Haematology, Azienda Ospedaliera 'Bianchi Melacrino Morelli', Reggio Calabria, Italy
| | - Mariella D'Adda
- Division of Haematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Costanza Bosi
- Division of Haematology, Piacenza hospital, Piacenza, Italy
| | - Elena Sabattini
- Institute of Haematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Umberto Vitolo
- Division of Haematology, Città della Salute e della Scienza Hospital, Torino, Italy
| | - Franco Aversa
- Division of Haematology, Azienda Ospedaliero-Universitaria di Parma, Udine, Italy
| | - Adalberto Ibatici
- Division of Haematology and Bone Marrow Transplant, IRCCS San Martino-IST, Genova, Italy
| | - Roberto M Lemoli
- Clinic of Haematology, Department of Internal Medicine (DiMI), IRCCS AOU San Martino-IST, Genova, Italy
| | - Nicola Sgherza
- Division of Haematology, Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Cuneo
- Division of Haematology, University of Ferrara, Ferrara, Italy
| | - Giovanni Martinelli
- Institute of Haematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy.,IRCCs-IRST della Romagna, Meldola, Forlì, Italy
| | - Giampietro Semenzato
- Unit of Haematology and Clinical Immunology, University of Padova, Padova, Italy
| | - Michele Cavo
- Institute of Haematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Nicola Vianelli
- Institute of Haematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria R Sapienza
- Institute of Haematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Roberto Latagliata
- Division of Cellular Biotechnologies and Haematology, University Sapienza, Roma, Italy
| |
Collapse
|
384
|
Li M, De Stefano V, Song T, Zhou X, Guo Z, Zhu J, Qi X. Prevalence of CALR mutations in splanchnic vein thrombosis: A systematic review and meta-analysis. Thromb Res 2018; 167:96-103. [PMID: 29803161 DOI: 10.1016/j.thromres.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/23/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The prevalence of calreticulin (CALR) mutations in splanchnic vein thrombosis (SVT) varies among studies. The role of routine screening for CALR mutations in SVT patients remains a debate. AIM To synthesize the prevalence of CALR mutations according to the different types (i.e., Budd-Chiari syndrome [BCS] and portal vein thrombosis [PVT]) and characteristics (i.e., with and without myeloproliferative neoplasms [MPNs] and JAK2V617F mutation) of SVT patients. METHODS Eligible studies were searched by the PubMed and Embase databases. The study quality was assessed according to the STROBE checklist. The proportion of CALR mutations was pooled by using a random-effects model. The heterogeneity and publication bias were calculated. RESULTS Eleven papers were included. The study quality was moderate to high. The pooled proportion of CALR mutations was 1.21%, 1.41%, and 1.59% in SVT, BCS, and PVT patients, respectively; 1.52%, 1.03%, and 1.82% in these patients without JAK2V617F mutation, respectively; 3.71%, 2.79%, and 7.87% in these patients with MPN, respectively; and 15.16%, 17.22%, and 31.44% in these patients with MPN but without JAK2V617F mutation, respectively. Only the meta-analysis examining the prevalence of CLAR mutations in BCS patients with MPN but without the JAK2V617F mutation showed statistically significant heterogeneity. Statistically significant publication bias was seen only in the meta-analysis examining the prevalence of CALR mutations in SVT patients without the JAK2V617F mutation. CONCLUSION Screening for CALR mutations may have a role in SVT patients with a high probability of MPN in whom the JAK2V617F mutation has been excluded.
