351
|
Ciechonska M, Key T, Duncan R. Efficient reovirus- and measles virus-mediated pore expansion during syncytium formation is dependent on annexin A1 and intracellular calcium. J Virol 2014; 88:6137-47. [PMID: 24648446 PMCID: PMC4093853 DOI: 10.1128/jvi.00121-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Orthoreovirus fusion-associated small transmembrane (FAST) proteins are dedicated cell-cell fusogens responsible for multinucleated syncytium formation and are virulence determinants of the fusogenic reoviruses. While numerous studies on the FAST proteins and enveloped-virus fusogens have delineated steps involved in membrane fusion and pore formation, little is known about the mechanics of pore expansion needed for syncytiogenesis. We now report that RNA interference (RNAi) knockdown of annexin A1 (AX1) expression dramatically reduced both reptilian reovirus p14 and measles virus F and H protein-mediated pore expansion during syncytiogenesis but had no effect on pore formation. A similar effect was obtained by chelating intracellular calcium, which dramatically decreased syncytiogenesis in the absence of detectable effects on p14-induced pore formation. Coimmunoprecipitation revealed calcium-dependent interaction between AX1 and p14 or measles virus F and H proteins, and fluorescence resonance energy transfer (FRET) demonstrated calcium-dependent p14-AX1 interactions in cellulo. Furthermore, antibody inhibition of extracellular AX1 had no effect on p14-induced syncytium formation but did impair cell-cell fusion mediated by the endogenous muscle cell fusion machinery in C2C12 mouse myoblasts. AX1 can therefore exert diverse, fusogen-specific effects on cell-cell fusion, functioning as an extracellular mediator of differentiation-dependent membrane fusion or as an intracellular promoter of postfusion pore expansion and syncytium formation following virus-mediated cell-cell fusion. IMPORTANCE Numerous enveloped viruses and nonenveloped fusogenic orthoreoviruses encode membrane fusion proteins that induce syncytium formation, which has been linked to viral pathogenicity. Considerable insights into the mechanisms of membrane fusion have been obtained, but processes that drive postfusion expansion of fusion pores to generate syncytia are poorly understood. This study identifies intracellular calcium and annexin A1 (AX1) as key factors required for efficient pore expansion during syncytium formation mediated by the reptilian reovirus p14 and measles virus F and H fusion protein complexes. Involvement of intracellular AX1 in syncytiogenesis directly correlates with a requirement for intracellular calcium in p14-AX1 interactions and pore expansion but not membrane fusion and pore formation. This is the first demonstration that intracellular AX1 is involved in pore expansion, which suggests that the AX1 pathway may be a common host cell response needed to resolve virus-induced cell-cell fusion pores.
Collapse
Affiliation(s)
- Marta Ciechonska
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tim Key
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roy Duncan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
352
|
Pichavant C, Pavlath GK. Incidence and severity of myofiber branching with regeneration and aging. Skelet Muscle 2014; 4:9. [PMID: 24855558 PMCID: PMC4030050 DOI: 10.1186/2044-5040-4-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022] Open
Abstract
Background Myofibers with an abnormal branching cytoarchitecture are commonly found in muscular dystrophy and in regenerated or aged nondystrophic muscles. Such branched myofibers from dystrophic mice are more susceptible to damage than unbranched myofibers in vitro, suggesting that muscles containing a high percentage of these myofibers are more prone to injury. Little is known about the regulation of myofiber branching. Methods To gain insights into the formation and fate of branched myofibers, we performed in-depth analyses of single myofibers isolated from dystrophic and nondystrophic (myotoxin-injured or aged) mouse muscles. The proportion of branched myofibers, the number of branches per myofiber and the morphology of the branches were assessed. Results Aged dystrophic mice exhibited the most severe myofiber branching as defined by the incidence of branched myofibers and the number of branches per myofiber, followed by myotoxin-injured, wild-type muscles and then aged wild-type muscles. In addition, the morphology of the branched myofibers differed among the various models. In response to either induced or ongoing muscle degeneration, branching was restricted to regenerated myofibers containing central nuclei. In myotoxin-injured muscles, the amount of branched myofibers remained stable over time. Conclusion We suggest that myofiber branching is a consequence of myofiber remodeling during muscle regeneration. Our present study lays valuable groundwork for identifying the molecular pathways leading to myofiber branching in dystrophy, trauma and aging. Decreasing myofiber branching in dystrophic patients may improve muscle resistance to mechanical stress.
Collapse
Affiliation(s)
- Christophe Pichavant
- Department of Pharmacology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
353
|
Bothe I, Deng S, Baylies M. PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site. Development 2014; 141:2289-301. [PMID: 24821989 DOI: 10.1242/dev.100743] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell-cell fusion is a regulated process that requires merging of the opposing membranes and underlying cytoskeletons. However, the integration between membrane and cytoskeleton signaling during fusion is not known. Using Drosophila, we demonstrate that the membrane phosphoinositide PI(4,5)P2 is a crucial regulator of F-actin dynamics during myoblast fusion. PI(4,5)P2 is locally enriched and colocalizes spatially and temporally with the F-actin focus that defines the fusion site. PI(4,5)P2 enrichment depends on receptor engagement but is upstream or parallel to actin remodeling. Regulators of actin branching via Arp2/3 colocalize with PI(4,5)P2 in vivo and bind PI(4,5)P2 in vitro. Manipulation of PI(4,5)P2 availability leads to impaired fusion, with a reduction in the F-actin focus size and altered focus morphology. Mechanistically, the changes in the actin focus are due to a failure in the enrichment of actin regulators at the fusion site. Moreover, improper localization of these regulators hinders expansion of the fusion interface. Thus, PI(4,5)P2 enrichment at the fusion site encodes spatial and temporal information that regulates fusion progression through the localization of activators of actin polymerization.
Collapse
Affiliation(s)
- Ingo Bothe
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Su Deng
- Graduate Program in Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Mary Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA Graduate Program in Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| |
Collapse
|
354
|
Abstract
Rho GTPases regulate many essential processes during development, yet the full impact of their upstream regulation through guanine nucleotide exchange factors (GEFs) is only beginning to be appreciated. In this review, Laurin and Côté focus on emerging biological functions of the mammalian Dock family of GEFs in development and disease and discuss how recent discoveries might be exploited for novel therapeutic strategies. Rho GTPases play key regulatory roles in many aspects of embryonic development, regulating processes such as differentiation, proliferation, morphogenesis, and migration. Two families of guanine nucleotide exchange factors (GEFs) found in metazoans, Dbl and Dock, are responsible for the spatiotemporal activation of Rac and Cdc42 proteins and their downstream signaling pathways. This review focuses on the emerging roles of the mammalian DOCK family in development and disease. We also discuss, when possible, how recent discoveries concerning the biological functions of these GEFs might be exploited for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mélanie Laurin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Quebec H2W 1R7, Canada
| | | |
Collapse
|
355
|
Bianchi E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 2014; 508:483-7. [PMID: 24739963 PMCID: PMC3998876 DOI: 10.1038/nature13203] [Citation(s) in RCA: 427] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022]
Abstract
Fertilization occurs when sperm and egg recognize each other and fuse to form a new, genetically distinct organism. The molecular basis of sperm-egg recognition is unknown, but is likely to require interactions between receptor proteins displayed on their surface. Izumo1 is an essential sperm cell-surface protein, but its receptor on the egg has not been described. Here we identify folate receptor 4 (Folr4) as the receptor for Izumo1 on the mouse egg, and propose to rename it Juno. We show that the Izumo1-Juno interaction is conserved within several mammalian species, including humans. Female mice lacking Juno are infertile and Juno-deficient eggs do not fuse with normal sperm. Rapid shedding of Juno from the oolemma after fertilization suggests a mechanism for the membrane block to polyspermy, ensuring eggs normally fuse with just a single sperm. Our discovery of an essential receptor pair at the nexus of conception provides opportunities for the rational development of new fertility treatments and contraceptives.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Brendan Doe
- Mouse Production Team, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David Goulding
- Electron and Advanced Light Microscopy Suite, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
356
|
Bricceno KV, Martinez T, Leikina E, Duguez S, Partridge TA, Chernomordik LV, Fischbeck KH, Sumner CJ, Burnett BG. Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet 2014; 23:4745-57. [PMID: 24760765 DOI: 10.1093/hmg/ddu189] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility.
