351
|
Chen H, Tian X, Luan Y, Lu H. Downregulated Long Noncoding RNA DGCR5 Acts as a New Promising Biomarker for the Diagnosis and Prognosis of Ovarian Cancer. Technol Cancer Res Treat 2020; 18:1533033819896809. [PMID: 31868103 PMCID: PMC6928542 DOI: 10.1177/1533033819896809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence have indicated that dysregulated long noncoding ribonucleic acids act as a novel diagnostic and therapeutic target in the progression of ovarian cancer. Long noncoding RNA DiGeorge syndrome critical region gene 5 has been reported to participate in some types of human cancer progresses, but its clinical roles in ovarian cancer had been rarely reported. This study aimed to explore the expression, clinicopathological features, diagnostic, and prognostic values of DiGeorge syndrome critical region gene 5 in ovarian cancer. The total levels of DiGeorge syndrome critical region gene 5 transcript variant 1 (NR_002733.2) and 2 (NR_045121.1) in patients with ovarian cancer were determined by quantitative reverse transcription polymerase chain reaction. The correlation of DiGeorge syndrome critical region gene 5 expression with clinicopathological factors was statistically analyzed by χ2 test. Overall survival analysis was carried out with the Kaplan–Meier curves with the log-rank test. Univariate and multivariate Cox regression analyses were performed to identify the prognostic significance of DiGeorge syndrome critical region gene 5 expression. Receiver operating characteristic curves were constructed to estimate the diagnostic and prognostic usefulness of DiGeorge syndrome critical region gene 5 in ovarian cancer. Results showed that relative DiGeorge syndrome critical region gene 5 expression was reduced by 36.81% and 65.79% in ovarian cancer tissues of patients and Gene Expression Omnibus DataSets (GSE119056) in contrast to normal tissues, respectively. Patients with lymph node metastasis and distant metastasis exhibited lower levels of DiGeorge syndrome critical region gene 5 in contrast to those patients with non-lymph node metastasis and non-distant metastasis, respectively. Low expression of DiGeorge syndrome critical region gene 5 was significantly associated with large tumor size, more lymph node metastasis, present distant metastasis, advanced clinical stage, and short overall survival in patients with ovarian cancer. Low expression of DiGeorge syndrome critical region gene 5 was an independent unfavorable prognostic factor for overall survival in patients with ovarian cancer. Receiver operating characteristics curves for prognosis yielded significant area under curves for lymph node metastasis, clinical stage, and overall survival. In conclusion, our study demonstrated that downregulated DiGeorge syndrome critical region gene 5 may be a new promising biomarker for predicting clinical progression and prognosis in patients with ovarian cancer.
Collapse
Affiliation(s)
- Hongxiao Chen
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiufang Tian
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yajing Luan
- Teaching Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Lu
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
352
|
Gao H, Sun X, Wang H, Zheng Y. Long noncoding RNA SNHG22 increases ZEB1 expression via competitive binding with microRNA-429 to promote the malignant development of papillary thyroid cancer. Cell Cycle 2020; 19:1186-1199. [PMID: 32306838 PMCID: PMC7217354 DOI: 10.1080/15384101.2020.1749466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/28/2019] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA termed small nucleolar RNA host gene 22 (SNHG22) is a crucial regulator in epithelial ovarian carcinoma. Nevertheless, the regulatory functions of SNHG22 in papillary thyroid cancer (PTC) progression and its mechanisms of action remain poorly defined. Therefore, the present study aimed to investigate the role of SNHG22 in the malignant phenotype of PTC and determine whether SNHG22 regulates PTC progression via a ceRNA mechanism. SNHG22 expression in PTC was detected using reverse transcription-quantitative polymerase chain reaction analysis. The biological actions of SNHG22 silencing in PTC cells were evaluated both in vitro (using Cell Counting Kit-8 assay, flow cytometry analysis, and cell migration and invasion assays) and in vivo (using tumorigenicity assay). Herein, high SNHG22 expression was observed in PTC tissues and cell lines. This high SNHG22 level was closely associated with unfavorable clinicopathological characteristics and worse overall survival in patients with PTC. SNHG22 knockdown effectively suppressed PTC cell proliferation, migration, and invasion in vitro; accelerated cell apoptosis; and hindered tumor growth in vivo. Mechanistic experiments revealed that SNHG22 directly interacts with microRNA-429 (miR-429) as an miRNA sponge and positively modulates ZEB1 expression. Rescue assays found that miR-429 inhibition or ZEB1 upregulation can offset the actions of SNHG22 knockdown in PTC cells. In sum, SNHG22, miR-429, and ZEB1 form an interactive regulatory network with cancer-promoting roles in PTC cells, suggesting that the SNHG22/miR-429/ZEB1 pathway is a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Hong Gao
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Xiaosong Sun
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Hongdong Wang
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Ying Zheng
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| |
Collapse
|
353
|
Role of Non-Coding RNAs in Lung Circadian Clock Related Diseases. Int J Mol Sci 2020; 21:ijms21083013. [PMID: 32344623 PMCID: PMC7215637 DOI: 10.3390/ijms21083013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian oscillations are regulated at both central and peripheral levels to maintain physiological homeostasis. The central circadian clock consists of a central pacemaker in the suprachiasmatic nucleus that is entrained by light dark cycles and this, in turn, synchronizes the peripheral clock inherent in other organs. Circadian dysregulation has been attributed to dysregulation of peripheral clock and also associated with several diseases. Components of the molecular clock are disrupted in lung diseases like chronic obstructive pulmonary disease (COPD), asthma and IPF. Airway epithelial cells play an important role in temporally organizing magnitude of immune response, DNA damage response and acute airway inflammation. Non-coding RNAs play an important role in regulation of molecular clock and in turn are also regulated by clock components. Dysregulation of these non-coding RNAs have been shown to impact the expression of core clock genes as well as clock output genes in many organs. However, no studies have currently looked at the potential impact of these non-coding RNAs on lung molecular clock. This review focuses on the ways how these non-coding RNAs regulate and in turn are regulated by the lung molecular clock and its potential impact on lung diseases.
Collapse
|
354
|
Bekric D, Neureiter D, Ritter M, Jakab M, Gaisberger M, Pichler M, Kiesslich T, Mayr C. Long Non-Coding RNAs in Biliary Tract Cancer-An Up-to-Date Review. J Clin Med 2020; 9:jcm9041200. [PMID: 32331331 PMCID: PMC7231154 DOI: 10.3390/jcm9041200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The term long non-coding RNA (lncRNA) describes non protein-coding transcripts with a length greater than 200 base pairs. The ongoing discovery, characterization and functional categorization of lncRNAs has led to a better understanding of the involvement of lncRNAs in diverse biological and pathological processes including cancer. Aberrant expression of specific lncRNA species was demonstrated in various cancer types and associated with unfavorable clinical characteristics. Recent studies suggest that lncRNAs are also involved in the development and progression of biliary tract cancer, a rare disease with high mortality and limited therapeutic options. In this review, we summarize current findings regarding the manifold roles of lncRNAs in biliary tract cancer and give an overview of the clinical and molecular consequences of aberrant lncRNA expression as well as of underlying regulatory functions of selected lncRNA species in the context of biliary tract cancer.
Collapse
Affiliation(s)
- Dino Bekric
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria;
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Markus Ritter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
| | - Martin Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria;
| | - Tobias Kiesslich
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria
| | - Christian Mayr
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
355
|
Crosstalk of lncRNA and Cellular Metabolism and Their Regulatory Mechanism in Cancer. Int J Mol Sci 2020; 21:ijms21082947. [PMID: 32331347 PMCID: PMC7215767 DOI: 10.3390/ijms21082947] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
The imbalanced regulation of metabolic homeostasis and energy production is highly associated with inflammation, tumor growth, metastasis and cancer progression. Both glycolysis and oxidative phosphorylation maintain metabolic homeostasis and energy production in cells. Long noncoding RNAs (lncRNAs) are a class of non-protein-coding transcripts longer than 200 nucleotides. Furthermore, lncRNAs can function as either tumor suppressors or oncogenes in cancer. Dysregulated lncRNAs reportedly regulate cancer hallmarks such as tumor growth, metabolism and metastasis. Accordingly, uncovering the interaction between lncRNAs and cellular metabolism has become a necessity when attempting to identify effective therapeutic and preventive strategies in cancer progression. This review summarizes important knowledge of the actions of known lncRNAs-mediated cancer metabolism.
Collapse
|
356
|
Singh Patel S, Zunjarrao S, Pillai B. Neev, a novel long non-coding RNA, is expressed in chaetoblasts during regeneration of Eisenia fetida. ACTA ACUST UNITED AC 2020; 223:jeb.216754. [PMID: 32098889 DOI: 10.1242/jeb.216754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Eisenia fetida, the common vermicomposting earthworm, shows robust regeneration of posterior segments removed by amputation. During the period of regeneration, the newly formed tissue initially contains only undifferentiated cells but subsequently differentiates into a variety of cell types including muscle, nerve and vasculature. Transcriptomics analysis, reported previously, provided a number of candidate non-coding RNAs that were induced during regeneration. We found that one such long non-coding RNA (lncRNA) is expressed in the skin, only at the base of newly formed chaetae. The spatial organization and precise arrangement of the regenerating chaetae and the cells expressing the lncRNA on the ventral side clearly support a model wherein the regenerating tissue contains a zone of growth and cell division at the tip and a zone of differentiation at the site of amputation. The temporal expression pattern of the lncRNA, named Neev, closely resembled the pattern of chitin synthase genes, implicated in chaetae formation. We found that the lncRNA has 49 sites for binding a set of four microRNAs (miRNAs) while the chitin synthase 8 mRNA has 478 sites. The over-representation of shared miRNA sites suggests that lncRNA Neev may act as a miRNA sponge to transiently de-repress chitin synthase 8 during formation of new chaetae in the regenerating segments of Eisenia fetida.
Collapse
Affiliation(s)
- Surendra Singh Patel
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi 110 025, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanyami Zunjarrao
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Beena Pillai
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi 110 025, India
| |
Collapse
|
357
|
Gallop Racing Shifts Mature mRNA towards Introns: Does Exercise-Induced Stress Enhance Genome Plasticity? Genes (Basel) 2020; 11:genes11040410. [PMID: 32283859 PMCID: PMC7230505 DOI: 10.3390/genes11040410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
Physical exercise is universally recognized as stressful. Among the "sport species", the horse is probably the most appropriate model for investigating the genomic response to stress due to the homogeneity of its genetic background. The aim of this work is to dissect the whole transcription modulation in Peripheral Blood Mononuclear Cells (PBMCs) after exercise with a time course framework focusing on unexplored regions related to introns and intergenic portions. PBMCs NGS from five 3 year old Sardinian Anglo-Arab racehorses collected at rest and after a 2000 m race was performed. Apart from differential gene expression ascertainment between the two time points the complexity of transcription for alternative transcripts was identified. Interestingly, we noted a transcription shift from the coding to the non-coding regions. We further investigated the possible causes of this phenomenon focusing on genomic repeats, using a differential expression approach and finding a strong general up-regulation of repetitive elements such as LINE. Since their modulation is also associated with the "exonization", the recruitment of repeats that act with regulatory functions, suggesting that there might be an active regulation of this transcriptional shift. Thanks to an innovative bioinformatic approach, our study could represent a model for the transcriptomic investigation of stress.