Collapse
Affiliation(s)
- Miaomiao Li
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China; Postgraduate College, Dalian Medical University, Dalian, China
| | - Valerio De Stefano
- Servizio di Ematologia, Policlinico Agostino Gemelli, Largo Gemelli 8, 00168 Rome, Italy
| | - Tingxue Song
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
| | - Xinmiao Zhou
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
| | - Zeqi Guo
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China; Postgraduate College, Dalian Medical University, Dalian, China
| | - Jia Zhu
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
| | - Xingshun Qi
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China.
| |
Collapse
|
385
|
Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation. Leukemia 2018; 33:122-131. [PMID: 29946189 DOI: 10.1038/s41375-018-0181-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/01/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022]
Abstract
Studies have previously shown that mutant calreticulin (CALR), found in a subset of patients with myeloproliferative neoplasms (MPNs), interacts with and subsequently promotes the activation of the thrombopoietin receptor (MPL). However, the molecular mechanism behind the activity of mutant CALR remains unknown. Here we show that mutant, but not wild-type, CALR interacts to form a homomultimeric complex. This intermolecular interaction among mutant CALR proteins depends on their carboxyl-terminal domain, which is generated by a unique frameshift mutation found in patients with MPN. With a competition assay, we demonstrated that the formation of mutant CALR homomultimers is required for the binding and activation of MPL. Since association with MPL is required for the oncogenicity of mutant CALR, we propose a model in which the constitutive activation of the MPL downstream pathway by mutant CALR multimers induces the development of MPN. This study provides a potential novel therapeutic strategy against mutant CALR-dependent tumorigenesis via targeting the intermolecular interaction among mutant CALR proteins.
Collapse
|
386
|
ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF. Leukemia 2018; 33:99-109. [PMID: 29907810 DOI: 10.1038/s41375-018-0159-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
Primary myelofibrosis (PMF) is a hematopoietic stem cell (HSC) disease, characterized by aberrant differentiation of all myeloid lineages and profound disruption of the bone marrow niche. PMF samples carry several mutations, but their cell origin and hierarchy in regulating the different waves of clonal and aberrant myeloproliferation from the prime HSC compartment is poorly understood. Genotyping of >2000 colonies from CD133+HSC and progenitors from PMF patients confirmed the complex genetic heterogeneity within the neoplastic population. Notably, mutations in chromatin regulators ASXL1 and/or EZH2 were identified as the first genetic lesions, preceding both JAK2-V617F and CALR mutations, and are thus drivers of clonal myelopoiesis in a PMF subset. HSC from PMF patients with double ASXL1/EZH2 mutations exhibited significantly higher engraftment in immunodeficient mice than those from patients without histone modifier mutations. EZH2 mutations correlate with aberrant erythropoiesis in PMF patients, exemplified by impaired maturation and cell cycle arrest of erythroid progenitors. These data underscore the importance of post-transcriptional modifiers of histones in neoplastic stem cells, whose clonal growth sustains aberrant myelopoiesis and expansion of pre-leukemic clones in PMF.
Collapse
|
387
|
Molecular Markers and Prognosis of Myelofibrosis in the Genomic Era: A Meta-analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:558-568. [PMID: 29970342 DOI: 10.1016/j.clml.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
Abstract
Molecular markers are important in guiding treatment and predicting outcome in the genomic era. Meta-analysis of molecular markers in myelofibrosis through a search of PubMed and Medline through October 31, 2017 was performed. Markers with more than 3 studies that compared overall survival (OS) and leukemia-free survival (LFS) were analyzed. A total of 16 studies were included. Hazard ratios (HRs) for OS were as follows: IDH 2.65 (95% confidence interval [CI], 1.66-4.21), SRSF2 2.12 (95% CI, 1.18-3.79), high-risk myeloma 2.11 (95% CI, 1.70-2.61), ASXL1 1.92 (95% CI, 1.60-2.32), EZH2 1.88 (95% CI, 1.32-2.67), JAK2 1.41 (95% CI, 1.04-1.93) in the univariate analysis and 1.49 (95% CI, 0.42-5.30) in the multivariate analysis. LFS of JAK2 and SRSF2 had HRs of 1.81 (95% CI, 0.42-5.30) and 0.36 (95% CI, 0.02-6.48), respectively. In conclusion, mutations in IDH, SRSF2, and ASXL1 had worse prognosis in OS with HRs around 2. JAK2 and SRSF2 mutation were not associated with increased leukemia transformation. The adverse effect of triple-negative, which was often compared with CALR mutation, needs to be explored.
