401
|
Ohde T, Yaginuma T, Niimi T. Insect Morphological Diversification Through the Modification of Wing Serial Homologs. Science 2013; 340:495-8. [DOI: 10.1126/science.1234219] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
402
|
Hu J, Sun S, Jiang Q, Sun S, Wang W, Gui Y, Song H. Yes-associated protein (yap) is required for early embryonic development in zebrafish (danio rerio). Int J Biol Sci 2013; 9:267-78. [PMID: 23494967 PMCID: PMC3596712 DOI: 10.7150/ijbs.4887] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/26/2013] [Indexed: 11/11/2022] Open
Abstract
The hippo (Hpo) signaling pathway plays a critical role in regulation of organ size. The kinase cascade ultimately antagonizes the transcriptional co-activator Yki/YAP, which is a key regulator of cell proliferation and apoptosis. In this study, we performed a knocking down study using antisense morpholino (MO) reagents and found that zebrafish YAP, a key transcriptional co-activator of Hpo pathway, plays a critical role in early embryonic development. At the cellular level, yap inhibition increases apoptosis and decreases cell proliferation. Reduction of yap function severely delays several developmental events, including gastrulation, cardiogenesis and hematopoiesis. Knockdown of yap showed some evidence of ventralization, including reduction of dorsally expressed marker goosecoid (gsc), expansion of ventral marker gata2, disruption of the somites, and reduction in head size. Finally, we performed a preliminary analysis with real-time polymerase chain reaction (qPCR) for the candidate targets of zebrafish Hpo pathway. In conclusion, our results revealed that zebrafish yap coordinately regulates cell proliferation and apoptosis and is required for dorsoventral axis formation, gastrulation, cardiogenesis, hematopoiesis, and somitogenesis.
Collapse
Affiliation(s)
- Jingying Hu
- Department of Biochemistry and Molecular Biology, Shanghai Medical School and Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
403
|
Strano S, Fausti F, Di Agostino S, Sudol M, Blandino G. PML Surfs into HIPPO Tumor Suppressor Pathway. Front Oncol 2013; 3:36. [PMID: 23459691 PMCID: PMC3585432 DOI: 10.3389/fonc.2013.00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/09/2013] [Indexed: 01/21/2023] Open
Abstract
Growth arrest, inhibition of cell proliferation, apoptosis, senescence, and differentiation are the most characterized effects of a given tumor suppressor response. It is becoming increasingly clear that tumor suppression results from the integrated and synergistic activities of different pathways. This implies that tumor suppression includes linear, as well as lateral, crosstalk signaling. The latter may happen through the concomitant involvement of common nodal proteins. Here, we discuss the role of Promyelocytic leukemia protein (PML) in functional cross-talks with the HIPPO and the p53 family tumor suppressor pathways. PML, in addition to its own anti-tumor activity, contributes to the assembly of an integrated and superior network that may be necessary for the maximization of the tumor suppressor response to diverse oncogenic insults.
Collapse
Affiliation(s)
- Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Cancer Institute Rome, Italy
| | | | | | | | | |
Collapse
|
404
|
Abstract
Control of cell number is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation or organ degeneration. The Hippo pathway in both Drosophila and mammals regulates cell number by modulating cell proliferation, cell death, and cell differentiation. Recently, numerous upstream components involved in the Hippo pathway have been identified, such as cell polarity, mechanotransduction, and G-protein-coupled receptor (GPCR) signaling. Actin cytoskeleton or cellular tension appears to be the master mediator that integrates and transmits upstream signals to the core Hippo signaling cascade. Here, we review regulatory mechanisms of the Hippo pathway and discuss potential implications involved in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
405
|
Oh H, Slattery M, Ma L, Crofts A, White KP, Mann RS, Irvine KD. Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell Rep 2013; 3:309-18. [PMID: 23395637 DOI: 10.1016/j.celrep.2013.01.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/29/2012] [Accepted: 01/11/2013] [Indexed: 12/19/2022] Open
Abstract
The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie's association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF), the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie's transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.
Collapse
Affiliation(s)
- Hyangyee Oh
- Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
406
|
Sidor CM, Brain R, Thompson BJ. Mask proteins are cofactors of Yorkie/YAP in the Hippo pathway. Curr Biol 2013; 23:223-8. [PMID: 23333315 DOI: 10.1016/j.cub.2012.11.061] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/01/2012] [Accepted: 11/26/2012] [Indexed: 01/12/2023]
Abstract
The Hippo signaling pathway acts via the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family to control tissue growth in both Drosophila and mammals [1-3]. Yki/YAP drives tissue growth by activating target gene transcription, but how it does so remains unclear. Here we identify Mask as a novel cofactor for Yki/YAP. We show that Drosophila Mask forms a complex with Yki and its binding partner, Scalloped (Sd), on target-gene promoters and is essential for Yki to drive transcription of target genes and tissue growth. Furthermore, the stability and subcellular localization of both Mask and Yki is coregulated in response to various stimuli. Finally, Mask proteins are functionally conserved between Drosophila and humans and are coexpressed with YAP in a wide variety of human stem/progenitor cells and tumors.
Collapse
Affiliation(s)
- Clara M Sidor
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | |
Collapse
|
407
|
Konsavage WM, Yochum GS. Intersection of Hippo/YAP and Wnt/β-catenin signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2013; 45:71-9. [PMID: 23027379 DOI: 10.1093/abbs/gms084] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traditionally, signaling pathways have been perceived to act in an autonomous manner to regulate tissue morphology, size, differentiation, and development. Recent evidence suggests that these pathways often intersect and regulate one another to elicit an appropriate response to a complex set of stimuli. Two pathways known to be important for development, growth, and homeostasis are the Wnt/β-catenin and the Hippo/YAP pathways. Growing data indicate that these two pathways influence each other in a number of ways to properly regulate tissue growth and repair. Deregulation of these pathways often contributes to tumorigenesis. In this review, we will discuss the points of intersection between the Wnt/β-catenin and Hippo/YAP pathways and how these interactions contribute to homeostasis, organ repair, and tumorigenesis.
Collapse
Affiliation(s)
- Wesley M Konsavage
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | |
Collapse
|
408
|
Deng Y, Matsui Y, Zhang Y, Lai ZC. Hippo activation through homodimerization and membrane association for growth inhibition and organ size control. Dev Biol 2013; 375:152-9. [PMID: 23298890 DOI: 10.1016/j.ydbio.2012.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/28/2022]
Abstract
Hippo (Hpo) signaling plays a critical role in restricting tissue growth and organ size in both invertebrate and vertebrate animals. However, how the Hpo kinase is regulated during development has not been clearly understood. Using a Bimolecular Fluorescence Complementation assay, we have investigated the functional significance of Hpo homo-dimer formation and subcellular localization in living cells. We found that Hpo dimerization and membrane association are critical for its activation in growth inhibition. As dimerization facilitates Hpo to access its binding partner, Hpo kinases in the homo-dimer trans-phosphorylate each other to increase their enzymatic activity. Moreover, loss- and gain-of-function studies indicate that upstream regulators, Expanded, Merlin and Kibra, play a critical role in promoting Hpo dimerization as well as association to the cortical F-actin beneath the plasma membrane. Enforced Hpo localization to the plasma membrane increases Hpo dimerization and activity. Therefore, homo-dimerization and plasma membrane association are two important mechanisms for Hpo activation in growth control during animal development.
Collapse
Affiliation(s)
- Yaoting Deng
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
409
|
Wehr MC, Holder MV, Gailite I, Saunders RE, Maile TM, Ciirdaeva E, Instrell R, Jiang M, Howell M, Rossner MJ, Tapon N. Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nat Cell Biol 2013; 15:61-71. [PMID: 23263283 PMCID: PMC3749438 DOI: 10.1038/ncb2658] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022]
Abstract
The specification of tissue size during development involves the coordinated action of many signalling pathways responding to organ-intrinsic signals, such as morphogen gradients, and systemic cues, such as nutrient status. The conserved Hippo (Hpo) pathway, which promotes both cell-cycle exit and apoptosis, is a major determinant of size control. The pathway core is a kinase cassette, comprising the kinases Hpo and Warts (Wts) and the scaffold proteins Salvador (Sav) and Mats, which inactivates the pro-growth transcriptional co-activator Yorkie (Yki). We performed a split-TEV-based genome-wide RNAi screen for modulators of Hpo signalling. We characterize the Drosophila salt-inducible kinases (Sik2 and Sik3) as negative regulators of Hpo signalling. Activated Sik kinases increase Yki target expression and promote tissue overgrowth through phosphorylation of Sav at Ser 413. As Sik kinases have been implicated in nutrient sensing, this suggests a link between the Hpo pathway and systemic growth control.
Collapse
Affiliation(s)
- Michael C. Wehr
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
- Research Group Gene Expression, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Ieva Gailite
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Rebecca E. Saunders
- High-throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Tobias M. Maile
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Elena Ciirdaeva
- Research Group Gene Expression, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| | - Rachael Instrell
- High-throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Ming Jiang
- High-throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Michael Howell
- High-throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Moritz J. Rossner
- Research Group Gene Expression, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
410
|
Abstract
The outcome of the Notch pathway on proliferation depends on cellular context, being growth promotion in some, including several cancers, and growth inhibition in others. Such disparate outcomes are evident in Drosophila wing discs, where Notch overactivation causes hyperplasia despite having localized inhibitory effects on proliferation. To understand the underlying mechanisms, we have used genomic strategies to identify the Notch-CSL target genes directly activated during wing disc hyperplasia. Among them were genes involved in both autonomous and non-autonomous regulation of proliferation, growth and cell death, providing molecular explanations for many characteristics of Notch induced wing disc hyperplasia previously reported. The Notch targets exhibit different response patterns, which are shaped by both positive and negative feed-forward regulation between the Notch targets themselves. We propose, therefore, that both the characteristics of the direct Notch targets and their cross-regulatory relationships are important in coordinating the pattern of hyperplasia. This genome-wide approach characterizes the repertoire of Notch targets in proliferative growth. Extensive functional categorizations offer significant new insights into regulatory circuits that govern Notch-mediated hyperplasia.
Collapse
|
411
|
Abstract
Tissue renewal is an ongoing process in the epithelium of the skin. We have begun to examine the genetic mechanisms that control stem/progenitor cell activation in the postnatal epidermis. The conserved Hippo pathway regulates stem cell turnover in arthropods through to vertebrates. Here we show that its downstream effector, yes-associated protein (YAP), is active in the stem/progenitor cells of the postnatal epidermis. Overexpression of a C-terminally truncated YAP mutant in the basal epidermis of transgenic mice caused marked expansion of epidermal stem/progenitor cell populations. Our data suggest that the C-terminus of YAP controls the balance between stem/progenitor cell proliferation and differentiation in the postnatal interfollicular epidermis. We conclude that YAP functions as a molecular switch of stem/progenitor cell activation in the epidermis. Moreover, our results highlight YAP as a possible therapeutic target for diseases such as skin cancer, psoriasis, and epidermolysis bullosa.
Collapse
|
412
|
Verghese S, Waghmare I, Kwon H, Hanes K, Kango-Singh M. Scribble acts in the Drosophila fat-hippo pathway to regulate warts activity. PLoS One 2012; 7:e47173. [PMID: 23144804 PMCID: PMC3489842 DOI: 10.1371/journal.pone.0047173] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/10/2012] [Indexed: 01/15/2023] Open
Abstract
Epithelial cells are the major cell-type for all organs in multicellular organisms. In order to achieve correct organ size, epithelial tissues need mechanisms that limit their proliferation, and protect tissues from damage caused by defective epithelial cells. Recently, the Hippo signaling pathway has emerged as a major mechanism that orchestrates epithelial development. Hippo signaling is required for cells to stop proliferation as in the absence of Hippo signaling tissues continue to proliferate and produce overgrown organs or tumors. Studies in Drosophila have led the way in providing a framework for how Hippo alters the pattern of gene transcription in target cells, leading to changes in cell proliferation, survival, and other behaviors. Scribble (Scrib) belongs to a class of neoplastic tumor suppressor genes that are required to establish apical-basal cell polarity. The disruption of apical-basal polarity leads to uncontrolled cell proliferation of epithelial cells. The interaction of apical basal polarity genes with the Hippo pathway has been an area of intense investigation. Loss of scrib has been known to affect Hippo pathway targets, however, its functions in the Hippo pathway still remain largely unknown. We investigated the interactions of Scrib with the Hippo pathway. We present data suggesting that Drosophila scrib acts downstream of the Fat (Ft) receptor, and requires Hippo signaling for its growth regulatory functions. We show that Ft requires Scrib to interact with Expanded (Ex) and Dachs (D), and for regulating Warts (Wts) levels and stability, thus placing Scrib in the Hippo pathway network.
Collapse
Affiliation(s)
- Shilpi Verghese
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Indrayani Waghmare
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Hailey Kwon
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Katelin Hanes
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Pre-Medical Programs, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
413
|
Bayarmagnai B, Nicolay BN, Islam ABMMK, Lopez-Bigas N, Frolov MV. Drosophila GAGA factor is required for full activation of the dE2f1-Yki/Sd transcriptional program. Cell Cycle 2012; 11:4191-202. [PMID: 23070566 DOI: 10.4161/cc.22486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Hippo signaling pathway regulates organ size by controlling the activity of the transcriptional co-activator Yorkie (Yki). Yki is recruited to its target genes by DNA-binding proteins such as Scalloped (Sd). In addition, transcription factor dE2f1, of the Retinoblastoma (Rb) pathway, cooperates with Yki/Sd to synergistically activate a set of common cell cycle target genes. However, little is known about other factors that ensure the proper transcriptional output of Hippo signaling. In this report we identified the chromatin protein GAGA factor (GAF), which is encoded by the Trithorax-like (Trl) gene, as a novel and critical partner in transcriptional regulation by Yki/Sd and dE2f1. We show that GAF is required for the full activation of target genes by dE2f1 and Yki/Sd; while ablation of GAF compromises both normal and inappropriate cell proliferation driven by Yki and dE2f1 in multiple tissues. The importance of GAF is further supported by strong genetic interactions between GAF and the Rb and Hippo pathways. Additionally, we show that GAF directly interacts with RBF, a Drosophila pRB homolog, and partially co-localizes with RBF on polytene chromosomes. Collectively, our data provide a novel connection between a chromatin-binding protein and a transcriptional program governed by the Hippo and Rb pathways.
