401
|
Granados-Riveron JT, Brook JD. The impact of mechanical forces in heart morphogenesis. ACTA ACUST UNITED AC 2012; 5:132-42. [PMID: 22337926 DOI: 10.1161/circgenetics.111.961086] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Javier T Granados-Riveron
- Institute of Genetics, School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.
| | | |
Collapse
|
402
|
Glycogen synthase kinase 3-β phosphorylates novel S/T-P-S/T domains in Notch1 intracellular domain and induces its nuclear localization. Biochem Biophys Res Commun 2012; 423:282-8. [DOI: 10.1016/j.bbrc.2012.05.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 12/16/2022]
|
403
|
Meloty-Kapella L, Shergill B, Kuon J, Botvinick E, Weinmaster G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev Cell 2012; 22:1299-312. [PMID: 22658936 DOI: 10.1016/j.devcel.2012.04.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/15/2012] [Accepted: 04/04/2012] [Indexed: 12/17/2022]
Abstract
Notch signaling induced by cell surface ligands is critical to development and maintenance of many eukaryotic organisms. Notch and its ligands are integral membrane proteins that facilitate direct cell-cell interactions to activate Notch proteolysis and release the intracellular domain that directs Notch-specific cellular responses. Genetic studies suggest that Notch ligands require endocytosis, ubiquitylation, and epsin endocytic adaptors to activate signaling, but the exact role of ligand endocytosis remains unresolved. Here we characterize a molecularly distinct mode of clathrin-mediated endocytosis requiring ligand ubiquitylation, epsins, and actin for ligand cells to activate signaling in Notch cells. Using a cell-bead optical tweezers system, we obtained evidence for cell-mediated mechanical force dependent on this distinct mode of ligand endocytosis. We propose that the mechanical pulling force produced by endocytosis of Notch-bound ligand drives conformational changes in Notch that permit activating proteolysis.
Collapse
Affiliation(s)
- Laurence Meloty-Kapella
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
404
|
San Juan BP, Andrade-Zapata I, Baonza A. The bHLH factors Dpn and members of the E(spl) complex mediate the function of Notch signalling regulating cell proliferation during wing disc development. Biol Open 2012; 1:667-76. [PMID: 23213460 PMCID: PMC3507296 DOI: 10.1242/bio.20121172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Notch signalling pathway plays an essential role in the intricate control of cell proliferation and pattern formation in many organs during animal development. In addition, mutations in most members of this pathway are well characterized and frequently lead to tumour formation. The Drosophila imaginal wing discs have provided a suitable model system for the genetic and molecular analysis of the different pathway functions. During disc development, Notch signalling at the presumptive wing margin is necessary for the restricted activation of genes required for pattern formation control and disc proliferation. Interestingly, in different cellular contexts within the wing disc, Notch can either promote cell proliferation or can block the G1-S transition by negatively regulating the expression of dmyc and bantam micro RNA. The target genes of Notch signalling that are required for these functions have not been identified. Here, we show that the Hes vertebrate homolog, deadpan (dpn), and the Enhancer-of-split complex (E(spl)C) genes act redundantly and cooperatively to mediate the Notch signalling function regulating cell proliferation during wing disc development.
Collapse
Affiliation(s)
- Beatriz P San Juan
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM) C/Nicolás Cabrera 1 , 28049 Madrid , Spain
| | | | | |
Collapse
|
405
|
Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J 2012; 31:2448-60. [PMID: 22562152 PMCID: PMC3365421 DOI: 10.1038/emboj.2012.125] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
Oxygen is essential for eukaryotic life and is inextricably linked to the evolution of multicellular organisms. Proper cellular response to changes in oxygen tension during normal development or pathological processes, such as cardiovascular disease and cancer, is ultimately regulated by the transcription factor, hypoxia-inducible factor (HIF). Over the past decade, unprecedented molecular insight has been gained into the mammalian oxygen-sensing pathway involving the canonical oxygen-dependent prolyl-hydroxylase domain-containing enzyme (PHD)-von Hippel-Lindau tumour suppressor protein (pVHL) axis and its connection to cellular metabolism. Here we review recent notable advances in the field of hypoxia that have shaped a more complex model of HIF regulation and revealed unique roles of HIF in a diverse range of biological processes, including immunity, development and stem cell biology.
Collapse
Affiliation(s)
- Samantha N Greer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Julie L Metcalf
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Yi Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| |
Collapse
|
406
|
Snyder JL, Kearns CA, Appel B. Fbxw7 regulates Notch to control specification of neural precursors for oligodendrocyte fate. Neural Dev 2012; 7:15. [PMID: 22554084 PMCID: PMC3404928 DOI: 10.1186/1749-8104-7-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background In the developing vertebrate nervous system elevated levels of Notch signaling activity can block neurogenesis and promote formation of glial cells. The mechanisms that limit Notch activity to balance formation of neurons and glia from neural precursors are poorly understood. Results By screening for mutations that disrupt oligodendrocyte development in zebrafish we found one allele, called vu56, that produced excess oligodendrocyte progenitor cells (OPCs). Positional cloning revealed that the vu56 allele is a mutation of fbxw7, which encodes the substrate recognition component of a ubiquitin ligase that targets Notch and other proteins for degradation. To investigate the basis of the mutant phenotype we performed in vivo, time-lapse imaging, which revealed that the increase in OPC number resulted from production of extra OPCs by ventral spinal cord precursors and not from changes in OPC proliferation or death. Notch signaling activity was elevated in spinal cord precursors of fbxw7 mutant zebrafish and inhibition of Notch signaling suppressed formation of excess OPCs. Conclusion Notch signaling promotes glia cell formation from neural precursors in vertebrate embryos. Our data indicate that Fbxw7 helps attenuate Notch signaling during zebrafish neural development thereby limiting the number of OPCs.
Collapse
Affiliation(s)
- Julia L Snyder
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
407
|
Feng X, Liu L. Retracted: Notch activation is regulated by an interaction between hCLP46 and chaperone protein calnexin. Cell Biochem Funct 2012; 30:i-vi. [PMID: 22473674 DOI: 10.1002/cbf.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/22/2012] [Accepted: 03/09/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoqin Feng
- Graduate University; Chinese Academy of Sciences; Beijing; China
| | | |
Collapse
|
408
|
Song Y, Lu B. Interaction of Notch signaling modulator Numb with α-Adaptin regulates endocytosis of Notch pathway components and cell fate determination of neural stem cells. J Biol Chem 2012; 287:17716-17728. [PMID: 22474327 DOI: 10.1074/jbc.m112.360719] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ability to balance self-renewal and differentiation is a hallmark of stem cells. In Drosophila neural stem cells (NSCs), Numb/Notch (N) signaling plays a key role in this process. However, the molecular and cellular mechanisms underlying Numb function in a stem cell setting remain poorly defined. Here we show that α-Adaptin (α-Ada), a subunit of the endocytic AP-2 complex, interacts with Numb through a new mode of interaction to regulate NSC homeostasis. In α-ada mutants, N pathway component Sanpodo and the N receptor itself exhibited altered trafficking, and N signaling was up-regulated in the intermediate progenitors of type II NSC lineages, leading to their transformation into ectopic NSCs. Surprisingly, although the Ear domain of α-Ada interacts with the C terminus of Numb and is important for α-Ada function in the sensory organ precursor lineage, it was dispensable in the NSCs. Instead, α-Ada could regulate Sanpodo, N trafficking, and NSC homeostasis by interacting with Numb through new domains in both proteins previously not known to mediate their interaction. This interaction could be bypassed when α-Ada was directly fused to the phospho-tyrosine binding domain of Numb. Our results identify a critical role for the AP-2-mediated endocytosis in regulating NSC behavior and reveal a new mechanism by which Numb regulates NSC behavior through N. These findings are likely to have important implications for cancer biology.
Collapse
Affiliation(s)
- Yan Song
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
409
|
Nuclear translocation and functions of growth factor receptors. Semin Cell Dev Biol 2012; 23:165-71. [DOI: 10.1016/j.semcdb.2011.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 09/08/2011] [Indexed: 01/24/2023]
|
410
|
Wu J, Lorusso PM, Matherly LH, Li J. Implications of plasma protein binding for pharmacokinetics and pharmacodynamics of the γ-secretase inhibitor RO4929097. Clin Cancer Res 2012; 18:2066-79. [PMID: 22351688 PMCID: PMC3856649 DOI: 10.1158/1078-0432.ccr-11-2684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Understanding of plasma protein binding will provide mechanistic insights into drug interactions or unusual pharmacokinetic properties. This study investigated RO4929097 binding in plasma and its implications for the pharmacokinetics and pharmacodynamics of this compound. EXPERIMENTAL DESIGN RO4929097 binding to plasma proteins was determined using a validated equilibrium dialysis method. Pharmacokinetics of total and unbound RO4929097 was evaluated in eight patients with breast cancer receiving RO4929097 alone and in combination with the Hedgehog inhibitor GDC-0449. The impact of protein binding on RO4929097 pharmacodynamics was assessed using an in vitro Notch cellular assay. RESULTS RO4929097 was extensively bound in human plasma, with the total binding constant of 1.0 × 10(6) and 1.8 × 10(4) L/mol for α1-acid glycoprotein (AAG) and albumin, respectively. GDC-0449 competitively inhibited RO4929097 binding to AAG. In patients, RO4929097 fraction unbound (Fu) exhibited large intra- and interindividual variability; GDC-0449 increased RO4929097 Fu by an average of 3.7-fold. Concomitant GDC-0449 significantly decreased total (but not unbound) RO4929097 exposure. RO4929097 Fu was strongly correlated with the total drug exposure. Binding to AAG abrogated RO4929097 in vitro Notch-inhibitory activity. CONCLUSIONS RO4929097 is highly bound in human plasma with high affinity to AAG. Changes in plasma protein binding caused by concomitant drug (e.g., GDC-0449) or disease states (e.g., ↑AAG level in cancer) can alter total (but not unbound) RO4929097 exposure. Unbound RO4929097 is pharmacologically active. Monitoring of unbound RO4929097 plasma concentration is recommended to avoid misleading conclusions on the basis of the total drug levels.
Collapse
Affiliation(s)
- Jianmei Wu
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
411
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
412
|
Gude N, Sussman M. Notch signaling and cardiac repair. J Mol Cell Cardiol 2012; 52:1226-32. [PMID: 22465038 DOI: 10.1016/j.yjmcc.2012.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 02/04/2023]
Abstract
Notch signaling is critical for proper heart development and recently has been reported to participate in adult cardiac repair. Notch resides at the cell surface as a single pass transmembrane receptor, transits through the cytoplasm following activation, and acts as a transcription factor upon entering the nucleus. This dynamic and widespread cellular distribution allows for potential interactions with many signaling and binding partners. Notch displays temporal as well as spatial versatility, acting as a strong developmental signal, controlling cell fate determination and lineage commitment, and playing a pivotal role in embryonic and adult stem cell proliferation and differentiation. This review serves as an update of recent literature addressing Notch signaling in the heart, with attention to findings from noncardiac research that provide clues for further interpretation of how the Notch pathway influences cardiac biology. Specific areas of focus include Notch signaling in adult myocardium following pathologic injury, the role of Notch in cardiac progenitor cells with respect to differentiation and cardiac repair, crosstalk between Notch and other cardiac signaling pathways, and emerging aspects of noncanonical Notch signaling in heart.
Collapse
Affiliation(s)
- Natalie Gude
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | |
Collapse
|
413
|
Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
414
|
Bionaz M, Periasamy K, Rodriguez-Zas SL, Everts RE, Lewin HA, Hurley WL, Loor JJ. Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle. PLoS One 2012; 7:e33268. [PMID: 22428004 PMCID: PMC3299771 DOI: 10.1371/journal.pone.0033268] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/08/2012] [Indexed: 11/29/2022] Open
Abstract
The cow mammary transcriptome was explored at −30, −15, 1, 15, 30, 60, 120, 240, and 300 d relative to parturition. A total of 6,382 differentially expressed genes (DEG) at a false discovery rate ≤0.001 were found throughout lactation. The greatest number of DEG (>3,500 DEG) was observed at 60 and 120 d vs. −30 d with the largest change between consecutive time points observed at −15 vs. 1 d and 120 vs. 240 d. Functional analysis of microarray data was performed using the Dynamic Impact Approach (DIA). The DIA analysis of KEGG pathways uncovered as the most impacted and induced ‘Galactose metabolism’, ‘Glycosylphosphatidylinositol (GPI)-anchor biosynthesis’, and ‘PPAR signaling’; whereas, ‘Antigen processing and presentation’ was among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism during lactation, particularly synthesis of carbohydrates and lipid. A marked degree of utilization of amino acids as energy source, an increase of protein export, and a decrease of the protein synthesis machinery as well cell cycle also were suggested by the DIA analysis. The DIA analysis of Gene Ontology and other databases uncovered an induction of Golgi apparatus and angiogenesis, and the inhibition of both immune cell activity/migration and chromosome modifications during lactation. All of the highly-impacted and activated functions during lactation were evidently activated at the onset of lactation and inhibited when milk production declined. The overall analysis indicated that the bovine mammary gland relies heavily on a coordinated transcriptional regulation to begin and end lactation. The functional analysis using DIA underscored the importance of genes associated with lactose synthesis, lipid metabolism, protein synthesis, Golgi, transport, cell cycle/death, epigenetic regulation, angiogenesis, and immune function during lactation.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (MB); (JJL)
| | - Kathiravan Periasamy
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Animal Production and Health Section, Seibersdorf Laboratories Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency, Vienna, Austria
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Walter L. Hurley
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (MB); (JJL)
| |
Collapse
|
415
|
|
416
|
XIE KELIANG, JIA YINGPING, HU YING, SUN YANYAN, HOU LICHAO, WANG GUOLIN. Activation of notch signaling mediates the induction and maintenance of mechanical allodynia in a rat model of neuropathic pain. Mol Med Rep 2012; 12:639-44. [DOI: 10.3892/mmr.2015.3379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
|
417
|
Ulvklo C, MacDonald R, Bivik C, Baumgardt M, Karlsson D, Thor S. Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development 2012; 139:678-89. [DOI: 10.1242/dev.074500] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During neural lineage progression, differences in daughter cell proliferation can generate different lineage topologies. This is apparent in the Drosophila neuroblast 5-6 lineage (NB5-6T), which undergoes a daughter cell proliferation switch from generating daughter cells that divide once to generating neurons directly. Simultaneously, neural lineages, e.g. NB5-6T, undergo temporal changes in competence, as evidenced by the generation of different neural subtypes at distinct time points. When daughter proliferation is altered against a backdrop of temporal competence changes, it may create an integrative mechanism for simultaneously controlling cell fate and number. Here, we identify two independent pathways, Prospero and Notch, which act in concert to control the different daughter cell proliferation modes in NB5-6T. Altering daughter cell proliferation and temporal progression, individually and simultaneously, results in predictable changes in cell fate and number. This demonstrates that different daughter cell proliferation modes can be integrated with temporal competence changes, and suggests a novel mechanism for coordinately controlling neuronal subtype numbers.
Collapse
Affiliation(s)
- Carina Ulvklo
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Ryan MacDonald
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Caroline Bivik
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Daniel Karlsson
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| |
Collapse
|
418
|
Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012; 72:429-61. [DOI: 10.1002/dneu.20918] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
419
|
Hori K, Sen A, Kirchhausen T, Artavanis-Tsakonas S. Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. ACTA ACUST UNITED AC 2012; 195:1005-15. [PMID: 22162134 PMCID: PMC3241730 DOI: 10.1083/jcb.201104146] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ESCRT-III complex component Shrub plays a pivotal rate-limiting step in late endosomal ligand-independent Notch activation. The Notch signaling pathway defines a conserved mechanism that regulates cell fate decisions in metazoans. Signaling is modulated by a broad and multifaceted genetic circuitry, including members of the endocytic machinery. Several individual steps in the endocytic pathway have been linked to the positive or negative regulation of the Notch receptor. In seeking genetic elements involved in regulating the endosomal/lysosomal degradation of Notch, mediated by the molecular synergy between the ubiquitin ligase Deltex and Kurtz, the nonvisual β-arrestin in Drosophila, we identified Shrub, a core component of the ESCRT-III complex as a key modulator of this synergy. Shrub promotes the lysosomal degradation of the receptor by mediating its delivery into multivesicular bodies (MVBs). However, the interplay between Deltex, Kurtz, and Shrub can bypass this path, leading to the activation of the receptor. Our analysis shows that Shrub plays a pivotal rate-limiting step in late endosomal ligand-independent Notch activation, depending on the Deltex-dependent ubiquitinylation state of the receptor. This activation mode of the receptor emphasizes the complexity of Notch signal modulation in a cell and has significant implications for both development and disease.
Collapse
Affiliation(s)
- Kazuya Hori
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
420
|
Rouault H, Hakim V. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks. Biophys J 2012; 102:417-26. [PMID: 22325263 DOI: 10.1016/j.bpj.2011.11.4022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/29/2011] [Indexed: 12/15/2022] Open
Abstract
The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation.
Collapse
Affiliation(s)
- Hervé Rouault
- Laboratoire de Physique Statistique, CNRS, Université P. et M. Curie, École Normale Supérieure, Paris, France
| | | |
Collapse
|
421
|
Zanotti S, Canalis E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int 2012; 90:69-75. [PMID: 22002679 PMCID: PMC3272107 DOI: 10.1007/s00223-011-9541-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
Notch signaling mediates cell-to-cell interactions that are critical for embryonic development and tissue renewal. In the canonical signaling pathway, the Notch receptor is cleaved following ligand binding, resulting in the release and nuclear translocation of the Notch intracellular domain (NICD). NICD induces gene expression by forming a ternary complex with the DNA binding protein CBF1/Rbp-Jk, Suppressor of Hairless, Lag1, and Mastermind-Like (Maml). Hairy Enhancer of Split (Hes) and Hes related with YRPW motif (Hey) are classic Notch targets. Notch canonical signaling plays a central role in skeletal development and bone remodeling by suppressing the differentiation of skeletal cells. The skeletal phenotype of mice misexpressing Hes1 phenocopies partially the effects of Notch misexpression, suggesting that Hey proteins mediate most of the skeletal effects of Notch. Dysregulation of Notch signaling is associated with diseases affecting human skeletal development, such as Alagille syndrome, brachydactyly and spondylocostal dysostosis. Somatic mutations in Notch receptors and ligands are found in tumors of the skeletal system. Overexpression of NOTCH1 is associated with osteosarcoma, and overexpression of NOTCH3 or JAGGED1 in breast cancer cells favors the formation of osteolytic bone metastasis. Activating mutations in NOTCH2 cause Hajdu-Cheney syndrome, which is characterized by skeletal defects and fractures, and JAG1 polymorphisms, are associated with variations in bone mineral density. In conclusion, Notch is a regulator of skeletal development and bone remodeling, and abnormal Notch signaling is associated with developmental and postnatal skeletal disorders.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Address correspondence: Department of Research Saint Francis Hospital and Medical Center 114 Woodland Street Hartford, CT 06105-1299 Tel: (860)714-4068 Fax: (860)714-8053
| |
Collapse
|
422
|
Le TT, Conley KW, Mead TJ, Rowan S, Yutzey KE, Brown NL. Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens development. Dev Dyn 2012; 241:493-504. [PMID: 22275127 DOI: 10.1002/dvdy.23739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND During vertebrate lens development, the lens placode in the embryonic ectoderm invaginates into a lens vesicle, which then separates from the surface epithelium, followed by two waves of fiber cell differentiation. In the mouse, multiple labs have shown that Jag1-Notch signaling is critically required during the second wave of lens fiber cell formation. However, Notch signaling appears to play no obvious role during lens induction or morphogenesis, although multiple pathway genes are expressed at these earlier stages. RESULTS Here, we explored functions for Notch signaling specifically during early lens development, by using the early-acting AP2α-Cre driver to delete Jag1 or Rbpj. We found that Jag1 and Rbpj are not required during lens induction, but are necessary for proper lens vesicle separation from the surface ectoderm. CONCLUSIONS We conclude that precise levels of Notch signaling are essential during lens vesicle morphogenesis. In addition, AP2α-Cre-mediated deletion of Rbpj resulted in embryos with cardiac outflow tract and liver deformities, and perinatal lethality.
Collapse
Affiliation(s)
- Tien T Le
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
423
|
Stolfi A, Wagner E, Taliaferro JM, Chou S, Levine M. Neural tube patterning by Ephrin, FGF and Notch signaling relays. Development 2012; 138:5429-39. [PMID: 22110057 DOI: 10.1242/dev.072108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The motor ganglion (MG) controls the rhythmic swimming behavior of the Ciona intestinalis tadpole. Despite its cellular simplicity (five pairs of neurons), the MG exhibits conservation of transcription factor expression with the spinal cord of vertebrates. Evidence is presented that the developing MG is patterned by sequential Ephrin/FGF/MAPK and Delta/Notch signaling events. FGF/MAPK attenuation by a localized EphrinAb signal specifies posterior neuronal subtypes, which in turn relay a Delta2/Notch signal that specifies anterior fates. This short-range relay is distinct from the patterning of the vertebrate spinal cord, which is a result of opposing BMP and Shh morphogen gradients. Nonetheless, both mechanisms lead to localized expression of related homeodomain codes for the specification of distinct neuronal subtypes. This MG regulatory network provides a foundation for elucidating the genetic and cellular basis of a model chordate central pattern generator.
Collapse
Affiliation(s)
- Alberto Stolfi
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
424
|
Merrick D, