351
|
Booth DM, Joseph SK, Hajnóczky G. Subcellular ROS imaging methods: Relevance for the study of calcium signaling. Cell Calcium 2016; 60:65-73. [PMID: 27209367 DOI: 10.1016/j.ceca.2016.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Recent advances in genetically encoded fluorescent probes have dramatically increased the toolkit available for imaging the intracellular environment. Perhaps the biggest improvements have been made in sensing specific reactive oxygen species (ROS) and redox changes under physiological conditions. The new generation of probes may be targeted to a wide range of subcellular environments. By targeting such probes to compartments and organelle surfaces they may be exposed to environments, which support local signal transduction and regulation. The close apposition of the endoplasmic reticulum (ER) with mitochondria and other organelles forms such a local environment where Ca(2+) dynamics are greatly enhanced compared to the bulk cytosol. We describe here how newly developed genetically encoded redox indicators (GERIs) might be used to monitor ROS and probe their interaction with Ca(2+) at both global and local level.
Collapse
Affiliation(s)
- David M Booth
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Suresh K Joseph
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
352
|
Sanz A. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1116-1126. [PMID: 26997500 DOI: 10.1016/j.bbabio.2016.03.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Testing the predictions of the Mitochondrial Free Radical Theory of Ageing (MFRTA) has provided a deep understanding of the role of reactive oxygen species (ROS) and mitochondria in the aging process. However those data, which support MFRTA are in the majority correlative (e.g. increasing oxidative damage with age). In contrast the majority of direct experimental data contradict MFRTA (e.g. changes in ROS levels do not alter longevity as expected). Unfortunately, in the past, ROS measurements have mainly been performed using isolated mitochondria, a method which is prone to experimental artifacts and does not reflect the complexity of the in vivo process. New technology to study different ROS (e.g. superoxide or hydrogen peroxide) in vivo is now available; these new methods combined with state-of-the-art genetic engineering technology will allow a deeper interrogation of, where, when and how free radicals affect aging and pathological processes. In fact data that combine these new approaches, indicate that boosting mitochondrial ROS in lower animals is a way to extend both healthy and maximum lifespan. In this review, I discuss the latest literature focused on the role of mitochondrial ROS in aging, and how these new discoveries are helping to better understand the role of mitochondria in health and disease. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, University of Newcastle, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
353
|
Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects. PLoS One 2016; 11:e0150357. [PMID: 26959487 PMCID: PMC4784912 DOI: 10.1371/journal.pone.0150357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
Proper function of endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs) have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patient-derived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IP3R1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2) were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patient-derived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca2+ homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications.
Collapse
|
354
|
Rieusset J, Fauconnier J, Paillard M, Belaidi E, Tubbs E, Chauvin MA, Durand A, Bravard A, Teixeira G, Bartosch B, Michelet M, Theurey P, Vial G, Demion M, Blond E, Zoulim F, Gomez L, Vidal H, Lacampagne A, Ovize M. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 2016; 59:614-23. [PMID: 26660890 DOI: 10.1007/s00125-015-3829-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022]
Abstract
AIMS/HYPOTHESIS Mitochondria-associated endoplasmic reticulum membranes (MAMs) are regions of the endoplasmic reticulum (ER) tethered to mitochondria and controlling calcium (Ca(2+)) transfer between both organelles through the complex formed between the voltage-dependent anion channel, glucose-regulated protein 75 and inositol 1,4,5-triphosphate receptor (IP3R). We recently identified cyclophilin D (CYPD) as a new partner of this complex and demonstrated a new role for MAMs in the control of insulin's action in the liver. Here, we report on the mechanisms by which disruption of MAM integrity induces hepatic insulin resistance in CypD (also known as Ppif)-knockout (KO) mice. METHODS We used either in vitro pharmacological and genetic inhibition of CYPD in HuH7 cells or in vivo loss of CYPD in mice to investigate ER-mitochondria interactions, inter-organelle Ca(2+) exchange, organelle homeostasis and insulin action. RESULTS Pharmacological and genetic inhibition of CYPD concomitantly reduced ER-mitochondria interactions, inhibited inter-organelle Ca(2+) exchange, induced ER stress and altered insulin signalling in HuH7 cells. In addition, histamine-stimulated Ca(2+) transfer from ER to mitochondria was blunted in isolated hepatocytes of CypD-KO mice and this was associated with an increase in ER calcium store. Interestingly, disruption of inter-organelle Ca(2+) transfer was associated with ER stress, mitochondrial dysfunction, lipid accumulation, activation of c-Jun N-terminal kinase (JNK) and protein kinase C (PKC)ε and insulin resistance in liver of CypD-KO mice. Finally, CYPD-related alterations of insulin signalling were mediated by activation of PKCε rather than JNK in HuH7 cells. CONCLUSIONS/INTERPRETATION Disruption of IP3R-mediated Ca(2+) signalling in the liver of CypD-KO mice leads to hepatic insulin resistance through disruption of organelle interaction and function, increase in lipid accumulation and activation of PKCε. Modulation of ER-mitochondria Ca(2+) exchange may thus provide an exciting new avenue for treating hepatic insulin resistance.
Collapse
Affiliation(s)
- Jennifer Rieusset
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France.
| | - Jeremy Fauconnier
- Inserm U1046-CNRS UMR-9214, PhyMedExp, Université Montpellier, Montpellier, France
| | - Melanie Paillard
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Elise Belaidi
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Emily Tubbs
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Marie-Agnès Chauvin
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Annie Durand
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Amélie Bravard
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Geoffrey Teixeira
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Birke Bartosch
- Inserm UMR-1052, Centre de recherche en Cancérologie de Lyon, Université Lyon 1, Lyon, France
| | - Maud Michelet
- Inserm UMR-1052, Centre de recherche en Cancérologie de Lyon, Université Lyon 1, Lyon, France
| | - Pierre Theurey
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Guillaume Vial
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Marie Demion
- Inserm U1046-CNRS UMR-9214, PhyMedExp, Université Montpellier, Montpellier, France
| | - Emilie Blond
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
- Hospices Civils de Lyon, Lyon, France
| | - Fabien Zoulim
- Inserm UMR-1052, Centre de recherche en Cancérologie de Lyon, Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Ludovic Gomez
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Hubert Vidal
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
| | - Alain Lacampagne
- Inserm U1046-CNRS UMR-9214, PhyMedExp, Université Montpellier, Montpellier, France
| | - Michel Ovize
- Inserm UMR-1060, Laboratoire CarMeN, Université Lyon 1, 165 chemin du grand Revoyet, BP12, 69921, Oullins cedex, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
355
|
Arbor SC, LaFontaine M, Cumbay M. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:5-21. [PMID: 27505013 PMCID: PMC4797837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Amyloid beta (Aβ), the hallmark of Alzheimer's Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review.
Collapse
Affiliation(s)
- Sage C. Arbor
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| | - Mike LaFontaine
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| | - Medhane Cumbay
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| |
Collapse
|
356
|
Feng J, Lü S, Ding Y, Zheng M, Wang X. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration. Protein Cell 2016; 7:391-402. [PMID: 26856873 PMCID: PMC4887324 DOI: 10.1007/s13238-016-0245-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 01/30/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.