Collapse
Affiliation(s)
- Katherine V Bricceno
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and Institute of Biomedical Sciences, The George Washington University, Washington, DC, USA
| | | | - Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Duguez
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Terence A Partridge
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Leonid V Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and
| | - Charlotte J Sumner
- Department of Neurology and Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Barrington G Burnett
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, USA
| |
Collapse
|
357
|
Özkan E, Chia PH, Wang RR, Goriatcheva N, Borek D, Otwinowski Z, Walz T, Shen K, Garcia KC. Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis. Cell 2014; 156:482-94. [PMID: 24485456 PMCID: PMC3962013 DOI: 10.1016/j.cell.2014.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 09/04/2013] [Accepted: 01/06/2014] [Indexed: 01/29/2023]
Abstract
SYG-1 and SYG-2 are multipurpose cell adhesion molecules (CAMs) that have evolved across all major animal taxa to participate in diverse physiological functions, ranging from synapse formation to formation of the kidney filtration barrier. In the crystal structures of several SYG-1 and SYG-2 orthologs and their complexes, we find that SYG-1 orthologs homodimerize through a common, bispecific interface that similarly mediates an unusual orthogonal docking geometry in the heterophilic SYG-1/SYG-2 complex. C. elegans SYG-1's specification of proper synapse formation in vivo closely correlates with the heterophilic complex affinity, which appears to be tuned for optimal function. Furthermore, replacement of the interacting domains of SYG-1 and SYG-2 with those from CAM complexes that assume alternative docking geometries or the introduction of segmental flexibility compromised synaptic function. These results suggest that SYG extracellular complexes do not simply act as "molecular velcro" and that their distinct structural features are important in instructing synaptogenesis. PAPERFLICK:
Collapse
Affiliation(s)
- Engin Özkan
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Poh Hui Chia
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Rachel Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Natalia Goriatcheva
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominika Borek
- Departments of Biochemistry and Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Zbyszek Otwinowski
- Departments of Biochemistry and Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
358
|
Rafiq K, Shashikant T, McManus CJ, Ettensohn CA. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 2014; 141:950-61. [PMID: 24496631 DOI: 10.1242/dev.105585] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand the transformation of genetic information into morphology. Elucidating the connections between genes and anatomy will require model morphogenetic processes that are amenable to detailed analysis of cell/tissue behaviors and to systems-level approaches to gene regulation. The formation of the calcified endoskeleton of the sea urchin embryo is a valuable experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. A transcriptional gene regulatory network (GRN) that underlies the specification of skeletogenic cells (primary mesenchyme cells, or PMCs) has recently been elucidated. In this study, we carried out a genome-wide analysis of mRNAs encoded by effector genes in the network and uncovered transcriptional inputs into many of these genes. We used RNA-seq to identify >400 transcripts differentially expressed by PMCs during gastrulation, when these cells undergo a striking sequence of behaviors that drives skeletal morphogenesis. Our analysis expanded by almost an order of magnitude the number of known (and candidate) downstream effectors that directly mediate skeletal morphogenesis. We carried out genome-wide analysis of (1) functional targets of Ets1 and Alx1, two pivotal, early transcription factors in the PMC GRN, and (2) functional targets of MAPK signaling, a pathway that plays an essential role in PMC specification. These studies identified transcriptional inputs into >200 PMC effector genes. Our work establishes a framework for understanding the genomic regulatory control of a major morphogenetic process and has important implications for reconstructing the evolution of biomineralization in metazoans.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
359
|
Balasubramanian A, Kawahara G, Gupta VA, Rozkalne A, Beauvais A, Kunkel LM, Gussoni E. Fam65b is important for formation of the HDAC6-dysferlin protein complex during myogenic cell differentiation. FASEB J 2014; 28:2955-69. [PMID: 24687993 DOI: 10.1096/fj.13-246470] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previously, we identified family with sequence similarity 65, member B (Fam65b), as a protein transiently up-regulated during differentiation and fusion of human myogenic cells. Silencing of Fam65b expression results in severe reduction of myogenin expression and consequent lack of myoblast fusion. The molecular function of Fam65b and whether misregulation of its expression could be causative of muscle diseases are unknown. Protein pulldowns were used to identify Fam65b-interacting proteins in differentiating human muscle cells and regenerating muscle tissue. In vitro, human muscle cells were treated with histone-deacetylase (HDAC) inhibitors, and expression of Fam65b and interacting proteins was studied. Nontreated cells were used as controls. In vivo, expression of Fam65b was down-regulated in developing zebrafish to determine the effects on muscle development. Fam65b binds to HDAC6 and dysferlin, the protein mutated in limb girdle muscular dystrophy 2B. The tricomplex Fam65b-HDAC6-dysferlin is transient, and Fam65b expression is necessary for the complex to form. Treatment of myogenic cells with pan-HDAC or HDAC6-specific inhibitors alters Fam65b expression, while dysferlin expression does not change. Inhibition of Fam65b expression in developing zebrafish results in abnormal muscle, with low birefringence, tears at the myosepta, and increased embryo lethality. Fam65b is an essential component of the HDAC6-dysferlin complex. Down-regulation of Fam65b in developing muscle causes changes consistent with muscle disease.-Balasubramanian, A., Kawahara, G., Gupta, V. A., Rozkalne, A., Beauvais, A., Kunkel, L. M., Gussoni, E. Fam65b is important for formation of the HDAC6-dysferlin protein complex during myogenic cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
| | - Louis M Kunkel
- Program in Genomics, Division of Genetics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Emanuela Gussoni
- Program in Genomics, Division of Genetics and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
360
|
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014. [PMID: 24658644 DOI: 10.1038/nbt.2859.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers. Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation.