Collapse
|
358
|
Zhu Y, Yan Z, Du Z, Zhang S, Fu C, Meng Y, Wen X, Wang Y, Hoffman AR, Hu JF, Cui J, Li W. Osblr8 orchestrates intrachromosomal loop structure required for maintaining stem cell pluripotency. Int J Biol Sci 2020; 16:1861-1875. [PMID: 32398955 PMCID: PMC7211171 DOI: 10.7150/ijbs.45112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs), derived from reprogramming of somatic cells by a cocktail of transcription factors, have the capacity for unlimited self-renewal and the ability to differentiate into all of cell types present in the body. iPSCs may have therapeutic potential in regenerative medicine, replacing injured tissues or even whole organs. In this study, we examine epigenetic factors embedded in the specific 3-dimensional intrachromosomal architecture required for the activation of endogenous pluripotency genes. Using chromatin RNA in situ reverse transcription sequencing (CRIST-seq), we identified an Oct4-Sox2 binding long noncoding RNA, referred as to Osblr8, that is present in association with pluripotency status. Osblr8 was highly expressed in iPSCs and E14 embryonic stem cells, but it was silenced in fibroblasts. By using shRNA to knock down Osblr8, we found that this lncRNA was required for the maintenance of pluripotency. Overexpression of Osblr8 activated endogenous stem cell core factor genes. Mechanistically, Osblr8 participated in the formation of an intrachromosomal looping structure that is required to activate stem cell core factors during reprogramming. In summary, we have demonstrated that lncRNA Osblr8 is a chromatin architecture modulator of pluripotency-associated master gene promoters, highlighting its critical epigenetic role in reprogramming.
Collapse
Affiliation(s)
- Yanbo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zi Yan
- Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Zhonghua Du
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Changhao Fu
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ying Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yizhuo Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
359
|
The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. J Transl Med 2020; 18:152. [PMID: 32245498 PMCID: PMC7119166 DOI: 10.1186/s12967-020-02320-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
Despite considering vast majority of the transcribed molecules as merely noise RNA in the last decades, recent advances in the field of molecular biology revealed the mysterious role of long non-coding RNAs (lncRNAs), as a massive part of functional non-protein-coding RNAs. As a crucial lncRNA, HOX antisense intergenic RNA (HOTAIR) has been shown to participate in different processes of normal cell development. Aberrant overexpression of this lncRNA contributes to breast cancer progression, through different molecular mechanisms. In this review, we briefly discuss the structure of HOTAIR in the context of genome and impact of this lncRNA on normal human development. We subsequently summarize the potential role of HOTAIR overexpression on different processes of breast cancer development. Ultimately, the relationship of this lncRNA with different therapeutic approaches is discussed.
Collapse
|
360
|
Sun Y, Shi T, Ma Y, Qin H, Li K. Long noncoding RNA LINC00520 accelerates progression of papillary thyroid carcinoma by serving as a competing endogenous RNA of microRNA-577 to increase Sphk2 expression. Cell Cycle 2020; 19:787-800. [PMID: 32075502 PMCID: PMC7145331 DOI: 10.1080/15384101.2020.1731062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
The long noncoding RNA (lncRNA) LINC00520 is an important modulator of the oncogenicity of multiple human cancers. However, whether LINC00520 is involved in the malignancy of papillary thyroid carcinoma (PTC) has not been extensively studied until recently. Therefore, the present study aimed to detect LINC00520 expression and evaluate its clinical significance in PTC. Functional experiments were conducted to test the biological role(s) and underlying mechanisms of LINC00520 in PTC progression. Reverse transcription quantitative polymerase chain reaction was performed to detect LINC00520 expression in PTC. A series of functional experiments, including Cell Counting Kit-8 assay, flow cytometry, Transwell migration assay, and tumor xenograft assay, was employed to investigate the biological roles of LINC00520 in PTC cells. High LINC00520 expression was verified in PTC tissues and cell lines, and this high expression was associated with the unfavorable clinicopathological parameters and short overall survival of patients. Functionally, LINC00520 interference resulted in a significant decrease in PTC cell proliferation, migration, and in vitro invasion and an increase in cell apoptosis. Further, its downregulation impaired tumor growth in vivo. Mechanistically, LINC00520 functioned as a competing endogenous RNA by sponging microRNA-577 (miR-577) and thereby increasing sphingosine kinase 2 (Sphk2) expression. Rescue experiments revealed that inhibiting miR-577 or restoring Sphk2 could abrogate the effects of LINC00520 silencing on the malignant phenotypes of PTC. LINC00520 functioned as an oncogenic lncRNA in PTC, and it facilitated PTC progression by regulating the miR-577/Sphk2 axis, suggesting that the LINC00520/miR-577/Sphk2 axis is an effective target in anticancer management.
Collapse
Affiliation(s)
- Yu Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Tiefeng Shi
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Yanfei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Huadong Qin
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Kang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
361
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
362
|
Jiang Z, Zhang Y, Chen X, Wu P, Chen D. Long noncoding RNA RBMS3-AS3 acts as a microRNA-4534 sponge to inhibit the progression of prostate cancer by upregulating VASH1. Gene Ther 2020; 27:143-156. [PMID: 31712637 DOI: 10.1038/s41434-019-0108-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/11/2019] [Accepted: 10/16/2019] [Indexed: 01/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to participate in the progression of many malignancies, including prostate cancer by serving as sponges of microRNAs (miRNAs). Initial microarray-based analysis screened out the poorly expressed lncRNA RBMS3-AS3 in prostate cancer, followed by the identification of putative binding sites with miR-4534 and its target VASH1. Therefore, the present study set out to investigate the potential role of RBMS3-AS3/miR-4534/VASH1 axis in the development of prostate cancer. The biological functions of RBMS3-AS3, miR-4534, and VASH1 on cell proliferation, migration, invasion, and angiogenesis of prostate cancer were evaluated via gain- and loss-of-function experiments. Furthermore, tumor xenograft in nude mice was performed to examine tumorigenesis in vivo. The obtained results indicated that RBMS3-AS3 was poorly expressed in prostate cancer tissues and cells. Of note, overexpression of RBMS3-AS3 was found to suppress cell proliferation, migration, invasion, and angiogenesis as well as the tumorigenic ability of prostate cancer. VASH1 was verified as a target gene of miR-4534. VASH1 expression was found to be downregulated in prostate cancer tissues and cells. Interestingly, RBMS3-AS3 was observed to competitively bind to miR-4534 to upregulate VASH1 expression, resulting in a suppressive role in prostate cancer development. Also, in vitro findings were reproduced in vivo on tumor xenograft in nude mice. Taken together, the present study provides evidence suggesting that RBMS3-AS3 acts as a miR-4534 sponge to inhibit the development of prostate cancer by upregulating VASH1, highlighting a theoretical target for prostate cancer treatment.
Collapse
Affiliation(s)
- Zhenming Jiang
- Department of Urology, The First Hospital of China Medical University, 110001, Shenyang, PR China
| | - Yuxi Zhang
- Department of Urology, The First Hospital of China Medical University, 110001, Shenyang, PR China.
- Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, 810100, Xining, PR China.
| | - Xi Chen
- Department of Pharmacy, The First Hospital of China Medical University, 110001, Shenyang, PR China
| | - Pingeng Wu
- Department of Urology, The First Hospital of China Medical University, 110001, Shenyang, PR China
| | - Dong Chen
- Central Lab, The First Hospital of China Medical University, 110001, Shenyang, PR China
| |
Collapse
|
363
|
Chen L, Wang P, Manautou JE, Zhong XB. Knockdown of Long Noncoding RNAs Hepatocyte Nuclear Factor 1 α Antisense RNA 1 and Hepatocyte Nuclear Factor 4 α Antisense RNA 1 Alters Susceptibility of Acetaminophen-Induced Cytotoxicity in HepaRG Cells. Mol Pharmacol 2020; 97:278-286. [PMID: 32029527 PMCID: PMC7045890 DOI: 10.1124/mol.119.118778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acetaminophen (APAP) is a commonly used over-the-counter drug for its analgesic and antipyretic effects. However, APAP overdose leads to severe APAP-induced liver injury (AILI) and even death as a result of the accumulation of N-acetyl-p-benzoquinone imine, the toxic metabolite of APAP generated by cytochrome P450s (P450s). Long noncoding RNAs HNF1α antisense RNA 1 (HNF1α-AS1) and HNF4α antisense RNA 1 (HNF4α-AS1) are regulatory RNAs involved in the regulation of P450 expression in both mRNA and protein levels. This study aims to determine the impact of HNF1α-AS1 and HNF4α-AS1 on AILI. Small hairpin RNAs were used to knock down HNF1α-AS1 and HNF4α-AS1 in HepaRG cells. Knockdown of these lncRNAs altered APAP-induced cytotoxicity, indicated by MTT and LDH assays. Specifically, HNF1α-AS1 knockdown decreased APAP toxicity with increased cell viability and decreased LDH release, whereas HNF4α-AS1 knockdown exacerbated APAP toxicity, with opposite effects in the MTT and LDH assays. Alterations on gene expression by knockdown of HNF1α-AS1 and HNF4α-AS1 were examined in several APAP metabolic pathways, including CYP1A2, CYP2E1, CYP3A4, UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Knockdown of HNF1α-AS1 decreased mRNA expression of CYP1A2, 2E1, and 3A4 by 0.71-fold, 0.35-fold, and 0.31-fold, respectively, whereas knockdown of HNF4α-AS1 induced mRNAs of CYP1A2, 2E1, and 3A4 by 1.3-fold, 1.95-fold, and 1.9-fold, respectively. These changes were also observed in protein levels. Knockdown of HNF1α-AS1 and HNF4α-AS1 had limited effects on the mRNA expression of UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Altogether, our study suggests that HNF1α-AS1 and HNF4α-AS1 affected AILI mainly through alterations of P450-mediated APAP biotransformation in HepaRG cells, indicating an important role of the lncRNAs in AILI. SIGNIFICANCE STATEMENT: The current research identified two lncRNAs, hepatocyte nuclear factor 1α antisense RNA 1 and hepatocyte nuclear factor 4α antisense RNA 1, which were able to affect susceptibility of acetaminophen (APAP)-induced liver injury in HepaRG cells, possibly through regulating the expression of APAP-metabolizing cytochrome P450 enzymes. This discovery added new factors, lncRNAs, which can be used to predict cytochrome P450-mediated drug metabolism and drug-induced toxicity.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - Pei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., P.W., J.E.M., X.-b.Z.) and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (P.W.)