Collapse
Affiliation(s)
- Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Silin Lü
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Yanhong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
357
|
Qi H, Shuai J. Alzheimer's disease via enhanced calcium signaling caused by the decrease of endoplasmic reticulum-mitochondrial distance. Med Hypotheses 2016; 89:28-31. [PMID: 26968904 DOI: 10.1016/j.mehy.2016.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
It has long been recognized that Ca(2+) dysregulation is relevant to the initiation of Alzheimer's disease (AD), and most recent works have suggested that increased cross-talk between endoplasmic reticulum (ER) and mitochondria plays an important role in the pathogenesis of the disease. However, the detailed mechanism involved has not been fully elucidated. Owing to its importance in the regulation of Ca(2+) signaling, ER-mitochondrial distance in the neurons is tightly controlled in the physiological conditions. When the distance is decreased, Ca(2+) overload occurs both in the cytosol and mitochondria. The cytosolic Ca(2+) overload can (1) hyperactivate Ca(2+)-dependent enzymes, which in turn regulate activities of pro-apoptotic BCL-2 family proteins, causing mitochondrial outer membrane permeabilization and thereby resulting in the release of cytochrome c to activate caspase-3; (2) indirectly activate caspase-3 through the activation of caspase-12; and (3) promote the production and aggregation of β-amyloid. The three pathways eventually trigger neuronal apoptotic cell death. The mitochondrial Ca(2+) overload can lead to increased generation of reactive oxygen species, inducing the opening of the mitochondrial permeability transition pore and ultimately causing neuronal apoptotic and necrotic cell death. The resultant death of neurons which are responsible for memory and cognition would contribute to the pathogenesis of AD. Therefore, we propose that the reduction in the distance between ER and mitochondria may be implicated in AD pathology by enhanced Ca(2+) signaling, which provides a more complete picture of the Ca(2+) hypothesis of AD.
Collapse
Affiliation(s)
- Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, PR China.
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, PR China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
358
|
Vannuvel K, Van Steenbrugge M, Demazy C, Ninane N, Fattaccioli A, Fransolet M, Renard P, Raes M, Arnould T. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population. J Cell Physiol 2016; 231:1913-31. [PMID: 26680008 DOI: 10.1002/jcp.25292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Van Steenbrugge
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Catherine Demazy
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Noëlle Ninane
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
359
|
Plácido AI, Pereira CMF, Correira SC, Carvalho C, Oliveira CR, Moreira PI. Phosphatase 2A Inhibition Affects Endoplasmic Reticulum and Mitochondria Homeostasis Via Cytoskeletal Alterations in Brain Endothelial Cells. Mol Neurobiol 2016; 54:154-168. [DOI: 10.1007/s12035-015-9640-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
|
360
|
Roles of calcium and Mitochondria-Associated Membranes in the development of obesity and diabetes. MEDICINA UNIVERSITARIA 2016. [DOI: 10.1016/j.rmu.2015.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
361
|
Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B. Research Advances on Pathways of Nickel-Induced Apoptosis. Int J Mol Sci 2015; 17:E10. [PMID: 26703593 PMCID: PMC4730257 DOI: 10.3390/ijms17010010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lian Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
362
|
Broncel M, Serwa RA, Bunney TD, Katan M, Tate EW. Global Profiling of Huntingtin-associated protein E (HYPE)-Mediated AMPylation through a Chemical Proteomic Approach. Mol Cell Proteomics 2015; 15:715-25. [PMID: 26604261 DOI: 10.1074/mcp.o115.054429] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 01/31/2023] Open
Abstract
AMPylation of mammalian small GTPases by bacterial virulence factors can be a key step in bacterial infection of host cells, and constitutes a potential drug target. This posttranslational modification also exists in eukaryotes, and AMP transferase activity was recently assigned to HYPE Filamentation induced by cyclic AMP domain containing protein (FICD) protein, which is conserved from Caenorhabditis elegans to humans. In contrast to bacterial AMP transferases, only a small number of HYPE substrates have been identified by immunoprecipitation and mass spectrometry approaches, and the full range of targets is yet to be determined in mammalian cells. We describe here the first example of global chemoproteomic screening and substrate validation for HYPE-mediated AMPylation in mammalian cell lysate. Through quantitative mass-spectrometry-based proteomics coupled with novel chemoproteomic tools providing MS/MS evidence of AMP modification, we identified a total of 25 AMPylated proteins, including the previously validated substrate endoplasmic reticulum (ER) chaperone BiP (HSPA5), and also novel substrates involved in pathways of gene expression, ATP biosynthesis, and maintenance of the cytoskeleton. This dataset represents the largest library of AMPylated human proteins reported to date and a foundation for substrate-specific investigations that can ultimately decipher the complex biological networks involved in eukaryotic AMPylation.
Collapse
Affiliation(s)
- Malgorzata Broncel
- From the ‡Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK; ¶Current address: The Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK
| | - Remigiusz A Serwa
- From the ‡Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Tom D Bunney
- §Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Matilda Katan
- §Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Edward W Tate
- From the ‡Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
| |
Collapse
|
363
|
Richter M, Vidovic N, Honrath B, Mahavadi P, Dodel R, Dolga AM, Culmsee C. Activation of SK2 channels preserves ER Ca²⁺ homeostasis and protects against ER stress-induced cell death. Cell Death Differ 2015; 23:814-27. [PMID: 26586570 DOI: 10.1038/cdd.2015.146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 01/24/2023] Open
Abstract
Alteration of endoplasmic reticulum (ER) Ca(2+) homeostasis leads to excessive cytosolic Ca(2+) accumulation and delayed neuronal cell death in acute and chronic neurodegenerative disorders. While our recent studies established a protective role for SK channels against excessive intracellular Ca(2+) accumulation, their functional role in the ER has not been elucidated yet. We show here that SK2 channels are present in ER membranes of neuronal HT-22 cells, and that positive pharmacological modulation of SK2 channels with CyPPA protects against cell death induced by the ER stressors brefeldin A and tunicamycin. Calcium imaging of HT-22 neurons revealed that elevated cytosolic Ca(2+) levels and decreased ER Ca(2+) load during sustained ER stress could be largely prevented by SK2 channel activation. Interestingly, SK2 channel activation reduced the amount of the unfolded protein response transcription factor ATF4, but further enhanced the induction of CHOP. Using siRNA approaches we confirmed a detrimental role for ATF4 in ER stress, whereas CHOP regulation was dispensable for both, brefeldin A toxicity and CyPPA-mediated protection. Cell death induced by blocking Ca(2+) influx into the ER with the SERCA inhibitor thapsigargin was not prevented by CyPPA. Blocking the K(+) efflux via K(+)/H(+) exchangers with quinine inhibited CyPPA-mediated neuroprotection, suggesting an essential role of proton uptake and K(+) release in the SK channel-mediated neuroprotection. Our data demonstrate that ER SK2 channel activation preserves ER Ca(2+) uptake and retention which determines cell survival in conditions where sustained ER stress contributes to progressive neuronal death.