Collapse
|
388
|
How I treat myelofibrosis after failure of JAK inhibitors. Blood 2018; 132:492-500. [PMID: 29866811 DOI: 10.1182/blood-2018-02-785923] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
Abstract
The introduction of JAK inhibitors, leading to regulatory approval of ruxolitinib, represents a major therapeutic advance in myelofibrosis (MF). Most patients experience reduction in splenomegaly and improved quality of life from symptom improvement. It is a paradox, however, that, despite inhibition of signaling downstream of disease-related driver mutations, JAK inhibitor treatment is not associated with consistent molecular or pathologic responses in MF. Furthermore, there are important limitations to JAK inhibitor therapy including development of dose-limiting cytopenias and/or nonhematological toxicities such as neuropathy or opportunistic infections. Over half of the patients discontinue treatment within 3 years of starting treatment. Although data are sparse, clinical outcome after JAK inhibitor "failure" is likely poor; consequently, it is important to understand patterns of failure to select appropriate salvage treatment(s). An algorithmic approach, particularly one that incorporates cytogenetics/molecular data, is most helpful in selecting stem cell transplant candidates. Treatment of transplant-ineligible patients relies on a problem-based approach that includes use of investigational drugs, or consideration of splenectomy or radiotherapy. Data from early phase ruxolitinib combination studies, despite promising preclinical data, have not shown clear benefit over monotherapy thus far. Development of effective treatment strategies for MF patients failing JAK inhibitors remains a major unmet need.
Collapse
|
389
|
Wu QY, Ma MM, Fu L, Zhu YY, Liu Y, Cao J, Zhou P, Li ZY, Zeng LY, Li F, Wang XY, Xu KL. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms. Int J Biol Macromol 2018; 116:1064-1073. [PMID: 29782975 DOI: 10.1016/j.ijbiomac.2018.05.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China.
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
390
|
Zimran E, Tripodi J, Rampal R, Rappoport F, Zirkiev S, Hoffman R, Najfeld V. Genomic characterization of spleens in patients with myelofibrosis. Haematologica 2018; 103:e446-e449. [PMID: 29748436 DOI: 10.3324/haematol.2018.193763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Eran Zimran
- Myeloproliferative Neoplasms Research Program, Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Rockefeller University, New York, NY, USA
| | - Joseph Tripodi
- Myeloproliferative Neoplasms Research Program, Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Rockefeller University, New York, NY, USA.,Tumor Cytogenomics Laboratory, Department of Pathology, Icahn School of Medicine at Mount Sinai, Rockefeller University, New York, NY, USA
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program, Leukemia Service, Memorial Sloan-Kettering Cancer Center, Rockefeller University, New York, NY, USA
| | - Franck Rappoport
- Human Oncology and Pathogenesis Program, Leukemia Service, Memorial Sloan-Kettering Cancer Center, Rockefeller University, New York, NY, USA.,Center for Clinical and Translational Science, Rockefeller University, New York, NY, USA
| | - Sharon Zirkiev
- Tumor Cytogenomics Laboratory, Department of Pathology, Icahn School of Medicine at Mount Sinai, Rockefeller University, New York, NY, USA
| | - Ronald Hoffman
- Myeloproliferative Neoplasms Research Program, Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Rockefeller University, New York, NY, USA
| | - Vesna Najfeld
- Myeloproliferative Neoplasms Research Program, Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Rockefeller University, New York, NY, USA .,Tumor Cytogenomics Laboratory, Department of Pathology, Icahn School of Medicine at Mount Sinai, Rockefeller University, New York, NY, USA
| |
Collapse
|
391
|
Takei H, Edahiro Y, Mano S, Masubuchi N, Mizukami Y, Imai M, Morishita S, Misawa K, Ochiai T, Tsuneda S, Endo H, Nakamura S, Eto K, Ohsaka A, Araki M, Komatsu N. Skewed megakaryopoiesis in human induced pluripotent stem cell-derived haematopoietic progenitor cells harbouring calreticulin mutations. Br J Haematol 2018; 181:791-802. [DOI: 10.1111/bjh.15266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Hiraku Takei