Collapse
Affiliation(s)
- Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
414
|
Landin Malt A, Cagliero J, Legent K, Silber J, Zider A, Flagiello D. Alteration of TEAD1 expression levels confers apoptotic resistance through the transcriptional up-regulation of Livin. PLoS One 2012; 7:e45498. [PMID: 23029054 PMCID: PMC3454436 DOI: 10.1371/journal.pone.0045498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background TEA domain (TEAD) proteins are highly conserved transcription factors involved in embryonic development and differentiation of various tissues. More recently, emerging evidences for a contribution of these proteins towards apoptosis and cell proliferation regulation have also been proposed. These effects appear to be mediated by the interaction between TEAD and its co-activator Yes-Associated Protein (YAP), the downstream effector of the Hippo tumour suppressor pathway. Methodology/Principal Findings We further investigated the mechanisms underlying TEAD-mediated apoptosis regulation and showed that overexpression or RNAi-mediated silencing of the TEAD1 protein is sufficient to protect mammalian cell lines from induced apoptosis, suggesting a proapoptotic function for TEAD1 and a non physiological cytoprotective effect for overexpressed TEAD1. Moreover we show that the apoptotic resistance conferred by altered TEAD1 expression is mediated by the transcriptional up-regulation of Livin, a member of the Inhibitor of Apoptosis Protein (IAP) family. In addition, we show that overexpression of a repressive form of TEAD1 can induce Livin up-regulation, indicating that the effect of TEAD1 on Livin expression is indirect and favoring a model in which TEAD1 activates a repressor of Livin by interacting with a limiting cofactor that gets titrated upon TEAD1 up-regulation. Interestingly, we show that overexpression of a mutated form of TEAD1 (Y421H) implicated in Sveinsson's chorioretinal atrophy that strongly reduces its interaction with YAP as well as its activation, can induce Livin expression and protect cells from induced apoptosis, suggesting that YAP is not the cofactor involved in this process. Conclusions/Significance Taken together our data reveal a new, Livin-dependent, apoptotic role for TEAD1 in mammals and provide mechanistic insight downstream of TEAD1 deregulation in cancers.
Collapse
Affiliation(s)
| | | | | | | | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, Equipe de Génétique Moléculaire de la Différenciation, IJM, UMR 7592 CNRS, Paris, France
- * E-mail: (AZ); (DF)
| | - Domenico Flagiello
- Univ Paris Diderot, Sorbonne Paris Cité, Equipe de Génétique Moléculaire de la Différenciation, IJM, UMR 7592 CNRS, Paris, France
- * E-mail: (AZ); (DF)
| |
Collapse
|
415
|
Schroeder MC, Halder G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin Cell Dev Biol 2012; 23:803-11. [DOI: 10.1016/j.semcdb.2012.06.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/28/2023]
|
416
|
Nagaraj R, Gururaja-Rao S, Jones KT, Slattery M, Negre N, Braas D, Christofk H, White KP, Mann R, Banerjee U. Control of mitochondrial structure and function by the Yorkie/YAP oncogenic pathway. Genes Dev 2012; 26:2027-37. [PMID: 22925885 DOI: 10.1101/gad.183061.111] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitochondrial structure and function are highly dynamic, but the potential roles for cell signaling pathways in influencing these properties are not fully understood. Reduced mitochondrial function has been shown to cause cell cycle arrest, and a direct role of signaling pathways in controlling mitochondrial function during development and disease is an active area of investigation. Here, we show that the conserved Yorkie/YAP signaling pathway implicated in the control of organ size also functions in the regulation of mitochondria in Drosophila as well as human cells. In Drosophila, activation of Yorkie causes direct transcriptional up-regulation of genes that regulate mitochondrial fusion, such as opa1-like (opa1) and mitochondria assembly regulatory factor (Marf), and results in fused mitochondria with dramatic reduction in reactive oxygen species (ROS) levels. When mitochondrial fusion is genetically attenuated, the Yorkie-induced cell proliferation and tissue overgrowth are significantly suppressed. The function of Yorkie is conserved across evolution, as activation of YAP2 in human cell lines causes increased mitochondrial fusion. Thus, mitochondrial fusion is an essential and direct target of the Yorkie/YAP pathway in the regulation of organ size control during development and could play a similar role in the genesis of cancer.
Collapse
Affiliation(s)
- Raghavendra Nagaraj
- Department of Molecular, Cell, and Developmental Biology, Broad Stem Cell Research Center, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Fujii M, Nakanishi H, Toyoda T, Tanaka I, Kondo Y, Osada H, Sekido Y. Convergent signaling in the regulation of connective tissue growth factor in malignant mesothelioma: TGFβ signaling and defects in the Hippo signaling cascade. Cell Cycle 2012; 11:3373-9. [PMID: 22918238 PMCID: PMC3466546 DOI: 10.4161/cc.21397] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Malignant mesothelioma (MM) is a neoplasm that arises from serosal surfaces of the pleural, peritoneal and pericardial cavities with worldwide incidence, much of which is caused by asbestos exposure. Patients suffer from pain and dyspnea due to direct invasion of the chest wall, lungs and vertebral or intercostal nerves by masses of thick fibrotic tumors. Although there has been recent progress in the clinical treatment, current therapeutic approaches do not provide satisfactory results. Therefore, development of a molecularly targeted therapy for MM is urgently required. Our recent studies suggest that normal mesothelial and MM cell growth is promoted by TGFβ, and that TGFβ signaling together with intrinsic disturbances in neurofibromatosis type 2 (NF2) and Hippo signaling cascades in MM cells converges upon further expression of connective tissue growth factor (CTGF). The formation of a YAP-TEAD4-Smad3-p300 complex on the specific CTGF promoter site with an adjacent TEAD and Smad binding motif is a critical and synergistic event caused by the dysregulation of these two distinct cascades. Furthermore, we demonstrated the functional importance of CTGF through the mouse studies and human histological analyses, which may elucidate the clinical features of MM with severe fibrosis in the thoracic cavity.
Collapse
Affiliation(s)
- Makiko Fujii
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
418
|
Abstract
The physical and mechanical properties of the cellular microenvironment regulate cell shape and can strongly influence cell fate. How mechanical cues are sensed and transduced to regulate gene expression has long remained elusive. Recently, cues from the extracellular matrix, cell adhesion sites, cell shape and the actomyosin cytoskeleton were found to converge on the regulation of the downstream effectors of the Hippo pathway YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) in vertebrates and Yorkie in flies. This convergence may explain how mechanical signals can direct normal and pathological cell behaviour.