Collapse
Affiliation(s)
- M Richter
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - N Vidovic
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - B Honrath
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - P Mahavadi
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - R Dodel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - A M Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Faculty of Mathematics and Natural Sciences, Molecular Pharmacology - Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - C Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
364
|
Xu S, Nam SM, Kim JH, Das R, Choi SK, Nguyen TT, Quan X, Choi SJ, Chung CH, Lee EY, Lee IK, Wiederkehr A, Wollheim CB, Cha SK, Park KS. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis 2015; 6:e1976. [PMID: 26583319 PMCID: PMC4670935 DOI: 10.1038/cddis.2015.331] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Abstract
Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca2+ increase due to depletion of luminal ER Ca2+. Palmitate-induced ER Ca2+ depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca2+ pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca2+ depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca2+ loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca2+ depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA leads to mitochondrial dysfunction and ER Ca2+ depletion through FAT/CD36 and PLC signaling, possibly contributing to podocyte injury.
Collapse
Affiliation(s)
- S Xu
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - S M Nam
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Daejeon Sun Hospital, Daejeon, Korea
| | - J-H Kim
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - R Das
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - S-K Choi
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - T T Nguyen
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - X Quan
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - S J Choi
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - C H Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - E Y Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - I-K Lee
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - A Wiederkehr
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - C B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - S-K Cha
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - K-S Park
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
365
|
Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies – potential role of ER stress pathways. Curr Opin Rheumatol 2015; 27:580-5. [DOI: 10.1097/bor.0000000000000212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
366
|
Borkham-Kamphorst E, Steffen BT, Van de Leur E, Haas U, Tihaa L, Friedman SL, Weiskirchen R. CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis. Cell Signal 2015; 28:34-42. [PMID: 26515130 DOI: 10.1016/j.cellsig.2015.10.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
Abstract
CCN1/CYR61 is a matricellular protein of the CCN family, comprising six secreted proteins specifically associated with the extracellular matrix (ECM). CCN1 acts as an enhancer of the cutaneous wound healing process by preventing hypertrophic scar formation through induction of myofibroblast senescence. In liver fibrosis, the senescent cells are primarily derived from activated hepatic stellate cells (HSC) that initially proliferate in response to liver damage and are the major source of ECM. We investigate here the possible use of CCN1 as a senescence inducer to attenuate liver fibrogenesis by means of adenoviral gene transfer in primary HSC, myofibroblasts (MFB) and immortalized HSC lines (i.e. LX-2, CFSC-2G). Infection with Ad5-CMV-CCN1 induced large amounts of CCN1 protein in all these cells, resulting in an overload of the endoplasmic reticulum (ER) and in a compensatory unfolded protein response (UPR). The UPR resulted in upregulation of ER chaperones including BIP/Grp78, Grp94 and led to an activation of IRE1α as evidenced by spliced XBP1 mRNA with IRE1α-induced JNK phosphorylation. The UPR arm PERK and eIF2a was phosphorylated, combined with significant CHOP upregulation. Ad5-CMV-CCN1 induced HSC apoptosis that was evident by proteolytic cleavage of caspase-12, caspase-9 and the executor caspase-3 and positive TUNEL stain. Remarkably, Ad5-CMV-CCN1 effectively reduced collagen type I mRNA expression and protein. We conclude that the matricellular protein CCN1 gene transfer induces HSC apoptosis through ER stress and UPR.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany.
| | - Bettina T Steffen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany
| | - Ute Haas
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany
| | - Lidia Tihaa
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany.
| |
Collapse
|
367
|
A novel microtubule de-stabilizing complementarity-determining region C36L1 peptide displays antitumor activity against melanoma in vitro and in vivo. Sci Rep 2015; 5:14310. [PMID: 26391685 PMCID: PMC4585759 DOI: 10.1038/srep14310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022] Open
Abstract
Short peptide sequences from complementarity-determining regions (CDRs) of different immunoglobulins may exert anti-infective, immunomodulatory and antitumor activities regardless of the specificity of the original monoclonal antibody (mAb). In this sense, they resemble early molecules of innate immunity. C36L1 was identified as a bioactive light-chain CDR1 peptide by screening 19 conserved CDR sequences targeting murine B16F10-Nex2 melanoma. The 17-amino acid peptide is readily taken up by melanoma cells and acts on microtubules causing depolymerization, stress of the endoplasmic reticulum and intrinsic apoptosis. At low concentrations, C36L1 inhibited migration, invasion and proliferation of B16F10-Nex2 cells with cell cycle arrest at G2/M phase, by regulating the PI3K/Akt signaling axis involving Rho-GTPase and PTEN mediation. Peritumor injection of the peptide delayed growth of subcutaneously grafted melanoma cells. Intraperitoneal administration of C36L1 induced a significant immune-response dependent anti-tumor protection in a syngeneic metastatic melanoma model. Dendritic cells stimulated ex-vivo by the peptide and transferred to animals challenged with tumor cells were equally effective. The C36 VL CDR1 peptide is a promising microtubule-interacting drug that induces tumor cell death by apoptosis and inhibits metastases of highly aggressive melanoma cells.
Collapse
|
368
|
Abstract
A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer, cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here we discuss the role of cellular Ca(2+) homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease, particularly in obesity and diabetes.
Collapse
|
369
|
Manfredi G, Kawamata H. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol Dis 2015; 90:35-42. [PMID: 26282323 DOI: 10.1016/j.nbd.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022] Open
Abstract
Physical and functional interactions between mitochondria and the endoplasmic reticulum (ER) are crucial for cell life. These two organelles are intimately connected and collaborate to essential processes, such as calcium homeostasis and phospholipid biosynthesis. The connections between mitochondria and endoplasmic reticulum occur through structures named mitochondria associated membranes (MAMs), which contain lipid rafts and a large number of proteins, many of which serve multiple functions at different cellular sites. Growing evidence strongly suggests that alterations of ER-mitochondria interactions are involved in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a devastating and rapidly fatal motor neuron disease. Mutations in proteins that participate in ER-mitochondria interactions and MAM functions are increasingly being associated with genetic forms of ALS and other neurodegenerative diseases. This evidence strongly suggests that, rather than considering the two organelles separately, a better understanding of the disease process can derive from studying the alterations in their crosstalk. In this review we discuss normal and pathological ER-mitochondria interactions and the evidence that link them to ALS.
Collapse
Affiliation(s)
- Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, New York, NY 10065, United States.
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, New York, NY 10065, United States.
| |
Collapse
|
370
|
López-Crisosto C, Bravo-Sagua R, Rodriguez-Peña M, Mera C, Castro PF, Quest AFG, Rothermel BA, Cifuentes M, Lavandero S. ER-to-mitochondria miscommunication and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2096-105. [PMID: 26171812 DOI: 10.1016/j.bbadis.2015.07.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells contain a variety of subcellular organelles, each of which performs unique tasks. Thus follows that in order to coordinate these different intracellular functions, a highly dynamic system of communication must exist between the various compartments. Direct endoplasmic reticulum (ER)-mitochondria communication is facilitated by the physical interaction of their membranes in dedicated structural domains known as mitochondria-associated membranes (MAMs), which facilitate calcium (Ca(2+)) and lipid transfer between organelles and also act as platforms for signaling. Numerous studies have demonstrated the importance of MAM in ensuring correct function of both organelles, and recently MAMs have been implicated in the genesis of various human diseases. Here, we review the salient structural features of interorganellar communication via MAM and discuss the most common experimental techniques employed to assess functionality of these domains. Finally, we will highlight the contribution of MAM to a variety of cellular functions and consider the potential role of MAM in the genesis of metabolic diseases. In doing so, the importance for cell functions of maintaining appropriate communication between ER and mitochondria will be emphasized.
