351
|
Sponheim SR, Stim JJ, Engel SA, Pokorny VJ. Slowed alpha oscillations and percept formation in psychotic psychopathology. Front Psychol 2023; 14:1144107. [PMID: 37416534 PMCID: PMC10322206 DOI: 10.3389/fpsyg.2023.1144107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/19/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Psychosis is in part defined by disturbances in perception. Recent investigations have implicated the speed of alpha oscillations observed in brain electrical activity as reflective of a sampling rate of the visual environment and perception. Although both slowed alpha oscillations and aberrant percept formation are evident in disorders of psychotic psychopathology such as schizophrenia it is unclear whether slow alpha accounts for abnormal visual perception in these disorders. Methods To examine the role of the speed of alpha oscillations in perception in psychotic psychopathology we gathered resting-state magneto-encephalography data from probands with psychotic psychopathology (i.e., schizophrenia, schizoaffective disorder, and bipolar disorder with a history of psychosis), their biological siblings, and healthy controls. We appraised visual perceptual function without the confound of cognitive ability and effort through the use of a simple binocular rivalry task. Results We found a slowed pace of alpha oscillations in psychotic psychopathology that was associated with longer percept durations during binocular rivalry, consistent with the assertion that occipital alpha oscillations govern the rate of accumulation of visual information used to generate percepts. Alpha speed varied widely across individuals with psychotic psychopathology and was highly stable across several months indicating that it is likely a trait characteristic of neural function that is relevant to visual perception. Finally, a lower speed of alpha oscillation was associated with a lower IQ and greater disorder symptomatology implying that the effects of the endogenous neural oscillation on visual perception may have wider consequences for everyday functioning. Discussion Slowed alpha oscillations in individuals with psychotic psychopathology appear to reflect altered neural functions related to percept formation.
Collapse
Affiliation(s)
- Scott R. Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Joshua J. Stim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Stephen A. Engel
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Victor J. Pokorny
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
352
|
O’Hare L, Tarasi L, Asher JM, Hibbard PB, Romei V. Excitation-Inhibition Imbalance in Migraine: From Neurotransmitters to Brain Oscillations. Int J Mol Sci 2023; 24:10093. [PMID: 37373244 PMCID: PMC10299141 DOI: 10.3390/ijms241210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine is among the most common and debilitating neurological disorders typically affecting people of working age. It is characterised by a unilateral, pulsating headache often associated with severe pain. Despite the intensive research, there is still little understanding of the pathophysiology of migraine. At the electrophysiological level, altered oscillatory parameters have been reported within the alpha and gamma bands. At the molecular level, altered glutamate and GABA concentrations have been reported. However, there has been little cross-talk between these lines of research. Thus, the relationship between oscillatory activity and neurotransmitter concentrations remains to be empirically traced. Importantly, how these indices link back to altered sensory processing has to be clearly established as yet. Accordingly, pharmacologic treatments have been mostly symptom-based, and yet sometimes proving ineffective in resolving pain or related issues. This review provides an integrative theoretical framework of excitation-inhibition imbalance for the understanding of current evidence and to address outstanding questions concerning the pathophysiology of migraine. We propose the use of computational modelling for the rigorous formulation of testable hypotheses on mechanisms of homeostatic imbalance and for the development of mechanism-based pharmacological treatments and neurostimulation interventions.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|
353
|
Kopčanová M, Tait L, Donoghue T, Stothart G, Smith L, Sandoval AAF, Davila-Perez P, Buss S, Shafi MM, Pascual-Leone A, Fried PJ, Benwell CS. Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544491. [PMID: 37398162 PMCID: PMC10312609 DOI: 10.1101/2023.06.11.544491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasise the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.
Collapse
Affiliation(s)
- Martina Kopčanová
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, School of Medical and Dental Sciences, University of Birmingham, UK
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Thomas Donoghue
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Laura Smith
- School of Psychology, University of Kent, Kent, UK
| | - Aimee Arely Flores Sandoval
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paula Davila-Perez
- Rey Juan Carlos University Hospital (HURJC), Department of Clinical Neurophysiology, Móstoles, Madrid, Spain
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Stephanie Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston MA
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher S.Y. Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| |
Collapse
|
354
|
Saffari F, Zarei S, Kakaria S, Bigné E, Bruni LE, Ramsøy TZ. The Role of Stimuli-Driven and Goal-Driven Attention in Shopping Decision-Making Behaviors-An EEG and VR Study. Brain Sci 2023; 13:928. [PMID: 37371406 DOI: 10.3390/brainsci13060928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The human attention system, similar to other networks in the brain, is of a complex nature. At any moment, our attention can shift between external and internal stimuli. In this study, we aimed to assess three EEG-based measures of attention (Power Spectral Density, Connectivity, and Spectral Entropy) in decision-making situations involving goal-directed and stimulus-driven attention using a Virtual Reality supermarket. We collected the EEG data of 29 participants in 2 shopping phases, planned and unplanned purchases. The three mentioned features were extracted and a statistical analysis was conducted. We evaluated the discriminatory power of these features using an SVM classifier. The results showed a significant (p-value < 0.001) increase in theta power over frontal, central, and temporal lobes for the planned purchase phase. There was also a significant decrease in alpha power over frontal and parietal lobes in the unplanned purchase phase. A significant increase in the frontoparietal connectivity during the planned purchase was observed. Additionally, an increase in spectral entropy was observed in the frontoparietal region for the unplanned purchase phase. The classification results showed that spectral entropy has the highest discriminatory power. This study can provide further insights into the attentional behaviors of consumers and how their type of attentional control can affect their decision-making processes.
Collapse
Affiliation(s)
- Farzad Saffari
- Neurons Inc., 2630 Hoje-Taastrup, Denmark
- Augmented Cognition Lab, Aalborg University, 2450 Copenhagen, Denmark
| | - Sahar Zarei
- Neurons Inc., 2630 Hoje-Taastrup, Denmark
- Department of Psychology, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Shobhit Kakaria
- Faculty of Economics, University of Valencia, 46010 Valencia, Spain
| | - Enrique Bigné
- Faculty of Economics, University of Valencia, 46010 Valencia, Spain
| | - Luis E Bruni
- Augmented Cognition Lab, Aalborg University, 2450 Copenhagen, Denmark
| | | |
Collapse
|
355
|
Singh A, Smith PF, Zheng Y. Targeting the Limbic System: Insights into Its Involvement in Tinnitus. Int J Mol Sci 2023; 24:9889. [PMID: 37373034 DOI: 10.3390/ijms24129889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Tinnitus is originally derived from the Latin verb tinnire, which means "to ring". Tinnitus, a complex disorder, is a result of sentient cognizance of a sound in the absence of an external auditory stimulus. It is reported in children, adults, and older populations. Patients suffering from tinnitus often present with hearing loss, anxiety, depression, and sleep disruption in addition to a hissing and ringing in the ear. Surgical interventions and many other forms of treatment have been only partially effective due to heterogeneity in tinnitus patients and a lack of understanding of the mechanisms of tinnitus. Although researchers across the globe have made significant progress in understanding the underlying mechanisms of tinnitus over the past few decades, tinnitus is still deemed to be a scientific enigma. This review summarises the role of the limbic system in tinnitus development and provides insight into the development of potential target-specific tinnitus therapies.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
356
|
Augière T, Simoneau M, Brun C, Pinard AM, Blouin J, Mouchnino L, Mercier C. Behavioral and Electrocortical Response to a Sensorimotor Conflict in Individuals with Fibromyalgia. Brain Sci 2023; 13:931. [PMID: 37371409 DOI: 10.3390/brainsci13060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
People with fibromyalgia have been shown to experience more somatosensory disturbances than pain-free controls during sensorimotor conflicts (i.e., incongruence between visual and somatosensory feedback). Sensorimotor conflicts are known to disturb the integration of sensory information. This study aimed to assess the cerebral response and motor performance during a sensorimotor conflict in people with fibromyalgia. Twenty participants with fibromyalgia and twenty-three pain-free controls performed a drawing task including visual feedback that was either congruent with actual movement (and thus with somatosensory information) or incongruent with actual movement (i.e., conflict). Motor performance was measured according to tracing error, and electrocortical activity was recorded using electroencephalography. Motor performance was degraded during conflict for all participants but did not differ between groups. Time-frequency analysis showed that the conflict was associated with an increase in theta power (4-8 Hz) at conflict onset over the left posterior parietal cortex in participants with fibromyalgia but not in controls. This increase in theta suggests a stronger detection of conflict in participants with fibromyalgia, which was not accompanied by differences in motor performance in comparison to controls. This points to dissociation in individuals with fibromyalgia between an altered perception of action and a seemingly unaltered control of action.
Collapse
Affiliation(s)
- Tania Augière
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Martin Simoneau
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Clémentine Brun
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
| | - Anne Marie Pinard
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Jean Blouin
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University, National Center for Scientific Research (CNRS), 13331 Marseille, France
| | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University, National Center for Scientific Research (CNRS), 13331 Marseille, France
- Institut Universitaire de France, 75005 Paris, France
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
357
|
Kraus F, Tune S, Obleser J, Herrmann B. Neural α Oscillations and Pupil Size Differentially Index Cognitive Demand under Competing Audiovisual Task Conditions. J Neurosci 2023; 43:4352-4364. [PMID: 37160365 PMCID: PMC10255021 DOI: 10.1523/jneurosci.2181-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Cognitive demand is thought to modulate two often used, but rarely combined, measures: pupil size and neural α (8-12 Hz) oscillatory power. However, it is unclear whether these two measures capture cognitive demand in a similar way under complex audiovisual-task conditions. Here we recorded pupil size and neural α power (using electroencephalography), while human participants of both sexes concurrently performed a visual multiple object-tracking task and an auditory gap detection task. Difficulties of the two tasks were manipulated independent of each other. Participants' performance decreased in accuracy and speed with increasing cognitive demand. Pupil size increased with increasing difficulty for both the auditory and the visual task. In contrast, α power showed diverging neural dynamics: parietal α power decreased with increasing difficulty in the visual task, but not with increasing difficulty in the auditory task. Furthermore, independent of task difficulty, within-participant trial-by-trial fluctuations in pupil size were negatively correlated with α power. Difficulty-induced changes in pupil size and α power, however, did not correlate, which is consistent with their different cognitive-demand sensitivities. Overall, the current study demonstrates that the dynamics of the neurophysiological indices of cognitive demand and associated effort are multifaceted and potentially modality-dependent under complex audiovisual-task conditions.SIGNIFICANCE STATEMENT Pupil size and oscillatory α power are associated with cognitive demand and effort, but their relative sensitivity under complex audiovisual-task conditions is unclear, as is the extent to which they share underlying mechanisms. Using an audiovisual dual-task paradigm, we show that pupil size increases with increasing cognitive demands for both audition and vision. In contrast, changes in oscillatory α power depend on the respective task demands: parietal α power decreases with visual demand but not with auditory task demand. Hence, pupil size and α power show different sensitivity to cognitive demands, perhaps suggesting partly different underlying neural mechanisms.