Collapse
|
361
|
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32:381-386. [PMID: 24658644 PMCID: PMC4122333 DOI: 10.1038/nbt.2859] [Citation(s) in RCA: 4230] [Impact Index Per Article: 384.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/25/2014] [Indexed: 11/20/2022]
|
362
|
Weitkunat M, Schnorrer F. A guide to study Drosophila muscle biology. Methods 2014; 68:2-14. [PMID: 24625467 DOI: 10.1016/j.ymeth.2014.02.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
Abstract
The development and molecular composition of muscle tissue is evolutionarily conserved. Drosophila is a powerful in vivo model system to investigate muscle morphogenesis and function. Here, we provide a short and comprehensive overview of the important developmental steps to build Drosophila body muscle in embryos, larvae and pupae. We describe key methods, including muscle histology, live imaging and genetics, to study these steps at various developmental stages and include simple behavioural assays to assess muscle function in larvae and adults. We list valuable antibodies and fly strains that can be used for these different methods. This overview should guide the reader to choose the best marker or the appropriate method to obtain high quality muscle morphogenesis data in Drosophila.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
363
|
Abstract
Muscle fibers form as a result of myoblast fusion, yet the cell surface receptors regulating this process are unknown in vertebrates. In Drosophila, myoblast fusion involves the activation of the Rac pathway by the guanine nucleotide exchange factor Myoblast City and its scaffolding protein ELMO, downstream of cell-surface cell-adhesion receptors. We previously showed that the mammalian ortholog of Myoblast City, DOCK1, functions in an evolutionarily conserved manner to promote myoblast fusion in mice. In search for regulators of myoblast fusion, we identified the G-protein coupled receptor brain-specific angiogenesis inhibitor (BAI3) as a cell surface protein that interacts with ELMO. In cultured cells, BAI3 or ELMO1/2 loss of function severely impaired myoblast fusion without affecting differentiation and cannot be rescued by reexpression of BAI3 mutants deficient in ELMO binding. The related BAI protein family member, BAI1, is functionally distinct from BAI3, because it cannot rescue the myoblast fusion defects caused by the loss of BAI3 function. Finally, embryonic muscle precursor expression of a BAI3 mutant unable to bind ELMO was sufficient to block myoblast fusion in vivo. Collectively, our findings provide a role for BAI3 in the relay of extracellular fusion signals to their intracellular effectors, identifying it as an essential transmembrane protein for embryonic vertebrate myoblast fusion.
Collapse
|
364
|
Enwere EK, Lacasse EC, Adam NJ, Korneluk RG. Role of the TWEAK-Fn14-cIAP1-NF-κB Signaling Axis in the Regulation of Myogenesis and Muscle Homeostasis. Front Immunol 2014; 5:34. [PMID: 24550918 PMCID: PMC3913901 DOI: 10.3389/fimmu.2014.00034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 12/16/2022] Open
Abstract
Mammalian skeletal muscle maintains a robust regenerative capacity throughout life, largely due to the presence of a stem cell population known as “satellite cells” in the muscle milieu. In normal conditions, these cells remain quiescent; they are activated upon injury to become myoblasts, which proliferate extensively and eventually differentiate and fuse to form new multinucleated muscle fibers. Recent findings have identified some of the factors, including the cytokine TNFα-like weak inducer of apoptosis (TWEAK), which govern these cells’ decisions to proliferate, differentiate, or fuse. In this review, we will address the functions of TWEAK, its receptor Fn14, and the associated signal transduction molecule, the cellular inhibitor of apoptosis 1 (cIAP1), in the regulation of myogenesis. TWEAK signaling can activate the canonical NF-κB signaling pathway, which promotes myoblast proliferation and inhibits myogenesis. In addition, TWEAK activates the non-canonical NF-κB pathway, which, in contrast, promotes myogenesis by increasing myoblast fusion. Both pathways are regulated by cIAP1, which is an essential component of downstream signaling mediated by TWEAK and similar cytokines. This review will focus on the seemingly contradictory roles played by TWEAK during muscle regeneration, by highlighting the interplay between the two NF-κB pathways under physiological and pathological conditions. We will also discuss how myogenesis is negatively affected by chronic conditions, which affect homeostasis of the skeletal muscle environment.
Collapse
Affiliation(s)
- Emeka K Enwere
- Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, AB , Canada
| | - Eric C Lacasse
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada
| | - Nadine J Adam
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Robert G Korneluk
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
365
|
Laurin M, Dumouchel A, Fukui Y, Côté JF. The Rac-specific exchange factors Dock1 and Dock5 are dispensable for the establishment of the glomerular filtration barrier in vivo. Small GTPases 2013; 4:221-30. [PMID: 24365888 DOI: 10.4161/sgtp.27430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Podocytes are specialized kidney cells that form the kidney filtration barrier through the connection of their foot processes. Nephrin and Neph family transmembrane molecules at the surface of podocytes interconnect to form a unique type of cell-cell junction, the slit diaphragm, which acts as a molecular sieve. The cytoplasmic tails of Nephrin and Neph mediate cytoskeletal rearrangement that contributes to the maintenance of the filtration barrier. Nephrin and Neph1 orthologs are essential to regulate cell-cell adhesion and Rac-dependent actin rearrangement during Drosophila myoblast fusion. We hypothesized here that molecules regulating myoblast fusion in Drosophila could contribute to signaling downstream of Nephrin and Neph1 in podocytes. We found that Nephrin engagement promoted recruitment of the Rac exchange factor Dock1 to the membrane. Furthermore, Nephrin overexpression led to lamellipodia formation that could be blocked by inhibiting Rac1 activity. We generated in vivo mouse models to investigate whether Dock1 and Dock5 contribute to the formation and maintenance of the kidney filtration barrier. Our results indicate that while Dock1 and Dock5 are expressed in podocytes, their functions are not essential for the development of the glomerular filtration barrier. Furthermore, mice lacking Dock1 were not protected from LPS-induced podocyte effacement. Our data suggest that Dock1 and Dock5 are not the important exchange factors regulating Rac activity during the establishment and maintenance of the glomerular barrier.
Collapse
Affiliation(s)
- Mélanie Laurin
- Institut de Recherches Cliniques de Montréal (IRCM); Montréal, QC, Canada; Département de Médecine (Programmes de Biologie Moléculaire); Université de Montréal; Montréal, QC, Canada
| | - Annie Dumouchel
- Institut de Recherches Cliniques de Montréal (IRCM); Montréal, QC, Canada
| | - Yoshinori Fukui
- Division of Immunogenetics; Department of Immunobiology and Neuroscience; Medical Institute of Bioregulation; Kyushu University; Fukuoda, Japan
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal (IRCM); Montréal, QC, Canada; Département de Médecine (Programmes de Biologie Moléculaire); Université de Montréal; Montréal, QC, Canada; Département de Biochimie; Université de Montréal; Montréal, QC, Canada; Division of Experimental Medicine; McGill University; Montréal, QC, Canada
| |
Collapse
|
366
|
Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A, Piao X, Lawlor MW, Kopin AS, Walsh CA, Gussoni E. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 2013; 280:6097-113. [PMID: 24102982 PMCID: PMC3877849 DOI: 10.1111/febs.12529] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/24/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.
Collapse
Affiliation(s)
- Melissa P. Wu
- Biological and Biomedical Sciences, Harvard Medical School, Boston MA 02115, USA
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Jamie R. Doyle
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Brenda Barry
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Ariane Beauvais
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Anete Rozkalne
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA 02115, USA
| | - Michael W. Lawlor
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Alan S. Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Christopher A. Walsh
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| |
Collapse
|
367
|
Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun 2013; 4:1674. [PMID: 23575678 DOI: 10.1038/ncomms2675] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/01/2013] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle regeneration after injury follows a remarkable sequence of synchronized events. However, the mechanisms regulating the typical organization of the regenerating muscle at different stages remain largely unknown. Here we show that muscle regeneration in mice lacking either CD9 or CD81 is abnormal and characterized by the formation of discrete giant dystrophic myofibres, which form more quickly in the absence of both tetraspanins. We also show that, in myoblasts, these two tetraspanins associate with the immunoglobulin domain molecule CD9P-1 (EWI-F/FPRP), and that grafting of CD9P-1-depleted myoblasts in regenerating muscles also leads to abnormal regeneration. In vitro myotubes lacking CD9P-1 or both CD9 and CD81 fuse with a higher frequency than normal myotubes. Our study unveils a mechanism preventing inappropriate fusion of myotubes that has an important role in the restitution of normal muscle architecture during muscle regeneration.