Collapse
Affiliation(s)
- Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Marcelo Rodriguez-Peña
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Claudia Mera
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8380492, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
371
|
Lightfoot AP, McArdle A, Jackson MJ, Cooper RG. In the idiopathic inflammatory myopathies (IIM), do reactive oxygen species (ROS) contribute to muscle weakness? Ann Rheum Dis 2015; 74:1340-6. [PMID: 26063809 DOI: 10.1136/annrheumdis-2014-207172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/05/2015] [Indexed: 12/13/2022]
Abstract
The idiopathic inflammatory myopathies (IIMs) are a group of rare autoimmune disorders, collectively known as myositis. Affected patients present with proximal muscle weakness, which usually improves following treatment with immunosuppressants, but often incompletely so, thus many patients remain weak. IIMs are characterised histologically by inflammatory cell infiltrates into skeletal muscle and overexpression of major histocompatibility complex I on muscle cell surfaces. Although inflammatory cell infiltrates represent a major feature of myositis there is growing evidence that muscle weakness correlates only poorly with the degree of cellular infiltration, while weakness may in fact precede such infiltrations. The mechanisms underpinning such non-immune cell mediated weakness in IIM are poorly understood. Activation of the endoplasmic reticulum stress pathways appears to be a potential contributor. Data from non-muscle cells indicate that endoplasmic reticulum stress results in altered redox homeostasis capable of causing oxidative damage. In myopathological situations other than IIM, as seen in ageing and sepsis, evidence supports an important role for reactive oxygen species (ROS). Modified ROS generation is associated with mitochondrial dysfunction, depressed force generation and activation of muscle catabolic and autophagy pathways. Despite the growing evidence demonstrating a key role for ROS in skeletal muscle dysfunction in myopathologies other than IIM, no research has yet investigated the role of modified generation of ROS in inducing the weakness characteristic of IIM. This article reviews current knowledge regarding muscle weakness in the absence of immune cells in IIM, and provides a background to the potential role of modified ROS generation as a mechanism of muscle dysfunction. The authors suggest that ROS-mediated mechanisms are potentially involved in non-immune cell mediated weakness seen in IIM and outline how these mechanisms might be investigated in this context. This appears a timely strategy, given recent developments in targeted therapies which specifically modify ROS generation.
Collapse
Affiliation(s)
- Adam P Lightfoot
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Anne McArdle
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Robert G Cooper
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
372
|
Mahdi AA, Rizvi SHM, Parveen A. Role of Endoplasmic Reticulum Stress and Unfolded Protein Responses in Health and Diseases. Indian J Clin Biochem 2015; 31:127-37. [PMID: 27069320 DOI: 10.1007/s12291-015-0502-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/12/2015] [Indexed: 12/24/2022]
Abstract
Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. ER senses stress mainly by three stress sensor pathways, namely protein kinase R-like endoplasmic reticulum kinase-eukaryotic translation-initiation factor 2α, inositol-requiring enzyme 1α-X-box-binding protein 1 and activating transcription factor 6-CREBH, which induce unfolded protein responses (UPR) after the recognition of stress. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, metabolic disorders, inflammatory diseases, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here we discuss the possible role of ER stress in various disorders on the basis of existing literature. An attempt has also been made to highlight the present knowledge of this field which may help to elucidate and conjure basic mechanisms and novel insights into disease processes which could assist in devising better future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| | | | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| |
Collapse
|
373
|
Jinn S, Brandis KA, Ren A, Chacko A, Dudley-Rucker N, Gale SE, Sidhu R, Fujiwara H, Jiang H, Olsen BN, Schaffer JE, Ory DS. snoRNA U17 regulates cellular cholesterol trafficking. Cell Metab 2015; 21:855-67. [PMID: 25980348 PMCID: PMC4456254 DOI: 10.1016/j.cmet.2015.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/19/2015] [Accepted: 04/05/2015] [Indexed: 12/31/2022]
Abstract
Cholesterol is required for the growth and viability of mammalian cells and is an obligate precursor for steroid hormone synthesis. Using a loss-of-function screen for mutants with defects in intracellular cholesterol trafficking, a Chinese hamster ovary cell mutant with haploinsufficiency of the U17 snoRNA was isolated. U17 is an H/ACA orphan snoRNA, for which a function other than ribosomal processing has not previously been identified. Through expression profiling, we identified hypoxia-upregulated mitochondrial movement regulator (HUMMR) mRNA as a target that is negatively regulated by U17 snoRNA. Upregulation of HUMMR in U17 snoRNA-deficient cells promoted the formation of ER-mitochondrial contacts, decreasing esterification of cholesterol and facilitating cholesterol trafficking to mitochondria. U17 snoRNA and HUMMR regulate mitochondrial synthesis of steroids in vivo and are developmentally regulated in steroidogenic tissues, suggesting that the U17 snoRNA-HUMMR pathway may serve a previously unrecognized, physiological role in gonadal tissue maturation.