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Yoko Edahiro
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Shuichi Mano
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
- Department of Life Science and Medical Bioscience; Waseda University Graduate School; Tokyo Japan
| | - Nami Masubuchi
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
- Research Institute for Disease of Old Age; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Yoshihisa Mizukami
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
- Centre for Genomic and Regenerative Medicine; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Misa Imai
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Kyohei Misawa
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Tomonori Ochiai
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience; Waseda University Graduate School; Tokyo Japan
| | - Hiroshi Endo
- Department of Clinical Application; CiRA, Kyoto University; Kyoto Japan
| | - Sou Nakamura
- Department of Clinical Application; CiRA, Kyoto University; Kyoto Japan
| | - Koji Eto
- Department of Clinical Application; CiRA, Kyoto University; Kyoto Japan
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell Regulation; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Norio Komatsu
- Department of Haematology; Juntendo University Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
392
|
Gnanapragasam MN, Crispino JD, Ali AM, Weinberg R, Hoffman R, Raza A, Bieker JJ. Survey and evaluation of mutations in the human KLF1 transcription unit. Sci Rep 2018; 8:6587. [PMID: 29700354 PMCID: PMC5920080 DOI: 10.1038/s41598-018-24962-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023] Open
Abstract
Erythroid Krüppel-like Factor (EKLF/KLF1) is an erythroid-enriched transcription factor that plays a global role in all aspects of erythropoiesis, including cell cycle control and differentiation. We queried whether its mutation might play a role in red cell malignancies by genomic sequencing of the KLF1 transcription unit in cell lines, erythroid neoplasms, dysplastic disorders, and leukemia. In addition, we queried published databases from a number of varied sources. In all cases we only found changes in commonly notated SNPs. Our results suggest that if there are mutations in KLF1 associated with erythroid malignancies, they are exceedingly rare.
Collapse
Affiliation(s)
- Merlin Nithya Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - John D Crispino
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rona Weinberg
- Cellular Therapy Laboratory, New York Blood Center, New York, NY, 10065, USA
| | - Ronald Hoffman
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Azra Raza
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Black Familly Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
| |
Collapse
|
393
|
Habberstad AH, Tran HTT, Randen U, Spetalen S, Dybedal I, Tjønnfjord GE, Dahm AEA. Neutropenia caused by hairy cell leukemia in a patient with myelofibrosis secondary to polycythemia vera: a case report. J Med Case Rep 2018; 12:105. [PMID: 29685167 PMCID: PMC5914053 DOI: 10.1186/s13256-018-1663-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/21/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Polycythemia vera is a myeloproliferative disease that sometimes evolves to myelofibrosis, causing splenomegaly and neutropenia. In this case report, we describe a patient with polycythemia vera and unexplained neutropenia who later turned out to also have hairy cell leukemia. CASE PRESENTATION A middle-aged Caucasian man with polycythemia vera presented to our hospital with chronic mouth ulcers. Later he developed leukopenia and pancytopenia. Bone marrow biopsies showed fibrosis. Further morphological analyses of bone marrow and blood smears revealed probable transformation into acute myeloid leukemia. However, there were also cells indicating hairy cell leukemia. Morphological and immunohistochemical analyses later confirmed the presence of hairy cell leukemia in biopsies that had been present for 3 years. Treatment with cladribine temporarily reversed the patient's neutropenia. CONCLUSIONS Hairy cell leukemia may mimic development to myelofibrosis in patients with polycythemia vera.