Collapse
|
368
|
Marino JS, Hinds TD, Potter RA, Ondrus E, Onion JL, Dowling A, McLoughlin TJ, Sanchez ER, Hill JW. Suppression of protein kinase C theta contributes to enhanced myogenesis in vitro via IRS1 and ERK1/2 phosphorylation. BMC Cell Biol 2013; 14:39. [PMID: 24053798 PMCID: PMC3848841 DOI: 10.1186/1471-2121-14-39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Differentiation and fusion of skeletal muscle myoblasts into multi-nucleated myotubes is required for neonatal development and regeneration in adult skeletal muscle. Herein, we report novel findings that protein kinase C theta (PKCθ) regulates myoblast differentiation via phosphorylation of insulin receptor substrate-1 and ERK1/2. Results In this study, PKCθ knockdown (PKCθshRNA) myotubes had reduced inhibitory insulin receptor substrate-1 ser1095 phosphorylation, enhanced myoblast differentiation and cell fusion, and increased rates of protein synthesis as determined by [3H] phenylalanine incorporation. Phosphorylation of insulin receptor substrate-1 ser632/635 and extracellular signal-regulated kinase1/2 (ERK1/2) was increased in PKCθshRNA cells, with no change in ERK5 phosphorylation, highlighting a PKCθ-regulated myogenic pathway. Inhibition of PI3-kinase prevented cell differentiation and fusion in control cells, which was attenuated in PKCθshRNA cells. Thus, with reduced PKCθ, differentiation and fusion occur in the absence of PI3-kinase activity. Inhibition of the ERK kinase, MEK1/2, impaired differentiation and cell fusion in control cells. Differentiation was preserved in PKCθshRNA cells treated with a MEK1/2 inhibitor, although cell fusion was blunted, indicating PKCθ regulates differentiation via IRS1 and ERK1/2, and this occurs independently of MEK1/2 activation. Conclusion Cellular signaling regulating the myogenic program and protein synthesis are complex and intertwined. These studies suggest that PKCθ regulates myogenic and protein synthetic signaling via the modulation of IRS1and ERK1/2 phosphorylation. Myotubes lacking PKCθ had increased rates of protein synthesis and enhanced myotube development despite reduced activation of the canonical anabolic-signaling pathway. Further investigation of PKCθ regulated signaling may reveal important interactions regulating skeletal muscle health in an insulin resistant state.
Collapse
Affiliation(s)
- Joseph S Marino
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
369
|
A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci Rep 2013; 3:1462. [PMID: 23492904 PMCID: PMC3598002 DOI: 10.1038/srep01462] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/28/2013] [Indexed: 11/30/2022] Open
Abstract
While common in viral infections and neoplasia, spontaneous cell-cell fusion, or syncytialization, is quite restricted in healthy tissues. Such fusion is essential to human placental development, where interactions between trophoblast-specific human endogenous retroviral (HERV) envelope proteins, called syncytins, and their widely-distributed cell surface receptors are centrally involved. We have identified the first host cell-encoded protein that inhibits cell fusion in mammals. Like the syncytins, this protein, called suppressyn, is HERV-derived, placenta-specific and well-conserved over simian evolution. In vitro, suppressyn binds to the syn1 receptor and inhibits syn1-, but not syn2-mediated trophoblast syncytialization. Suppressyn knock-down promotes cell-cell fusion in trophoblast cells and cell-associated and secreted suppressyn binds to the syn1 receptor, ASCT2. Identification of the first host cell-encoded inhibitor of mammalian cell fusion may encourage improved understanding of cell fusion mechanisms, of placental morphogenesis and of diseases resulting from abnormal cell fusion.
Collapse
|
370
|
Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin. PLoS One 2013; 8:e73231. [PMID: 24019912 PMCID: PMC3760906 DOI: 10.1371/journal.pone.0073231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.
Collapse
|
371
|
Durcan PJ, Al-Shanti N, Stewart CE. Identification and characterization of novel Kirrel isoform during myogenesis. Physiol Rep 2013; 1:e00044. [PMID: 24303129 PMCID: PMC3835000 DOI: 10.1002/phy2.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022] Open
Abstract
Somatic cell fusion is an essential component of skeletal muscle development and growth and repair from injury. Additional cell types such as trophoblasts and osteoclasts also require somatic cell fusion events to perform their physiological functions. Currently we have rudimentary knowledge on molecular mechanisms regulating somatic cell fusion events in mammals. We therefore investigated during in vitro murine myogenesis a mammalian homolog, Kirrel, of the Drosophila Melanogaster genes Roughest (Rst) and Kin of Irre (Kirre) which regulate somatic muscle cell fusion during embryonic development. Our results demonstrate the presence of a novel murine Kirrel isoform containing a truncated cytoplasmic domain which we term Kirrel B. Protein expression levels of Kirrel B are inverse to the occurrence of cell fusion events during in vitro myogenesis which is in stark contrast to the expression profile of Rst and Kirre during myogenesis in Drosophila. Furthermore, chemical inhibition of cell fusion confirmed the inverse expression pattern of Kirrel B protein levels in relation to cell fusion events. The discovery of a novel Kirrel B protein isoform during myogenesis highlights the need for more thorough investigation of the similarities and potential differences between fly and mammals with regards to the muscle cell fusion process.
Collapse
Affiliation(s)
- Peter J Durcan
- Department of Physiological Sciences, Stellenbosch University Merriman avenue, Stellenbosch, 7600, Western Cape, South Africa ; Institute for Biomedical Research into Human movement, School of Healthcare Science, Manchester Metropolitan University Oxford road, M1 5GD, Manchester, U.K
| | | | | |
Collapse
|
372
|
Millay DP, O'Rourke JR, Sutherland LB, Bezprozvannaya S, Shelton JM, Bassel-Duby R, Olson EN. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 2013; 499:301-5. [PMID: 23868259 PMCID: PMC3739301 DOI: 10.1038/nature12343] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022]
Abstract
Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.
Collapse
Affiliation(s)
- Douglas P Millay
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
373
|
Simionescu-Bankston A, Leoni G, Wang Y, Pham PP, Ramalingam A, DuHadaway JB, Faundez V, Nusrat A, Prendergast GC, Pavlath GK. The N-BAR domain protein, Bin3, regulates Rac1- and Cdc42-dependent processes in myogenesis. Dev Biol 2013; 382:160-71. [PMID: 23872330 DOI: 10.1016/j.ydbio.2013.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022]
Abstract
Actin dynamics are necessary at multiple steps in the formation of multinucleated muscle cells. BAR domain proteins can regulate actin dynamics in several cell types, but have been little studied in skeletal muscle. Here, we identify novel functions for the N-BAR domain protein, Bridging integrator 3 (Bin3), during myogenesis in mice. Bin3 plays an important role in regulating myofiber size in vitro and in vivo. During early myogenesis, Bin3 promotes migration of differentiated muscle cells, where it colocalizes with F-actin in lamellipodia. In addition, Bin3 forms a complex with Rac1 and Cdc42, Rho GTPases involved in actin polymerization, which are known to be essential for myotube formation. Importantly, a Bin3-dependent pathway is a major regulator of Rac1 and Cdc42 activity in differentiated muscle cells. Overall, these data classify N-BAR domain proteins as novel regulators of actin-dependent processes in myogenesis, and further implicate BAR domain proteins in muscle growth and repair.