Collapse
|
419
|
The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A 2012; 109:E2441-50. [PMID: 22891335 DOI: 10.1073/pnas.1212021109] [Citation(s) in RCA: 479] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transcriptional coactivator Yes-associated protein (YAP) is a major regulator of organ size and proliferation in vertebrates. As such, YAP can act as an oncogene in several tissue types if its activity is increased aberrantly. Although no activating mutations in the yap1 gene have been identified in human cancer, yap1 is located on the 11q22 amplicon, which is amplified in several human tumors. In addition, mutations or epigenetic silencing of members of the Hippo pathway, which represses YAP function, have been identified in human cancers. Here we demonstrate that, in addition to increasing tumor growth, increased YAP activity is potently prometastatic in breast cancer and melanoma cells. Using a Luminex-based approach to multiplex in vivo assays, we determined that the domain of YAP that interacts with the TEAD/TEF family of transcription factors but not the WW domains or PDZ-binding motif, is essential for YAP-mediated tumor growth and metastasis. We further demonstrate that, through its TEAD-interaction domain, YAP enhances multiple processes known to be important for tumor progression and metastasis, including cellular proliferation, transformation, migration, and invasion. Finally, we found that the metastatic potential of breast cancer and melanoma cells is strongly correlated with increased TEAD transcriptional activity. Together, our results suggest that increased YAP/TEAD activity plays a causal role in cancer progression and metastasis.
Collapse
|
420
|
Miller E, Yang J, DeRan M, Wu C, Su A, Bonamy G, Liu J, Peters E, Wu X. Identification of Serum-Derived Sphingosine-1-Phosphate as a Small Molecule Regulator of YAP. ACTA ACUST UNITED AC 2012; 19:955-62. [DOI: 10.1016/j.chembiol.2012.07.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
|
421
|
Chen J, Verheyen EM. Homeodomain-interacting protein kinase regulates Yorkie activity to promote tissue growth. Curr Biol 2012; 22:1582-6. [PMID: 22840522 DOI: 10.1016/j.cub.2012.06.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/15/2012] [Accepted: 06/11/2012] [Indexed: 12/11/2022]
Abstract
The Hippo (Hpo) tumor suppressor pathway regulates tissue size by inhibiting cell proliferation and promoting apoptosis. The core components of the pathway, Hpo, Salvador, Warts (Wts), and Mats, form a kinase cascade to inhibit the activity of Yorkie (Yki), the transcriptional effector of the pathway. Homeodomain-interacting protein kinases (Hipks) are a family of conserved serine/threonine kinases that function as regulators of various transcription factors to regulate developmental processes including proliferation, differentiation, and apoptosis. Hipk can induce tissue overgrowth in Drosophila. We demonstrate that Hipk is required to promote Yki activity. Hipk affects neither Yki stability nor its subcellular localization. Moreover, hipk knockdown suppresses the overgrowth and target gene expression caused by hyperactive Yki. Hipk phosphorylates Yki and in vivo analyses show that Hipk's regulation of Yki is kinase-dependent. To our knowledge, this is the first kinase identified to positively regulate Yki.
Collapse
Affiliation(s)
- Joanna Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
422
|
Li Y, Hibbs MA, Gard AL, Shylo NA, Yun K. Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and hippo pathway effectors by Notch1. Stem Cells 2012; 30:741-52. [PMID: 22232070 DOI: 10.1002/stem.1030] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Notch pathway plays a pivotal role in regulating cell fate decisions in many stem cell systems. However, the full repertoire of Notch target genes in vivo and the mechanisms through which this pathway activity is integrated with other signaling pathways are largely unknown. Here, we report a transgenic mouse in which the activation of the Notch pathway massively expands the neural stem cell (NSC) pool in a cell context-dependent manner. Using this in vivo system, we identify direct targets of RBPJ/N1ICD in cortical NSCs at a genome-wide level through combined ChIP-Seq and transcriptome analyses. Through a highly conservative analysis of these datasets, we identified 98 genes that are directly regulated by N1ICD/RPBJ in vivo. These include many transcription factors that are known to be critical for NSC self-renewal (Sox2, Pax6, Tlx, and Id4) and the transcriptional effectors of the Wnt, SHH, and Hippo pathways, TCF4, Gli2, Gli3, Yap1, and Tead2. Since little is known about the function of the Hippo-Yap pathway in NSCs, we analyzed Yap1 expression and function in NSCs. We show that Yap1 expression is restricted to the stem cell compartment in the developing forebrain and that its expression is sufficient to rescue Notch pathway inhibition in NSC self-renewal assays. Together, results of this study reveal a previously underappreciated complexity and breadth of Notch1 targets in vivo and show direct interaction between Notch and Hippo-Yap pathways in NSCs.
Collapse
Affiliation(s)
- Yaochen Li
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | | |
Collapse
|
423
|
Hippo and rassf1a Pathways: A Growing Affair. Mol Biol Int 2012; 2012:307628. [PMID: 22830020 PMCID: PMC3399428 DOI: 10.1155/2012/307628] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/18/2012] [Indexed: 01/15/2023] Open
Abstract
First discovered in Drosophila, the Hippo pathway regulates the size and shape of organ development. Its discovery and study have helped to address longstanding questions in developmental biology. Central to this pathway is a kinase cascade leading from the tumor suppressor Hippo (Mst1 and Mst2 in mammals) to the Yki protein (YAP and TAZ in mammals), a transcriptional coactivator of target genes involved in cell proliferation, survival, and apoptosis. A dysfunction of the Hippo pathway activity is frequently detected in human cancers. Recent studies have highlighted that the Hippo pathway may play an important role in tissue homoeostasis through the regulation of stem cells, cell differentiation, and tissue regeneration. Recently, the impact of RASSF proteins on Hippo signaling potentiating its proapoptotic activity has been addressed, thus, providing further evidence for Hippo's key role in mammalian tumorigenesis as well as other important diseases.
Collapse
|
424
|
Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol 2012; 367:187-96. [DOI: 10.1016/j.ydbio.2012.05.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 12/12/2022]
|
425
|
Ye X, Deng Y, Lai ZC. Akt is negatively regulated by Hippo signaling for growth inhibition in Drosophila. Dev Biol 2012; 369:115-23. [PMID: 22732571 DOI: 10.1016/j.ydbio.2012.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Tissue growth is achieved through coordinated cellular growth, cell division and apoptosis. Hippo signaling is critical for monitoring tissue growth during animal development. Loss of Hippo signaling leads to tissue overgrowth due to continuous cell proliferation and block of apoptosis. As cells lacking Hippo signaling are similar in size compared to normal cells, cellular growth must be properly maintained in Hippo signaling-deficient cells. However, it is not clear how Hippo signaling might regulate cellular growth. Here we show that loss of Hippo signaling increased Akt (also called Protein Kinase B, PKB) expression and activity, whereas activation of Hippo signaling reduced Akt expression in developing tissues in Drosophila. While yorkie (yki) is sufficient to increase Akt expression, Akt up-regulation caused by the loss of Hippo signaling is strongly dependent on yki, indicating that Hippo signaling negatively regulates Akt expression through Yki inhibition. Consistently, genetic analysis revealed that Akt plays a critical role in facilitating growth of Hippo signaling-defective tissues. Thus, Hippo signaling not only blocks cell division and promotes apoptosis, but also regulates cellular growth by inhibiting the Akt pathway activity.
Collapse
Affiliation(s)
- Xin Ye
- Intercollege Graduate Degree Program in Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | |
Collapse
|
426
|
Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012. [PMID: 22677547 DOI: 10.1101/gad.192856.112.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.