Collapse
Affiliation(s)
| | - Hoa Thi Tuyet Tran
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Ulla Randen
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ingunn Dybedal
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Erik Astrup Dahm
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
394
|
The role of JAK2 inhibitors in MPNs 7 years after approval. Blood 2018; 131:2426-2435. [PMID: 29650801 DOI: 10.1182/blood-2018-01-791491] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) include essential thrombocythemia, polycythemia vera (PV), and primary myelofibrosis (MF). Phenotype-driver mutations of JAK2, CALR, and MPL genes are present in MPNs and can be variably combined with additional mutations. Driver mutations entail a constitutive activation of the JAK2/STAT pathway, the key signaling cascade in MPNs. Among JAK2 inhibitors (JAKis), ruxolitinib (RUX) has been approved for the treatment of intermediate and high-risk MF and for PV inadequately controlled by or intolerant of hydroxyurea. Other JAKis, such as fedratinib and pacritinib, proved to be useful in MF. The primary end points in MF trials were spleen volume response (SVR) and symptom response, whereas in PV trials they were hematocrit control with or without spleen response. In advanced MF, RUX achieved a long lasting SVR of >35% in ∼60% of patients, establishing a new benchmark for MF treatment. RUX efficacy in early MF is also remarkable and toxicity is mild. In PV, RUX achieved hematocrit control in ∼60% of cases and SVR in 40%. Symptom relief was evident in both conditions. In the long-term, however, many MF patients lose their SVR. Indeed, the definition of RUX failure and the design of new trials in this setting are unmet needs. Decrease of hemoglobin/platelet levels and increased infection rates are the most common side effects of RUX, and nonmelanoma skin tumors need to be monitored while on treatment. In conclusion, the introduction of JAKis raises the bar of treatment goals in MF and PV.
Collapse
|
395
|
Mughal TI, Gotlib J, Mesa R, Koschmieder S, Khoury HJ, Cortes JE, Barbui T, Hehlmann R, Mauro M, Saussele S, Radich JP, Van Etten RA, Saglio G, Verstovek S, Gale RP, Abdel-Wahab O. Recent advances in the genomics and therapy of BCR/ABL1-positive and -negative chronic myeloproliferative neoplasms. Leuk Res 2018; 67:67-74. [PMID: 29466766 PMCID: PMC6613209 DOI: 10.1016/j.leukres.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/08/2023]
Abstract
This review is based on the presentations and deliberations at the 7th John Goldman Chronic Myeloid Leukemia (CML) and Myeloproliferative Neoplasms (MPN) Colloquium which took place in Estoril, Portugal on the 15th October 2017, and the 11th post-ASH International Workshop on CML and MPN which took place on the 6th-7th December 2016, immediately after the 58th American Society of Hematology Annual Meeting. Rather than present a resume of the proceedings, we have elected to address some of the topical translational research and clinically relevant topics in greater detail. We address recent updates in the genetics and epigenetics of MPN, the mechanisms of transformation by mutant calreticulin, advances in the biology and therapy of systemic mastocytosis, clinical updates on JAK2 inhibitors and other therapeutic approaches for patients with MPNs, cardiovascular toxicity related to tyrosine kinase inhibitors and the concept of treatment-free remission for patients with CML.
Collapse
Affiliation(s)
| | | | - Ruben Mesa
- UT Health San Antonio Cancer Center, San Antonio, TX, USA
| | | | | | | | - Tiziano Barbui
- Papa Giovani XXIII Hospital and Research Center, Bergamo, Italy
| | | | - Michael Mauro
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jerald P Radich
- Fredreick Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
396
|
Zimran E, Hoffman R, Kremyanskaya M. Current approaches to challenging scenarios in myeloproliferative neoplasms. Expert Rev Anticancer Ther 2018; 18:567-578. [PMID: 29575945 DOI: 10.1080/14737140.2018.1457441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) including polycythemia vera, essential thrombocythemia and primary myelofibrosis are clonal hematological malignancies that originate at the level of the hematopoietic stem cell, and are characterized by excessive proliferation of cells belonging to one or more of the myeloid lineages. Central to the pathogenesis of the MPNs is constitutive activation of the JAK/STAT signaling pathway due to a family of driver mutations affecting JAK2, CALR or MPL. These disorders share common clinical and laboratory features, a significant burden of systemic symptoms, increased risk of developing arterial and venous thrombotic events, and the potential to progress to myelofibrosis and acute leukemia. Areas covered: We identified four clinical situations which represent challenging management dilemmas for patients with MPNs. Our conclusions and recommendations are based on a literature search using MEDLINE and recent meeting abstracts using the keywords, focusing on publications directly addressing these scenarios and on recent contributions to the field. Expert commentary: Multi-center efforts to study large cohorts of MPN patients have led to more uniform and evidence-based approaches to key aspects in MPN management. However, treatment strategies to deal with specific clinical scenarios are lacking.