Collapse
Affiliation(s)
- Sarah Jinn
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Katrina A Brandis
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Aileen Ren
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Anita Chacko
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nicole Dudley-Rucker
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sarah E Gale
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Hui Jiang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Brett N Olsen
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
374
|
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 2015; 131:1-20. [PMID: 26001589 DOI: 10.1016/j.pneurobio.2015.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
375
|
Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 2015; 22:995-1019. [PMID: 25557408 DOI: 10.1089/ars.2014.6223] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE In all cells, the endoplasmic reticulum (ER) and mitochondria are physically connected to form junctions termed mitochondria-associated membranes (MAMs). This subcellular compartment is under intense investigation because it represents a "hot spot" for the intracellular signaling of important pathways, including the synthesis of cholesterol and phospholipids, calcium homeostasis, and reactive oxygen species (ROS) generation and activity. RECENT ADVANCES The advanced methods currently used to study this fascinating intracellular microdomain in detail have enabled the identification of the molecular composition of MAMs and their involvement within different physiopathological contexts. CRITICAL ISSUES Here, we review the knowledge regarding (i) MAMs composition in terms of protein composition, (ii) the relationship between MAMs and ROS, (iii) the involvement of MAMs in cell death programs with particular emphasis within the tumor context, (iv) the emerging role of MAMs during inflammation, and (v) the key role of MAMs alterations in selected neurological disorders. FUTURE DIRECTIONS Whether alterations in MAMs represent a response to the disease pathogenesis or directly contribute to the disease has not yet been unequivocally established. In any case, the signaling at the MAMs represents a promising pharmacological target for several important human diseases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- 1 Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
376
|
Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci U S A 2015; 112:E2174-81. [PMID: 25870285 DOI: 10.1073/pnas.1504880112] [Citation(s) in RCA: 449] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The organization and mutual interactions between endoplasmic reticulum (ER) and mitochondria modulate key aspects of cell pathophysiology. Several proteins have been suggested to be involved in keeping ER and mitochondria at a correct distance. Among them, in mammalian cells, mitofusin 2 (Mfn2), located on both the outer mitochondrial membrane and the ER surface, has been proposed to be a physical tether between the two organelles, forming homotypic interactions and heterocomplexes with its homolog Mfn1. Recently, this widely accepted model has been challenged using quantitative EM analysis. Using a multiplicity of morphological, biochemical, functional, and genetic approaches, we demonstrate that Mfn2 ablation increases the structural and functional ER-mitochondria coupling. In particular, we show that in different cell types Mfn2 ablation or silencing increases the close contacts between the two organelles and strengthens the efficacy of inositol trisphosphate (IP3)-induced Ca(2+) transfer from the ER to mitochondria, sensitizing cells to a mitochondrial Ca(2+) overload-dependent death. We also show that the previously reported discrepancy between electron and fluorescence microscopy data on ER-mitochondria proximity in Mfn2-ablated cells is only apparent. By using a different type of morphological analysis of fluorescent images that takes into account (and corrects for) the gross modifications in mitochondrial shape resulting from Mfn2 ablation, we demonstrate that an increased proximity between the organelles is also observed by confocal microscopy when Mfn2 levels are reduced. Based on these results, we propose a new model for ER-mitochondria juxtaposition in which Mfn2 works as a tethering antagonist preventing an excessive, potentially toxic, proximity between the two organelles.
Collapse
|
377
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
378
|
Rieusset J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles? DIABETES & METABOLISM 2015; 41:358-68. [PMID: 25797073 DOI: 10.1016/j.diabet.2015.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/07/2015] [Accepted: 02/01/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria and the endoplasmic reticulum (ER) regulate numerous cellular processes, and are critical contributors to cellular and whole-body homoeostasis. More important, mitochondrial dysfunction and ER stress are both closely associated with hepatic and skeletal muscle insulin resistance, thereby playing crucial roles in altered glucose homoeostasis in type 2 diabetes mellitus (T2DM). The accumulated evidence also suggests a potential interrelationship between alterations in both types of organelles, as mitochondrial dysfunction could participate in activation of the unfolded protein response, whereas ER stress could influence mitochondrial function. The fact that mitochondria and the ER are physically and functionally interconnected via mitochondria-associated membranes (MAMs) supports their interrelated roles in the pathophysiology of T2DM. However, the mechanisms that coordinate the interplay between mitochondrial dysfunction and ER stress, and its relevance to the control of glucose homoeostasis, are still unknown. This review evaluates the involvement of mitochondria and ER independently in the development of peripheral insulin resistance, as well as their potential roles in the disruption of organelle crosstalk at MAM interfaces in the alteration of insulin signalling.
Collapse
Affiliation(s)
- J Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles-Merieux Lyon-Sud medical Universities, 69003 Lyon, France; Endocrinology, diabetology and nutrition service, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France.
| |
Collapse
|
379
|
Superresolution imaging of viral protein trafficking. Med Microbiol Immunol 2015; 204:449-60. [PMID: 25724304 DOI: 10.1007/s00430-015-0395-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022]
Abstract
The endoplasmic reticulum (ER) membrane is closely apposed to the outer mitochondrial membrane (OMM), which facilitates communication between these organelles. These contacts, known as mitochondria-associated membranes (MAM), facilitate calcium signaling, lipid transfer, as well as antiviral and stress responses. How cellular proteins traffic to the MAM, are distributed therein, and interact with ER and mitochondrial proteins are subject of great interest. The human cytomegalovirus UL37 exon 1 protein or viral mitochondria-localized inhibitor of apoptosis (vMIA) is crucial for viral growth. Upon synthesis at the ER, vMIA traffics to the MAM and OMM, where it reprograms the organization and function of these compartments. vMIA significantly changes the abundance of cellular proteins at the MAM and OMM, including proteins that regulate calcium homeostasis and cell death. Through the use of superresolution imaging, we have shown that vMIA is distributed at the OMM in nanometer scale clusters. This is similar to the clusters reported for the mitochondrial calcium channel, VDAC, as well as electron transport chain, translocase of the OMM complex, and mitochondrial inner membrane organizing system components. Thus, aside from addressing how vMIA targets the MAM and regulates survival of infected cells, biochemical studies and superresolution imaging of vMIA offer insights into the formation, organization, and functioning of MAM. Here, we discuss these insights into trafficking, function, and organization of vMIA at the MAM and OMM and discuss how the use of superresolution imaging is contributing to the study of the formation and trafficking of viruses.
Collapse
|
380
|
Bhattacharya A, Eissa NT. Autophagy as a Stress Response Pathway in the Immune System. Int Rev Immunol 2015; 34:382-402. [DOI: 10.3109/08830185.2014.999156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
381
|
Burgoyne T, Patel S, Eden ER. Calcium signaling at ER membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2012-7. [PMID: 25662816 DOI: 10.1016/j.bbamcr.2015.01.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 11/27/2022]
Abstract
Communication between organelles is a necessary consequence of intracellular compartmentalization. Membrane contact sites (MCSs) are regions where the membranes of two organelles come into close apposition allowing exchange of small molecules and ions including Ca²⁺. The ER, the cell's major Ca²⁺ store, forms an extensive and dynamic network of contacts with multiple organelles. Here we review established and emerging roles of ER contacts as platforms for Ca²⁺ exchange and further consider a potential role for Ca²⁺ in the regulation of MCS formation. We additionally discuss the challenges associated with the study of MCS biology and highlight advances in microscopy-based solutions. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London, UK
| | | |
Collapse
|
382
|
Liu Y, Neely E, Simmons Z, Connor JR. Adaptive endoplasmic reticulum stress alters cellular responses to the extracellular milieu. J Neurosci Res 2015; 93:766-76. [DOI: 10.1002/jnr.23541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Yiting Liu
- Department of Neurosurgery; Pennsylvania State University, M.S. Hershey Medical Center; Hershey Pennsylvania
| | - Elizabeth Neely
- Department of Neurosurgery; Pennsylvania State University, M.S. Hershey Medical Center; Hershey Pennsylvania
| | - Zachary Simmons
- Department of Neurology; Pennsylvania State University, M.S. Hershey Medical Center; Hershey Pennsylvania
| | - James R. Connor
- Department of Neurosurgery; Pennsylvania State University, M.S. Hershey Medical Center; Hershey Pennsylvania
| |
Collapse
|
383
|
Bhandari P, Song M, Dorn GW. Dissociation of mitochondrial from sarcoplasmic reticular stress in Drosophila cardiomyopathy induced by molecularly distinct mitochondrial fusion defects. J Mol Cell Cardiol 2014; 80:71-80. [PMID: 25555803 DOI: 10.1016/j.yjmcc.2014.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 01/17/2023]
Abstract
Mitochondrial dynamism (fusion and fission) is responsible for remodeling interconnected mitochondrial networks in some cell types. Adult cardiac myocytes lack mitochondrial networks, and their mitochondria are inherently "fragmented". Mitochondrial fusion/fission is so infrequent in cardiomyocytes as to not be observable under normal conditions, suggesting that mitochondrial dynamism may be dispensable in this cell type. However, we previously observed that cardiomyocyte-specific genetic suppression of mitochondrial fusion factors optic atrophy 1 (Opa1) and mitofusin/MARF evokes cardiomyopathy in Drosophila hearts. We posited that fusion-mediated remodeling of mitochondria may be critical for cardiac homeostasis, although never directly observed. Alternately, we considered that inner membrane Opa1 and outer membrane mitofusin/MARF might have other as-yet poorly described roles that affect mitochondrial and cardiac function. Here we compared heart tube function in three models of mitochondrial fragmentation in Drosophila cardiomyocytes: Drp1 expression, Opa1 RNAi, and mitofusin MARF RNA1. Mitochondrial fragmentation evoked by enhanced Drp1-mediated fission did not adversely impact heart tube function. In contrast, RNAi-mediated suppression of either Opa1 or mitofusin/MARF induced cardiac dysfunction associated with mitochondrial depolarization and ROS production. Inhibiting ROS by overexpressing superoxide dismutase (SOD) or suppressing ROMO1 prevented mitochondrial and heart tube dysfunction provoked by Opa1 RNAi, but not by mitofusin/MARF RNAi. In contrast, enhancing the ability of endoplasmic/sarcoplasmic reticulum to handle stress by expressing Xbp1 rescued the cardiomyopathy of mitofusin/MARF insufficiency without improving that caused by Opa1 deficiency. We conclude that decreased mitochondrial size is not inherently detrimental to cardiomyocytes. Rather, preservation of mitochondrial function by Opa1 located on the inner mitochondrial membrane, and prevention of ER stress by mitofusin/MARF located on the outer mitochondrial membrane, are central functions of these "mitochondrial fusion proteins".