| |
Collapse
|
364
|
Long noncoding RNA LINC00520 accelerates the progression of colorectal cancer by serving as a competing endogenous RNA of microRNA-577 to increase HSP27 expression. Hum Cell 2020; 33:683-694. [PMID: 32146708 DOI: 10.1007/s13577-020-00336-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
The long noncoding RNA (lncRNA) LINC00520 is an important modulator of the oncogenicity of multiple human cancers. However, whether LINC00520 is involved in the malignant characteristics of colorectal cancer (CRC) has not been extensively studied until recently. Therefore, the present study aimed to detect LINC00520 expression in CRC and evaluate its clinical significance in patients with CRC. Functional experiments were conducted to test the biological roles and underlying mechanisms of LINC00520 in CRC progression. In this study, high-LINC00520 expression was verified in CRC tissues and cell lines, and this high expression was associated with patients' unfavorable clinicopathological parameters and shorter overall survival and disease-free survival. Functionally, interference of LINC00520 resulted in a significant decrease of CRC cell proliferation, migration, colony forming ability, and invasion. Mechanistically, LINC00520 functioned as a competing endogenous RNA by sponging microRNA-577 (miR-577) and thereby increasing heat shock protein 27 (HSP27) expression. Rescue experiments revealed that inhibiting miR-577 or restoring HSP27 could abrogate the effects of LINC00520 silencing on malignant phenotypes of CRC. LINC00520 functioned as an oncogenic lncRNA in CRC, and it facilitated CRC progression by regulating the miR-577/HSP27 axis, suggesting that the LINC00520/miR-577/HSP27 axis is an effective target in anticancer management.
Collapse
|
365
|
Ravnik-Glavač M, Glavač D. Circulating RNAs as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21051714. [PMID: 32138249 PMCID: PMC7084402 DOI: 10.3390/ijms21051714] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex multi-system neurodegenerative disorder with currently limited diagnostic and no therapeutic options. Despite the intense efforts no clinically applicable biomarkers for ALS are yet established. Most current research is thus focused, in particular, in identifying potential non-invasive circulating biomarkers for more rapid and accurate diagnosis and monitoring of the disease. In this review, we have focused on messenger RNA (mRNA), non-coding RNAs (lncRNAs), micro RNAs (miRNAs) and circular RNA (circRNAs) as potential biomarkers for ALS in peripheral blood serum, plasma and cells. The most promising miRNAs include miR-206, miR-133b, miR-27a, mi-338-3p, miR-183, miR-451, let-7 and miR-125b. To test clinical potential of this miRNA panel, a useful approach may be to perform such analysis on larger multi-center scale using similar experimental design. However, other types of RNAs (lncRNAs, circRNAs and mRNAs) that, together with miRNAs, represent RNA networks, have not been yet extensively studied in blood samples of patients with ALS. Additional research has to be done in order to find robust circulating biomarkers and therapeutic targets that will distinguish key RNA interactions in specific ALS-types to facilitate diagnosis, predict progression and design therapy.
Collapse
Affiliation(s)
- Metka Ravnik-Glavač
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| |
Collapse
|
366
|
He Z, Yang D, Fan X, Zhang M, Li Y, Gu X, Yang M. The Roles and Mechanisms of lncRNAs in Liver Fibrosis. Int J Mol Sci 2020; 21:ijms21041482. [PMID: 32098245 PMCID: PMC7073061 DOI: 10.3390/ijms21041482] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Many studies have revealed that circulating long noncoding RNAs (lncRNAs) regulate gene and protein expression in the process of hepatic fibrosis. Liver fibrosis is a reversible wound healing response followed by excessive extracellular matrix accumulation. In the development of liver fibrosis, some lncRNAs regulate diverse cellular processes by acting as competing endogenous RNAs (ceRNAs) and binding proteins. Previous investigations demonstrated that overexpression of lncRNAs such as H19, maternally expressed gene 3 (MEG3), growth arrest-specific transcript 5 (GAS5), Gm5091, NR_002155.1, and HIF 1alpha-antisense RNA 1 (HIF1A-AS1) can inhibit the progression of liver fibrosis. Furthermore, the upregulation of several lncRNAs [e.g., nuclear paraspeckle assembly transcript 1 (NEAT1), hox transcript antisense RNA (Hotair), and liver-enriched fibrosis-associated lncRNA1 (lnc-LFAR1)] has been reported to promote liver fibrosis. This review will focus on the functions and mechanisms of lncRNAs, the lncRNA transcriptome profile of liver fibrosis, and the main lncRNAs involved in the signalling pathways that regulate hepatic fibrosis. This review provides insight into the screening of therapeutic and diagnostic markers of liver fibrosis.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (X.F.); (M.Z.); (Y.L.)
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (X.F.); (M.Z.); (Y.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (D.Y.); (M.Y.); Tel.: +86-159-2848 7973 (M.Y.)
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (X.F.); (M.Z.); (Y.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (X.F.); (M.Z.); (Y.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (X.F.); (M.Z.); (Y.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (X.F.); (M.Z.); (Y.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (D.Y.); (M.Y.); Tel.: +86-159-2848 7973 (M.Y.)
| |
Collapse
|
367
|
Pengyu Z, Yan Y, Xiying F, Maoguang Y, Mo L, Yan C, Hong S, Lijuan W, Xiujuan Z, Hanqing C. The Differential Expression of Long Noncoding RNAs in Type 2 Diabetes Mellitus and Latent Autoimmune Diabetes in Adults. Int J Endocrinol 2020; 2020:9235329. [PMID: 32148491 PMCID: PMC7049833 DOI: 10.1155/2020/9235329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) were previously found to be closely related to the pathogenesis of diabetes. OBJECTIVES To reveal the differentially expressed lncRNAs and messenger RNAs (mRNAs) involved in type 2 diabetes mellitus (T2DM) and latent autoimmune diabetes in adults (LADA) and predict the lncRNA target genes to derive their expression profiles for the diagnosis of T2DM and LADA and their differential diagnosis. METHODS Twelve venous blood samples were collected from T2DM patients, LADA patients, and nondiseased subjects to obtain total RNAs. After removing rRNA from total RNAs to establish the desired library for sequencing, quality control and quantification analyses were carried out. The fragments per kilobase of exon model per million reads mapped (FPKM) of lncRNAs were calculated to construct the gene expression profiles of lncRNAs and mRNAs. Fold changes (fold change: 2.0) and p values (p values (. RESULTS Compared to nondiseased controls, 68,763 versus 28,523 lncRNAs and 133 versus 1035 mRNAs were significantly upregulated and significantly downregulated, respectively, in T2DM patients. For LADA patients, 68,748 versus 28,538 lncRNAs and 219 versus 805 mRNAs were significantly upregulated and significantly downregulated, respectively, relative to nondiseased controls. Compared to T2DM patients, 74,207 versus 23,079 lncRNAs and 349 versus 137 mRNAs were significantly upregulated and significantly downregulated, respectively, in LADA patients. Based on the correlation analysis, seven lncRNA-mRNA pairs (BTG2, A2M, HECTD4, MBTPS1, DBH, FLVCR1, and NCBP2) were significantly coexpressed, and two lncRNAs (ENST00000608916 and ENST00000436373) were newly discovered. CONCLUSION Significant differences in lncRNA expression were discovered among the three groups. Furthermore, after predicting lncRNA expression profiles, GO/KEGG pathway analysis could deduce the target gene function.
Collapse
Affiliation(s)
- Zhang Pengyu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Fu Xiying
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Maoguang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Mo
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Cheng Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shen Hong
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wang Lijuan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhang Xiujuan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Cai Hanqing
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
368
|
Duan J, Wang X, Kizer ME. Biotechnological and Therapeutic Applications of Natural Nucleic Acid Structural Motifs. Top Curr Chem (Cham) 2020; 378:26. [PMID: 32067108 DOI: 10.1007/s41061-020-0290-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/11/2020] [Indexed: 11/28/2022]
Abstract
Genetic information and the blueprint of life are stored in the form of nucleic acids. The primary sequence of DNA, read from the canonical double helix, provides the code for RNA and protein synthesis. Yet these already-information-rich molecules have higher-order structures which play critical roles in transcription and translation. Uncovering the sequences, parameters, and conditions which govern the formation of these structural motifs has allowed researchers to study them and to utilize them in biotechnological and therapeutic applications in vitro and in vivo. This review covers both DNA and RNA structural motifs found naturally in biological systems including catalytic nucleic acids, non-coding RNA, aptamers, G-quadruplexes, i-motifs, and Holliday junctions. For each category, an overview of the structural characteristics, biological prevalence, and function will be discussed. The biotechnological and therapeutic applications of these structural motifs are highlighted. Future perspectives focus on the addition of proteins and unnatural modifications to enhance structural stability for greater applicability.
Collapse
Affiliation(s)
- Jinwei Duan
- Department of Chemistry and Materials Science, College of Sciences, Chang'an University, Xi'an, 710064, Shaanxi, People's Republic of China.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Xing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Megan E Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
369
|
Mahmoudi B, Fayazi J, Roshanfekr H, Sari M, Bakhtiarizadeh MR. Genome-wide identification and characterization of novel long non-coding RNA in Ruminal tissue affected with sub-acute Ruminal acidosis from Holstein cattle. Vet Res Commun 2020; 44:19-27. [PMID: 32043213 DOI: 10.1007/s11259-020-09769-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Sub-acute ruminal acidosis is a type of metabolic disorder in which affected cattle show a considerable depression of rumen pH. This leads to a dramatic decline in productivity and consequent loss of income for many dairy farms. The objective of the present study is to identify and characterize novel long non-coding RNAs (lncRNAs) in Holstein cattle affected by sub-acute ruminal acidosis. Two replicates from six animals were sequenced that bioinformatically analyzed. Results showed 6679 novel lncRNAs among which 12 intergenic lncRNAs showed differential expression (p value ≤0.05). GO and KEGG analysis revealed that calcium signaling and G protein couple-receptor pathways may be involved in regulating metabolic processes during sub-acute ruminal acidosis. Furthermore, other biological processes including transmembrane transport, adult behavior, neuroactive ligand-receptor interaction, GABAergic synapse, cholinergic synapse were significantly enriched. The present data suggest that these differentially expressed lncRNAs may play regulatory roles in modulating biological processes associated with sub-acute ruminal acidosis in cattle rumen.