Collapse
Affiliation(s)
- Adriana Simionescu-Bankston
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Pandit SK, Westendorp B, de Bruin A. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol 2013; 23:556-66. [PMID: 23849927 DOI: 10.1016/j.tcb.2013.06.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/26/2023]
Abstract
Programmed polyploidization occurs in all mammalian species during development and aging in selected tissues, but the biological properties of polyploid cells remain obscure. Spontaneous polyploidization arises during stress and has been observed in a variety of pathological conditions, such as cancer and degenerative diseases. A major challenge in the field is to test the predicted functions of polyploidization in vivo. However, recent genetic mouse models with diminished polyploidization phenotypes represent novel, powerful tools to unravel the biological function of polyploidization. Contrary to a longstanding hypothesis, polyploidization appears to not be required for differentiation and has no obvious impact on proliferation. Instead, polyploidization leads to increased cell size and genetic diversity, which could promote better adaptation to chronic injury or stress. We discuss here the consequences of reducing polyploidization in mice and review which stress responses and molecular signals trigger polyploidization during development and disease.
Collapse
Affiliation(s)
- Shusil K Pandit
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | |
Collapse
|
375
|
Inoue N, Hamada D, Kamikubo H, Hirata K, Kataoka M, Yamamoto M, Ikawa M, Okabe M, Hagihara Y. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development 2013; 140:3221-9. [PMID: 23824580 DOI: 10.1242/dev.094854] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the membrane fusion of spermatozoon and egg cells is the central event of fertilization, the underlying molecular mechanism remains virtually unknown. Gene disruption studies have showed that IZUMO1 on spermatozoon and CD9 on oocyte are essential transmembrane proteins in sperm-egg fusion. In this study, we dissected IZUMO1 protein to determine the domains that were required for the function of sperm-egg fusion. We found that a fragment of the N terminus (Asp5 to Leu113) interacts with fertilization inhibitory antibodies. It also binds to the egg surface and effectively inhibits fusion in vitro. We named this fragment 'IZUMO1 putative functional fragment (IZUMO1PFF)'. Surprisingly, IZUMO1PPF still maintains binding ability on the egg surface of Cd9(-/-) eggs. A series of biophysical measurements using circular dichroism, sedimentation equilibrium and small angle X-ray scattering revealed that IZUMO1PFF is composed of an N-terminal unfolded structure and a C-terminal ellipsoidal helix dimer. Egg binding and fusion inhibition were not observed in the IZUMO1PFF derivative, which was incapable of helix formation. These findings suggest that the formation of a helical dimer at the N-terminal region of IZUMO1 is required for its function. Cos-7 cells expressing the whole IZUMO1 molecule bound to eggs, and IZUMO1 accumulated at the interface between the two cells, but fusion was not observed. These observations suggest that IZUMO1 alone cannot promote sperm-egg membrane fusion, but it works as a factor that is related to the cellular surface interaction, such as the tethering of the membranes by a helical region corresponding to IZUMO1PFF-core.
Collapse
Affiliation(s)
- Naokazu Inoue
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Malena A, Pennuto M, Tezze C, Querin G, D’Ascenzo C, Silani V, Cenacchi G, Scaramozza A, Romito S, Morandi L, Pegoraro E, Russell AP, Sorarù G, Vergani L. Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathol 2013; 126:109-21. [PMID: 23644820 DOI: 10.1007/s00401-013-1122-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 01/05/2023]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disease caused by expansion of a polyglutamine (polyQ) tract in the androgen receptor (AR). SBMA is triggered by the interaction between polyQ-AR and its natural ligands, testosterone and dihydrotestosterone (DHT). SBMA is characterized by the loss of lower motor neurons and skeletal muscle fasciculations, weakness, and atrophy. To test the hypothesis that the interaction between polyQ-AR and androgens exerts cell-autonomous toxicity in skeletal muscle, we characterized the process of myogenesis and polyQ-AR expression in DHT-treated satellite cells obtained from SBMA patients and age-matched healthy control subjects. Treatment with androgens increased the size and number of myonuclei in myotubes from control subjects, but not from SBMA patients. Myotubes from SBMA patients had a reduced number of nuclei, suggesting impaired myotube fusion and altered contractile structures. The lack of anabolic effects of androgens on myotubes from SBMA patients was not due to defects in myoblast proliferation, differentiation or apoptosis. DHT treatment of myotubes from SBMA patients increased nuclear accumulation of polyQ-AR and decreased the expression of interleukin-4 (IL-4) when compared to myotubes from control subjects. Following DHT treatment, exposure of myotubes from SBMA patients with IL-4 treatment rescued myonuclear number and size to control levels. This supports the hypothesis that androgens alter the fusion process in SBMA myogenesis. In conclusion, these results provide evidence of an androgen-dependent impairment of myogenesis in SBMA that could contribute to disease pathogenesis.
Collapse
|
377
|
Shimizu K, Sawasaki T. Nek5, a novel substrate for caspase-3, promotes skeletal muscle differentiation by up-regulating caspase activity. FEBS Lett 2013; 587:2219-25. [PMID: 23727203 DOI: 10.1016/j.febslet.2013.05.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/23/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
Accumulating evidence suggests that caspase-3-mediated cleavage of protein kinase could be a key event to regulate cell differentiation. In this study, we investigated the role of Nek5 kinase, identified as a novel substrate for caspase-3, in skeletal muscle differentiation. Up-regulation of Nek5 mRNA expression was accompanied by cell differentiation. Myotube formation was promoted in Nek5 expressing cells, and was conversely inhibited in Nek5 knockdown cells. Furthermore, we found that caspase-3 activity, an important factor for myogenic differentiation, was enhanced by Nek5 cleavage. Although caspase-3-cleaved Nek5 partially exerted a promyogenic effect, it tended to induce apoptotic cell death. In summary, our findings suggest that Nek5 promotes myogenic differentiation through up-regulation of caspase activity.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | | |
Collapse
|
378
|
Siegel AL, Gurevich DB, Currie PD. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. FEBS J 2013; 280:4074-88. [PMID: 23607511 DOI: 10.1111/febs.12300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type.
Collapse
Affiliation(s)
- Ashley L Siegel
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
379
|
Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013; 280:4230-50. [PMID: 23601051 DOI: 10.1111/febs.12294] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
The polyadenosine RNA binding protein polyadenylate-binding nuclear protein 1 (PABPN1) plays key roles in post-transcriptional processing of RNA. Although PABPN1 is ubiquitously expressed and presumably contributes to control of gene expression in all tissues, mutation of the PABPN1 gene causes the disease oculopharyngeal muscular dystrophy (OPMD), in which a limited set of skeletal muscles are affected. A major goal in the field of OPMD research is to understand why mutation of a ubiquitously expressed gene leads to a muscle-specific disease. PABPN1 plays a well-documented role in controlling the poly(A) tail length of RNA transcripts but new functions are emerging through studies that exploit a variety of unbiased screens as well as model organisms. This review addresses (a) the molecular function of PABPN1 incorporating recent findings that reveal novel cellular functions for PABPN1 and (b) the approaches that are being used to understand the molecular defects that stem from expression of mutant PABPN1. The long-term goal in this field of research is to understand the key molecular functions of PABPN1 in muscle as well as the mechanisms that underlie the pathological consequences of mutant PABPN1. Armed with this information, researchers can seek to develop therapeutic approaches to enhance the quality of life for patients afflicted with OPMD.