Collapse
Affiliation(s)
- Poonam Bhandari
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Moshi Song
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
384
|
Chiong M, Cartes-Saavedra B, Norambuena-Soto I, Mondaca-Ruff D, Morales PE, García-Miguel M, Mellado R. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front Cell Dev Biol 2014; 2:72. [PMID: 25566542 PMCID: PMC4266092 DOI: 10.3389/fcell.2014.00072] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022] Open
Abstract
Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs) are essential processes of vascular development. VSMC have biosynthetic, proliferative, and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMC play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension, and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e., mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER). Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial–ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Mario Chiong
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Benjamín Cartes-Saavedra
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Ignacio Norambuena-Soto
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - David Mondaca-Ruff
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Pablo E Morales
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Marina García-Miguel
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Rosemarie Mellado
- Faculty of Chemistry, Pontifical Catholic University of Chile Santiago, Chile
| |
Collapse
|
385
|
Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 2014; 48:137-51. [PMID: 25425472 DOI: 10.1007/s10863-014-9592-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.
Collapse
|
386
|
Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med 2014; 20:1427-35. [PMID: 25419710 PMCID: PMC4412031 DOI: 10.1038/nm.3735] [Citation(s) in RCA: 530] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/17/2014] [Indexed: 12/11/2022]
Abstract
Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard School of Public Health and Broad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Benedicte M Pers
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard School of Public Health and Broad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Güneş Parlakgül
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard School of Public Health and Broad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Ekin Güney
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard School of Public Health and Broad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Karen Inouye
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard School of Public Health and Broad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard School of Public Health and Broad Institute of Harvard and MIT, Boston, Massachusetts, USA
| |
Collapse
|
387
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
388
|
Gutiérrez T, Parra V, Troncoso R, Pennanen C, Contreras-Ferrat A, Vasquez-Trincado C, Morales PE, Lopez-Crisosto C, Sotomayor-Flores C, Chiong M, Rothermel BA, Lavandero S. Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Commun Signal 2014; 12:68. [PMID: 25376904 PMCID: PMC4234850 DOI: 10.1186/s12964-014-0068-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. RESULTS In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. CONCLUSIONS Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.
Collapse
Affiliation(s)
- Tomás Gutiérrez
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Valentina Parra
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| | - Rodrigo Troncoso
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile.
| | - Christian Pennanen
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Ariel Contreras-Ferrat
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Institute for Research in Dental Science, Faculty of Dentistry, Universidad de Chile, Santiago, 838049, Chile.
| | - César Vasquez-Trincado
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Pablo E Morales
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Cristian Sotomayor-Flores
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Mario Chiong
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, 838049, Chile.
| |
Collapse
|
389
|
Mollereau B, Manié S, Napoletano F. Getting the better of ER stress. J Cell Commun Signal 2014; 8:311-21. [PMID: 25354560 DOI: 10.1007/s12079-014-0251-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
Research over the past few years has highlighted the ability of the unfolded protein response (UPR) to minimize the deleterious effects of accumulated misfolded proteins under both physiological and pathological conditions. The endoplasmic reticulum (ER) adapts to endogenous and exogenous stressors by expanding its protein-folding capacity and by stimulating protective processes such as autophagy and antioxidant responses. Although it is clear that severe ER stress can elicit cell death, several recent studies have shown that low levels of ER stress may actually be beneficial to cells by eliciting an adaptive UPR that 'preconditions' the cell to a subsequent lethal insult; this process is called ER hormesis. The findings have important implications for the treatment of a wide variety of diseases associated with defective proteostasis, including neurodegenerative diseases, diabetes, and cancer. Here, we review the physiological and pathological functions of the ER, with a particular focus on the molecular mechanisms that lead to ER hormesis and cellular protection, and discuss the implications for disease treatment.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France,
| | | | | |
Collapse
|
390
|
Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C, Agostinis P. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2014; 9:1292-307. [DOI: 10.4161/auto.25399] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
391
|
Ortiz-Sandoval CG, Hughes SC, Dacks JB, Simmen T. Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. CELLULAR LOGISTICS 2014; 4:e986399. [PMID: 25767741 PMCID: PMC4355727 DOI: 10.4161/21592799.2014.986399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023]
Abstract
The mitochondria-associated membrane (MAM) is an endoplasmic reticulum (ER) domain that forms contacts with mitochondria and accommodates Ca2+ transfer between the two organelles. The GTPase Rab32 regulates this function of the MAM via determining the localization of the Ca2+ regulatory transmembrane protein calnexin to the MAM. Another function of the MAM is the regulation of mitochondrial dynamics mediated by GTPases such as dynamin-related protein 1 (Drp1). Consistent with the importance of the MAM for mitochondrial dynamics and the role of Rab32 in MAM enrichment, the inactivation of Rab32 leads to mitochondrial collapse around the nucleus. However, Rab32 and related Rabs also perform intracellular functions at locations other than the MAM including melanosomal trafficking, autophagosome formation and maturation, and retrograde trafficking to the trans-Golgi network (TGN). This plethora of functions raises questions concerning the original cellular role of Rab32 in the last common ancestor of animals and its possible role in the last eukaryotic common ancestor (LECA). Our results now shed light on this conundrum and identify a role in Drp1-mediated mitochondrial dynamics as one common denominator of this group of Rabs, which includes the paralogues Rab32A and Rab32B, as well as the more recently derived Rab29 and Rab38 proteins. Moreover, we provide evidence that this mitochondrial function is dictated by the extent of ER-association of Rab32 family proteins.
Collapse
Affiliation(s)
- Carolina G Ortiz-Sandoval
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| | - Sarah C Hughes
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada ; Faculty of Medicine and Dentistry; Department of Medical Genetics; University of Alberta ; Edmonton, Alberta, Canada
| | - Joel B Dacks
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| |
Collapse
|
392
|
Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin MA, Ji-Cao J, Zoulim F, Bartosch B, Ovize M, Vidal H, Rieusset J. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 2014; 63:3279-94. [PMID: 24947355 DOI: 10.2337/db13-1751] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains between both organelles involved in Ca(2+) exchange, through the voltage-dependent anion channel (VDAC)-1/glucose-regulated protein 75 (Grp75)/inositol 1,4,5-triphosphate receptor (IP3R)-1 complex, and regulating energy metabolism. Whereas mitochondrial dysfunction, ER stress, and altered Ca(2+) homeostasis are associated with altered insulin signaling, the implication of MAM dysfunctions in insulin resistance is unknown. Here we validated an approach based on in situ proximity ligation assay to detect and quantify VDAC1/IP3R1 and Grp75/IP3R1 interactions at the MAM interface. We demonstrated that MAM integrity is required for insulin signaling and that induction of MAM prevented palmitate-induced alterations of insulin signaling in HuH7 cells. Disruption of MAM integrity by genetic or pharmacological inhibition of the mitochondrial MAM protein, cyclophilin D (CypD), altered insulin signaling in mouse and human primary hepatocytes and treatment of CypD knockout mice with metformin improved both insulin sensitivity and MAM integrity. Furthermore, ER-mitochondria interactions are altered in liver of both ob/ob and diet-induced insulin-resistant mice and improved by rosiglitazone treatment in the latter. Finally, increasing organelle contacts by overexpressing CypD enhanced insulin action in primary hepatocytes of diabetic mice. Collectively, our data reveal a new role of MAM integrity in hepatic insulin action and resistance, providing a novel target for the modulation of insulin action.
Collapse
Affiliation(s)
- Emily Tubbs
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Pierre Theurey
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Guillaume Vial
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Nadia Bendridi
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Amélie Bravard
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Marie-Agnès Chauvin
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Jingwei Ji-Cao
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Fabien Zoulim
- INSERM UMR-1052, Cancer Research Center of Lyon, Lyon 1 University, Hospices Civils de Lyon, Lyon, France
| | - Birke Bartosch
- INSERM UMR-1052, Cancer Research Center of Lyon, Lyon 1 University, Hospices Civils de Lyon, Lyon, France
| | - Michel Ovize
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France Hospices Civils de Lyon, Louis Pradel Hospital, Cardiovascular Functional Explorations Service and CIC of Lyon, Lyon, France
| | - Hubert Vidal
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France Hospices Civils de Lyon, Lyon-Sud Hospital, Endocrinology, Diabetology, and Nutrition Service, Pierre-Bénite, France
| | - Jennifer Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles Merieux Lyon-Sud Medical Universities, Lyon, France Hospices Civils de Lyon, Lyon-Sud Hospital, Endocrinology, Diabetology, and Nutrition Service, Pierre-Bénite, France
| |
Collapse
|
393
|
Rainbolt TK, Saunders JM, Wiseman RL. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab 2014; 25:528-37. [PMID: 25048297 DOI: 10.1016/j.tem.2014.06.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria form physical interactions involved in the regulation of biologic functions including mitochondrial bioenergetics and apoptotic signaling. To coordinate these functions during stress, cells must coregulate ER and mitochondria through stress-responsive signaling pathways such as the ER unfolded protein response (UPR). Although the UPR is traditionally viewed as a signaling pathway responsible for regulating ER proteostasis, it is becoming increasingly clear that the protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway within the UPR can also regulate mitochondria proteostasis and function in response to pathologic insults that induce ER stress. Here, we discuss the contributions of PERK in coordinating ER-mitochondrial activities and describe the mechanisms by which PERK adapts mitochondrial proteostasis and function in response to ER stress.
Collapse
Affiliation(s)
- T Kelly Rainbolt
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jaclyn M Saunders
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
394
|
Abstract
Mechanosensory hair cells are vulnerable to environmental insult, resulting in hearing and balance disorders. We demonstrate that directional compartmental flow of intracellular Ca(2+) underlies death in zebrafish lateral line hair cells after exposure to aminoglycoside antibiotics, a well characterized hair cell toxin. Ca(2+) is mobilized from the ER and transferred to mitochondria via IP3 channels with little cytoplasmic leakage. Pharmacological agents that shunt ER-derived Ca(2+) directly to cytoplasm mitigate toxicity, indicating that high cytoplasmic Ca(2+) levels alone are not cytotoxic. Inhibition of the mitochondrial transition pore sensitizes hair cells to the toxic effects of aminoglycosides, contrasting with current models of excitotoxicity. Hair cells display efficient ER-mitochondrial Ca(2+) flow, suggesting that tight coupling of these organelles drives mitochondrial activity under physiological conditions at the cost of increased susceptibility to toxins.
Collapse
|
395
|
Banerjee C, Singh A, Das TK, Raman R, Shrivastava A, Mazumder S. Ameliorating ER-stress attenuates Aeromonas hydrophila-induced mitochondrial dysfunctioning and caspase mediated HKM apoptosis in Clarias batrachus. Sci Rep 2014; 4:5820. [PMID: 25059203 PMCID: PMC5376045 DOI: 10.1038/srep05820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 06/16/2014] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER)-stress and unfolding protein response (UPR) has not been implied in Aeromonas hydrophila-pathogenicity. We report increased expression of the ER-stress markers: CHOP, BiP and phospho-eIF2α in A. hydrophila-infected headkidney macrophages (HKM) in Clarias batrachus. Pre-treatment with ER-stress inhibitor, 4-PBA alleviated ER-stress and HKM apoptosis suggesting ER-UPR critical for the process. The ER-Ca(2+) released via inositol-triphosphate and ryanodine receptors induced calpain-2 mediated superoxide ion generation and consequent NF-κB activation. Inhibiting NF-κB activation attenuated NO production suggesting the pro-apoptotic role of NF-κB on HKM pathology. Calpain-2 activated caspase-12 to intensify the apoptotic cascade through mitochondrial-membrane potential (ψm) dissipation and caspase-9 activation. Altered mitochondrial ultra-structure consequent to ER-Ca(2+) uptake via uniporters reduced ψm and released cytochrome C. Nitric oxide induced the cGMP/PKG-dependent activation of caspase-8 and truncated-Bid formation. Both the caspases converge onto caspase-3 to execute HKM apoptosis. These findings offer a possible molecular explanation for A. hydrophila pathogenicity.
Collapse
Affiliation(s)
- Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Ambika Singh
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Taposh Kumar Das
- Department of Anatomy, All India Institute of Medical Sciences, Delhi 110 029, India
| | - Rajagopal Raman
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Anju Shrivastava
- Cell Signalling and Molecular Immunology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| |
Collapse
|
396
|
Wang A, Keita ÅV, Phan V, McKay CM, Schoultz I, Lee J, Murphy MP, Fernando M, Ronaghan N, Balce D, Yates R, Dicay M, Beck PL, MacNaughton WK, Söderholm JD, McKay DM. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2516-27. [PMID: 25034594 DOI: 10.1016/j.ajpath.2014.05.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/05/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023]
Abstract
Epithelial permeability is often increased in inflammatory bowel diseases. We hypothesized that perturbed mitochondrial function would cause barrier dysfunction and hence epithelial mitochondria could be targeted to treat intestinal inflammation. Mitochondrial dysfunction was induced in human colon-derived epithelial cell lines or colonic biopsy specimens using dinitrophenol, and barrier function was assessed by transepithelial flux of Escherichia coli with or without mitochondria-targeted antioxidant (MTA) cotreatment. The impact of mitochondria-targeted antioxidants on gut permeability and dextran sodium sulfate (DSS)-induced colitis in mice was tested. Mitochondrial superoxide evoked by dinitrophenol elicited significant internalization and translocation of E. coli across epithelia and control colonic biopsy specimens, which was more striking in Crohn's disease biopsy specimens; the mitochondria-targeted antioxidant, MitoTEMPO, inhibited these barrier defects. Increased gut permeability and reduced epithelial mitochondrial voltage-dependent anion channel expression were observed 3 days after DSS. These changes and the severity of DSS-colitis were reduced by MitoTEMPO treatment. In vitro DSS-stimulated IL-8 production by epithelia was reduced by MitoTEMPO. Metabolic stress evokes significant penetration of commensal bacteria across the epithelium, which is mediated by mitochondria-derived superoxide acting as a signaling, not a cytotoxic, molecule. MitoTEMPO inhibited this barrier dysfunction and suppressed colitis in DSS-colitis, likely via enhancing barrier function and inhibiting proinflammatory cytokine production. These novel findings support consideration of MTAs in the maintenance of epithelial barrier function and the management of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Arthur Wang
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Åsa V Keita
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Surgery, County Council of Östergötland, Linköping, Sweden
| | - Van Phan
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ida Schoultz
- Nutrition-Gut-Brain Interactions Research Centre, the Faculty of Medicine, Örebro University, Örebro, Sweden
| | - Joshua Lee
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Maria Fernando
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Natalie Ronaghan
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dale Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael Dicay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul L Beck
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Surgery, County Council of Östergötland, Linköping, Sweden
| | - Derek M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
397
|
Montague K, Malik B, Gray AL, La Spada AR, Hanna MG, Szabadkai G, Greensmith L. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy. ACTA ACUST UNITED AC 2014; 137:1894-906. [PMID: 24898351 PMCID: PMC4065020 DOI: 10.1093/brain/awu114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinal and bulbar muscular atrophy is a degenerative motor neuron disease caused by CAG repeat expansion in the androgen receptor gene. Montague et al. reveal an early increase in endoplasmic reticulum stress in a mouse model, and suggest that this pathway may be a therapeutic target for polyglutamine diseases. Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington’s disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases.
Collapse
Affiliation(s)
- Karli Montague
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Bilal Malik
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Anna L Gray
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Albert R La Spada
- 3 Department of Paediatrics, University of California San Diego, La Jolla, CA 92093, USA4 Department of Cellular & Molecular Medicine and Neurosciences, University of California San Diego, La Jolla, CA 92093, USA5 Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA6 Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA7 Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA8 Rady Children's Hospital, San Diego, CA 92123, USA
| | - Michael G Hanna
- 2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK9 Department of Molecular Neuroscience, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Gyorgy Szabadkai
- 10 Cell and Developmental Biology Department, UCL, Gower Street, London, WC1E 6BT, UK11 Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua, Italy
| | - Linda Greensmith
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK2 MRC Centre for Neuromuscular Diseases, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
398
|
Troncoso R, Paredes F, Parra V, Gatica D, Vásquez-Trincado C, Quiroga C, Bravo-Sagua R, López-Crisosto C, Rodriguez AE, Oyarzún AP, Kroemer G, Lavandero S. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle 2014; 13:2281-95. [PMID: 24897381 DOI: 10.4161/cc.29272] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids, such as dexamethasone, enhance protein breakdown via ubiquitin-proteasome system. However, the role of autophagy in organelle and protein turnover in the glucocorticoid-dependent atrophy program remains unknown. Here, we show that dexamethasone stimulates an early activation of autophagy in L6 myotubes depending on protein kinase, AMPK, and glucocorticoid receptor activity. Dexamethasone increases expression of several autophagy genes, including ATG5, LC3, BECN1, and SQSTM1 and triggers AMPK-dependent mitochondrial fragmentation associated with increased DNM1L protein levels. This process is required for mitophagy induced by dexamethasone. Inhibition of mitochondrial fragmentation by Mdivi-1 results in disrupted dexamethasone-induced autophagy/mitophagy. Furthermore, Mdivi-1 increases the expression of genes associated with the atrophy program, suggesting that mitophagy may serve as part of the quality control process in dexamethasone-treated L6 myotubes. Collectively, these data suggest a novel role for dexamethasone-induced autophagy/mitophagy in the regulation of the muscle atrophy program.
Collapse
Affiliation(s)
- Rodrigo Troncoso
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Felipe Paredes
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile; Department of Internal Medicine (Cardiology Division); University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Damián Gatica
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - César Vásquez-Trincado
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Andrea E Rodriguez
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Alejandra P Oyarzún
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer; INSERM; Centre de Recherche des Cordeliers; Paris, France; Metabolomics and Cell Biology Platforms; Institut Gustave Roussy; Villejuif, France; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France; Université Paris Descartes; Paris Sorbonne Cité; Paris, France
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS); University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine; University of Chile; Santiago, Chile; Department of Internal Medicine (Cardiology Division); University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
399
|
Drp1 Loss-of-function Reduces Cardiomyocyte Oxygen Dependence Protecting the Heart From Ischemia-reperfusion Injury. J Cardiovasc Pharmacol 2014; 63:477-87. [DOI: 10.1097/fjc.0000000000000071] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
400
|
El-Mashtoly SF, Niedieker D, Petersen D, Krauss SD, Freier E, Maghnouj A, Mosig A, Hahn S, Kötting C, Gerwert K. Automated identification of subcellular organelles by coherent anti-stokes Raman scattering. Biophys J 2014; 106:1910-20. [PMID: 24806923 PMCID: PMC4017266 DOI: 10.1016/j.bpj.2014.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 01/06/2023] Open
Abstract
Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the "random forest" ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.
Collapse
Affiliation(s)
- Samir F El-Mashtoly
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Niedieker
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Dennis Petersen
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Sascha D Krauss
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Erik Freier
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Abdelouahid Maghnouj
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Axel Mosig
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Hahn
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Kötting
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|