Collapse
Affiliation(s)
- Bizhan Mahmoudi
- Department of Animal science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
| | - Jamal Fayazi
- Department of Animal science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran.
| | - Hedayatollah Roshanfekr
- Department of Animal science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
| | - Mohsen Sari
- Department of Animal science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
| | | |
Collapse
|
370
|
Nemoto T, Kakinuma Y. Fetal malnutrition-induced catch up failure is caused by elevated levels of miR-322 in rats. Sci Rep 2020; 10:1339. [PMID: 31992823 PMCID: PMC6987214 DOI: 10.1038/s41598-020-58392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022] Open
Abstract
If sufficient nutrition is not obtained during pregnancy, the fetus changes its endocrine system and metabolism to protect the brain, resulting in a loss of body size. The detailed mechanisms that determine the success or failure of growth catch-up are still unknown. Therefore, we investigated the mechanism by which catch-up growth failure occurs. The body weights of rat pups at birth from dams whose calorie intake during pregnancy was reduced by 40% were significantly lower than those of controls, and some offspring failed to catch up. Short-body-length and low-bodyweight rats showed blood IGF-1 levels and mRNA expression levels of IGF-1 and growth hormone receptor (GHR) in the liver that were lower than those in controls. The next generation offspring from low-bodyweight non-catch-up (LBW-NCG) rats had high expression of miR-322 and low expression of GHR and IGF-1. The expression of miR-322 showed a significant negative correlation with GHR expression and body length, and overexpression of miR-322 suppressed GHR expression. We found that insufficient intake of calories during pregnancy causes catch-up growth failure due to increased expression of miR-322 and decreased expression of GHR in the livers of offspring, and this effect is inherited by the next generation.
Collapse
Affiliation(s)
- Takahiro Nemoto
- Department of Physiology, Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
371
|
Rudzińska M, Parodi A, Balakireva AV, Chepikova OE, Venanzi FM, Zamyatnin AA. Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants (Basel) 2020; 9:antiox9020094. [PMID: 31979201 PMCID: PMC7071036 DOI: 10.3390/antiox9020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Different molecular signaling pathways, biological processes, and intercellular communication mechanisms control longevity and are affected during cellular senescence. Recent data have suggested that organelle communication, as well as genomic and metabolic dysfunctions, contribute to this phenomenon. Oxidative stress plays a critical role by inducing structural modifications to biological molecules while affecting their function and catabolism and eventually contributing to the onset of age-related dysfunctions. In this scenario, proteins are not adequately degraded and accumulate in the cell cytoplasm as toxic aggregates, increasing cell senescence progression. In particular, carbonylation, defined as a chemical reaction that covalently and irreversibly modifies proteins with carbonyl groups, is considered to be a significant indicator of protein oxidative stress and aging. Here, we emphasize the role and dysregulation of the molecular pathways controlling cell metabolism and proteostasis, the complexity of the mechanisms that occur during aging, and their association with various age-related disorders. The last segment of the review details current knowledge on protein carbonylation as a biomarker of cellular senescence in the development of diagnostics and therapeutics for age-related dysfunctions.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Olga E. Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Franco M. Venanzi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74956229843
| |
Collapse
|
372
|
Gao M, Fu J, Wang Y. The lncRNA FAL1 protects against hypoxia-reoxygenation- induced brain endothelial damages through regulating PAK1. J Bioenerg Biomembr 2020; 52:17-25. [PMID: 31927658 DOI: 10.1007/s10863-019-09819-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Dysregulation of cerebral microvascular endothelial cells plays an important role in the pathogenesis of stroke. However, the underlying mechanisms still need to be elucidated. In the current study, we found that the long non-coding RNA (lncRNA) FAL1 was significantly reduced in response to oxygen-glucose deprivation and reoxygenation (OGD/R) stimulation in human primary brain microvascular endothelial cells (HBMVECs). Interestingly, overexpression of FAL1 ameliorated OGD/R-induced oxidative stress by reducing the production of reactive oxygen species (ROS) and increasing the level of reduced glutathione (GSH). Also, overexpression of FAL1 suppressed OGD/R-induced secretions of interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and high mobility group box-1 (HMGB-1). We then found that OGD/R-induced reduction of cell viability and release of lactate dehydrogenase (LDH) were prevented by overexpression of FAL1. Additionally, exposure to OGD/R significantly reduced the phosphorylated levels of PAK1 and AKT as well as the total level of proliferating cell nuclear antigen (PCNA), which was restored by overexpression of FAL1. Importantly, overexpression of FAL1 restored OGD/R-induced reduction in the expression of endothelial nitric oxide synthase (eNOS) and the subsequent release of nitric oxide (NO). Our results implicate that FAL1 might be involved in the process of brain endothelial cell damage.
Collapse
Affiliation(s)
- Mingqing Gao
- Department of Neurosurgery, The Affiliated Hospital of Wei fang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong, China
| | - Jieting Fu
- Department of Hematology, The Affiliated Hospital of Wei fang Medical University, Shandong, China
| | - Yanqiang Wang
- Department of Neurology, The Affiliated Hospital of Wei fang Medical University, Shandong, China.
| |
Collapse
|
373
|
Weighted Correlation Network Analysis Reveals CDK2 as a Regulator of a Ubiquitous Environmental Toxin-Induced Cell-Cycle Arrest. Cells 2020; 9:cells9010143. [PMID: 31936152 PMCID: PMC7017252 DOI: 10.3390/cells9010143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
Environmental food contaminants constitute a threat to human health. For instance, the globally spread mycotoxin Ochratoxin A (OTA) contributes to chronic kidney damage by affecting proximal tubule cells via unknown mechanisms. We applied a top-down approach to identify relevant toxicological mechanisms of OTA using RNA-sequencing followed by in-depth bioinformatics analysis and experimental validation. Differential expression analyses revealed that OTA led to the regulation of gene expression in kidney human cell lines, including for genes enriched in cell cycle-related pathways, and OTA-induced gap 1 and 2 (G1 and G2) cell-cycle arrests were observed. Weighted correlation network analysis highlighted cyclin dependent kinase 2 (CDK2) as a putative key regulator of this effect. CDK2 was downregulated by OTA exposure, and its overexpression partially blocked the OTA-induced G1 but not G2 cell-cycle arrest. We, therefore, propose CDK2 as one of the key regulators of the G1 cell-cycle arrest induced by low nanomolar concentrations of OTA.
Collapse
|
374
|
Acuña SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological Regulators in Pathogen-Host Interactions. Cells 2020; 9:E113. [PMID: 31906500 PMCID: PMC7016591 DOI: 10.3390/cells9010113] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen-host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.
Collapse
Affiliation(s)
| | | | - Sandra Marcia Muxel
- Department of Physiology, Universidade de São Paulo, 05508-090 São Paulo, Brazil; (S.M.A.); (L.M.F.-W.)
| |
Collapse
|
375
|
Shaimardanova AA, Solovyeva VV, Chulpanova DS, James V, Kitaeva KV, Rizvanov AA. Extracellular vesicles in the diagnosis and treatment of central nervous system diseases. Neural Regen Res 2020; 15:586-596. [PMID: 31638080 PMCID: PMC6975137 DOI: 10.4103/1673-5374.266908] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles, including exosomes and microvesicles, play a fundamental role in the activity of the nervous system, participating in signal transmission between neurons and providing the interaction of central nervous system with all body systems. In many neurodegenerative diseases, neurons pack toxic substances into vesicles and release them into the extracellular space, which leads to the spread of misfolded neurotoxic proteins. The contents of neuron-derived extracellular vesicles may indicate pathological changes in the central nervous system, and the analysis of extracellular vesicle molecular content contributes to the development of non-invasive methods for the diagnosis of many central nervous system diseases. Extracellular vesicles of neuronal origin can be isolated from various biological fluids due to their ability to cross the blood-brain barrier. Today, the diagnostic potential of almost all toxic proteins involved in nervous system disease pathogenesis, specifically α-synuclein, tau protein, superoxide dismutase 1, FUS, leucine-rich repeat kinase 2, as well as some synaptic proteins, has been well evidenced. Special attention is paid to extracellular RNAs mostly associated with extracellular vesicles, which are important in the onset and development of many neurodegenerative diseases. Depending on parental cell type, extracellular vesicles may have different therapeutic properties, including neuroprotective, regenerative, and anti-inflammatory. Due to nano size, biosafety, ability to cross the blood-brain barrier, possibility of targeted delivery and the lack of an immune response, extracellular vesicles are a promising vehicle for the delivery of therapeutic substances for the treatment of neurodegenerative diseases and drug delivery to the brain. This review describes modern approaches of diagnosis and treatment of central nervous system diseases using extracellular vesicles.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
376
|
A Single Cell but Many Different Transcripts: A Journey into the World of Long Non-Coding RNAs. Int J Mol Sci 2020; 21:ijms21010302. [PMID: 31906285 PMCID: PMC6982300 DOI: 10.3390/ijms21010302] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
In late 2012 it was evidenced that most of the human genome is transcribed but only a small percentage of the transcripts are translated. This observation supported the importance of non-coding RNAs and it was confirmed in several organisms. The most abundant non-translated transcripts are long non-coding RNAs (lncRNAs). In contrast to protein-coding RNAs, they show a more cell-specific expression. To understand the function of lncRNAs, it is fundamental to investigate in which cells they are preferentially expressed and to detect their subcellular localization. Recent improvements of techniques that localize single RNA molecules in tissues like single-cell RNA sequencing and fluorescence amplification methods have given a considerable boost in the knowledge of the lncRNA functions. In recent years, single-cell transcription variability was associated with non-coding RNA expression, revealing this class of RNAs as important transcripts in the cell lineage specification. The purpose of this review is to collect updated information about lncRNA classification and new findings on their function derived from single-cell analysis. We also retained useful for all researchers to describe the methods available for single-cell analysis and the databases collecting single-cell and lncRNA data. Tables are included to schematize, describe, and compare exposed concepts.
Collapse
|
377
|
Hadziselimovic F, Verkauskas G, Vincel B, Stadler MB. Testicular expression of long non-coding RNAs is affected by curative GnRHa treatment of cryptorchidism. Basic Clin Androl 2019; 29:18. [PMID: 31890219 PMCID: PMC6933710 DOI: 10.1186/s12610-019-0097-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Background Cryptorchidism is a frequent endocrinopathy in boys that has been associated with an increased risk of developing testicular cancer and infertility. The condition is curable by combined surgery and hormonal treatment during early pre-pubertal stages using gonadotropin releasing hormone agonist (GnRHa). However, whether the treatment also alters the expression of testicular long non-coding RNAs (lncRNAs) is unknown. To gain insight into the effect of GnRHa on testicular lncRNA levels, we re-analyzed an expression dataset generated from testicular biopsies obtained during orchidopexy for bilateral cryptorchidism. Results We identified EGFR-AS1, Linc-ROR, LINC00221, LINC00261, LINC00282, LINC00293, LINC00303, LINC00898, LINC00994, LINC01121, LINC01553, and MTOR-AS1 as potentially relevant for the stimulation of cell proliferation mediated by GnRHa based on their direct or indirect association with rapidly dividing cells in normal and pathological tissues. Surgery alone failed to alter the expression of these transcripts. Conclusion Given that lncRNAs can cooperate with chromatin-modifying enzymes to promote epigenetic regulation of genes, GnRHa treatment may act as a surrogate for mini-puberty by triggering the differentiation of Ad spermatogonia via lncRNA-mediated epigenetic effects. Our work provides additional molecular evidence that infertility and azoospermia in cryptorchidism, resulting from defective mini-puberty cannot be cured with successful orchidopexy alone.