Collapse
Affiliation(s)
- Frauke Kraus
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Björn Herrmann
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
358
|
Rassi E, Lin WM, Zhang Y, Emmerzaal J, Haegens S. β Band Rhythms Influence Reaction Times. eNeuro 2023; 10:ENEURO.0473-22.2023. [PMID: 37364994 PMCID: PMC10312120 DOI: 10.1523/eneuro.0473-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their involvement in many cognitive functions, β oscillations are among the least understood brain rhythms. Reports on whether the functional role of β is primarily inhibitory or excitatory have been contradictory. Our framework attempts to reconcile these findings and proposes that several β rhythms co-exist at different frequencies. β Frequency shifts and their potential influence on behavior have thus far received little attention. In this human magnetoencephalography (MEG) experiment, we asked whether changes in β power or frequency in auditory cortex and motor cortex influence behavior (reaction times) during an auditory sweep discrimination task. We found that in motor cortex, increased β power slowed down responses, while in auditory cortex, increased β frequency slowed down responses. We further characterized β as transient burst events with distinct spectro-temporal profiles influencing reaction times. Finally, we found that increased motor-to-auditory β connectivity also slowed down responses. In sum, β power, frequency, bursting properties, cortical focus, and connectivity profile all influenced behavioral outcomes. Our results imply that the study of β oscillations requires caution as β dynamics are multifaceted phenomena, and that several dynamics must be taken into account to reconcile mixed findings in the literature.
Collapse
Affiliation(s)
- Elie Rassi
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - Wy Ming Lin
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Hector Research Institute for Education Sciences and Psychology, University of Tübingen, 72074 Tübingen, Germany
| | - Yi Zhang
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Jill Emmerzaal
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
- REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, 3500 Diepenbeek, Belgium
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
359
|
Peng W, Zhan Y, Jin R, Lou W, Li X. Aftereffects of alpha transcranial alternating current stimulation over the primary sensorimotor cortex on cortical processing of pain. Pain 2023; 164:1280-1290. [PMID: 36607274 DOI: 10.1097/j.pain.0000000000002814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/13/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Transcranial alternating current stimulation (tACS) is believed to modulate brain oscillations in a frequency-specific manner. Given the correlation between sensorimotor α-oscillations and pain perception, tACS that targets sensorimotor α-oscillations has the potential to reduce pain. Therefore, this study sought to determine the aftereffects of α-tACS over unilateral primary sensorimotor cortex (SM1) on the perceptual and neural responses to noxious painful stimulation of the contralateral hand. Using a double-blinded and sham-controlled design, 60 healthy participants were recruited to receive either α-tACS or sham stimulation of unilateral SM1 through an electrode montage in a 4 × 1 ring configuration. Neural responses to laser nociceptive stimuli were assessed using functional magnetic resonance imaging immediately before and after α-tACS intervention. Perceptual reports were recorded simultaneously. Compared with sham stimulation, α-tACS attenuated bilateral SM1 responses to painful stimuli delivered to the contralateral hand. Although α-tACS did not exert direct effect on subjective pain perception, it can indirectly decrease ratings of pain perception by reducing brain activity within the targeted SM1. Moreover, α-tACS decreased the functional connectivity between the targeted SM1 and a network of regions that are crucially involved in pain processing, including the middle cingulate cortex, contralateral somatosensory cortex, and dorsolateral prefrontal cortex. These results demonstrated that after α-tACS applied over the unilateral SM1 does attenuate subsequent neural processing of pain within bilateral sensorimotor regions as well as sensorimotor functional connectivity. The findings provide evidence that sensorimotor α-oscillations directly affect pain processing and support the application of sensorimotor α-tACS for inducing pain analgesia.
Collapse
Affiliation(s)
- Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Yilin Zhan
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Richu Jin
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
360
|
Vanhollebeke G, Kappen M, De Raedt R, Baeken C, van Mierlo P, Vanderhasselt MA. Effects of acute psychosocial stress on source level EEG power and functional connectivity measures. Sci Rep 2023; 13:8807. [PMID: 37258794 DOI: 10.1038/s41598-023-35808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
The usage of EEG to uncover the influence of psychosocial stressors (PSSs) on neural activity has gained significant attention throughout recent years, but the results are often troubled by confounding stressor types. To investigate the effect of PSSs alone on neural activity, we employed a paradigm where participants are exposed to negative peer comparison as PSS, while other possible stressors are kept constant, and compared this with a condition where participants received neutral feedback. We analyzed commonly used sensor level EEG indices (frontal theta, alpha, and beta power) and further investigated whether source level power and functional connectivity (i.e., the temporal dependence between spatially seperated brain regions) measures, which have to our knowledge not yet been used, are more sensitive to PSSs than sensor level-derived EEG measures. Our results show that on sensor level, no significant frontal power changes are present (all p's > 0.16), indicating that sensor level frontal power measures are not sensitive enough to be affected by only PSSs. On source level, we find increased alpha power (indicative of decreased cortical activity) in the left- and right precuneus and right posterior cingulate cortex (all p's < 0.03) and increased functional connectivity between the left- and right precuneus (p < 0.001), indicating that acute, trial based PSSs lead to decreased precuneus/PCC activity, and possibly indicates a temporary disruption in the self-referential neural processes of an individual.
Collapse
Affiliation(s)
- Gert Vanhollebeke
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium.
- Medical Image and Signal Processing Group (MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
| | - Mitchel Kappen
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium
| | - Rudi De Raedt
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - Pieter van Mierlo
- Medical Image and Signal Processing Group (MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, University Hospital Ghent, Ghent University, C. Heymanslaan 10, Entrance 12 - Floor 13, 9000, Ghent, Belgium
| |
Collapse
|
361
|
Wahbeh H, Cannard C, Kriegsman M, Delorme A. Evaluating brain spectral and connectivity differences between silent mind-wandering and trance states. PROGRESS IN BRAIN RESEARCH 2023; 277:29-61. [PMID: 37301570 DOI: 10.1016/bs.pbr.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Trance is an altered state of consciousness characterized by alterations in cognition. In general, trance states induce mental silence (i.e., cognitive thought reduction), and mental silence can induce trance states. Conversely, mind-wandering is the mind's propensity to stray its attention away from the task at hand and toward content irrelevant to the current moment, and its main component is inner speech. Building on the previous literature on mental silence and trance states and incorporating inverse source reconstruction advances, the study's objectives were to evaluate differences between trance and mind-wandering states using: (1) electroencephalography (EEG) power spectra at the electrode level, (2) power spectra at the area level (source reconstructed signal), and (3) EEG functional connectivity between these areas (i.e., how they interact). The relationship between subjective trance depths ratings and whole-brain connectivity during trance was also evaluated. Spectral analyses revealed increased delta and theta power in the frontal region and increased gamma in the centro-parietal region during mind-wandering, whereas trance showed increased beta and gamma power in the frontal region. Power spectra at the area level and pairwise comparisons of the connectivity between these areas demonstrated no significant difference between the two states. However, subjective trance depth ratings were inversely correlated with whole-brain connectivity in all frequency bands (i.e., deeper trance is associated with less large-scale connectivity). Trance allows one to enter mentally silent states and explore their neurophenomenological processes. Limitations and future directions are discussed.
Collapse
Affiliation(s)
- Helané Wahbeh
- Research Department, Institute of Noetic Sciences, Petaluma, CA, United States.
| | - Cedric Cannard
- Research Department, Institute of Noetic Sciences, Petaluma, CA, United States
| | - Michael Kriegsman
- Research Department, Institute of Noetic Sciences, Petaluma, CA, United States
| | - Arnaud Delorme
- Research Department, Institute of Noetic Sciences, Petaluma, CA, United States; University of California, San Diego, CA, United States
| |
Collapse
|
362
|
Boenke LT, Zeghbib A, Spiliopoulou M, Alais D, Ohl FW. Prestimulus α/β power in temporal-order judgments: individuals differ in direction of modulation but show consistency over auditory and visual tasks. Front Comput Neurosci 2023; 17:1145267. [PMID: 37303589 PMCID: PMC10248147 DOI: 10.3389/fncom.2023.1145267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
The processing of incoming sensory information can be differentially affected by varying levels of α-power in the electroencephalogram (EEG). A prominent hypothesis is that relatively low prestimulus α-power is associated with improved perceptual performance. However, there are studies in the literature that do not fit easily into this picture, and the reasons for this are poorly understood and rarely discussed. To evaluate the robustness of previous findings and to better understand the overall mixed results, we used a spatial TOJ task in which we presented auditory and visual stimulus pairs in random order while recording EEG. For veridical and non-veridical TOJs, we calculated the power spectral density (PSD) for 3 frequencies (5 Hz steps: 10, 15, and 20 Hz). We found on the group level: (1) Veridical auditory TOJs, relative to non-veridical, were associated with higher β-band (20 Hz) power over central electrodes. (2) Veridical visual TOJs showed higher β-band (10, 15 Hz) power over parieto-occipital electrodes (3) Electrode site interacted with TOJ condition in the β-band: For auditory TOJs, PSD over central electrodes was higher for veridical than non-veridical and over parieto-occipital electrodes was lower for veridical than non-veridical trials, while the latter pattern was reversed for visual TOJs. While our group-level result showed a clear direction of prestimulus modulation, the individual-level modulation pattern was variable and included activations opposite to the group mean. Interestingly, our results at the individual-level mirror the situation in the literature, where reports of group-level prestimulus modulation were found in either direction. Because the direction of individual activation of electrodes over auditory brain regions and parieto-occipital electrodes was always negatively correlated in the respective TOJ conditions, this activation opposite to the group mean cannot be easily dismissed as noise. The consistency of the individual-level data cautions against premature generalization of group-effects and suggests different strategies that participants initially adopted and then consistently followed. We discuss our results in light of probabilistic information processing and complex system properties, and suggest that a general description of brain activity must account for variability in modulation directions at both the group and individual levels.
Collapse
Affiliation(s)
- Lars T. Boenke
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Abdelhafid Zeghbib
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Department of Automatic Control and Systems Engineering (ACSE), University of Sheffield, Sheffield, United Kingdom
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Myra Spiliopoulou
- Research Lab Knowledge Management and Discovery, Faculty of Computer Science, Otto-von-Guericke University, Magdeburg, Germany
| | - David Alais
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Faculty of Science, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
363
|
Giannopoulos AE, Zioga I, Luft CDB, Papageorgiou P, Papageorgiou GN, Kapsali F, Kontoangelos K, Capsalis CN, Papageorgiou C. Unravelling brain connectivity patterns in body dysmorphic disorder during decision-making on visual illusions: A graph theoretical approach. Psychiatry Res 2023; 325:115256. [PMID: 37216795 DOI: 10.1016/j.psychres.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Body dysmorphic disorder (BDD) is characterized by an excessive preoccupation with perceived defects in physical appearance, and is associated with compulsive checking. Visual illusions are illusory or distorted subjective perceptions of visual stimuli, which are induced by specific visual cues or contexts. While previous research has investigated visual processing in BDD, the decision-making processes involved in visual illusion processing remain unknown. The current study addressed this gap by investigating the brain connectivity patterns of BDD patients during decision-making about visual illusions. Thirty-six adults - 18 BDD (9 female) and 18 healthy controls (10 female) - viewed 39 visual illusions while their EEG was recorded. For each image, participants were asked to indicate (1) whether they perceived the illusory features of the images; and (2) their degree of confidence in their response. Our results did not uncover group-level differences in susceptibility to visual illusions, supporting the idea that higher-order differences, as opposed to lower-level visual impairments, can account for the visual processing differences that have previously been reported in BDD. However, the BDD group had lower confidence ratings when they reported illusory percepts, reflecting increased feelings of doubt. At the neural level, individuals with BDD showed greater theta band connectivity while making decisions about the visual illusions, likely reflecting higher intolerance to uncertainty and thus increased performance monitoring. Finally, control participants showed increased left-to-right and front-to-back directed connectivity in the alpha band, which may suggest more efficient top-down modulation of sensory areas in control participants compared to individuals with BDD. Overall, our findings are consistent with the idea that higher-order disruptions in BDD are associated with increased performance monitoring during decision-making, which may be related to constant mental rechecking of responses.
Collapse
Affiliation(s)
- Anastasios E Giannopoulos
- School of Electrical & Computer Engineering, National Technical University of Athens, 9, Iroon Polytechniou Str., Zografou Athens 15773, Greece.
| | - Ioanna Zioga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., Athens 11528, Greece
| | - Caroline Di Bernardi Luft
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Panos Papageorgiou
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | | | - Fotini Kapsali
- Psychiatric Hospital of Attica, 374 Athinon Ave., Athens 12462, Greece
| | - Konstantinos Kontoangelos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., Athens 11528, Greece
| | - Christos N Capsalis
- School of Electrical & Computer Engineering, National Technical University of Athens, 9, Iroon Polytechniou Str., Zografou Athens 15773, Greece
| | - Charalabos Papageorgiou
- University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", (UMHRI), Athens, Greece
| |
Collapse
|
364
|
Zioga I, Weissbart H, Lewis AG, Haegens S, Martin AE. Naturalistic Spoken Language Comprehension Is Supported by Alpha and Beta Oscillations. J Neurosci 2023; 43:3718-3732. [PMID: 37059462 PMCID: PMC10198453 DOI: 10.1523/jneurosci.1500-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Brain oscillations are prevalent in all species and are involved in numerous perceptual operations. α oscillations are thought to facilitate processing through the inhibition of task-irrelevant networks, while β oscillations are linked to the putative reactivation of content representations. Can the proposed functional role of α and β oscillations be generalized from low-level operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language comprehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded. We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependencies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predict α and β power from the dependency features. Results showed that dependency features predict α and β power in language-related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language comprehension in α, while frontal and parietal, higher-order language regions, and motor regions are involved in β. Critically, α- and β-band dynamics seem to subserve language comprehension tapping into syntactic structure building and semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the temporal similarity of the α-β responses, their potential functional dissociation remains to be elucidated. Overall, this study sheds light on the role of α and β oscillations during naturalistic spoken language comprehension, providing evidence for the generalizability of these dynamics from perceptual to complex linguistic processes.SIGNIFICANCE STATEMENT It remains unclear whether the proposed functional role of α and β oscillations in perceptual and motor function is generalizable to higher-level cognitive processes, such as spoken language comprehension. We found that syntactic features predict α and β power in language-related regions beyond low-level linguistic features when listening to naturalistic speech in a known language. We offer experimental findings that integrate a neuroscientific framework on the role of brain oscillations as "building blocks" with spoken language comprehension. This supports the view of a domain-general role of oscillations across the hierarchy of cognitive functions, from low-level sensory operations to abstract linguistic processes.
Collapse
Affiliation(s)
- Ioanna Zioga
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525 EN, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
| | - Hugo Weissbart
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525 EN, The Netherlands
| | - Ashley G Lewis
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525 EN, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
| | - Saskia Haegens
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525 EN, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| | - Andrea E Martin
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525 EN, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
| |
Collapse
|
365
|
Timofeeva P, Quiñones I, Geng S, de Bruin A, Carreiras M, Amoruso L. Behavioral and oscillatory signatures of switch costs in highly proficient bilinguals. Sci Rep 2023; 13:7725. [PMID: 37173436 PMCID: PMC10176297 DOI: 10.1038/s41598-023-34895-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Bilinguals with a high proficiency in their first (L1) and second language (L2) often show comparable reaction times when switching from their L1 to L2 and vice-versa ("symmetrical switch costs"). However, the neurophysiological signatures supporting this effect are not well understood. Here, we ran two separate experiments and assessed behavioral and MEG responses in highly proficient Spanish-Basque bilinguals while they overtly name pictures in a mixed-language context. In the behavioral experiment, bilinguals were slower when naming items in switch relative to non-switch trials, and this switch cost was comparable for both languages (symmetrical). The MEG experiment mimicked the behavioral one, with switch trials showing more desynchronization than non-switch trials across languages (symmetric neural cost) in the alpha band (8-13 Hz). Source-localization revealed the engagement of right parietal and premotor areas, which have been linked to language selection and inhibitory control; and of the left anterior temporal lobe (ATL), a cross-linguistic region housing conceptual knowledge that generalizes across languages. Our results suggest that highly proficient bilinguals implement a language-independent mechanism, supported by alpha oscillations, which is involved in cue-based language selection and facilitates conceptually-driven lexical access in the ATL, possibly by inhibiting non-target lexical items or disinhibiting target ones.
Collapse
Affiliation(s)
- Polina Timofeeva
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), 20009, San Sebastian, Spain
| | - Ileana Quiñones
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain
| | - Shuang Geng
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), 20009, San Sebastian, Spain
| | - Angela de Bruin
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Manuel Carreiras
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), 20009, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48940, Bilbao, Spain
| | - Lucia Amoruso
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, 48940, Bilbao, Spain.
| |
Collapse
|
366
|
Trajkovic J, Di Gregorio F, Avenanti A, Thut G, Romei V. Two Oscillatory Correlates of Attention Control in the Alpha-Band with Distinct Consequences on Perceptual Gain and Metacognition. J Neurosci 2023; 43:3548-3556. [PMID: 37019621 PMCID: PMC10184728 DOI: 10.1523/jneurosci.1827-22.2023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Behavioral consequences and neural underpinnings of visuospatial attention have long been investigated. Classical studies using the Posner paradigm have found that visual perception systematically benefits from the use of a spatially informative cue pointing to the to-be-attended spatial location, compared with a noninformative cue. Lateralized α amplitude modulation during visuospatial attention shifts has been suggested to account for such perceptual gain. However, recent studies on spontaneous fluctuations of prestimulus α amplitude have challenged this notion. These studies showed that spontaneous fluctuations of prestimulus α amplitude were associated with the subjective appreciation of stimulus occurrence, while objective accuracy was instead best predicted by the frequency of α oscillations, with faster prestimulus α frequency accounting for better perceptual performance. Here, in male and female humans, by using an informative cue in anticipation of lateralized stimulus presentation, we found that the predictive cue not only modulates preparatory α amplitude but also α frequency in a retinotopic manner. Behaviorally, the cue significantly impacted subjective performance measures (metacognitive abilities [meta-d']) and objective performance gain (d'). Importantly, α amplitude directly accounted for confidence levels, with ipsilateral synchronization and contralateral desynchronization coding for high-confidence responses. Crucially, the contralateral α amplitude selectively predicted interindividual differences in metacognitive abilities (meta-d'), thus anticipating decision strategy and not perceptual sensitivity, probably via excitability modulations. Instead, higher perceptual accuracy both within and across participants (d') was associated with faster contralateral α frequency, likely by implementing higher sampling at the attended location. These findings provide critical new insights into the neural mechanisms of attention control and its perceptual consequences.SIGNIFICANCE STATEMENT Prior knowledge serves the anticipation of sensory input to reduce sensory ambiguity. The growing interest in the neural mechanisms governing the integration of sensory input into our internal representations has highlighted a pivotal role of brain oscillations. Here we show that distinct but interacting oscillatory mechanisms are engaged during attentional deployment: one relying on α amplitude modulations and reflecting internal decision processes, associated with subjective perceptual experience and metacognitive abilities; the other relying on α frequency modulations and enabling mechanistic sampling of the sensory input at the attended location to influence objective performance. These insights are crucial for understanding how we reduce sensory ambiguity to maximize the efficiency of our conscious experience, but also in interpreting the mechanisms of atypical perceptual experiences.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
| | - Francesco Di Gregorio
- Azienda Unità Sanitaria Locale, UOC Medicina riabilitativa e neuroriabilitazione, Bologna, 40124, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, 346000, Chile
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, MVLS, University of Glasgow, Glasgow, G12 8QB, United Kingdom
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Roma, 00179, Italy
| |
Collapse
|
367
|
Gallina J, Marsicano G, Romei V, Bertini C. Electrophysiological and Behavioral Effects of Alpha-Band Sensory Entrainment: Neural Mechanisms and Clinical Applications. Biomedicines 2023; 11:biomedicines11051399. [PMID: 37239069 DOI: 10.3390/biomedicines11051399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Alpha-band (7-13 Hz) activity has been linked to visuo-attentional performance in healthy participants and to impaired functionality of the visual system in a variety of clinical populations including patients with acquired posterior brain lesion and neurodevelopmental and psychiatric disorders. Crucially, several studies suggested that short uni- and multi-sensory rhythmic stimulation (i.e., visual, auditory and audio-visual) administered in the alpha-band effectively induces transient changes in alpha oscillatory activity and improvements in visuo-attentional performance by synchronizing the intrinsic brain oscillations to the external stimulation (neural entrainment). The present review aims to address the current state of the art on the alpha-band sensory entrainment, outlining its potential functional effects and current limitations. Indeed, the results of the alpha-band entrainment studies are currently mixed, possibly due to the different stimulation modalities, task features and behavioral and physiological measures employed in the various paradigms. Furthermore, it is still unknown whether prolonged alpha-band sensory entrainment might lead to long-lasting effects at a neural and behavioral level. Overall, despite the limitations emerging from the current literature, alpha-band sensory entrainment may represent a promising and valuable tool, inducing functionally relevant changes in oscillatory activity, with potential rehabilitative applications in individuals characterized by impaired alpha activity.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Vincenzo Romei
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| |
Collapse
|
368
|
Freiberg J, Lang L, Kaernbach C, Keil J. Characterization of the planarian surface electroencephalogram. BMC Neurosci 2023; 24:29. [PMID: 37138236 PMCID: PMC10157967 DOI: 10.1186/s12868-023-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Despite large morphological differences between the nervous systems of lower animals and humans, striking functional similarities have been reported. However, little is known about how these functional similarities translate to cognitive similarities. As a first step towards studying the cognitive abilities of simple nervous systems, we here characterize the ongoing electrophysiological activity of the planarian Schmidtea mediterranea. One previous report using invasive microelectrodes describes that the ongoing neural activity is characterized by a 1/fx power spectrum with the exponent 'x' of the power spectrum close to 1. To extend these findings, we aimed to establish a recording protocol to measure ongoing neural activity safely and securely from alive and healthy planarians under different lighting conditions using non-invasive surface electrodes. RESULTS As a replication and extension of the previous results, we show that the ongoing neural activity is characterized by a 1/fx power spectrum, that the exponent 'x' in living planarians is close to 1, and that changes in lighting induce changes in neural activity likely due to the planarian photophobia. CONCLUSIONS We confirm the existence of continuous EEG activity in planarians and show that it is possible to noninvasively record this activity with surface wire electrodes. This opens up broad possibilities for continuous recordings across longer intervals, and repeated recordings from the same animals to study cognitive processes.
Collapse
Affiliation(s)
- Jannes Freiberg
- Department of Psychology, Christian-Albrechts-University Kiel, Olshausenstrasse 62, 24118, Kiel, Germany
| | - Lukas Lang
- Department of Psychology, Christian-Albrechts-University Kiel, Olshausenstrasse 62, 24118, Kiel, Germany
| | - Christian Kaernbach
- Department of Psychology, Christian-Albrechts-University Kiel, Olshausenstrasse 62, 24118, Kiel, Germany
| | - Julian Keil
- Department of Psychology, Christian-Albrechts-University Kiel, Olshausenstrasse 62, 24118, Kiel, Germany.
| |
Collapse
|
369
|
Guo J, Luo X, Kong Y, Li B, Si B, Sun L, Song Y. Abnormal Reactivity of Brain Oscillations to Visual Search Target in Children With Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:522-530. [PMID: 35292405 DOI: 10.1016/j.bpsc.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Previous studies have shown that impaired goal-directed alpha lateralization and functional disconnection within attention networks during the cue period are significant features of attention-deficit/hyperactivity disorder (ADHD). This study aimed to explore the role of brain oscillations in the visual search process, focusing on target-induced posterior alpha lateralization, midfrontal theta synchronization, and their functional connection in children with ADHD. METHODS Electroencephalograms were recorded from typically developing (TD) children (n = 72) and children with ADHD (n = 96) while they performed a visual search task. RESULTS Both the TD and ADHD groups showed significant midfrontal theta event-related synchronization (ERS) and posterior alpha lateralization. Compared with TD children, children with ADHD showed significantly lower theta ERS and higher target-induced alpha lateralization. TD children showed a positive trial-based correlation between theta ERS and alpha lateralization and a negative correlation between theta ERS and reaction time variability. However, all these correlations were absent in children with ADHD. CONCLUSIONS Abnormal brain oscillations in children with ADHD indicate insufficient executive control function and the compensation of attention networks for attention deficits in visual selective attention. Cross-frequency disconnection reflects the common deficiency of executive control in the gating of target information. Our findings provide novel evidence for interpreting the features of brain oscillations during stimulus-driven selective attention in children with ADHD.
Collapse
Affiliation(s)
- Jialiang Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; School of Systems Science, Beijing Normal University, Beijing, China
| | - Xiangsheng Luo
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bingkun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bailu Si
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Li Sun
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
370
|
Pedapati EV, Sweeney JA, Schmitt LM, Ethridge LE, Miyakoshi M, Liu R, Smith E, Shaffer RC, Wu SW, Gilbert DL, Horn PS, Erickson C. Empirical Frequency Bound Derivation Reveals Prominent Mid-Frontal Alpha Associated with Neurosensory Dysfunction in Fragile X Syndrome. RESEARCH SQUARE 2023:rs.3.rs-2855646. [PMID: 37162907 PMCID: PMC10168472 DOI: 10.21203/rs.3.rs-2855646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The FMR1 gene is inactive in Fragile X syndrome (FXS), resulting in low levels of FMRP and consequent neurochemical, synaptic, and local circuit neurophysiological alterations in the fmr1 KO mouse. In FXS patients, electrophysiological studies have demonstrated a marked reduction in global alpha activity and regional increases in gamma oscillations associated with intellectual disability and sensory hypersensitivity. Since alpha activity is associated with a thalamocortical function with widely distributed modulatory effects on neocortical excitability, insight into alpha physiology may provide insight into systems-level disease mechanisms. Herein, we took a data-driven approach to clarify the temporal and spatial properties of alpha and theta activity in participants with FXS. High-resolution resting-state EEG data were collected from participants affected by FXS (n = 65) and matched controls (n = 70). We used a multivariate technique to empirically classify neural oscillatory bands based on their coherent spatiotemporal patterns. Participants with FXS demonstrated: 1) redistribution of lower-frequency boundaries indicating a "slower" dominant alpha rhythm, 2) an anteriorization of alpha frequency activity, and 3) a correlation of increased individualized alpha power measurements with auditory neurosensory dysfunction. These findings suggest an important role for alterations in thalamocortical physiology for the well-established neocortical hyper-excitability in FXS and, thus, a role for neural systems level disruption to cortical hyperexcitability that has been studied primarily at the local circuit level in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Liu
- Cincinnati Children's Hospital Medical Center
| | | | | | - Steve W Wu
- Cincinnati Children's Hospital Medical Center
| | | | - Paul S Horn
- Cincinnati Children's Hospital Medical Center
| | | |
Collapse
|
371
|
Chota S, VanRullen R, Gulbinaite R. Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System. J Neurosci 2023; 43:3107-3119. [PMID: 36931709 PMCID: PMC10146486 DOI: 10.1523/jneurosci.1758-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 03/19/2023] Open
Abstract
Both passive tactile stimulation and motor actions result in dynamic changes in beta band (15-30 Hz Hz) oscillations over somatosensory cortex. Similar to alpha band (8-12 Hz) power decrease in the visual system, beta band power also decreases following stimulation of the somatosensory system. This relative suppression of α and β oscillations is generally interpreted as an increase in cortical excitability. Here, next to traditional single-pulse stimuli, we used a random intensity continuous right index finger tactile stimulation (white noise), which enabled us to uncover an impulse response function of the somatosensory system. Contrary to previous findings, we demonstrate a burst-like initial increase rather than decrease of beta activity following white noise stimulation (human participants, N = 18, 8 female). These β bursts, on average, lasted for 3 cycles, and their frequency was correlated with resonant frequency of somatosensory cortex, as measured by a multifrequency steady-state somatosensory evoked potential paradigm. Furthermore, beta band bursts shared spectro-temporal characteristics with evoked and resting-state β oscillations. Together, our findings not only reveal a novel oscillatory signature of somatosensory processing that mimics the previously reported visual impulse response functions, but also point to a common oscillatory generator underlying spontaneous β bursts in the absence of tactile stimulation and phase-locked β bursts following stimulation, the frequency of which is determined by the resonance properties of the somatosensory system.SIGNIFICANCE STATEMENT The investigation of the transient nature of oscillations has gained great popularity in recent years. The findings of bursting activity, rather than sustained oscillations in the beta band, have provided important insights into its role in movement planning, working memory, inhibition, and reactivation of neural ensembles. In this study, we show that also in response to tactile stimulation the somatosensory system responds with ∼3 cycle oscillatory beta band bursts, whose spectro-temporal characteristics are shared with evoked and resting-state beta band oscillatory signatures of the somatosensory system. As similar bursts have been observed in the visual domain, these oscillatory signatures might reflect an important supramodal mechanism in sensory processing.
Collapse
Affiliation(s)
- Samson Chota
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, 31052, France
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, 3584 CS, The Netherlands
| | - Rufin VanRullen
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, 31052, France
| | - Rasa Gulbinaite
- Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| |
Collapse
|
372
|
Michael E, Covarrubias LS, Leong V, Kourtzi Z. Learning at your brain's rhythm: individualized entrainment boosts learning for perceptual decisions. Cereb Cortex 2023; 33:5382-5394. [PMID: 36352510 PMCID: PMC10152088 DOI: 10.1093/cercor/bhac426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Training is known to improve our ability to make decisions when interacting in complex environments. However, individuals vary in their ability to learn new tasks and acquire new skills in different settings. Here, we test whether this variability in learning ability relates to individual brain oscillatory states. We use a visual flicker paradigm to entrain individuals at their own brain rhythm (i.e. peak alpha frequency) as measured by resting-state electroencephalography (EEG). We demonstrate that this individual frequency-matched brain entrainment results in faster learning in a visual identification task (i.e. detecting targets embedded in background clutter) compared to entrainment that does not match an individual's alpha frequency. Further, we show that learning is specific to the phase relationship between the entraining flicker and the visual target stimulus. EEG during entrainment showed that individualized alpha entrainment boosts alpha power, induces phase alignment in the pre-stimulus period, and results in shorter latency of early visual evoked potentials, suggesting that brain entrainment facilitates early visual processing to support improved perceptual decisions. These findings suggest that individualized brain entrainment may boost perceptual learning by altering gain control mechanisms in the visual cortex, indicating a key role for individual neural oscillatory states in learning and brain plasticity.
Collapse
Affiliation(s)
- Elizabeth Michael
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| | | | - Victoria Leong
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
- Psychology, School of Social Sciences, Nanyang Technological University (NTU), Singapore 6398818, Singapore
- Lee Kong Chian School of Medicine, NTU, Singapore 308232, Singapore
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
373
|
Silas J, Jones A, Yarrow K, Anderson W. Spatial attention is not affected by alpha or beta transcranial alternating current stimulation: A registered report. Cortex 2023; 164:33-50. [PMID: 37148826 DOI: 10.1016/j.cortex.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
Using Electroencephalography (EEG) an event-related change in alpha activity has been observed over primary sensory cortices during the allocation of spatial attention. This is most prominent during top-down, or endogenous, attention, and nearly absent in bottom-up, or exogenous orienting. These changes are highly lateralised, such that an increase in alpha power is seen ipsilateral to the attended region of space and a decrease is seen contralaterally. Whether these changes in alpha oscillatory activity are causally related to attentional resources, or to perceptual processes, or are simply epiphenomenal, is unknown. If alpha oscillations are indicative of a causal mechanism whereby attention is allocated to a region of space, it remains an open question as to whether this is driven by ipsilateral increases or contralateral decreases in alpha power. This preregistered report set out to test these questions. To do so, we used transcranial Alternating Current Stimulation (tACS) to modulate alpha activity in the somatosensory cortex whilst measuring performance on established tactile attention paradigms. All participants completed an endogenous and exogenous tactile attention task in three stimulation conditions; alpha, sham and beta. Sham and beta stimulation operated as controls so that any observed effects could be attributed to alpha stimulation specifically. We replicated previous behavioural findings in all stimulation conditions showing a facilitation of cued trials in the endogenous task, and inhibition of return in the exogenous task. However, these were not affected by stimulation manipulations. Using Bayes-factor analysis we show strong support for the null hypotheses - that the manipulation of Alpha by tACS does not cause changes in tactile spatial attention. This well-powered study, conducted over three separate days, is an important contribution to the current debate regarding the efficiency of brain stimulation.
Collapse
|
374
|
Hutcheon EA, Vakorin VA, Nunes A, Ribary U, Ferguson S, Claydon VE, Doesburg SM. Associations between spontaneous electroencephalogram oscillations and oxygen saturation across normobaric and hypobaric hypoxia. Hum Brain Mapp 2023; 44:2345-2364. [PMID: 36715216 PMCID: PMC10028628 DOI: 10.1002/hbm.26214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
High-altitude indoctrination (HAI) trains individuals to recognize symptoms of hypoxia by simulating high-altitude conditions using normobaric (NH) or hypobaric (HH) hypoxia. Previous studies suggest that despite equivalent inspired oxygen levels, physiological differences could exist between these conditions. In particular, differences in neurophysiological responses to these conditions are not clear. Our study aimed to investigate correlations between oxygen saturation (SpO2 ) and neural responses in NH and HH. We recorded 5-min of resting-state eyes-open electroencephalogram (EEG) and SpO2 during control, NH, and HH conditions from 13 participants. We applied a multivariate framework to characterize correlations between SpO2 and EEG measures (spectral power and multiscale entropy [MSE]), within each participant and at the group level. Participants were desaturating during the first 150 s of NH versus steadily desaturated in HH. We considered the entire time interval, first and second half intervals, separately. All the conditions were characterized by statistically significant participant-specific patterns of EEG-SpO2 correlations. However, at the group level, the desaturation period expressed a robust pattern of these correlations across frequencies and brain locations. Specifically, the first 150 s of NH during desaturation differed significantly from the other conditions with negative absolute alpha power-SpO2 correlations and positive MSE-SpO2 correlations. Once steadily desaturated, NH and HH had no significant differences in EEG-SpO2 correlations. Our findings indicate that the desaturating phase of hypoxia is a critical period in HAI courses, which would require developing strategies for mitigating the hypoxic stimulus in a real-world situation.
Collapse
Affiliation(s)
- Evan A Hutcheon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Vasily A Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Adonay Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Urs Ribary
- Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sherri Ferguson
- Environmental Physiology and Medicine Unit, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
375
|
Jaeger C, Nuttall R, Zimmermann J, Dowsett J, Preibisch C, Sorg C, Wohlschlaeger A. Targeted rhythmic visual stimulation at individual participants' intrinsic alpha frequency causes selective increase of occipitoparietal BOLD-fMRI and EEG functional connectivity. Neuroimage 2023; 270:119981. [PMID: 36848971 DOI: 10.1016/j.neuroimage.2023.119981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023] Open
Abstract
Neural oscillations in distinct frequency bands are ubiquitous in the brain and play a role in many cognitive processes. The "communication by coherence" hypothesis, poses that the synchronization through phase coupling of frequency-specific neural oscillations regulate information flow across distribute brain regions. Specifically, the posterior alpha frequency band (7-12 Hz) is thought to gate bottom-up visual information flow by inhibition during visual processing. Evidence shows that increased alpha phase coherency positively correlates with functional connectivity in resting state connectivity networks, supporting alpha mediates neural communication through coherency. However, these findings have mainly been derived from spontaneous changes in the ongoing alpha rhythm. In this study, we experimentally modulate the alpha rhythm by targeting individuals' intrinsic alpha frequency with sustained rhythmic light to investigate alpha-mediated synchronous cortical activity in both EEG and fMRI. We hypothesize increased alpha coherency and fMRI connectivity should arise from modulation of the intrinsic alpha frequency (IAF) as opposed to control frequencies in the alpha range. Sustained rhythmic and arrhythmic stimulation at the IAF and at neighboring frequencies within the alpha band range (7-12 Hz) was implemented and assessed in a separate EEG and fMRI study. We observed increased cortical alpha phase coherency in the visual cortex during rhythmic stimulation at the IAF as in comparison to rhythmic stimulation of control frequencies. In the fMRI, we found increased functional connectivity for stimulation at the IAF in visual and parietal areas as compared to other rhythmic control frequencies by correlating time courses from a set of regions of interest for the different stimulation conditions and applying network-based statistics. This suggests that rhythmic stimulation at the IAF frequency induces a higher degree of synchronicity of neural activity across the occipital and parietal cortex, which supports the role of the alpha oscillation in gating information flow during visual processing.
Collapse
Affiliation(s)
- Cilia Jaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neuroscience, Ludwig Maximilian University, Planneg-Martinsried, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - James Dowsett
- Department of Psychology, Ludwig Maximilian University, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Psychiatry, Technical University of Munich, Munich, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
376
|
Wiesman AI, Donhauser PW, Degroot C, Diab S, Kousaie S, Fon EA, Klein D, Baillet S. Aberrant neurophysiological signaling associated with speech impairments in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:61. [PMID: 37059749 PMCID: PMC10104849 DOI: 10.1038/s41531-023-00495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Difficulty producing intelligible speech is a debilitating symptom of Parkinson's disease (PD). Yet, both the robust evaluation of speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography, we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the interactive scoring of speech impairments in PD (N = 59) is reliable across non-expert raters, and better related to the hallmark motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment ratings to neurophysiological deviations from healthy adults (N = 65), we show that articulation impairments in patients with PD are associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor cortices mediates the influence of cognitive decline on speech deficits.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Peter W Donhauser
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Clotilde Degroot
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Sabrina Diab
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Denise Klein
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
- Center for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| |
Collapse
|
377
|
Davidesco I, Laurent E, Valk H, West T, Milne C, Poeppel D, Dikker S. The Temporal Dynamics of Brain-to-Brain Synchrony Between Students and Teachers Predict Learning Outcomes. Psychol Sci 2023; 34:633-643. [PMID: 37053267 DOI: 10.1177/09567976231163872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Much of human learning happens through interaction with other people, but little is known about how this process is reflected in the brains of students and teachers. Here, we concurrently recorded electroencephalography (EEG) data from nine groups, each of which contained four students and a teacher. All participants were young adults from the northeast United States. Alpha-band (8-12 Hz) brain-to-brain synchrony between students predicted both immediate and delayed posttest performance. Further, brain-to-brain synchrony was higher in specific lecture segments associated with questions that students answered correctly. Brain-to-brain synchrony between students and teachers predicted learning outcomes at an approximately 300-ms lag in the students' brain activity relative to the teacher's brain activity, which is consistent with the time course of spoken-language comprehension. These findings provide key new evidence for the importance of collecting brain data simultaneously from groups of learners in ecologically valid settings.
Collapse
Affiliation(s)
- Ido Davidesco
- Department of Educational Psychology, University of Connecticut
| | | | | | - Tessa West
- Department of Psychology, New York University
| | | | - David Poeppel
- Department of Psychology, New York University
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | | |
Collapse
|
378
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: a pilot study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536217. [PMID: 37090672 PMCID: PMC10120624 DOI: 10.1101/2023.04.11.536217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. Methods Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals diagnosed with schizophrenia and non-psychiatric comparisons. Results Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. Conclusion Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
379
|
Köster M, Meyer M. Down and up! Does the mu rhythm index a gating mechanism in the developing motor system? Dev Cogn Neurosci 2023; 60:101239. [PMID: 37030147 PMCID: PMC10113759 DOI: 10.1016/j.dcn.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023] Open
Abstract
Developmental research on action processing in the motor cortex relies on a key neural marker - a decrease in 6-12 Hz activity (coined mu suppression). However, recent evidence points towards an increase in mu power, specific for the observation of others' actions. Complementing the findings on mu suppression, this raises the critical question for the functional role of the mu rhythm in the developing motor system. We here discuss a potential solution to this seeming controversy by suggesting a gating function of the mu rhythm: A decrease in mu power may index the facilitation, while an increase may index the inhibition of motor processes, which are critical during action observation. This account may advance our conception of action understanding in early brain development and points towards critical directions for future research.
Collapse
Affiliation(s)
- Moritz Köster
- University of Regensburg, Institute of Psychology, Sedanstraße 1, 93055 Regensburg, Germany.
| | - Marlene Meyer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands; Department of Psychology, University of Chicago, USA.
| |
Collapse
|
380
|
Meng J, Li X, Zhao Y, Li R, Xu M, Ming D. Modality-Attention Promotes the Neural Effects of Precise Timing Prediction in Early Sensory Processing. Brain Sci 2023; 13:brainsci13040610. [PMID: 37190575 DOI: 10.3390/brainsci13040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/05/2023] [Accepted: 03/25/2023] [Indexed: 04/07/2023] Open
Abstract
Precise timing prediction (TP) enables the brain to accurately predict the occurrence of upcoming events in millisecond timescale, which is fundamental for adaptive behaviors. The neural effect of the TP within a single sensory modality has been widely studied. However, less is known about how precise TP works when the brain is concurrently faced with multimodality sensory inputs. Modality attention (MA) is a crucial cognitive function for dealing with the overwhelming information induced by multimodality sensory inputs. Therefore, it is necessary to investigate whether and how the MA influences the neural effects of the precise TP. This study designed a visual–auditory temporal discrimination task, in which the MA was allocated to visual or auditory modality, and the TP was manipulated into no timing prediction (NTP), matched timing prediction (MTP), and violated timing prediction (VTP) conditions. Behavioral and electroencephalogram (EEG) data were recorded from 27 subjects, event-related potentials (ERP), time–frequency distributions of inter-trial coherence (ITC), and event-related spectral perturbation (ERSP) were analyzed. In the visual modality, precise TP led to N1 amplitude variations and 200–400 ms theta ITC. Such variations only emerged when the MA was attended. In auditory modality, the MTP had the largest P2 amplitude and delta ITC than other TP conditions when the MA was attended, whereas the distinctions disappeared when the MA was unattended. The results suggest that the MA promoted the neural effects of the precise TP in early sensory processing, which provides more neural evidence for better understanding the interactions between the TP and MA.
Collapse
Affiliation(s)
- Jiayuan Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yingru Zhao
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Rong Li
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
381
|
Wendiggensen P, Beste C. How Intermittent Brain States Modulate Neurophysiological Processes in Cognitive Flexibility. J Cogn Neurosci 2023; 35:749-764. [PMID: 36724399 DOI: 10.1162/jocn_a_01970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cognitive flexibility is an essential facet of everyday life, for example, when switching between different tasks. Neurophysiological accounts on cognitive flexibility have often focused on the task switch itself, disregarding preceding processes and the possible impact of "brain states" before engaging in cognitive flexibility. In a combined working memory/task-switching paradigm, we examined how neuronal processes during cognitive flexibility are interrelated to preceding neuronal processes across time and brain regions in a sample of n = 42 healthy adults. The interrelation of alpha- and theta-band-related processes over brain states ahead and during response selection was investigated on a functional neuroanatomical level using EEG-beamforming. The results showed that response selection processes (reflected by theta-band activity) seem to be strongly connected to "idling" and preparatory brain activity states (in both the theta- and alpha-band). Notably, the superior parietal cortex seems to play a crucial role by assembling alpha-band-related inhibitory processes from the rule- and goal-based actions during "idling" brain states, namely, short-term maintenance of rules (temporal cortex), task-set reconfiguration (superior frontal/precentral regions), and perceptual control (occipital cortex). This information is further relayed to response selection processes associated with theta-band activity. Notably, when the task has to be switched, theta-band activity in the superior frontal gyrus indicates a need for cognitive control in the "idling" brain state, which also seems to be relayed by BA7. The results indicate the importance of brain activity states ahead of response selection processes for cognitive flexibility.
Collapse
|
382
|
Li W, Keil A. Sensing fear: fast and precise threat evaluation in human sensory cortex. Trends Cogn Sci 2023; 27:341-352. [PMID: 36732175 PMCID: PMC10023404 DOI: 10.1016/j.tics.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Animal models of threat processing have evolved beyond the amygdala to incorporate a distributed neural network. In human research, evidence has intensified in recent years to challenge the canonical threat circuitry centered on the amygdala, urging revision of threat conceptualization. A strong surge of research into threat processing in the sensory cortex in the past decade has generated particularly useful insights to inform the reconceptualization. Here, synthesizing findings from both animal and human research, we highlight sensitive, specific, and adaptable threat representations in the sensory cortex, arising from experience-based sculpting of sensory coding networks. We thus propose that the human sensory cortex can drive smart (fast and precise) threat evaluation, producing threat-imbued sensory afferents to elicit network-wide threat responses.
Collapse
Affiliation(s)
- Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainsville, FL, USA
| |
Collapse
|
383
|
Cáceda R, Mirmina J, Kim DJ, Rafiaa M, Carbajal JM, Akram F, Lau J, Chacko M, Tedla A, Teng Y, Perlman G. Low global frontal brain activity is associated with non-planned or impulsive suicide attempts. A preliminary study. J Affect Disord 2023; 326:44-48. [PMID: 36708954 DOI: 10.1016/j.jad.2023.01.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Suicide prevention is limited by the frequent non-planned or impulsive nature of suicidal behavior. For instance, 25-62 % of suicide attempts, occur within 30 min of the onset of suicidal ideation. We aimed to examine frontal brain activity in depressed patients following a suicide attempt and its relationship with the duration of the suicidal process. METHODS We recruited 35 adult patients within three days of a suicide attempt of at least moderate lethality. Duration of the suicidal process was recorded in a semi-structured interview, including suicide contemplation (time from onset of suicidal ideation to decision to kill oneself) and suicide action intervals (time from the decision to kill oneself to suicide attempt). Resting state EEG data from AF7, AF8, TP9 and TP10 leads was collected with a portable MUSE 2 headband system. The average frequency values throughout a 5-minute portable EEG recording were extracted for delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) waves. RESULTS Delta (r = 0.450, p = 0.021) and theta power (r = 0.395, p = 0.044) were positively correlated with the duration of the suicide action interval. There were no significant correlations of the suicide contemplation interval with clinical or EEG measures. Patients with suicide action interval shorter than 30 min showed lower delta power (U = 113, p = 0.049) compared with those with longer duration. CONCLUSIONS Lower theta and delta activity may reflect hindered cognitive control and inhibition in impulsive suicide attempters. Portable EEG may provide a valuable tool for clinical research and in the management of acutely suicidal patients.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA; Psychiatry Service, Northport Veterans Affairs Medical Center, Northport, New York, USA.
| | - Julianne Mirmina
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Diane J Kim
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Marianne Rafiaa
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Jessica M Carbajal
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Faisal Akram
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Jaisy Lau
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Mason Chacko
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Alemante Tedla
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - York Teng
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
384
|
Foerster FR, Chidharom M, Giersch A. Enhanced temporal resolution of vision in action video game players. Neuroimage 2023; 269:119906. [PMID: 36739103 DOI: 10.1016/j.neuroimage.2023.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Video game play has been suggested to improve visual and attention processing. Nevertheless, while action video game play is highly dynamic, there is scarce research on how information is temporally discriminated at the millisecond level. This cross-sectional study investigates whether temporal discrimination at the millisecond level in vision varies across action video game players (VGPs; N = 23) and non-video game players (NVGPs; N = 23). Participants discriminated synchronous from asynchronous onsets of two visual targets in virtual reality, while their EEG and oculomotor movements were recorded. Results show an increased sensitivity to short asynchronies (11, 33 and 66 ms) in VGPs compared with NVGPs, which was especially marked at the start of the task, suggesting better temporal discrimination abilities. Pre-targets oculomotor freezing - the inhibition of small fixational saccades - was associated with correct temporal discrimination, probably revealing attentional preparation. However, this parameter did not differ between groups. EEG and reconstruction analyses suggest that the enhancement of temporal discrimination in VGPs during temporal discrimination is related to parieto-occipital processing, and a reduction of alpha-band (8-14 Hz) power and inter-trial phase coherence. Overall, the study reveals an enhanced ability in action video game players to discriminate in time visual events in close temporal proximity combined with reduced alpha-band oscillatory activities. Consequently, playing action video games is associated with an improved temporal resolution of vision.
Collapse
Affiliation(s)
- Francois R Foerster
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, France.
| | - Matthieu Chidharom
- Department of Psychology, Lehigh University, Bethlehem, PA, United States
| | - Anne Giersch
- Université de Strasbourg, INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, France
| |
Collapse
|
385
|
Morrone J, Minini L. The Interlinking of Alpha Waves and Visuospatial Cognition in Motor-Based Domains. Neurosci Biobehav Rev 2023; 149:105152. [PMID: 37011777 DOI: 10.1016/j.neubiorev.2023.105152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
The manner in which we perceive and respond in accordance to the world is encompassed by our ability to process multimodal input stimuli. In other words, in order to perform any task, especially at a high degree of proficiency, high dependence is placed upon our ability to interact with, interpret, and visualize input stimuli from our environment, known as visuospatial cognition (Chueh et al., 2017). This article will explore and encapsulate the importance of visuospatial cognition, in terms of the link it has with the performance of tasks in various fields, such as artistry, musical performance, and athleticism. Alpha wave investigation will be discussed as a means of both identifying and characterizing the degree of performance within these domains. Findings from this investigation may be used as a modality to optimize performance in the explored domains (e.g., with Neurofeedback techniques). The limitations of using Electroencephalography (EEG) to support the enhancement of this task performance and the recommendations to elicit further research, will also be explored.
Collapse
|
386
|
Noonan MP, Von Lautz AH, Bauer Y, Summerfield C, Stokes MS. Differential modulation of visual responses by distractor or target expectations. Atten Percept Psychophys 2023; 85:845-862. [PMID: 36460926 PMCID: PMC10066164 DOI: 10.3758/s13414-022-02617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/03/2022]
Abstract
Discriminating relevant from irrelevant information in a busy visual scene is supported by statistical regularities in the environment. However, it is unclear to what extent immediate stimulus repetitions and higher order expectations (whether a repetition is statistically probable or not) are supported by the same neural mechanisms. Moreover, it is also unclear whether target and distractor-related processing are mediated by the same or different underlying neural mechanisms. Using a speeded target discrimination task, the present study implicitly cued subjects to the location of the target or the distractor via manipulations in the underlying stimulus predictability. In separate studies, we collected EEG and MEG alongside behavioural data. Results showed that reaction times were reduced with increased expectations for both types of stimuli and that these effects were driven by expected repetitions in both cases. Despite the similar behavioural pattern across target and distractors, neurophysiological measures distinguished the two stimuli. Specifically, the amplitude of the P1 was modulated by stimulus relevance, being reduced for repeated distractors and increased for repeated targets. The P1 was not, however, modulated by higher order stimulus expectations. These expectations were instead reflected in modulations in ERP amplitude and theta power in frontocentral electrodes. Finally, we observed that a single repetition of a distractor was sufficient to reduce decodability of stimulus spatial location and was also accompanied by diminished representation of stimulus features. Our results highlight the unique mechanisms involved in distractor expectation and suppression and underline the importance of studying these processes distinctly from target-related attentional control.
Collapse
Affiliation(s)
- M P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - A H Von Lautz
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Y Bauer
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, 82152, Munich, Germany
| | - C Summerfield
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - M S Stokes
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
387
|
Li D, Hu Y, Qi M, Zhao C, Jensen O, Huang J, Song Y. Prioritizing flexible working memory representations through retrospective attentional strengthening. Neuroimage 2023; 269:119902. [PMID: 36708973 DOI: 10.1016/j.neuroimage.2023.119902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Previous work has proposed two potential benefits of retrospective attention on working memory (WM): target strengthening and non-target inhibition. It remains unknown which hypothesis contributes to the improved WM performance, yet the neural mechanisms responsible for this attentional benefit are unclear. Here, we recorded electroencephalography (EEG) signals while 33 participants performed a retrospective-cue WM task. Multivariate pattern classification analysis revealed that only representations of target features were enhanced by valid retrospective attention during retention, supporting the target strengthening hypothesis. Further univariate analysis found that mid-frontal theta inter-trial phase coherence (ITPC) and ERP components were modulated by valid retrospective attention and correlated with individual differences and moment-to-moment fluctuations on behavioral outcomes, suggesting that both trait- and state-level variability in attentional preparatory processes influence goal-directed behavior. Furthermore, task-irrelevant target spatial location could be decoded from EEG signals, indicating that enhanced spatial binding of target representation is vital to high WM precision. Importantly, frontoparietal theta-alpha phase-amplitude coupling was increased by valid retrospective attention and predicted the reduced random guessing rates. This long-range connection supported top-down information flow in the engagement of frontoparietal networks, which might organize attentional states to integrate target features. Altogether, these results provide neurophysiological bases that retrospective attention improves WM precision by enhancing flexible target representation and emphasize the critical role of the frontoparietal attentional network in the control of WM representations.
Collapse
Affiliation(s)
- Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mengdi Qi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jing Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China.
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
388
|
Ferrante O, Zhigalov A, Hickey C, Jensen O. Statistical Learning of Distractor Suppression Downregulates Prestimulus Neural Excitability in Early Visual Cortex. J Neurosci 2023; 43:2190-2198. [PMID: 36801825 PMCID: PMC10039740 DOI: 10.1523/jneurosci.1703-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 02/19/2023] Open
Abstract
Visual attention is highly influenced by past experiences. Recent behavioral research has shown that expectations about the spatial location of distractors within a search array are implicitly learned, with expected distractors becoming less interfering. Little is known about the neural mechanism supporting this form of statistical learning. Here, we used magnetoencephalography (MEG) to measure human brain activity to test whether proactive mechanisms are involved in the statistical learning of distractor locations. Specifically, we used a new technique called rapid invisible frequency tagging (RIFT) to assess neural excitability in early visual cortex during statistical learning of distractor suppression while concurrently investigating the modulation of posterior alpha band activity (8-12 Hz). Male and female human participants performed a visual search task in which a target was occasionally presented alongside a color-singleton distractor. Unbeknown to the participants, the distracting stimuli were presented with different probabilities across the two hemifields. RIFT analysis showed that early visual cortex exhibited reduced neural excitability in the prestimulus interval at retinotopic locations associated with higher distractor probabilities. In contrast, we did not find any evidence of expectation-driven distractor suppression in alpha band activity. These findings indicate that proactive mechanisms of attention are involved in predictive distractor suppression and that these mechanisms are associated with altered neural excitability in early visual cortex. Moreover, our findings indicate that RIFT and alpha band activity might subtend different and possibly independent attentional mechanisms.SIGNIFICANCE STATEMENT What we experienced in the past affects how we perceive the external world in the future. For example, an annoying flashing light might be better ignored if we know in advance where it usually appears. This ability of extracting regularities from the environment is called statistical learning. In this study, we explore the neuronal mechanisms allowing the attentional system to overlook items that are unequivocally distracting based on their spatial distribution. By recording brain activity using MEG while probing neural excitability with a novel technique called RIFT, we show that the neuronal excitability in early visual cortex is reduced in advance of stimulus presentation for locations where distracting items are more likely to occur.
Collapse
Affiliation(s)
- Oscar Ferrante
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alexander Zhigalov
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Clayton Hickey
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
389
|
Popov T, Gips B, Weisz N, Jensen O. Brain areas associated with visual spatial attention display topographic organization during auditory spatial attention. Cereb Cortex 2023; 33:3478-3489. [PMID: 35972419 PMCID: PMC10068281 DOI: 10.1093/cercor/bhac285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022] Open
Abstract
Spatially selective modulation of alpha power (8-14 Hz) is a robust finding in electrophysiological studies of visual attention, and has been recently generalized to auditory spatial attention. This modulation pattern is interpreted as reflecting a top-down mechanism for suppressing distracting input from unattended directions of sound origin. The present study on auditory spatial attention extends this interpretation by demonstrating that alpha power modulation is closely linked to oculomotor action. We designed an auditory paradigm in which participants were required to attend to upcoming sounds from one of 24 loudspeakers arranged in a circular array around the head. Maintaining the location of an auditory cue was associated with a topographically modulated distribution of posterior alpha power resembling the findings known from visual attention. Multivariate analyses allowed the prediction of the sound location in the horizontal plane. Importantly, this prediction was also possible, when derived from signals capturing saccadic activity. A control experiment on auditory spatial attention confirmed that, in absence of any visual/auditory input, lateralization of alpha power is linked to the lateralized direction of gaze. Attending to an auditory target engages oculomotor and visual cortical areas in a topographic manner akin to the retinotopic organization associated with visual attention.
Collapse
Affiliation(s)
- Tzvetan Popov
- Methods of Plasticity Research, Department of Psychology, University of Zurich, 1-80502-784644-50205-B15 2TT, Zurich, Switzerland
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Bart Gips
- NATO Science and Technology Organization Centre for Maritime Research and Experimentation (CMRE) La Spezia, La Spezia 19126, Italy
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Ole Jensen
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
390
|
Gómez CM, Muñoz V, Rodríguez-Martínez EI, Arjona A, Barriga-Paulino CI, Pelegrina S. Child and adolescent development of the brain oscillatory activity during a working memory task. Brain Cogn 2023; 167:105969. [PMID: 36958141 DOI: 10.1016/j.bandc.2023.105969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
The developmental trajectories of brain oscillations during the encoding and maintenance phases of a Working Memory (WM) task were calculated. The Delayed-Match-to-Sample Test (DMTS) was applied to 239 subjects of 6-29 years, while EEG was recorded. The Event-Related Spectral Perturbation (ERSP) was obtained in the range between 1 and 25 Hz during the encoding and maintenance phases. Behavioral parameters of reaction times (RTs) and response accuracy were simultaneously recorded. The results indicate a myriad of transient and sustained bursts of oscillatory activity from low frequencies (1 Hz) to the beta range (up to 19 Hz). Beta and Low-frequency ERSP increases were prominent in the encoding phase in all age groups, while low-frequency ERSP indexed the maintenance phase only in children and adolescents, but not in late adolescents and young adults, suggesting an age-dependent neural mechanism of stimulus trace maintenance. While the latter group showed Beta and Alpha indices of anticipatory attention for the retrieval phase. Mediation analysis showed an important role of early Delta-Theta and late Alpha oscillations for mediation between age and behavioral responses performance. In conclusion, the results show a complex pattern of oscillatory bursts during the encoding and maintenance phases with a consistent pattern of developmental changes.
Collapse
Affiliation(s)
- Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Elena I Rodríguez-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | | | | |
Collapse
|
391
|
Anomal RF, Brandão DS, de Souza RFL, de Oliveira SS, Porto SB, Hazin Pires IA, Pereira A. The spectral profile of cortical activation during a visuospatial mental rotation task and its correlation with working memory. Front Neurosci 2023; 17:1134067. [PMID: 37008234 PMCID: PMC10061141 DOI: 10.3389/fnins.2023.1134067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe search for a cortical signature of intelligent behavior has been a longtime motivation in Neuroscience. One noticeable characteristic of intelligence is its association with visuospatial skills. This has led to a steady focus on the functional and structural characteristics of the frontoparietal network (FPN) of areas involved with higher cognition and spatial behavior in humans, including the question of whether intelligence is correlated with larger or smaller activity in this important cortical circuit. This question has broad significance, including speculations about the evolution of human cognition. One way to indirectly measure cortical activity with millisecond precision is to evaluate the event-related spectral perturbation (ERSP) of alpha power (alpha ERSP) during cognitive tasks. Mental rotation, or the ability to transform a mental representation of an object to accurately predict how the object would look from a different angle, is an important feature of everyday activities and has been shown in previous work by our group to be positively correlated with intelligence. In the present work, we evaluate whether alpha ERSP recorded over the parietal, frontal, temporal, and occipital regions of adolescents performing easy and difficult trials of the Shepard–Metzler’s mental rotation task, correlates or are predicted by intelligence measures of the Weschler’s intelligence scale.MethodsWe used a database obtained from a previous study of intellectually gifted (N = 15) and average intelligence (N = 15) adolescents.ResultsOur findings suggest that in challenging task conditions, there is a notable difference in the prominence of alpha event-related spectral perturbation (ERSP) activity between various cortical regions. Specifically, we found that alpha ERSP in the parietal region was less prominent relative to those in the frontal, temporal and occipital regions. Working memory scores predict alpha ERSP values in the frontal and parietal regions. In the frontal cortex, alpha ERSP of difficult trials was negatively correlated with working memory scores.DiscussionThus, our results suggest that even though the FPN is task-relevant during mental rotation tasks, only the frontal alpha ERSP is correlated with working memory score in mental rotation tasks.
Collapse
Affiliation(s)
| | | | | | | | | | - Izabel Augusta Hazin Pires
- Department of Psychology, Federal University of Rio Grande do Norte, Natal, Brazil
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Antonio Pereira
- Laboratory of Signal Processing, Institute of Technology, Federal University of Pará, Belém, Brazil
- *Correspondence: Antonio Pereira Jr.,
| |
Collapse
|
392
|
Weiner VS, Zhou DW, Kahali P, Stephen EP, Peterfreund RA, Aglio LS, Szabo MD, Eskandar EN, Salazar-Gomez AF, Sampson AL, Cash SS, Brown EN, Purdon PL. Propofol disrupts alpha dynamics in functionally distinct thalamocortical networks during loss of consciousness. Proc Natl Acad Sci U S A 2023; 120:e2207831120. [PMID: 36897972 PMCID: PMC10089159 DOI: 10.1073/pnas.2207831120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/14/2023] [Indexed: 03/12/2023] Open
Abstract
During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.
Collapse
Affiliation(s)
- Veronica S. Weiner
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David W. Zhou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Center for Neurotechnology and Recovery, Department of Neurology, Massachusetts General Hospital, Boston, MA02114
| | - Pegah Kahali
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Emily P. Stephen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert A. Peterfreund
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| | - Linda S. Aglio
- Harvard Medical School, Boston, MA02115
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Michele D. Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Emad N. Eskandar
- Harvard Medical School, Boston, MA02115
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA02114
| | - Andrés F. Salazar-Gomez
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Aaron L. Sampson
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Sydney S. Cash
- Center for Neurotechnology and Recovery, Department of Neurology, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| | - Emery N. Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Cambridge, MA02139
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Patrick L. Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
393
|
Pant R, Ossandón J, Stange L, Shareef I, Kekunnaya R, Röder B. Stimulus-evoked and resting-state alpha oscillations show a linked dependence on patterned visual experience for development. Neuroimage Clin 2023; 38:103375. [PMID: 36963312 PMCID: PMC10064270 DOI: 10.1016/j.nicl.2023.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Persistent visual impairments after congenital blindness due to dense bilateral cataracts have been attributed to altered visual cortex development within a sensitive period. Occipital alpha (8-14 Hz) oscillations were found to be reduced after congenital cataract reversal, while participants performed visual motion tasks. However, it has been unclear whether reduced alpha oscillations were task-specific, or linked to impaired visual behavior in cataract-reversed individuals. Here, we compared resting-state and stimulus-evoked alpha activity between individuals who had been treated for dense bilateral congenital cataracts (CC, n = 13, mean duration of blindness = 11.0 years) and age-matched, normally sighted individuals (SC, n = 13). We employed the visual impulse response function, adapted from VanRullen and MacDonald (2012), to test for the characteristic alpha response to visual white noise. Participants observed white noise stimuli changing in luminance with equal power at frequencies between 0 and 30 Hz. Compared to SC individuals, CC individuals demonstrated a reduced likelihood of exhibiting an evoked alpha response. Moreover, stimulus-evoked alpha power was reduced and correlated with a corresponding reduction of resting-state alpha power in the same CC individuals. Finally, CC individuals with an above-threshold evoked alpha peak had better visual acuity than CC individual without an evoked alpha peak. Since alpha oscillations have been linked to feedback communication, we suggest that the concurrent impairment in resting-state and stimulus-evoked alpha oscillations indicates an altered interaction of top-down and bottom-up processing in the visual hierarchy, which likely contributes to incomplete behavioral recovery in individuals who experienced transient congenital blindness.