Collapse
|
427
|
Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26:1300-5. [PMID: 22677547 DOI: 10.1101/gad.192856.112] [Citation(s) in RCA: 1157] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.
Collapse
|
428
|
Hong W, Guan KL. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol 2012; 23:785-93. [PMID: 22659496 DOI: 10.1016/j.semcdb.2012.05.004] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was initially defined by genetic studies in Drosophila to regulate tissue growth and organ size [1,2]. This pathway is highly conserved in mammals and dysregulation of the Hippo pathway has been implicated in human cancer. Although the exact extracellular signal that controls the Hippo pathway is currently unknown, compelling evidence supports a critical role of the Hippo pathway in cell contact inhibition, which is a property commonly lost in cancer cells. Many molecules, such as the merlin tumor suppressor protein, have been identified as regulating the activity of the core Hippo pathway components [1,2]. Acting downstream are two key transcription co-activators, YAP and TAZ, which mediate the major gene regulation and biological functions of the Hippo pathway. This article will focus on the physiological function and molecular regulation of YAP/TAZ and its Drosophila homolog Yki.
Collapse
Affiliation(s)
- Wanjin Hong
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China.
| | | |
Collapse
|
429
|
Schoenherr JA, Drennan JM, Martinez JS, Chikka MR, Hall MC, Chang HC, Clemens JC. Drosophila activated Cdc42 kinase has an anti-apoptotic function. PLoS Genet 2012; 8:e1002725. [PMID: 22615583 PMCID: PMC3355085 DOI: 10.1371/journal.pgen.1002725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 04/05/2012] [Indexed: 01/20/2023] Open
Abstract
Activated Cdc42 kinases (Acks) are evolutionarily conserved non-receptor tyrosine kinases. Activating somatic mutations and increased ACK1 protein levels have been found in many types of human cancers and correlate with a poor prognosis. ACK1 is activated by epidermal growth factor (EGF) receptor signaling and functions to regulate EGF receptor turnover. ACK1 has additionally been found to propagate downstream signals through the phosphorylation of cancer relevant substrates. Using Drosophila as a model organism, we have determined that Drosophila Ack possesses potent anti-apoptotic activity that is dependent on Ack kinase activity and is further activated by EGF receptor/Ras signaling. Ack anti-apoptotic signaling does not function through enhancement of EGF stimulated MAP kinase signaling, suggesting that it must function through phosphorylation of some unknown effector. We isolated several putative Drosophila Ack interacting proteins, many being orthologs of previously identified human ACK1 interacting proteins. Two of these interacting proteins, Drk and yorkie, were found to influence Ack signaling. Drk is the Drosophila homolog of GRB2, which is required to couple ACK1 binding to receptor tyrosine kinases. Drk knockdown blocks Ack survival activity, suggesting that Ack localization is important for its pro-survival activity. Yorkie is a transcriptional co-activator that is downstream of the Salvador-Hippo-Warts pathway and promotes transcription of proliferative and anti-apoptotic genes. We find that yorkie and Ack synergistically interact to produce tissue overgrowth and that yorkie loss of function interferes with Ack anti-apoptotic signaling. Our results demonstrate how increased Ack signaling could contribute to cancer when coupled to proliferative signals. A number of recent studies have uncovered an involvement of Ack family members in human cancer. The majority of these studies focus on human ACK1 and suggest that ACK1 regulates diverse cancer-relevant biological functions, including stimulation of proliferation, blocking programmed cell death, and enhancing metastasis. It is unclear from these studies whether these biological outcomes are directly controlled by ACK1 activity or if they are indirect consequences of ACK1 signaling. Using Drosophila as a model organism, our study demonstrates that Ack serves to promote cell survival by blocking programmed cell death: a mechanism of eliminating excess, damaged, or cancerous cells. We further find that Ack activity functions synergistically with cell growth signals to produce massive cellular overgrowth. Our findings define the physiological role of Ack proteins and add further support to the value of Ack family members as therapeutic drug targets for the treatment of cancer.
Collapse
Affiliation(s)
- Jessica A. Schoenherr
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - J. Michelle Drennan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Juan S. Martinez
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Madhusudana Rao Chikka
- Department of Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Henry C. Chang
- Department of Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - James C. Clemens
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
430
|
The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell 2012; 3:291-304. [PMID: 22549587 DOI: 10.1007/s13238-012-2919-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 12/16/2022] Open
Abstract
Stem cells and progenitor cells are the cells of origin for multi-cellular organisms and organs. They play key roles during development and their dysregulation gives rise to human diseases such as cancer. The recent development of induced pluripotent stem cell (iPSC) technology which converts somatic cells to stem-like cells holds great promise for regenerative medicine. Nevertheless, the understanding of proliferation, differentiation, and self-renewal of stem cells and organ-specific progenitor cells is far from clear. Recently, the Hippo pathway was demonstrated to play important roles in these processes. The Hippo pathway is a newly established signaling pathway with critical functions in limiting organ size and suppressing tumorigenesis. This pathway was first found to inhibit cell proliferation and promote apoptosis, therefore regulating cell number and organ size in both Drosophila and mammals. However, in several organs, disturbance of the pathway leads to specific expansion of the progenitor cell compartment and manipulation of the pathway in embryonic stem cells strongly affects their self-renewal and differentiation. In this review, we summarize current observations on roles of the Hippo pathway in different types of stem cells and discuss how these findings changed our view on the Hippo pathway in organ development and tumorigenesis.
Collapse
|
431
|
Irvine KD. Integration of intercellular signaling through the Hippo pathway. Semin Cell Dev Biol 2012; 23:812-7. [PMID: 22554983 DOI: 10.1016/j.semcdb.2012.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 01/15/2023]
Abstract
Metazoan cells are exposed to a multitude of signals, which they integrate to determine appropriate developmental or physiological responses. Although the Hippo pathway was only discovered recently, and our knowledge of Hippo signal transduction is far from complete, a wealth of interconnections amongst Hippo and other signaling pathways have already been identified. Hippo signaling is particularly important for growth control, and I describe how integration of Hippo and other pathways contributes to regulation of organ growth. Molecular links between Hippo signaling and other signal transduction pathways are summarized. Different types of mechanisms for signal integration are described, and examples of how the complex interconnections between pathways are used to guide developmental and physiological growth responses are discussed. Features of Hippo signaling appear to make it particularly well suited to signal integration, including its responsiveness to cell-cell contact and the mediation of its transcriptional output by transcriptional co-activator proteins that can interact with transcription factors of other pathways.
Collapse
Affiliation(s)
- Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
432
|
Boggiano JC, Fehon RG. Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev Cell 2012; 22:695-702. [PMID: 22516196 PMCID: PMC3376383 DOI: 10.1016/j.devcel.2012.03.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past decade, the Hippo tumor suppressor pathway has emerged as a central regulator of growth in epithelial tissues. Research in Drosophila and in mammals has shown that this kinase signaling cascade regulates the activity of the transcriptional coactivator and oncoprotein Yorkie/Yap. In this review, we discuss recent findings that emphasize the cell cortex-specifically the actin cytoskeleton, intercellular junctions, and protein complexes that determine cell polarity-as a key site for Hippo pathway regulation. We also highlight where additional research is needed to integrate known functional interactions between Hippo pathway components.
Collapse
Affiliation(s)
- Julian C. Boggiano
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
433
|
Avruch J, Zhou D, Bardeesy N. YAP oncogene overexpression supercharges colon cancer proliferation. Cell Cycle 2012; 11:1090-6. [PMID: 22356765 DOI: 10.4161/cc.11.6.19453] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcriptional co-activator YAP is an evolutionarily conserved regulator of organ size and progenitor cell proliferation. YAP is overexpressed at high frequency in many common human cancers and can directly drive cancer development in mouse models. YAP abundance and nuclear localization are negatively regulated by the Hippo kinase cascade, which, in epithelia, is activated by physiological cell-cell contact. Recent work in intestinal epithelium has established that YAP is constitutively inhibited by the Hippo pathway and entirely dispensable for normal development and homeostasis. YAP serves only in a standby capacity; should cell-cell contact be abrogated, as after intestinal damage, the loss of Hippo input permits increased YAP abundance and nuclear residence. In turn, YAP cooperates with β-catenin to transactivate genes that promote stem cell expansion for epithelial repair. This interplay between overexpressed YAP and β-catenin also drives proliferation of colon cancer cells. The dispensability of YAP in normal intestine makes YAP's expression or outputs attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
434
|
Abstract
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
435
|
Control of tissue growth and cell transformation by the Salvador/Warts/Hippo pathway. PLoS One 2012; 7:e31994. [PMID: 22359650 PMCID: PMC3281119 DOI: 10.1371/journal.pone.0031994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
The Salvador-Warts-Hippo (SWH) pathway is an important regulator of tissue growth that is frequently subverted in human cancer. The key oncoprotein of the SWH pathway is the transcriptional co-activator, Yes-associated protein (YAP). YAP promotes tissue growth and transformation of cultured cells by interacting with transcriptional regulatory proteins via its WW domains, or, in the case of the TEAD1-4 transcription factors, an N-terminal binding domain. YAP possesses a putative transactivation domain in its C-terminus that is necessary to stimulate transcription factors in vitro, but its requirement for YAP function has not been investigated in detail. Interestingly, whilst the WW domains and TEAD-binding domain are highly conserved in the Drosophila melanogaster YAP orthologue, Yorkie, the majority of the C-terminal region of YAP is not present in Yorkie. To investigate this apparent conundrum, we assessed the functional roles of the YAP and Yorkie C-termini. We found that these regions were not required for Yorkie's ability to drive tissue growth in vivo, or YAP's ability to promote anchorage-independent growth or resistance to contact inhibition. However, the YAP transactivation domain was required for YAP's ability to induce cell migration and invasion. Moreover, a role for the YAP transactivation domain in cell transformation was uncovered when the YAP WW domains were mutated together with the transactivation domain. This shows that YAP can promote cell transformation in a flexible manner, presumably by contacting transcriptional regulatory proteins either via its WW domains or its transactivation domain.
Collapse
|
436
|
Lee KK, Yonehara S. Identification of mechanism that couples multisite phosphorylation of Yes-associated protein (YAP) with transcriptional coactivation and regulation of apoptosis. J Biol Chem 2012; 287:9568-78. [PMID: 22308035 DOI: 10.1074/jbc.m111.296954] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional coactivator Yes-associated protein (YAP) has been implicated in tumorigenesis by regulating cell proliferation and apoptosis. YAP interacts with the transcription factor TEAD and is essential in mediating TEAD-dependent gene expression. Here we show that YAP is hyperphosphorylated and activated in response to genotoxic stress such as UV irradiation and cisplatin treatment. Using high resolution mobility shift assay for phosphorylated proteins, we identified multiple sites of phosphorylation induced by UV irradiation. Pretreatment with p38 and JNK inhibitors completely suppressed the mobility retardation of phosphorylated YAP in UV-irradiated cells. Co-immunoprecipitation experiments showed that the physical interaction of YAP with TEAD was markedly enhanced by UV irradiation or CDDP treatment but suppressed by pretreatment with p38 and JNK inhibitors. Similarly, pretreatment with p38 and JNK inhibitors suppressed the expression of YAP/TEAD target genes, which were elevated on exposure to genotoxic stress. Using phosphomimetic and phosphorylation-deficient YAP mutants, we showed that the coactivator activity of YAP correlated with its state of phosphorylation and sensitivity to cisplatin-induced apoptosis. Our results demonstrate that multisite phosphorylation of YAP induces YAP/TEAD-dependent gene expression and provides a mechanism by which YAP regulates apoptosis differently depending on cellular context.
Collapse
Affiliation(s)
- Kyung-Kwon Lee
- Laboratory of Molecular and Cellular Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
437
|
Varelas X, Wrana JL. Coordinating developmental signaling: novel roles for the Hippo pathway. Trends Cell Biol 2012; 22:88-96. [DOI: 10.1016/j.tcb.2011.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/13/2011] [Accepted: 10/16/2011] [Indexed: 01/15/2023]
|
438
|
YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 2012; 109:2394-9. [PMID: 22308401 DOI: 10.1073/pnas.1116136109] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Heart growth is tightly controlled so that the heart reaches a predetermined size. Fetal heart growth occurs through cardiomyocyte proliferation, whereas postnatal heart growth involves primarily physiological cardiomyocyte hypertrophy. The Hippo kinase cascade is an important regulator of organ growth. A major target of this kinase cascade is YAP1, a transcriptional coactivator that is inactivated by Hippo kinase activity. Here, we used both genetic gain and loss of Yap1 function to investigate its role in regulating proliferative and physiologic hypertrophic heart growth. Fetal Yap1 inactivation caused marked, lethal myocardial hypoplasia and decreased cardiomyocyte proliferation, whereas fetal activation of YAP1 stimulated cardiomyocyte proliferation. Enhanced proliferation was particularly dramatic in trabecular cardiomyocytes that normally exit from the cell cycle. Remarkably, YAP1 activation was sufficient to stimulate proliferation of postnatal cardiomyocytes, both in culture and in the intact heart. A dominant negative peptide that blocked YAP1 binding to TEAD transcription factors inhibited YAP1 proliferative activity, indicating that this activity requires YAP1-TEAD interaction. Although Yap1 was a critical regulator of cardiomyocyte proliferation, it did not influence physiological hypertrophic growth of cardiomyocytes, because postnatal Yap1 gain or loss of function did not significantly alter cardiomyocyte size. These studies demonstrate that Yap1 is a crucial regulator of cardiomyocyte proliferation, cardiac morphogenesis, and myocardial trabeculation. Activation of Yap1 in postnatal cardiomyocytes may be a useful strategy to stimulate cardiomyocyte expansion in therapeutic myocardial regeneration.
Collapse
|
439
|
Yue T, Tian A, Jiang J. The cell adhesion molecule echinoid functions as a tumor suppressor and upstream regulator of the Hippo signaling pathway. Dev Cell 2012; 22:255-67. [PMID: 22280890 DOI: 10.1016/j.devcel.2011.12.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/08/2011] [Accepted: 12/15/2011] [Indexed: 12/19/2022]
Abstract
The Hippo (Hpo) signaling pathway controls tissue growth and organ size in species ranging from Drosophila to mammals and is deregulated in a wide range of human cancers. The core pathway consists of the Hpo/Warts (Wts) kinase cassette that phosphorylates and inactivates the transcriptional coactivator Yorkie (Yki). Here, we report that Echinoid (Ed), an immunoglobulin domain-containing cell adhesion molecule, acts as an upstream regulator of the Hpo pathway. Loss of Ed compromises Yki phosphorylation, resulting in elevated Yki activity that increases Hpo target gene expression and drives tissue overgrowth. Ed physically interacts with and stabilizes the Hpo-binding partner Salvador (Sav) at adherens junctions. Ed/Sav interaction is promoted by cell-cell contact and requires dimerization of Ed cytoplasmic domain. Overexpression of Sav or dimerized Ed cytoplasmic domain suppressed loss-of-Ed phenotypes. We propose that Ed may link cell-cell contact to Hpo signaling through binding and stabilizing Sav, thus modulating the Hpo kinase activity.
Collapse
Affiliation(s)
- Tao Yue
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | |
Collapse
|
440
|
Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J 2012; 31:1109-22. [PMID: 22234184 DOI: 10.1038/emboj.2011.487] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/06/2011] [Indexed: 12/18/2022] Open
Abstract
The Hippo signalling pathway has emerged as a key regulator of organ size, tissue homeostasis, and patterning. Recent studies have shown that two effectors in this pathway, YAP/TAZ, modulate Wnt/β-catenin signalling through their interaction with β-catenin or Dishevelled, depending on biological contexts. Here, we identify a novel mechanism through which Hippo signalling inhibits Wnt/β-catenin signalling. We show that YAP and TAZ, the transcriptional co-activators in the Hippo pathway, suppress Wnt signalling without suppressing the stability of β-catenin but through preventing its nuclear translocation. Our results show that YAP/TAZ binds to β-catenin, thereby suppressing Wnt-target gene expression, and that the Hippo pathway-stimulated phosphorylation of YAP, which induces cytoplasmic translocation of YAP, is required for the YAP-mediated inhibition of Wnt/β-catenin signalling. We also find that downregulation of Hippo signalling correlates with upregulation of β-catenin signalling in colorectal cancers. Remarkably, our analysis demonstrates that phosphorylated YAP suppresses nuclear translocation of β-catenin by directly binding to it in the cytoplasm. These results provide a novel mechanism, in which Hippo signalling antagonizes Wnt signalling by regulating nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Masamichi Imajo
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
441
|
Reddy BVVG, Irvine KD. Regulation of Drosophila glial cell proliferation by Merlin-Hippo signaling. Development 2012; 138:5201-12. [PMID: 22069188 DOI: 10.1242/dev.069385] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glia perform diverse and essential roles in the nervous system, but the mechanisms that regulate glial cell numbers are not well understood. Here, we identify and characterize a requirement for the Hippo pathway and its transcriptional co-activator Yorkie in controlling Drosophila glial proliferation. We find that Yorkie is both necessary for normal glial cell numbers and, when activated, sufficient to drive glial over-proliferation. Yorkie activity in glial cells is controlled by a Merlin-Hippo signaling pathway, whereas the upstream Hippo pathway regulators Fat, Expanded, Crumbs and Lethal giant larvae have no detectable role. We extend functional characterization of Merlin-Hippo signaling by showing that Merlin and Hippo can be physically linked by the Salvador tumor suppressor. Yorkie promotes expression of the microRNA gene bantam in glia, and bantam promotes expression of Myc, which is required for Yorkie and bantam-induced glial proliferation. Our results provide new insights into the control of glial growth, and establish glia as a model for Merlin-specific Hippo signaling. Moreover, as several of the genes we studied have been linked to human gliomas, our results suggest that this linkage could reflect their organization into a conserved pathway for the control of glial cell proliferation.
Collapse
Affiliation(s)
- B V V G Reddy
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
442
|
Jin Y, Dong L, Lu Y, Wu W, Hao Q, Zhou Z, Jiang J, Zhao Y, Zhang L. Dimerization and cytoplasmic localization regulate Hippo kinase signaling activity in organ size control. J Biol Chem 2012; 287:5784-96. [PMID: 22215676 DOI: 10.1074/jbc.m111.310334] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Hippo (Hpo) signaling pathway controls organ size by regulating the balance between cell proliferation and apoptosis. Although the Hpo function is conserved, little is known about the mechanism of how its kinase activity is regulated. Based on structural information, we performed mutation-function analysis and provided in vitro and in vivo evidence that Hpo activation requires proper dimerization of its N-terminal kinase domain as well as the C-terminal SARAH domain. Hpo carrying point mutation M242E can still dimerize, yet the dimers formed between intermolecular kinase domains were altered in conformation. As a result, autophosphorylation of Hpo at Thr-195 was blocked, and its kinase activity was abolished. In contrast, Hpo carrying I634D, a single mutation introduced in the Hpo C-terminal SARAH domain, disrupted the dimerization of the SARAH domain, leading to reduced Hippo activity. We also find that the Hpo C-terminal half contains two nuclear export signals that promote cytoplasmic localization and activity of Hpo. Taken together, our results suggest that dimerization and nucleocytoplasmic translocation of Hpo are crucial for its biological function and indicate that a proper dimer conformation of the kinase domain is essential for Hpo autophosphorylation and kinase activity.
Collapse
Affiliation(s)
- Yunyun Jin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Abstract
After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related to advanced stages of tumour progression and invasiveness. But the key roles of these proteins in crosstalk with the Hippo and liver kinase B1 (LKB1)-AMPK pathways and in epithelial function and proliferation indicate that they may also be associated with the early stages of tumorigenesis. For example, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.
Collapse
Affiliation(s)
- Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| | | |
Collapse
|
444
|
Sebé-Pedrós A, Zheng Y, Ruiz-Trillo I, Pan D. Premetazoan origin of the hippo signaling pathway. Cell Rep 2011; 1:13-20. [PMID: 22832104 PMCID: PMC3406323 DOI: 10.1016/j.celrep.2011.11.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/07/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022] Open
Abstract
Nonaggregative multicellularity requires strict control of cell number. The Hippo signaling pathway coordinates cell proliferation and apoptosis and is a central regulator of organ size in animals. Recent studies have shown the presence of key members of the Hippo pathway in nonbilaterian animals, but failed to identify this pathway outside Metazoa. Through comparative analyses of recently sequenced holozoan genomes, we show that Hippo pathway components, such as the kinases Hippo and Warts, the coactivator Yorkie, and the transcription factor Scalloped, were already present in the unicellular ancestors of animals. Remarkably, functional analysis of Hippo components of the amoeboid holozoan Capsaspora owczarzaki, performed in Drosophila melanogaster, demonstrate that the growth-regulatory activity of the Hippo pathway is conserved in this unicellular lineage. Our findings show that the Hippo pathway evolved well before the origin of Metazoa and highlight the importance of Hippo signaling as a key developmental mechanism predating the origin of Metazoa.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (UPF-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
445
|
Jukam D, Desplan C. Binary regulation of Hippo pathway by Merlin/NF2, Kibra, Lgl, and Melted specifies and maintains postmitotic neuronal fate. Dev Cell 2011; 21:874-87. [PMID: 22055343 DOI: 10.1016/j.devcel.2011.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 06/21/2011] [Accepted: 10/06/2011] [Indexed: 12/19/2022]
Abstract
Patterning the Drosophila retina for color vision relies on postmitotic specification of photoreceptor subtypes. R8 photoreceptors express one of two light-sensing Rhodopsins, Rh5 or Rh6. This fate decision involves a bistable feedback loop between Melted, a PH-domain protein, and Warts, a kinase in the Hippo growth pathway. Here, we show that a subset of the Hippo pathway-Merlin, Kibra, and Lethal(2)giant larvae (Lgl), but not Expanded or Fat-is required for Warts expression and activity in R8 to specify Rh6 fate. Melted represses warts transcription to disrupt Hippo pathway activity and specify Rh5 fate. Therefore, R8 Hippo signaling exhibits ON-or-OFF regulation, promoting mutually exclusive fates. Furthermore, Merlin and Lgl are continuously required to maintain R8 neuronal subtypes. These results reveal roles for Merlin, Kibra, and Lgl in neuronal specification and maintenance and show that the Hippo pathway is reimplemented for sensory neuron fate by combining canonical and noncanonical regulatory steps.
Collapse
Affiliation(s)
- David Jukam
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | | |
Collapse
|
446
|
Tamori Y, Deng WM. Cell competition and its implications for development and cancer. J Genet Genomics 2011; 38:483-95. [PMID: 22035869 PMCID: PMC3891807 DOI: 10.1016/j.jgg.2011.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 12/31/2022]
Abstract
Cell competition is a struggle for existence between cells in heterogeneous tissues of multicellular organisms. Loser cells, which die during cell competition, are normally viable when grown only with other loser cells, but when mixed with winner cells, they are at a growth disadvantage and undergo apoptosis. Intriguingly, several recent studies have revealed that cells bearing mutant tumor-suppressor genes, which show overgrowth and tumorigenesis in a homotypic situation, are frequently eliminated, through cell competition, from tissues in which they are surrounded by wild-type cells. Here, we focus on the regulation of cellular competitiveness and the mechanism of cell competition as inferred from two different categories of mutant cells: (1) slower-growing cells and (2) structurally defective cells. We also discuss the possible role of cell competition as an intrinsic homeostasis system through which normal cells sense and remove aberrant cells, such as precancerous cells, to maintain the integrity and normal development of tissues and organs.
Collapse
Affiliation(s)
- Yoichiro Tamori
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| |
Collapse
|
447
|
Hippo signaling: A hub of growth control, tumor suppression and pluripotency maintenance. J Genet Genomics 2011; 38:471-81. [DOI: 10.1016/j.jgg.2011.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/02/2011] [Accepted: 09/12/2011] [Indexed: 12/31/2022]
|
448
|
Doggett K, Grusche FA, Richardson HE, Brumby AM. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC DEVELOPMENTAL BIOLOGY 2011; 11:57. [PMID: 21955824 PMCID: PMC3206446 DOI: 10.1186/1471-213x-11-57] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/29/2011] [Indexed: 01/15/2023]
Abstract
Background Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. Results Here we show in Drosophila that loss of Scribbled (Scrib), a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. Conclusions Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue overgrowth, and this is also important for driving cooperative tumor overgrowth with oncogenic Ras-Raf signaling. Whether this is also the case in human cancers now warrants investigation since the cell polarity function of Scrib and its capacity to restrain oncogene-mediated transformation, as well as the tissue growth control function of the Hippo pathway, are conserved in mammals.
Collapse
Affiliation(s)
- Karen Doggett
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, 3002, Victoria, Australia
| | | | | | | |
Collapse
|
449
|
Enomoto M, Igaki T. Deciphering tumor-suppressor signaling in flies: genetic link between Scribble/Dlg/Lgl and the Hippo pathways. J Genet Genomics 2011; 38:461-70. [PMID: 22035867 DOI: 10.1016/j.jgg.2011.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 12/12/2022]
Abstract
Loss of apico-basal polarity is one of the crucial factors that drives epithelial tumor progression. scribble/discs large/lethal giant larvae (scrib/dlg/lgl), a group of apico-basal polarity genes, were initially identified as members of "neoplastic" tumor-suppressors in flies. The components of the Hippo signaling pathway, which is crucial for organ size control and cancer development, were also identified through Drosophila genetic screens as members of "hyperplastic" tumor-suppressors. Accumulating evidence in recent studies implies that these two tumor-suppressor signaling pathways are not mutually exclusive but rather cooperatively act to give rise to highly malignant tumors. The interaction of these tumor-suppressor pathways could include deregulations of actin cytoskeleton, cell-cell contact, and apical-domain size of the epithelial cell.
Collapse
Affiliation(s)
- Masato Enomoto
- Department of Cell Biology, G-COE, Kobe University Graduate School of Medicine, Chuo-ku, Japan
| | | |
Collapse
|
450
|
Wang P, Bai Y, Song B, Wang Y, Liu D, Lai Y, Bi X, Yuan Z. PP1A-mediated dephosphorylation positively regulates YAP2 activity. PLoS One 2011; 6:e24288. [PMID: 21909427 PMCID: PMC3164728 DOI: 10.1371/journal.pone.0024288] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/03/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Hippo/MST1 signaling pathway plays an important role in the regulation of cell proliferation and apoptosis. As a major downstream target of the Hippo/MST1 pathway, YAP2 (Yes-associated protein 2) functions as a transcriptional cofactor that has been implicated in many biological processes, including organ size control and cancer development. MST1/Lats kinase inhibits YAP2's nuclear accumulation and transcriptional activity through inducing the phosphorylation at serine 127 and the sequential association with 14-3-3 proteins. However, the dephosphorylation of YAP2 is not fully appreciated. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we demonstrate that PP1A (catalytic subunit of protein phosphatase-1) interacts with and dephosphorylates YAP2 in vitro and in vivo, and PP1A-mediated dephosphorylation induces the nuclear accumulation and transcriptional activation of YAP2. Inhibition of PP1 by okadiac acid (OA) increases the phosphorylation at serine 127 and cytoplasmic translocation of YAP2 proteins, thereby mitigating its transcription activity. PP1A expression enhances YAP2's pro-survival capability and YAP2 knockdown sensitizes ovarian cancer cells to cisplatin treatment. CONCLUSIONS/SIGNIFICANCE Our findings define a novel molecular mechanism that YAP2 is positively regulated by PP1-mediated dephosphorylation in the cell survival.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Yujie Bai
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Bangrong Song
- Department of Cardiac Surgery, Anzhen Hospital at Capital Medical University, Beijing, China
| | - Yadong Wang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Dong Liu
- Department of Cardiac Surgery, Anzhen Hospital at Capital Medical University, Beijing, China
| | - Yongqiang Lai
- Department of Cardiac Surgery, Anzhen Hospital at Capital Medical University, Beijing, China
| | - Xiaolin Bi
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XB); (ZY)
| | - Zengqiang Yuan
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XB); (ZY)
| |
Collapse
|