Collapse
Affiliation(s)
- Faruk Hadziselimovic
- Cryptorchidism Research Institute, Children's Day Care Center, 4410 Liestal, Switzerland
| | - Gilvydas Verkauskas
- 2Children's Surgery Centre, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Beata Vincel
- 3Children's Surgery Centre, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Michael B Stadler
- 4Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,5Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
378
|
Sylvestre M, Tarte K, Roulois D. Epigenetic mechanisms driving tumor supportive microenvironment differentiation and function: a role in cancer therapy? Epigenomics 2019; 12:157-169. [PMID: 31849241 DOI: 10.2217/epi-2019-0165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in tumor development and drug resistance. Within TME, the stromal cell subset, called cancer-associated fibroblasts, is a heterogeneous population originating from poorly characterized precursors. Since cancer-associated fibroblasts do not acquire somatic mutations, other mechanisms like epigenetic regulation, could be involved in the development of these cells and in the acquisition of tumor supportive phenotypes. Moreover, such epigenetic modulations have been correlated to the emergence of an immunosuppressive microenvironment facilitating tumor evasion. These findings underline the need to deepen our knowledge on epigenetic mechanisms driving TME development and function, and to understand the impact of epigenetic drugs that could be used in future to target both tumor cells and their TME.
Collapse
Affiliation(s)
- Marvin Sylvestre
- UMR _S 1236, Université de Rennes 1, INSERM, Établissement français du sang (EFS) Bretagne, Rennes, France
| | - Karin Tarte
- UMR _S 1236, Université de Rennes 1, INSERM, Établissement français du sang (EFS) Bretagne, Rennes, France.,Laboratoire Suivi Immunologique des Thérapeutiques Innovantes (SITI), Centre Hospitalier Universitaires de Rennes, Rennes, France
| | - David Roulois
- UMR _S 1236, Université de Rennes 1, INSERM, Établissement français du sang (EFS) Bretagne, Rennes, France.,Niches & Epigenetics of Tumors from Cancéropole Grand Ouest, France
| |
Collapse
|
379
|
de Azevedo JWV, de Medeiros Fernandes TAA, Fernandes JV, de Azevedo JCV, Lanza DCF, Bezerra CM, Andrade VS, de Araújo JMG, Fernandes JV. Biology and pathogenesis of human osteosarcoma. Oncol Lett 2019; 19:1099-1116. [PMID: 31966039 PMCID: PMC6955653 DOI: 10.3892/ol.2019.11229] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a bone tumor of mesenchymal origin, most frequently occurring during the rapid growth phase of long bones, and usually located in the epiphyseal growth plates of the femur or the tibia. Its most common feature is genome disorganization, aneuploidy with chromosomal alterations, deregulation of tumor suppressor genes and of the cell cycle, and an absence of DNA repair. This suggests the involvement of surveillance failures, DNA repair or apoptosis control during osteogenesis, allowing the survival of cells which have undergone alterations during differentiation. Epigenetic events, including DNA methylation, histone modifications, nucleosome remodeling and expression of non-coding RNAs have been identified as possible risk factors for the tumor. It has been reported that p53 target genes or those genes that have their activity modulated by p53, in addition to other tumor suppressor genes, are silenced in OS-derived cell lines by hypermethylation of their promoters. In osteogenesis, osteoblasts are formed from pluripotent mesenchymal cells, with potential for self-renewal, proliferation and differentiation into various cell types. This involves complex signaling pathways and multiple factors. Any disturbance in this process can cause deregulation of the differentiation and proliferation of these cells, leading to the malignant phenotype. Therefore, the origin of OS seems to be multifactorial, involving the deregulation of differentiation of mesenchymal cells and tumor suppressor genes, activation of oncogenes, epigenetic events and the production of cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | - Christiane Medeiros Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Vânia Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
380
|
Profiles of Long Non-Coding RNAs and mRNA Expression in Human Macrophages Regulated by Interleukin-27. Int J Mol Sci 2019; 20:ijms20246207. [PMID: 31835347 PMCID: PMC6941108 DOI: 10.3390/ijms20246207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Macrophages play an essential role in the immune system. Recent studies have shown that long non-coding RNAs (lncRNAs) can regulate genes encoding products involved in the immune response. Interleukin (IL)-27 is a member of the IL-6/IL-12 family of cytokines with broad anti-viral effects that inhibits human immunodeficiency virus (HIV) type-1 and herpes simplex virus (HSV). However, little is known about the role of lncRNAs in macrophages affected by IL-27. Therefore, we investigated the expression profiles of mRNA and lncRNA in human monocyte-derived macrophages (MDMs) regulated by IL-27. Monocytes were differentiated in the presence of macrophage-colony stimulatory factor (M-CSF)- or human AB serum with or without IL-27, and these cells were the subject for the profile analysis using RNA-Seq. We identified 146 lncRNAs (including 88 novel ones) and 434 coding genes were differentially regulated by IL-27 in both M-CSF- and AB serum-induced macrophages. Using weighted gene co-expression network analysis, we obtained four modules. The immune system, cell cycle, and regulation of complement cascade pathways were enriched in different modules. The network of mRNAs and lncRNAs in the pathways suggest that lncRNAs might regulate immune activity in macrophages. This study provides potential insight into the roles of lncRNA in macrophages regulated by IL-27.
Collapse
|
381
|
Butler AE, Hayat S, Dargham SR, Malek JA, Abdulla SA, Mohamoud YA, Suhre K, Sathyapalan T, Atkin SL. Alterations in long noncoding RNAs in women with and without polycystic ovarian syndrome. Clin Endocrinol (Oxf) 2019; 91:793-797. [PMID: 31482638 DOI: 10.1111/cen.14087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022]
Abstract
UNLABELLED Long noncoding RNAs (lncRNAs) are RNA transcripts over 200 nucleotides long that are not translated into protein; however, there is increasing evidence of their regulatory functions. To date, there are few studies measuring lncRNA in control women or women with polycystic ovary syndrome (PCOS). OBJECTIVE To determine lncRNA differences between PCOS and control women. DESIGN Cross sectional study. PATIENTS Twenty four anovulatory women with all three diagnostic features of PCOS compared to 24 control women in the follicular phase of their menstrual cycle from a PCOS biobank. RESULTS Women with PCOS were age and weight matched compared to the control women but were significantly insulin resistant and hyperandrogenemic (P < .01). Eight lncRNA (P < .05) were detected that differed between PCOS and control women, but only MIRLET7BHG correlated with body mass index (r = .66, P < .05). No lncRNA correlated with antimullerian hormone (AMH) levels, insulin resistance (HOMA-IR) or the free androgen index (FAI). Ingenuity pathway assessment (IPA) did not identify any functional pathways for the lncRNAs. CONCLUSION LncRNAs differ between anovulatory PCOS and control women in the follicular phase of the menstrual cycle. It is unclear if this is due to inherent differences between PCOS and control women or due to changes in lncRNA that are menstrual cycle dependent. However, their IPA did not identify linked pathways, likely because few functions are as yet assigned to these lncRNAs.
Collapse
Affiliation(s)
- Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Shahina Hayat
- Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Soha R Dargham
- Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Joel A Malek
- Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | | | | | - Karsten Suhre
- Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | | | - Stephen L Atkin
- Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Royal College of Surgeons Ireland, Busaiteen, Bahrain
| |
Collapse
|
382
|
Thapa P, Shanmugam N, Pokrzywa W. Ubiquitin Signaling Regulates RNA Biogenesis, Processing, and Metabolism. Bioessays 2019; 42:e1900171. [PMID: 31778250 DOI: 10.1002/bies.201900171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Indexed: 12/17/2022]
Abstract
The fate of eukaryotic proteins, from their synthesis to destruction, is supervised by the ubiquitin-proteasome system (UPS). The UPS is the primary pathway responsible for selective proteolysis of intracellular proteins, which is guided by covalent attachment of ubiquitin to target proteins by E1 (activating), E2 (conjugating), and E3 (ligating) enzymes in a process known as ubiquitylation. The UPS can also regulate protein synthesis by influencing multiple steps of RNA (ribonucleic acid) metabolism. Here, recent publications concerning the interplay between the UPS and different types of RNA are reviewed. This interplay mainly involves specific RNA-binding E3 ligases that link RNA-dependent processes with protein ubiquitylation. The emerging understanding of their modes of RNA binding, their RNA targets, and their molecular and cellular functions are primarily focused on. It is discussed how the UPS adapted to interact with different types of RNA and how RNA molecules influence the ubiquitin signaling components.
Collapse
Affiliation(s)
- Pankaj Thapa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Nilesh Shanmugam
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| |
Collapse
|
383
|
Ablondi M, Eriksson S, Tetu S, Sabbioni A, Viklund Å, Mikko S. Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines. Genes (Basel) 2019; 10:E976. [PMID: 31783652 PMCID: PMC6947233 DOI: 10.3390/genes10120976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 01/12/2023] Open
Abstract
The equestrian sport horse Swedish Warmblood (SWB) originates from versatile cavalry horses. Most modern SWB breeders have specialized their breeding either towards show jumping or dressage disciplines. The aim of this study was to explore the genomic structure of SWB horses to evaluate the presence of genomic subpopulations, and to search for signatures of selection in subgroups of SWB with high or low breeding values (EBVs) for show jumping. We analyzed high density genotype information from 380 SWB horses born in the period 2010-2011, and used Principal Coordinates Analysis and Discriminant Analysis of Principal Components to detect population stratification. Fixation index and Cross Population Extended Haplotype Homozygosity scores were used to scan the genome for potential signatures of selection. In accordance with current breeding practice, this study highlights the development of two separate breed subpopulations with putative signatures of selection in eleven chromosomes. These regions involve genes with known function in, e.g., mentality, endogenous reward system, development of connective tissues and muscles, motor control, body growth and development. This study shows genetic divergence, due to specialization towards different disciplines in SWB horses. This latter evidence can be of interest for SWB and other horse studbooks encountering specialized breeding.