Collapse
Affiliation(s)
- Eran Zimran
- a Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , NY , USA
| | - Ronald Hoffman
- a Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , NY , USA
| | - Marina Kremyanskaya
- a Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , NY , USA
| |
Collapse
|
397
|
Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia 2018; 32:1713-1726. [PMID: 29728695 PMCID: PMC6087715 DOI: 10.1038/s41375-018-0117-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
STAT3 and STAT5 proteins are oncogenic downstream mediators of the JAK–STAT pathway. Deregulated STAT3 and STAT5 signaling promotes cancer cell proliferation and survival in conjunction with other core cancer pathways. Nuclear phosphorylated STAT3 and STAT5 regulate cell-type-specific transcription profiles via binding to promoter elements and exert more complex functions involving interaction with various transcriptional coactivators or corepressors and chromatin remodeling proteins. The JAK–STAT pathway can rapidly reshape the chromatin landscape upon cytokine, hormone, or growth factor stimulation and unphosphorylated STAT proteins also appear to be functional with respect to regulating chromatin accessibility. Notably, cancer genome landscape studies have implicated mutations in various epigenetic modifiers as well as the JAK–STAT pathway as underlying causes of many cancers, particularly acute leukemia and lymphomas. However, it is incompletely understood how mutations within these pathways can interact and synergize to promote cancer. We summarize the current knowledge of oncogenic STAT3 and STAT5 functions downstream of cytokine signaling and provide details on prerequisites for DNA binding and gene transcription. We also discuss key interactions of STAT3 and STAT5 with chromatin remodeling factors such as DNA methyltransferases, histone modifiers, cofactors, corepressors, and other transcription factors.
Collapse
|
398
|
Rego de Paula Junior M, Nonino A, Minuncio Nascimento J, Bonadio RS, Pic-Taylor A, de Oliveira SF, Wellerson Pereira R, do Couto Mascarenhas C, Forte Mazzeu J. High Frequency of Copy-Neutral Loss of Heterozygosity in Patients with Myelofibrosis. Cytogenet Genome Res 2018; 154:62-70. [DOI: 10.1159/000487627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
Myelofibrosis is the rarest and most severe type of Philadelphia-negative classical myeloproliferative neoplasms. Although mutually exclusive driver mutations in JAK2, MPL, or CALR that activate JAK-STAT pathway have been related to the pathogenesis of the disease, chromosome abnormalities have also been associated with the phenotype and prognosis of the disease. Here, we report the use of a chromosomal microarray platform consisting of both oligo and SNP probes to improve the detection of chromosome abnormalities in patients with myelofibrosis. Sixteen patients with myelofibrosis were tested, and the results were compared to karyotype analysis. Driver mutations in JAK2, MPL, or CALR were investigated by PCR and MLPA. Conventional cytogenetics revealed chromosome abnormalities in 3 out of 16 cases (18.7%), while chromosomal microarray analysis detected copy-number variations (CNV) or copy-neutral loss of heterozygosity (CN-LOH) alterations in 11 out of 16 (68.7%) patients. These included 43 CN-LOH, 14 deletions, 1 trisomy, and 1 duplication. Ten patients showed multiple chromosomal abnormalities, varying from 2 to 13 CNVs or CN-LOHs. Mutational status for JAK2, CALR, and MPL by MLPA revealed a total of 3/16 (18.7%) patients positive for the JAK2 V617F mutation, 9 with CALR deletion or insertion and 1 positive for MPL mutation. Considering that most of the CNVs identified were smaller than the karyotype resolution and the high frequency of CN-LOHs in our study, we propose that chromosomal microarray platforms that combine oligos and SNP should be used as a first-tier genetic test in patients with myelofibrosis.