Collapse
Affiliation(s)
- Ayan Banerjee
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
380
|
Adhesion proteins--an impact on skeletal myoblast differentiation. PLoS One 2013; 8:e61760. [PMID: 23671573 PMCID: PMC3645998 DOI: 10.1371/journal.pone.0061760] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
Formation of mammalian skeletal muscle myofibers, that takes place during embryogenesis, muscle growth or regeneration, requires precise regulation of myoblast adhesion and fusion. There are few evidences showing that adhesion proteins play important role in both processes. To follow the function of these molecules in myoblast differentiation we analysed integrin alpha3, integrin beta1, ADAM12, CD9, CD81, M-cadherin, and VCAM-1 during muscle regeneration. We showed that increase in the expression of these proteins accompanies myoblast fusion and myotube formation in vivo. We also showed that during myoblast fusion in vitro integrin alpha3 associates with integrin beta1 and ADAM12, and also CD9 and CD81, but not with M-cadherin or VCAM-1. Moreover, we documented that experimental modification in the expression of integrin alpha3 lead to the modification of myoblast fusion in vitro. Underexpression of integrin alpha3 decreased myoblasts' ability to fuse. This phenomenon was not related to the modifications in the expression of other adhesion proteins, i.e. integrin beta1, CD9, CD81, ADAM12, M-cadherin, or VCAM-1. Apparently, aberrant expression only of one partner of multiprotein adhesion complexes necessary for myoblast fusion, in this case integrin alpha3, prevents its proper function. Summarizing, we demonstrated the importance of analysed adhesion proteins in myoblast fusion both in vivo and in vitro.
Collapse
|
381
|
Rudolf A, Hübinger C, Hüsken K, Vogt A, Rebscher N, Onel SF, Renkawitz-Pohl R, Hassel M. The Hydra FGFR, Kringelchen, partially replaces the Drosophila Heartless FGFR. Dev Genes Evol 2013; 223:159-69. [PMID: 23111653 DOI: 10.1007/s00427-012-0424-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Fibroblast growth factor receptors (FGFR) are highly conserved receptor tyrosine kinases, and evolved early in metazoan evolution. In order to investigate their functional conservation, we asked whether the Kringelchen FGFR in the freshwater polyp Hydra vulgaris, is able to functionally replace FGFR in fly embryos. In Drosophila, two endogenous FGFR, Breathless (Btl) and Heartless (Htl), ensure formation of the tracheal system and mesodermal cell migration as well as formation of the heart. Using UAS-kringelchen-5xmyc transgenic flies and targeted expression, we show that Kringelchen is integrated correctly into the cell membrane of mesodermal and tracheal cells in Drosophila. Nevertheless, Kringelchen expression driven in tracheal cells failed to rescue the btl (LG19) mutant. The Hydra FGFR was able to substitute for Heartless in the htl (AB42) null mutant; however, this occurred only during early mesodermal cell migration. Our data provide evidence for functional conservation of this early-diverged FGFR across these distantly related phyla, but also selectivity for the Htl FGFR in the Drosophila system.
Collapse
Affiliation(s)
- Anja Rudolf
- Faculty of Biology, Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
382
|
|
383
|
Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 2013; 497:263-7. [PMID: 23615608 PMCID: PMC3773542 DOI: 10.1038/nature12135] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 03/25/2013] [Indexed: 02/07/2023]
Abstract
Skeletal muscle arises from the fusion of precursor myoblasts into multinucleated myofibers1,2. While conserved transcription factors and signaling proteins involved in myogenesis have been identified, upstream regulators are less well understood. Here, we report an unexpected discovery that the membrane protein BAI1, previously linked to recognition of apoptotic cells by phagocytes3, promotes myoblast fusion. Endogenous BAI1 expression increased during myoblast fusion, and BAI1 overexpression enhanced myoblast fusion via signaling through ELMO/Dock180/Rac1 proteins4. During myoblast fusion, a fraction of myoblasts underwent apoptosis and exposed phosphatidylserine (PtdSer), an established ligand for BAI13. Blocking apoptosis potently impaired myoblast fusion, and adding back apoptotic myoblasts restored fusion. Furthermore, primary human myoblasts could be induced to form myotubes by adding apoptotic myoblasts, even under normal growth conditions. In vivo, myofibers from Bai1−/− mice are smaller than wild-type littermates. Muscle regeneration after injury was also impaired in Bai1−/− mice, highlighting a role for BAI1 in mammalian myogenesis. Collectively, these data identify signaling via the phosphatidylserine receptor BAI1 and apoptotic cells as novel promoters of myoblast fusion, with significant implications for muscle development and repair.
Collapse
|
384
|
Abstract
Myoblast fusion is a critical process that contributes to the growth of muscle during development and to the regeneration of myofibers upon injury. Myoblasts fuse with each other as well as with multinucleated myotubes to enlarge the myofiber. Initial studies demonstrated that myoblast fusion requires extracellular calcium and changes in cell membrane topography and cytoskeletal organization. More recent studies have identified several cell-surface and intracellular proteins that mediate myoblast fusion. Furthermore, emerging evidence suggests that myoblast fusion is also regulated by the activation of specific cell-signaling pathways that lead to the expression of genes whose products are essential for the fusion process and for modulating the activity of molecules that are involved in cytoskeletal rearrangement. Here, we review the roles of the major signaling pathways in mammalian myoblast fusion.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
385
|
Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013; 280:4294-314. [PMID: 23517348 DOI: 10.1111/febs.12253] [Citation(s) in RCA: 1028] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/11/2022]
Abstract
Skeletal muscle mass increases during postnatal development through a process of hypertrophy, i.e. enlargement of individual muscle fibers, and a similar process may be induced in adult skeletal muscle in response to contractile activity, such as strength exercise, and specific hormones, such as androgens and β-adrenergic agonists. Muscle hypertrophy occurs when the overall rates of protein synthesis exceed the rates of protein degradation. Two major signaling pathways control protein synthesis, the IGF1-Akt-mTOR pathway, acting as a positive regulator, and the myostatin-Smad2/3 pathway, acting as a negative regulator, and additional pathways have recently been identified. Proliferation and fusion of satellite cells, leading to an increase in the number of myonuclei, may also contribute to muscle growth during early but not late stages of postnatal development and in some forms of muscle hypertrophy in the adult. Muscle atrophy occurs when protein degradation rates exceed protein synthesis, and may be induced in adult skeletal muscle in a variety of conditions, including starvation, denervation, cancer cachexia, heart failure and aging. Two major protein degradation pathways, the proteasomal and the autophagic-lysosomal pathways, are activated during muscle atrophy and variably contribute to the loss of muscle mass. These pathways involve a variety of atrophy-related genes or atrogenes, which are controlled by specific transcription factors, such as FoxO3, which is negatively regulated by Akt, and NF-κB, which is activated by inflammatory cytokines.