Collapse
Affiliation(s)
- Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sasha Tetu
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Åsa Viklund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| |
Collapse
|
384
|
Gupta MK, Donde R, Gouda G, Vadde R, Behera L. De novo assembly and characterization of transcriptome towards understanding molecular mechanism associated with MYMIV-resistance in Vigna mungo - A computational study.. [DOI: 10.1101/844639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
AbstractThe fast climate change affects yield in Vigna mungo via enhancing both biotic and abiotic stresses. Out of all factors, the yellow mosaic disease has the most damaging effect. However, due to lack of reference genome of Vigna mungo, the complete mechanism associated with MYMIV (Mungbean Yellow Mosaic Indian Virus) resistance in Vigna mungo remain elusive to date. Considering this, the authors made an attempt to release new transcriptome and its annotation by employing computational approaches. Quality assessment of the generated transcriptomes reveals that it successfully aligned with 99.03% of the raw reads and hence can be employed for future research. Functional annotation of the transcriptome reveals that 31% and ∼14% of the total transcripts encode lncRNAs and protein-coding sequences, respectively. Further, analysis reveals that, out of total transcripts, only 4536 and 78808 are significantly down and up-regulated during MYMIV infection in Vigna mungo, respectively. These significant transcripts are mainly associated with ribosome, spliceosome, glycolysis /gluconeogenesis, RNA transport, oxidative phosphorylation, protein processing in the endoplasmic reticulum, MAPK signaling pathway - plant, methionine and cysteine metabolism, purine metabolism and RNA degradation. Unlike the previous study, this is for the first time, the present study identified these pathways may play key role in MYMIV resistance in Vigna mungo. Thus, information and transcriptomes data available in the present study make a significant contribution to understanding the genomic structure of Vigna mungo, enabling future analyses as well as downstream applications of gene expression, sequence evolution, and genome annotation.
Collapse
|
385
|
Gupta MK, Donde R, Gouda G, Vadde R, Behera L. De novo assembly and characterization of transcriptome towards understanding molecular mechanism associated with MYMIV-resistance in Vigna mungo - A computational study.. [DOI: 10.1101/844639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
AbstractThe fast climate change affects yield in Vigna mungo via enhancing both biotic and abiotic stresses. Out of all factors, the yellow mosaic disease has the most damaging effect. However, due to lack of reference genome of Vigna mungo, the complete mechanism associated with MYMIV (Mungbean Yellow Mosaic Indian Virus) resistance in Vigna mungo remain elusive to date. Considering this, the authors made an attempt to release new transcriptome and its annotation by employing computational approaches. Quality assessment of the generated transcriptomes reveals that it successfully aligned with 99.03% of the raw reads and hence can be employed for future research. Functional annotation of the transcriptome reveals that 31% and ∼14% of the total transcripts encode lncRNAs and protein-coding sequences, respectively. Further, analysis reveals that, out of total transcripts, only 4536 and 78808 are significantly down and up-regulated during MYMIV infection in Vigna mungo, respectively. These significant transcripts are mainly associated with ribosome, spliceosome, glycolysis /gluconeogenesis, RNA transport, oxidative phosphorylation, protein processing in the endoplasmic reticulum, MAPK signaling pathway - plant, methionine and cysteine metabolism, purine metabolism and RNA degradation. Unlike the previous study, this is for the first time, the present study identified these pathways may play key role in MYMIV resistance in Vigna mungo. Thus, information and transcriptomes data available in the present study make a significant contribution to understanding the genomic structure of Vigna mungo, enabling future analyses as well as downstream applications of gene expression, sequence evolution, and genome annotation.
Collapse
|
386
|
Gupta MK, Donde R, Gouda G, Vadde R, Behera L. De novo assembly and characterization of transcriptome towards understanding molecular mechanism associated with MYMIV-resistance in Vigna mungo - A computational study.. [DOI: 10.1101/844639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
AbstractThe fast climate change affects yield in Vigna mungo via enhancing both biotic and abiotic stresses. Out of all factors, the yellow mosaic disease has the most damaging effect. However, due to lack of reference genome of Vigna mungo, the complete mechanism associated with MYMIV (Mungbean Yellow Mosaic Indian Virus) resistance in Vigna mungo remain elusive to date. Considering this, the authors made an attempt to release new transcriptome and its annotation by employing computational approaches. Quality assessment of the generated transcriptomes reveals that it successfully aligned with 99.03% of the raw reads and hence can be employed for future research. Functional annotation of the transcriptome reveals that 31% and ∼14% of the total transcripts encode lncRNAs and protein-coding sequences, respectively. Further, analysis reveals that, out of total transcripts, only 4536 and 78808 are significantly down and up-regulated during MYMIV infection in Vigna mungo, respectively. These significant transcripts are mainly associated with ribosome, spliceosome, glycolysis /gluconeogenesis, RNA transport, oxidative phosphorylation, protein processing in the endoplasmic reticulum, MAPK signaling pathway - plant, methionine and cysteine metabolism, purine metabolism and RNA degradation. Unlike the previous study, this is for the first time, the present study identified these pathways may play key role in MYMIV resistance in Vigna mungo. Thus, information and transcriptomes data available in the present study make a significant contribution to understanding the genomic structure of Vigna mungo, enabling future analyses as well as downstream applications of gene expression, sequence evolution, and genome annotation.
Collapse
|
387
|
Begolli R, Sideris N, Giakountis A. LncRNAs as Chromatin Regulators in Cancer: From Molecular Function to Clinical Potential. Cancers (Basel) 2019; 11:E1524. [PMID: 31658672 PMCID: PMC6826483 DOI: 10.3390/cancers11101524] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022] Open
Abstract
During the last decade, high-throughput sequencing efforts in the fields of transcriptomics and epigenomics have shed light on the noncoding part of the transcriptome and its potential role in human disease. Regulatory noncoding RNAs are broadly divided into short and long noncoding transcripts. The latter, also known as lncRNAs, are defined as transcripts longer than 200 nucleotides with low or no protein-coding potential. LncRNAs form a diverse group of transcripts that regulate vital cellular functions through interactions with proteins, chromatin, and even RNA itself. Notably, an important regulatory aspect of these RNA species is their association with the epigenetic machinery and the recruitment of its regulatory apparatus to specific loci, resulting in DNA methylation and/or post-translational modifications of histones. Such epigenetic modifications play a pivotal role in maintaining the active or inactive transcriptional state of chromatin and are crucial regulators of normal cellular development and tissue-specific gene expression. Evidently, aberrant expression of lncRNAs that interact with epigenetic modifiers can cause severe epigenetic disruption and is thus is closely associated with altered gene function, cellular dysregulation, and malignant transformation. Here, we survey the latest breakthroughs concerning the role of lncRNAs interacting with the epigenetic machinery in various forms of cancer.
Collapse
Affiliation(s)
- Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Nikos Sideris
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
- B.S.R.C "Alexander Fleming", 34 Fleming str, 16672 Vari, Greece.
| |
Collapse
|
388
|
Zhang S, Kang Z, Sun X, Cao X, Pan C, Dang R, Lei C, Chen H, Lan X. Novel lncRNA lncFAM200B: Molecular Characteristics and Effects of Genetic Variants on Promoter Activity and Cattle Body Measurement Traits. Front Genet 2019; 10:968. [PMID: 31649734 PMCID: PMC6795090 DOI: 10.3389/fgene.2019.00968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is one of the three major muscle types in an organism and has key roles in the motor system, metabolism, and homeostasis. RNA-Seq analysis showed that novel lncRNA, lncFAM200B, was differentially expressed in embryonic, neonatal, and adult cattle skeletal muscles. The main aim of this study was to investigate the molecular and expression characteristics of lncFAM200B along with its crucial genetic variations. Our results showed that bovine lncFAM200B was a 472 nucleotide (nt) non-coding RNA containing two exons. The transcription factor binding site prediction analysis found that lncFAM200B promoter region was enriched with SP1 transcription factor, which promotes the binding of myogenic regulatory factor MyoD and DNA sequence. The mRNA expression analysis showed that lncFAM200B was differentially expressed in embryonic, neonatal, adult bovine muscle tissues, and the lncFAM200B expression trend positively correlated with that of MyoG and Myf5 in myoblast proliferation and differential stages. To identify the promoter active region of lncFAM200B, we constructed promoter luciferase reporter gene vector pGL3-Basic plasmids containing lncFAM200B promoter sequences and transfected them into 293T, C2C12, and 3T3-L1 cells. Our results suggested that lncFAM200B promoter active region was from −403 to −139 (264 nt) of its transcription start site, covering 6 SP1 potential binding sites. Furthermore, we found a novel C-T variation, named as SNP2 (ERZ990081 in European Variation Archive) in the promoter active region, which was linked to the nearby SNP1 (rs456951291 in Ensembl database). The genotypes of SNP1 and combined genotypes of SNP1 and SNP2 were significantly associated with Jinnan cattle hip height. The luciferase activity analysis found that the SNP1-SNP2 haplotype CC had the highest luciferase activity, which was consistent with the association analysis result that the combined genotype CC-CC carriers had the highest hip height in Jinnan cattle. In conclusion, our data showed that lncFAM200B is a positive regulator of muscle development and that SNP1 and SNP2 could be used as genetic markers for marker-assisted selection (MAS) breeding of beef cattle.
Collapse
Affiliation(s)
- Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zihong Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaomei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
389
|
Long Non-Coding RNAs and Related Molecular Pathways in the Pathogenesis of Epilepsy. Int J Mol Sci 2019; 20:ijms20194898. [PMID: 31581735 PMCID: PMC6801574 DOI: 10.3390/ijms20194898] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Epilepsy represents one of the most common neurological disorders characterized by abnormal electrical activity in the central nervous system (CNS). Recurrent seizures are the cardinal clinical manifestation. Although it has been reported that the underlying pathological processes include inflammation, changes in synaptic strength, apoptosis, and ion channels dysfunction, currently the pathogenesis of epilepsy is not yet completely understood. Long non-coding RNAs (lncRNAs), a class of long transcripts without protein-coding capacity, have emerged as regulatory molecules that are involved in a wide variety of biological processes. A growing number of studies reported that lncRNAs participate in the regulation of pathological processes of epilepsy and they are dysregulated during epileptogenesis. Moreover, an aberrant expression of lncRNAs linked to epilepsy has been observed both in patients and in animal models. In this review, we summarize latest advances concerning the mechanisms of action and the involvement of the most dysregulated lncRNAs in epilepsy. However, the functional roles of lncRNAs in the disease pathogenesis are still to be explored and we are only at the beginning. Additional studies are needed for the complete understanding of the underlying mechanisms and they would result in the use of lncRNAs as diagnostic biomarkers and novel therapeutic targets.