Collapse
Affiliation(s)
- Rashi Pant
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.
| | - José Ossandón
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Liesa Stange
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Idris Shareef
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, LV Prasad Eye Institute, 500034 Hyderabad, India; Department of Psychology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, United States
| | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, LV Prasad Eye Institute, 500034 Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| |
Collapse
|
394
|
Wang C, Zeng L, Cao X, Dai J, Liu Y, Gao Z, Qin Y, Yang L, Wang H, Wen Z. Synergistic effects of transcutaneous vagus nerve stimulation and inhibitory control training on electrophysiological performance in healthy adults. Front Neurosci 2023; 17:1123860. [PMID: 36968500 PMCID: PMC10033592 DOI: 10.3389/fnins.2023.1123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Transcutaneous vagal nerve stimulation (tVNS) is a non-invasive nerve stimulation technique that exerts a positive “exogenous” online neuromodulatory effect on inhibitory control (IC). Additionally, IC training (ICT) is an effective approach for enhancing IC via the “endogenous” activation of brain regions implicated in this process. The aim of the present study was to examine the synergistic effects of tVNS and ICT on IC enhancement. For this, we measured the changes in neural activity in frontal, fronto-central, and central regions in the time domain of the N2 component and the frequency domain of alpha power during the stop signal task. A total of 58 participants were randomly divided into four groups that received five sessions of either ICT or sham ICT with either online tVNS or sham tVNS. No differences in N2 amplitude were detected after any of the interventions. However, N2 latency shortened after tVNS + ICT in frontal, fronto-central, and central regions. N2 latency shortened after the intervention of sham tVNS + ICT in frontal region. Moreover, alpha power after tVNS + ICT intervention was larger than those of the other interventions in frontal, fronto-central, and central regions. The obtained electrophysiological data suggested that combining tVNS with ICT has synergistic ameliorative effects on IC, and provide evidence supporting the IC-enhancing potential of tVNS combined with ICT.
Collapse
Affiliation(s)
- Chunchen Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Lingwei Zeng
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xinsheng Cao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Jing Dai
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhijun Gao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yilong Qin
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Lin Yang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Lin Yang,
| | - Hang Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Hang Wang,
| | - Zhihong Wen
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhihong Wen,
| |
Collapse
|
395
|
Fujio K, Obata H, Takeda K, Kawashima N. Cortical oscillations and interareal synchronization as a preparatory activity for postural response. Eur J Neurosci 2023; 57:1516-1528. [PMID: 36878880 DOI: 10.1111/ejn.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and β-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Hiroki Obata
- Department of Humanities and Social Science Laboratory, Institute of Liberal Arts, Kyushu Institute of Technology, Fukuoka, Japan
| | - Kenta Takeda
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
396
|
Lendner JD, Harler U, Daume J, Engel AK, Zöllner C, Schneider TR, Fischer M. Oscillatory and aperiodic neuronal activity in working memory following anesthesia. Clin Neurophysiol 2023; 150:79-88. [PMID: 37028144 DOI: 10.1016/j.clinph.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023]
Abstract
OBJECTIVE Anesthesia and surgery are associated with cognitive impairment, particularly memory deficits. So far, electroencephalography markers of perioperative memory function remain scarce. METHODS We included male patients >60 years scheduled for prostatectomy under general anesthesia. We obtained neuropsychological assessments and a visual match-to-sample working memory task with simultaneous 62-channel scalp electroencephalography 1 day before and 2 to 3 days after surgery. RESULTS Twenty-six patients completed both pre- and postoperative sessions. Compared with preoperative performance, verbal learning deteriorated after anesthesia (California Verbal Learning Test total recall; t25 = -3.25, p = 0.015, d = -0.902), while visual working memory performance showed a dissociation between match and mismatch accuracy (match*session F1,25 = 3.866, p = 0.060). Better verbal learning was associated with an increase of aperiodic brain activity (total recall r = 0.66, p = 0.029, learning slope r = 0.66, p = 0.015), whereas visual working memory accuracy was tracked by oscillatory theta/alpha (7 - 9 Hz), low beta (14 - 18 Hz) and high beta/gamma (34 - 38 Hz) activity (matches: p < 0.001, mismatches: p = 0.022). CONCLUSIONS Oscillatory and aperiodic brain activity in scalp electroencephalography track distinct features of perioperative memory function. SIGNIFICANCE Aperiodic activity provides a potential electroencephalographic biomarker to identify patients at risk for postoperative cognitive impairments.
Collapse
|
397
|
Marshall S, Gabiazon R, Persaud P, Nagamatsu LS. What do functional neuroimaging studies tell us about the association between falls and cognition in older adults? A systematic review. Ageing Res Rev 2023; 85:101859. [PMID: 36669688 DOI: 10.1016/j.arr.2023.101859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Impaired cognition is a known risk factor for falls in older adults. To enhance prevention strategies and treatment of falls among an aging global population, an understanding of the neural processes and networks involved is required. We present a systematic review investigating how functional neuroimaging techniques have been used to examine the association between falls and cognition in seniors. Peer-reviewed articles were identified through searching five electronic databases: 1) Medline, 2) PsycINFO, 3) CINAHL, 4) EMBASE, and 5) Pubmed. Key author, key paper, and reference searching was also conducted. Nine studies were included in this review. A questionnaire composed of seven questions was used to assess the quality of each study. EEG, fMRI, and PET were utilized across studies to examine brain function in older adults. Consistent evidence demonstrates that cognition is associated with measures of falls/falls risk, specifically visual attention and executive function. Our results show that falls/falls risk may be implicated with specific brain regions and networks. Future studies should be prospective and long-term in nature, with standardized outcome measures. Mobile neuroimaging techniques may also provide insight into brain activity as it pertains to cognition and falls in older adults in real-world settings.
Collapse
Affiliation(s)
- Samantha Marshall
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Raphael Gabiazon
- Schulich School of Medicine and Dentistry, Western University, Ontario, Canada
| | - Priyanka Persaud
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Lindsay S Nagamatsu
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada.
| |
Collapse
|
398
|
Herrmann B, Maess B, Henry MJ, Obleser J, Johnsrude IS. Neural signatures of task-related fluctuations in auditory attention and age-related changes. Neuroimage 2023; 268:119883. [PMID: 36657693 DOI: 10.1016/j.neuroimage.2023.119883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Listening in everyday life requires attention to be deployed dynamically - when listening is expected to be difficult and when relevant information is expected to occur - to conserve mental resources. Conserving mental resources may be particularly important for older adults who often experience difficulties understanding speech. In the current study, we use electro- and magnetoencephalography to investigate the neural and behavioral mechanics of attention regulation during listening and the effects that aging has on these. We first show in younger adults (17-31 years) that neural alpha oscillatory activity indicates when in time attention is deployed (Experiment 1) and that deployment depends on listening difficulty (Experiment 2). Experiment 3 investigated age-related changes in auditory attention regulation. Middle-aged and older adults (54-72 years) show successful attention regulation but appear to utilize timing information differently compared to younger adults (20-33 years). We show a notable age-group dissociation in recruited brain regions. In younger adults, superior parietal cortex underlies alpha power during attention regulation, whereas, in middle-aged and older adults, alpha power emerges from more ventro-lateral areas (posterior temporal cortex). This difference in the sources of alpha activity between age groups only occurred during task performance and was absent during rest (Experiment S1). In sum, our study suggests that middle-aged and older adults employ different neural control strategies compared to younger adults to regulate attention in time under listening challenges.
Collapse
Affiliation(s)
- Björn Herrmann
- Department of Psychology, The University of Western Ontario, London, ON N6A 3K7, Canada; Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Burkhard Maess
- Brain Networks Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Molly J Henry
- Max Planck Research Group "Neural and Environmental Rhythms", Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Ingrid S Johnsrude
- Department of Psychology, The University of Western Ontario, London, ON N6A 3K7, Canada; School of Communication Sciences & Disorders, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
399
|
Zhao C, Kong Y, Li D, Huang J, Kong L, Li X, Jensen O, Song Y. Suppression of distracting inputs by visual-spatial cues is driven by anticipatory alpha activity. PLoS Biol 2023; 21:e3002014. [PMID: 36888690 PMCID: PMC10027229 DOI: 10.1371/journal.pbio.3002014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/20/2023] [Accepted: 01/27/2023] [Indexed: 03/09/2023] Open
Abstract
A growing body of research demonstrates that distracting inputs can be proactively suppressed via spatial cues, nonspatial cues, or experience, which are governed by more than one top-down mechanism of attention. However, how the neural mechanisms underlying spatial distractor cues guide proactive suppression of distracting inputs remains unresolved. Here, we recorded electroencephalography signals from 110 participants in 3 experiments to identify the role of alpha activity in proactive distractor suppression induced by spatial cues and its influence on subsequent distractor inhibition. Behaviorally, we found novel changes in the spatial proximity of the distractor: Cueing distractors far away from the target improves search performance for the target, while cueing distractors close to the target hampers performance. Crucially, we found dynamic characteristics of spatial representation for distractor suppression during anticipation. This result was further verified by alpha power increased relatively contralateral to the cued distractor. At both the between- and within-subjects levels, we found that these activities further predicted the decrement of the subsequent PD component, which was indicative of reduced distractor interference. Moreover, anticipatory alpha activity and its link with the subsequent PD component were specific to the high predictive validity of distractor cue. Together, our results reveal the underlying neural mechanisms by which cueing the spatial distractor may contribute to reduced distractor interference. These results also provide evidence supporting the role of alpha activity as gating by proactive suppression.
Collapse
Affiliation(s)
- Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
- School of Systems Science, Beijing Normal University, Beijing, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jing Huang
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Lujiao Kong
- School of Journalism and Communication, Beijing Normal University, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
400
|
Narmashiri A, Hatami J, Khosrowabadi R, Sohrabi A. Paranormal believers show reduced resting EEG beta band oscillations and inhibitory control than skeptics. Sci Rep 2023; 13:3258. [PMID: 36828909 PMCID: PMC9958009 DOI: 10.1038/s41598-023-30457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Paranormal believers' thinking is frequently biased by intuitive beliefs. Lack of inhibition of these tempting beliefs is considered a key element in paranormal believers' thinking. However, the brain activity related to inhibitory control in paranormal believers is poorly understood. We examined EEG activities at resting state in alpha, beta, and gamma bands with inhibitory control in paranormal believers and skeptics. The present study shows that paranormal belief is related to the reduced power of the alpha, beta, and gamma frequency bands, and reduced inhibitory control. This study may contribute to understanding the differences between believers and skeptics in brain activity related to inhibitory control in paranormal believers.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Bio-Intelligence Research Unit, Sharif Brain Center, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran.
- Shahid Beheshti University, Tehran, Iran.
| | | | | | | |
Collapse
|