Collapse
|
399
|
Masselli E, Carubbi C, Cambò B, Pozzi G, Gobbi G, Mirandola P, Follini E, Pagliaro L, Di Marcantonio D, Bonatti F, Percesepe A, Sykes SM, Aversa F, Vitale M. The -2518 A/G polymorphism of the monocyte chemoattractant protein-1 as a candidate genetic predisposition factor for secondary myelofibrosis and biomarker of disease severity. Leukemia 2018; 32:2266-2270. [PMID: 29568096 PMCID: PMC6170394 DOI: 10.1038/s41375-018-0088-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Unit of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Unit of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - Benedetta Cambò
- Department of Medicine and Surgery, Unit of Clinical and Experimental Medicine, Hematology and BMT Unit, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, Unit of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery, Unit of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, Unit of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - Elena Follini
- Department of Medicine and Surgery, Unit of Clinical and Experimental Medicine, Hematology and BMT Unit, University of Parma, Parma, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, Unit of Clinical and Experimental Medicine, Hematology and BMT Unit, University of Parma, Parma, Italy
| | | | - Francesco Bonatti
- Department of Medicine and Surgery, Unit of Medical Genetics, University Hospital of Parma, Parma, Italy
| | - Antonio Percesepe
- Department of Medicine and Surgery, Unit of Medical Genetics, University Hospital of Parma, Parma, Italy
| | - Stephen M Sykes
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Franco Aversa
- Department of Medicine and Surgery, Unit of Clinical and Experimental Medicine, Hematology and BMT Unit, University of Parma, Parma, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, Unit of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy. .,CoreLab, University Hospital of Parma, Parma, Italy.
| |
Collapse
|
400
|
Myeloid neoplasms with features intermediate between primary myelofibrosis and chronic myelomonocytic leukemia. Mod Pathol 2018; 31:429-441. [PMID: 29192651 DOI: 10.1038/modpathol.2017.148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Monocytosis can develop during disease course in primary myelofibrosis simulating that seen in chronic myelomonocytic leukemia, and should not lead to disease reclassification. In contrast, at presentation, rare cases have clinical, morphologic, and molecular genetic features truly intermediate between primary myelofibrosis and chronic myelomonocytic leukemia. The taxonomy and natural history of these diseases are unclear. We identified cases which either: (1) fulfilled the 2008 World Health Organization criteria for primary myelofibrosis but had absolute monocytosis and, when available, chronic myelomonocytic leukemia-related mutations (ASXL1, SRSF2, TET2) or (2) fulfilled criteria of chronic myelomonocytic leukemia but had megakaryocytic proliferation and atypia, marrow fibrosis, and myeloproliferative-type driver mutations (JAK2, MPL, CALR). Patients with established primary myelofibrosis who developed monocytosis and those with chronic myelomonocytic leukemia with marrow fibrosis were excluded. By combining the pathology databases of two large institutions, six eligible cases were identified. Patients were predominantly male and elderly with monocytosis at diagnosis (average 17.5%/2.3 × 103/μl), organomegaly, primary myelofibrosis-like atypical megakaryocytes admixed with a variable number of chronic myelomonocytic leukemia-like hypolobated forms, variable myelodysplasia, marrow fibrosis and osteosclerosis. All had a normal karyotype and no myelodysplasia-associated cytogenetic abnormalities. Five of the patients in whom a more extensive molecular characterization was performed showed co-mutations involving JAK2 or MPL and ASXL1, SRSF2, TET2, NRAS, and/or KRAS. Disease progression has occurred in all and two have died. Rare patients present with features that overlap between primary myelofibrosis and chronic myelomonocytic leukemia and are thus difficult to classify based on current World Health Organization criteria. Biologically, these cases likely represent primary myelofibrosis with monocytosis, dysplasia, and secondary (non-driver) mutations at presentation. Alternatively, they may represent a true gray zone of neoplasms. Their clinical behavior appears aggressive and innovative therapeutic approaches may be beneficial in this particular subset.
Collapse
|