Collapse
|
390
|
Li Z, Wang Y. Long non-coding RNA FTH1P3 promotes the metastasis and aggressiveness of non-small cell lung carcinoma by inducing epithelial-mesenchymal transition. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3782-3790. [PMID: 31933766 PMCID: PMC6949746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) ferritin heavy chain 1 pseudogene 3 (FTH1P3) has been suggested to act as an oncogene in many types of human malignancy, but its role in non-small cell lung carcinoma (NSCLC) remains unknown. This study aimed to characterize the biologic functions of FTH1P3 in NSCLC and illuminate its clinical significance. The expression levels of FTH1P3 in NSCLC tissues and cell lines were detected by quantitative real-time PCR assay. The relationship of FTH1P3 expression with clinicopathologic features was evaluated by chi-square test, and its correlation with prognosis of NSCLC patients was analyzed by Kaplan-Meier method with log-rank test. Wound healing and transwell invasion assays were applied to evaluate cell migration and invasion abilities, respectively. Western blotwas performed to detect the changes of epithelial-mesenchymal transition (EMT) related protein expression. The results showed that FTH1P3 was highly expressed in NSCLC tumor tissues and NSCLC-derived cell lines, and high expression of FTH1P3 was associated with advanced TNM stage and lymph node metastasis. NSCLC patients with high FTH1P3 expression had a poor overall survival relative to patients with low FTH1P3 expression. Through loss-of-function studies, FTH1P3 inhibition was demonstrated to suppress NSCLC cell migration and invasion in vitro. Notably, FTH1P3 knockdown could decrease expression of N-cadherin, vimentin and Snail protein of NSCLC cells, but promote E-cadherin protein expression, which was in accordance with its effect on cell migration and invasion. To sum up, our data demonstrated that FTH1P3 predicts a poor prognosis and promotes metastasis and aggressiveness in NSCLC by inducing EMT, suggesting FTH1P3 may be a promising target for gene therapy of NSCLC.
Collapse
Affiliation(s)
- Zhengxiong Li
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510282, Guangdong Province, People’s Republic of China
- Department of Oncology, Shenzhen Longhua District Central HospitalShenzhen 518110, Guangdong Province, People’s Republic of China
- Department of Radiation Therapy, The Seventh Medical Center of PLA General HospitalBeijing 100700, People’s Republic of China
| | - Yadi Wang
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510282, Guangdong Province, People’s Republic of China
- Department of Radiation Therapy, The Seventh Medical Center of PLA General HospitalBeijing 100700, People’s Republic of China
| |
Collapse
|
391
|
Rochet E, Appukuttan B, Ma Y, Ashander LM, Smith JR. Expression of Long Non-Coding RNAs by Human Retinal Müller Glial Cells Infected with Clonal and Exotic Virulent Toxoplasma gondii. Noncoding RNA 2019; 5:ncrna5040048. [PMID: 31547203 PMCID: PMC6958423 DOI: 10.3390/ncrna5040048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Retinal infection with Toxoplasma gondii-ocular toxoplasmosis-is a common cause of vision impairment worldwide. Pathology combines parasite-induced retinal cell death and reactive intraocular inflammation. Müller glial cells, which represent the supporting cell population of the retina, are relatively susceptible to infection with T. gondii. We investigated expression of long non-coding RNAs (lncRNAs) with immunologic regulatory activity in Müller cells infected with virulent T. gondii strains-GT1 (haplogroup 1, type I) and GPHT (haplogroup 6). We first confirmed expression of 33 lncRNA in primary cell isolates. MIO-M1 human retinal Müller cell monolayers were infected with T. gondii tachyzoites (multiplicity of infection = 5) and harvested at 4, 12, 24, and 36 h post-infection, with infection being tracked by the expression of parasite surface antigen 1 (SAG1). Significant fold-changes were observed for 31 lncRNAs at one or more time intervals. Similar changes between strains were measured for BANCR, CYTOR, FOXD3-AS1, GAS5, GSTT1-AS1, LINC-ROR, LUCAT1, MALAT1, MIR22HG, MIR143HG, PVT1, RMRP, SNHG15, and SOCS2-AS1. Changes differing between strains were measured for APTR, FIRRE, HOTAIR, HOXD-AS1, KCNQ1OT1, LINC00968, LINC01105, lnc-SGK1, MEG3, MHRT, MIAT, MIR17HG, MIR155HG, NEAT1, NeST, NRON, and PACER. Our findings suggest roles for lncRNAs in regulating retinal Müller cell immune responses to T. gondii, and encourage future studies on lncRNA as biomarkers and/or drug targets in ocular toxoplasmosis.
Collapse
Affiliation(s)
- Elise Rochet
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Binoy Appukuttan
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Yuefang Ma
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Liam M Ashander
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Justine R Smith
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| |
Collapse
|
392
|
Zhou X, Xu X, Gao C, Cui Y. XIST promote the proliferation and migration of non-small cell lung cancer cells via sponging miR-16 and regulating CDK8 expression. Am J Transl Res 2019; 11:6196-6206. [PMID: 31632587 PMCID: PMC6789229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Up-regulation of long non-coding RNA (lncRNA) XIST has been observed in the tissue samples of non-small cell lung cancer (NSCLC), however, the underlying mechanisms remain uncertain. The aim of this study is to investigate the roles of XIST in the pathogenesis of NSCLC and the underlying mechanism. We noted that XIST in NSCLC tumor tissue and cell lines was significantly up-regulated. XIST over-expression promoted the proliferation and migration, meantime, increased the proportion of cells in the S phase in NSCLC cell line A549 and H1299. Meantime, knockdown of XIST showed the opposite effects. In vivo study further revealed a oncogenic effect of XIST. In addition, we conducted bioinformatics analysis and luciferase activity assay to find out the potential target miR of XIST and the potential target gene of miR-16 which is CDK8. In conclusion, our findings proved that XIST can serve as a tumor promoter in the pathogenesis of NSCLC, suggesting that XIST has the potential to become a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital 1 Shuaifuyuan, Wangfujing, Dongcheng, Beijing 100730, P. R. China
| | - Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital 1 Shuaifuyuan, Wangfujing, Dongcheng, Beijing 100730, P. R. China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital 1 Shuaifuyuan, Wangfujing, Dongcheng, Beijing 100730, P. R. China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital 1 Shuaifuyuan, Wangfujing, Dongcheng, Beijing 100730, P. R. China
| |
Collapse
|
393
|
Azizi M, Rahimi N, Bahari G, Hashemi SM, Hashemi M. The Relationship between Pre-miR-3131 3-bp Insertion/Deletion Polymorphism and Susceptibility and Clinicopathological Characteristics of Patients with Breast Cancer. Microrna 2019; 9:216-223. [PMID: 31490768 PMCID: PMC7366006 DOI: 10.2174/2211536608666190906111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/02/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022]
Abstract
Aims This study aimed at examining the effect of 3-bp pre-miR-3131 insertion/deletion (ins/del) polymorphism on Breast Cancer (BC) risk. Objectives Totally 403 women including 199 BC patients and 204 women who have no cancer were included in this case-control study. Genotyping of miR-3131 3-bp ins/del polymorphism was performed by mismatch PCR-RFLP method. Methods The findings expressed that the pre-miR-3131 3-bp ins/del variant was not related to the risk of BC in all genetic tested models. While, the ins/del genotype was related to late onset BC (OR=2.53, 95%CI=1.27-4.84, p=0.008). Results Pooled results from the meta-analysis indicated to that the pre-miR-3131 ins/del is related to with an increased risk of cancer in heterozygous (OR=1.26, 95%CI=1.06-1.51, p=0.01), dominant (OR=1.33, 95%CI=1.14-1.54, p=0.0002), and allele (OR=1.24, 95%CI=1.06-1.45, p=0.006) genetics models. Conclusion It is concluded that, our findings did not support a relationship between pre-miR-3131 ins/del polymorphism and the risk of BC. While, this variant was significantly related to late onset BC. Combined results of this study with previous studies indicated that this polymorphism increased the risk of cancer. More studies in a study with larger population with variety of ethnicities are required to verify our findings.
Collapse
Affiliation(s)
- Mahsa Azizi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nahid Rahimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mehdi Hashemi
- Department of Oncology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
394
|
Wang J, Xiao T, Zhao M. MicroRNA-675 directly targets MAPK1 to suppress the oncogenicity of papillary thyroid cancer and is sponged by long non-coding RNA RMRP. Onco Targets Ther 2019; 12:7307-7321. [PMID: 31564913 PMCID: PMC6735657 DOI: 10.2147/ott.s213371] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNA-675-5p (miR-675-5p) is dysregulated in multiple human cancers, but its involvement in papillary thyroid cancer (PTC) remains to be investigated. This study aimed to examine the expression pattern of miR-675 in PTC, determine the effects of miR-675 on regulating the progression of PTC, and to explore the underlying molecular mechanisms. Methods The expression profile of miR-675 in PTC tissues and cell lines was determined using RT-qPCR. CCK-8, transwell migration and invasion assays, and xenograft tumors in nude mice were employed to analyze proliferation, in vitro migration and invasion, and in vivo tumor growth of PTC cells, respectively. The putative target of miR-675 was predicted using bioinformatic algorithms and was confirmed using luciferase reporter assays, RT-qPCR, and Western blotting. Results miR-675 expression was decreased in PTC tissues and cell lines. A low level of miR-675 expression was significantly correlated with lymphatic metastasis and TNM stage in PTC patients. Ectopic miR-675 expression suppressed PTC cell proliferation, migration, and invasion in vitro and hindered tumor growth in vivo. Mitogen-activated protein kinase 1 (MAPK1) was found to be the direct target gene of miR-675 in PTC cells. MAPK1 reintroduction negated the tumor-suppressing effect of miR-675 overexpression in PTC cells. Furthermore, the lncRNA mitochondrial RNA processing endoribonuclease (RMRP) functioned as a ceRNA of miR-675 in PTC cells. Silencing RMRP expression inhibited the growth and metastasis of PTC cells by sponging miR-675 and regulating MAPK1. Conclusion These findings revealed that miR-675 directly targets MAPK1 and is sponged by lncRNA RMRP to inhibit the oncogenicity of PTC, suggesting the RMRP-miR-675-MAPK1 pathway is an effective target for the treatment of PTC patients.
Collapse
Affiliation(s)
- Junyi Wang
- Department of Endocrinology, Geriatric Research Center, JinLing Hospital, Nanjing, Medical School of Nanjing University, Jiangsu 210002, People's Republic of China
| | - Tiantian Xiao
- Department of Endocrinology, Geriatric Research Center, JinLing Hospital, Nanjing, Medical School of Nanjing University, Jiangsu 210002, People's Republic of China
| | - Ming Zhao
- Department of Endocrinology, Geriatric Research Center, JinLing Hospital, Nanjing, Medical School of Nanjing University, Jiangsu 210002, People's Republic of China
| |
Collapse
|
395
|
Shrestha M, Solé M, Ducro BJ, Sundquist M, Thomas R, Schurink A, Eriksson S, Lindgren G. Genome-wide association study for insect bite hypersensitivity susceptibility in horses revealed novel associated loci on chromosome 1. J Anim Breed Genet 2019; 137:223-233. [PMID: 31489730 DOI: 10.1111/jbg.12436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
Abstract
Equine insect bite hypersensitivity (IBH) is a pruritic skin allergy caused primarily by biting midges, Culicoides spp. IBH susceptibility has polygenic inheritance and occurs at high frequencies in several horse breeds worldwide, causing increased costs and reduced welfare of affected horses. The aim of this study was to identify and validate single nucleotide polymorphisms (SNPs) associated with equine IBH susceptibility. After quality control, 33,523 SNPs were included in a Bayesian genome-wide association study on 177 affected and 178 unaffected Icelandic horses. We report associated regions in E. caballus (ECA) 1, 3, 15 and 18, overlapping with known IBH QTLs in horses, and novel regions containing several genes, together explaining 11.46% of the total genetic variance. For validation, three SNPs on ECA 1 and ECA X (explaining the largest percentage of genetic variance) within 1-mb genomic windows for IBH were genotyped in an independent population of 280 Exmoor ponies. The associated genomic region (152-153 mb) on ECA 1 was confirmed in Exmoor ponies and contains the AQR gene involved in splicing processes and a long non-coding RNA. This study confirms the polygenic nature of IBH susceptibility and suggests a role of transcriptional regulatory mechanisms (e.g., alternative splicing) for IBH predisposition in these horse breeds.