Collapse
|
386
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
387
|
Shilagardi K, Li S, Luo F, Marikar F, Duan R, Jin P, Kim JH, Murnen K, Chen EH. Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 2013; 340:359-63. [PMID: 23470732 DOI: 10.1126/science.1234781] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell-cell fusion is critical for the conception, development, and physiology of multicellular organisms. Although cellular fusogenic proteins and the actin cytoskeleton are implicated in cell-cell fusion, it remains unclear whether and how they coordinate to promote plasma membrane fusion. We reconstituted a high-efficiency, inducible cell fusion culture system in the normally nonfusing Drosophila S2R+ cells. Both fusogenic proteins and actin cytoskeletal rearrangements were necessary for cell fusion, and in combination they were sufficient to impart fusion competence. Localized actin polymerization triggered by specific cell-cell or cell-matrix adhesion molecules propelled invasive cell membrane protrusions, which in turn promoted fusogenic protein engagement and plasma membrane fusion. This de novo cell fusion culture system reveals a general role for actin-propelled invasive membrane protrusions in driving fusogenic protein engagement during cell-cell fusion.
Collapse
Affiliation(s)
- Khurts Shilagardi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Abstract
Many cells are able to orient themselves in a non-uniform environment by responding to localized cues. This leads to a polarized cellular response, where the cell can either grow or move towards the cue source. Fungal haploid cells secrete pheromones to signal mating, and respond by growing a mating projection towards a potential mate. Upon contact of the two partner cells, these fuse to form a diploid zygote. In this review, we present our current knowledge on the processes of mating signalling, pheromone-dependent polarized growth and cell fusion in Saccharomyces cerevisiae and Schizosaccharomyces pombe, two highly divergent ascomycete yeast models. While the global architecture of the mating response is very similar between these two species, they differ significantly both in their mating physiologies and in the molecular connections between pheromone perception and downstream responses. The use of both yeast models helps enlighten both conserved solutions and species-specific adaptations to a general biological problem.
Collapse
Affiliation(s)
- Laura Merlini
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | | |
Collapse
|
389
|
Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, Wang H, Wong M. Genetic basis of cell-cell fusion mechanisms. Trends Genet 2013; 29:427-37. [PMID: 23453622 DOI: 10.1016/j.tig.2013.01.011] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 01/15/2013] [Accepted: 01/25/2013] [Indexed: 12/22/2022]
Abstract
Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes and, in multicellular organisms, it is a strategy to sculpt organs, such as muscle, bone, and placenta. Moreover, this mechanism has been implicated in pathological conditions, such as infection and cancer. Studies of genetic model organisms have uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: competence (cell induction and differentiation); commitment (cell determination, migration, and adhesion); and cell fusion (membrane merging and cytoplasmic mixing). Recent work has led to the discovery of fusogens, which are cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which they merge membranes.
Collapse
Affiliation(s)
- Pablo S Aguilar
- Cellular Membranes Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
390
|
Saclier M, Yacoub-Youssef H, Mackey AL, Arnold L, Ardjoune H, Magnan M, Sailhan F, Chelly J, Pavlath GK, Mounier R, Kjaer M, Chazaud B. Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration. Stem Cells 2013; 31:384-96. [DOI: 10.1002/stem.1288] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/28/2012] [Indexed: 12/24/2022]
|
391
|
Duncan AW. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin Cell Dev Biol 2013; 24:347-56. [PMID: 23333793 DOI: 10.1016/j.semcdb.2013.01.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/09/2013] [Indexed: 12/30/2022]
Abstract
Polyploidy has been described in the liver for over 100 years. The frequency of polyploid hepatocytes varies by age and species, but up to 90% of mouse hepatocytes and approximately 50% of human hepatocytes are polyploid. In addition to alterations in the entire complement of chromosomes, variations in chromosome copy number have been recently described. Aneuploidy in the liver is pervasive, affecting 60% of hepatocytes in mice and 30-90% of hepatocytes in humans. Polyploidy and aneuploidy in the liver are closely linked, and the ploidy conveyor model describes this relationship. Diploid hepatocytes undergo failed cytokinesis to generate polyploid cells. Proliferating polyploid hepatocytes, which form multipolar spindles during cell division, generate reduced ploidy progeny (e.g., diploid hepatocytes from tetraploids or octaploids) and/or aneuploid daughters. New evidence suggests that random hepatic aneuploidy can promote adaptation to liver injury. For instance, in response to chronic liver damage, subsets of aneuploid hepatocytes that are differentially resistant to the injury remain healthy, regenerate the liver and restore function. Future work is required to elucidate the mechanisms regulating dynamic chromosome changes in the liver and to understand how these processes impact normal and abnormal liver function.
Collapse
Affiliation(s)
- Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, United States.
| |
Collapse
|
392
|
Leikina E, Melikov K, Sanyal S, Verma SK, Eun B, Gebert C, Pfeifer K, Lizunov VA, Kozlov MM, Chernomordik LV. Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. ACTA ACUST UNITED AC 2012; 200:109-23. [PMID: 23277424 PMCID: PMC3542790 DOI: 10.1083/jcb.201207012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Annexins A1 and A5 are important for initial lipid mixing, whereas subsequent stages of myoblast fusion depend on dynamin, phosphatidylinositol(4,5)bisphosphate, and cellular metabolism. Myoblast fusion into multinucleated myotubes is a crucial step in skeletal muscle development and regeneration. Here, we accumulated murine myoblasts at the ready-to-fuse stage by blocking formation of early fusion intermediates with lysophosphatidylcholine. Lifting the block allowed us to explore a largely synchronized fusion. We found that initial merger of two cell membranes detected as lipid mixing involved extracellular annexins A1 and A5 acting in a functionally redundant manner. Subsequent stages of myoblast fusion depended on dynamin activity, phosphatidylinositol(4,5)bisphosphate content, and cell metabolism. Uncoupling fusion from preceding stages of myogenesis will help in the analysis of the interplay between protein machines that initiate and complete cell unification and in the identification of additional protein players controlling different fusion stages.
Collapse
Affiliation(s)
- Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Gildor B, Schejter ED, Shilo BZ. Bidirectional Notch activation represses fusion competence in swarming adult Drosophila myoblasts. Development 2012; 139:4040-50. [PMID: 23048185 DOI: 10.1242/dev.077495] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A major aspect of indirect flight muscle formation during adult Drosophila myogenesis involves transition of a semi-differentiated and proliferating pool of myoblasts to a mature myoblast population, capable of fusing with nascent myotubes and generating mature muscle fibers. Here we examine the molecular genetic programs underlying these two phases of myoblast differentiation. We show that the cell adhesion proteins Dumbfounded (Duf) and Sticks and stones (Sns), together with their paralogs Roughest (Rst) and Hibris (Hbs), respectively, are required for adhesion of migrating myoblasts to myotubes and initiation of myoblast-myotube fusion. As myoblasts approach their myotube targets, they are maintained in a semi-differentiated state by continuous Notch activation, where each myoblast provides the ligand Delta to its neighbors. This unique form of bidirectional Notch activation is achieved by finely tuning the levels of the ligand and receptor. Activation of Notch signaling in myoblasts represses expression of key fusion elements such as Sns. Only upon reaching the vicinity of the myotubes does Notch signaling decay, leading to terminal differentiation of the myoblasts. The ensuing induction of proteins required for fusion enables myoblasts to fuse with the myotubes and give rise to subsequent muscle fiber growth.
Collapse
Affiliation(s)
- Boaz Gildor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
394
|
Bonn BR, Rudolf A, Hornbruch-Freitag C, Daum G, Kuckwa J, Kastl L, Buttgereit D, Renkawitz-Pohl R. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7. Exp Cell Res 2012; 319:402-16. [PMID: 23246571 DOI: 10.1016/j.yexcr.2012.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
Abstract
Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell-cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles.
Collapse
Affiliation(s)
- Bettina R Bonn
- Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Stupka N, Kintakas C, White JD, Fraser FW, Hanciu M, Aramaki-Hattori N, Martin S, Coles C, Collier F, Ward AC, Apte SS, McCulloch DR. Versican processing by a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion. J Biol Chem 2012; 288:1907-17. [PMID: 23233679 DOI: 10.1074/jbc.m112.429647] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle development and regeneration requires the fusion of myoblasts into multinucleated myotubes. Because the enzymatic proteolysis of a hyaluronan and versican-rich matrix by ADAMTS versicanases is required for developmental morphogenesis, we hypothesized that the clearance of versican may facilitate the fusion of myoblasts during myogenesis. Here, we used transgenic mice and an in vitro model of myoblast fusion, C2C12 cells, to determine a potential role for ADAMTS versicanases. Versican processing was observed during in vivo myogenesis at the time when myoblasts were fusing to form multinucleated myotubes. Relevant ADAMTS genes, chief among them Adamts5 and Adamts15, were expressed both in developing embryonic muscle and differentiating C2C12 cells. Reducing the levels of Adamts5 mRNA in vitro impaired myoblast fusion, which could be rescued with catalytically active but not the inactive forms of ADAMTS5 or ADAMTS15. The addition of inactive ADAMTS5, ADAMTS15, or full-length V1 versican effectively impaired myoblast fusion. Finally, the expansion of a hyaluronan and versican-rich matrix was observed upon reducing the levels of Adamts5 mRNA in myoblasts. These data indicate that these ADAMTS proteinases contribute to the formation of multinucleated myotubes such as is necessary for both skeletal muscle development and during regeneration, by remodeling a versican-rich pericellular matrix of myoblasts. Our study identifies a possible pathway to target for the improvement of myogenesis in a plethora of diseases including cancer cachexia, sarcopenia, and muscular dystrophy.
Collapse
Affiliation(s)
- Nicole Stupka
- School of Medicine and Molecular and Medical Research SRC, Deakin University, Geelong, Victoria 3216, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Satouh Y, Inoue N, Ikawa M, Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J Cell Sci 2012; 125:4985-90. [PMID: 22946049 DOI: 10.1242/jcs.100867] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Gene disruption experiments have proven that the acrosomal protein IZUMO1 is essential for sperm-egg fusion in the mouse. However, despite its predicted function, it is not expressed on the surface of ejaculated spermatozoa. Here, we report the dynamics of diffusion of IZUMO1 from the acrosomal membrane to the sperm surface at the time of the acrosome reaction, visualized using a fluorescent protein tag. IZUMO1 showed a tendency to localize in the equatorial segment of the sperm surface after the acrosome reaction. This region is considered to initiate fusion with the oolemma. The moment of sperm-egg fusion and the dynamic movements of proteins during fusion were also imaged live. Translocation of IZUMO1 during the fertilization process was clarified, and a fundamental mechanism in mammalian fertilization is postulated.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- World Premier International Immunology Frontier Research Center, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
397
|
Enwere EK, Holbrook J, Lejmi-Mrad R, Vineham J, Timusk K, Sivaraj B, Isaac M, Uehling D, Al-awar R, LaCasse E, Korneluk RG. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway. Sci Signal 2012; 5:ra75. [PMID: 23074266 DOI: 10.1126/scisignal.2003086] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The fusion of mononucleated muscle progenitor cells (myoblasts) into multinucleated muscle fibers is a critical aspect of muscle development and regeneration. We identified the noncanonical nuclear factor κB (NF-κB) pathway as a signaling axis that drives the recruitment of myoblasts into new muscle fibers. Loss of cellular inhibitor of apoptosis 1 (cIAP1) protein led to constitutive activation of the noncanonical NF-κB pathway and an increase in the number of nuclei per myotube. Knockdown of essential mediators of NF-κB signaling, such as p100, RelB, inhibitor of κB kinase α, and NF-κB-inducing kinase, attenuated myoblast fusion in wild-type myoblasts. In contrast, the extent of myoblast fusion was increased when the activity of the noncanonical NF-κB pathway was enhanced by increasing the abundance of p52 and RelB or decreasing the abundance of tumor necrosis factor (TNF) receptor-associated factor 3, an inhibitor of this pathway. Low concentrations of the cytokine TNF-like weak inducer of apoptosis (TWEAK), which preferentially activates the noncanonical NF-κB pathway, also increased myoblast fusion, without causing atrophy or impairing myogenesis. These results identify roles for TWEAK, cIAP1, and noncanonical NF-κB signaling in the regulation of myoblast fusion and highlight a role for cytokine signaling during adult skeletal myogenesis.
Collapse
Affiliation(s)
- Emeka K Enwere
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Park SY, Yun Y, Kim IS. CD36 is required for myoblast fusion during myogenic differentiation. Biochem Biophys Res Commun 2012; 427:705-10. [PMID: 23036201 DOI: 10.1016/j.bbrc.2012.09.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.
Collapse
Affiliation(s)
- Seung-Yoon Park
- Department of Biochemistry, College of Medicine, Dongguk University and Medical Institute of Dongguk University, Gyeongju 780-714, Republic of Korea
| | | | | |
Collapse
|
399
|
Susic-Jung L, Hornbruch-Freitag C, Kuckwa J, Rexer KH, Lammel U, Renkawitz-Pohl R. Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles develop during establishment of the male reproductive organs of Drosophila melanogaster. Dev Biol 2012; 370:86-97. [DOI: 10.1016/j.ydbio.2012.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/16/2022]
|
400
|
Duan R, Jin P, Luo F, Zhang G, Anderson N, Chen EH. Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo. ACTA ACUST UNITED AC 2012; 199:169-85. [PMID: 23007650 PMCID: PMC3461515 DOI: 10.1083/jcb.201204065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Group I p21-activated kinases organize actin filaments in myoblasts into dense foci, which promote podosome invasion and subsequent myoblast fusion. The p21-activated kinases (PAKs) play essential roles in diverse cellular processes and are required for cell proliferation, apoptosis, polarity establishment, migration, and cell shape changes. Here, we have identified a novel function for the group I PAKs in cell–cell fusion. We show that the two Drosophila group I PAKs, DPak3 and DPak1, have partially redundant functions in myoblast fusion in vivo, with DPak3 playing a major role. DPak3 is enriched at the site of fusion colocalizing with the F-actin focus within a podosome-like structure (PLS), and promotes actin filament assembly during PLS invasion. Although the small GTPase Rac is involved in DPak3 activation and recruitment to the PLS, the kinase activity of DPak3 is required for effective PLS invasion. We propose a model whereby group I PAKs act downstream of Rac to organize the actin filaments within the PLS into a dense focus, which in turn promotes PLS invasion and fusion pore initiation during myoblast fusion.
Collapse
Affiliation(s)
- Rui Duan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|