Collapse
Affiliation(s)
- Merina Shrestha
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Marina Solé
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bart J Ducro
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Ruth Thomas
- The Exmoor Pony Society, Woodmans, Deveon, UK
| | - Anouk Schurink
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
396
|
Tajbakhsh A, Bianconi V, Pirro M, Gheibi Hayat SM, Johnston TP, Sahebkar A. Efferocytosis and Atherosclerosis: Regulation of Phagocyte Function by MicroRNAs. Trends Endocrinol Metab 2019; 30:672-683. [PMID: 31383556 DOI: 10.1016/j.tem.2019.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
There is evidence of the critical role of efferocytosis, the clearance of apoptotic cells (ACs) by phagocytes, in vascular cell homeostasis and protection against atherosclerosis. Specific microRNAs (miRs) can regulate atherogenesis by controlling the accumulation of professional phagocytes (e.g., macrophages) and nonprofessional phagocytes (i.e., neighboring tissue cells with the ability to acquire a macrophage-like phenotype) within the arterial wall, the differentiation of phagocytes into foam cells, the efferocytosis of apoptotic foam cells by phagocytes, and the phagocyte-mediated inflammatory response. A better understanding of the mechanisms involved in miR-regulated phagocyte function might lead to novel therapeutic antiatherosclerotic strategies. In this review, we try to shed light on the relationship between miRs and cellular players in the process of efferocytosis in the context of atherosclerotic plaque and their potential as molecular targets for novel antiatherosclerotic therapies.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Modern Sciences and Technologies, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
397
|
Cai T, Cui X, Zhang K, Zhang A, Liu B, Mu JJ. LncRNA TNK2-AS1 regulated ox-LDL-stimulated HASMC proliferation and migration via modulating VEGFA and FGF1 expression by sponging miR-150-5p. J Cell Mol Med 2019; 23:7289-7298. [PMID: 31468685 PMCID: PMC6815783 DOI: 10.1111/jcmm.14575] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) have been indicated for the regulatory roles in cardiovascular diseases. This study determined the expression of lncRNA TNK2 antisense RNA 1 (TNK2‐AS1) in oxidized low‐density lipoprotein (ox‐LDL)‐stimulated human aortic smooth muscle cells (HASMCs) and examined the mechanistic role of TNK2‐AS1 in the proliferation and migration of HASMCs. Our results demonstrated that ox‐LDL promoted HASMC proliferation and migration, and the enhanced proliferation and migration in ox‐LDL‐treated HASMCs were accompanied by the up‐regulation of TNK2‐AS1. In vitro functional studies showed that TNK2‐AS1 knockdown suppressed cell proliferation and migration of ox‐LDL‐stimulated HASMCs, while TNK2‐AS1 overexpression enhanced HASMC proliferation and migration. Additionally, TNK2‐AS1 inversely regulated miR‐150‐5p expression via acting as a competing endogenous RNA (ceRNA), and the enhanced effects of TNK2‐AS1 overexpression on HASMC proliferation and migration were attenuated by miR‐150‐5p overexpression. Moreover, miR‐150‐5p could target the 3’ untranslated regions of vascular endothelial growth factor A (VEGFA) and fibroblast growth factor 1 (FGF1) to regulate FGF1 and VEGFA expression in HASMCs, and the inhibitory effects of miR‐150‐5p overexpression in ox‐LDL‐stimulated HASMCs were attenuated by enforced expression of VEGFA and FGF1. Enforced expression of VEGFA and FGF1 also partially restored the suppressed cell proliferation and migration induced by TNK2‐AS1 knockdown in ox‐LDL‐stimulated HASMCs, while the enhanced effects of TNK2‐AS1 overexpression on HASMC proliferation and migration were attenuated by the knockdown of VEGFA and FGF1. Collectively, our findings showed that TNK2‐AS1 exerted its action in ox‐LDL‐stimulated HASMCs via regulating VEGFA and FGF1 expression by acting as a ceRNA for miR‐150‐5p.
Collapse
Affiliation(s)
- Tianzhi Cai
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xiuzhen Cui
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Kelin Zhang
- Department of Cardiology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Anji Zhang
- Department of Cardiology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Baixue Liu
- Department of Cardiology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jian-Jun Mu
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
398
|
Dai C, Dai C, Ni H, Xu Z. Prognostic value of long non-coding RNA 01296 expression in human solid malignant tumours: a meta-analysis. Postgrad Med J 2019; 96:43-52. [PMID: 31444240 DOI: 10.1136/postgradmedj-2019-136684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/04/2022]
Abstract
Long intergenic non-coding RNA 01296 (LINC01296) has been reported to play an important role in many human malignancies, but a consistent perspective has not been established now. To explore the prognostic value of LINC01296 in different types of human solid malignant tumours, we performed this meta-analysis.An electronic search of PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, Cochrane Library, Chinese Biological Medical Literature database and WanFang database was applied to select eligible literatures. Pooled ORs or HRs with their 95% CIs were calculated to estimate the effects.A total of 559 patients from nine eligible studies were enrolled in this meta-analysis. The results revealed that high LINC01296 expression was significantly related to larger tumour size (OR 3.42, 95% CI 2.08 to 5.63), lymph node metastasis (OR 3.03, 95% CI 2.01 to 4.57) and advanced tumor-node-metastasis (TNM) stage (OR 4.41, 95% CI 2.65 to 7.34). Moreover, we found that elevated LINC01296 expression predicted a poor outcome for overall survival (HR 1.78, 95% CI 1.48 to 2.14) and recurrence-free survival (HR 4.00, 95% CI 1.04 to 15.67).High expression levels of LINC01296 were associated with unfavourable clinical outcomes of patients with cancer. Our results indicated that LINC01296 could serve as a prognostic predictor in human solid malignant tumours.
Collapse
Affiliation(s)
- Chen Dai
- General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenguang Dai
- Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Ni
- Pathology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihua Xu
- General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
399
|
Zhuang X, Tong H, Ding Y, Wu L, Cai J, Si Y, Zhang H, Shen M. Long noncoding RNA ABHD11-AS1 functions as a competing endogenous RNA to regulate papillary thyroid cancer progression by miR-199a-5p/SLC1A5 axis. Cell Death Dis 2019; 10:620. [PMID: 31409775 PMCID: PMC6692390 DOI: 10.1038/s41419-019-1850-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
With the increasing incidence of papillary thyroid cancer (PTC), more attention has been paid to exploring the mechanism of PTC initiation and progression. In addition, ectopic expression of long noncoding RNAs (lncRNAs) is reported to play a pivotal role in multiple human cancers. Based on these findings, we examined lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) expression and its clinical significance, biological function and mechanism in PTC. First, we analyzed thyroid ABHD11-AS1 expression in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then, qRT-PCR was applied to detect the expression in paired PTC tissues and adjacent normal tissues, as well as in PTC cell lines (TPC-1 and K-1) and a normal thyroid follicular epithelium cell line (Nthy-ori3-1). In addition, we validated the relationship between ABHD11-AS1 expression and clinicopathological features by the Pearson X2 test. The oncogenic role of ABHD11-AS1 and its regulation of miR-199a-5p in PTC were examined by biological assays. Finally, bioinformatics analysis and mechanism assays were used to elucidate the underlying mechanism. We found that ABHD11-AS1 was remarkably overexpressed in PTC, and high expression was related to tumor size, lymph node metastasis, extrathyroidal extension and advanced TNM stage. Moreover, ABHD11-AS1 enhanced the abilities of cell proliferation, migration, and invasion, inhibited apoptosis in vitro, promoted tumorigenesis in vivo via sponging miR-199a-5p and then induced SLC1A5 activation. In addition, rescue assays were performed to confirm the ABHD11-AS1/miR-199a-5p/SLC1A5 axis. Taken together, the data show that ABHD11-AS1 acts as a competing endogenous RNA (ceRNA) to exert malignant properties in PTC through the miR-199a-5p/SLC1A5 axis. Therefore, our study may shed light on PTC diagnosis and therapies.
Collapse
Affiliation(s)
- Xi Zhuang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Houchao Tong
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yu Ding
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Luyao Wu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jingsheng Cai
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yan Si
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Meiping Shen
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
400
|
Chiarelli N, Ritelli M, Zoppi N, Colombi M. Cellular and Molecular Mechanisms in the Pathogenesis of Classical, Vascular, and Hypermobile Ehlers‒Danlos Syndromes. Genes (Basel) 2019; 10:E609. [PMID: 31409039 PMCID: PMC6723307 DOI: 10.3390/genes10080609] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
The Ehlers‒Danlos syndromes (EDS) constitute a heterogenous group of connective tissue disorders characterized by joint hypermobility, skin abnormalities, and vascular fragility. The latest nosology recognizes 13 types caused by pathogenic variants in genes encoding collagens and other molecules involved in collagen processing and extracellular matrix (ECM) biology. Classical (cEDS), vascular (vEDS), and hypermobile (hEDS) EDS are the most frequent types. cEDS and vEDS are caused respectively by defects in collagen V and collagen III, whereas the molecular basis of hEDS is unknown. For these disorders, the molecular pathology remains poorly studied. Herein, we review, expand, and compare our previous transcriptome and protein studies on dermal fibroblasts from cEDS, vEDS, and hEDS patients, offering insights and perspectives in their molecular mechanisms. These cells, though sharing a pathological ECM remodeling, show differences in the underlying pathomechanisms. In cEDS and vEDS fibroblasts, key processes such as collagen biosynthesis/processing, protein folding quality control, endoplasmic reticulum homeostasis, autophagy, and wound healing are perturbed. In hEDS cells, gene expression changes related to cell-matrix interactions, inflammatory/pain responses, and acquisition of an in vitro pro-inflammatory myofibroblast-like phenotype may contribute to the complex pathogenesis of the disorder. Finally, emerging findings from miRNA profiling of hEDS fibroblasts are discussed to add some novel biological aspects about hEDS etiopathogenesis.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy.
| |
Collapse
|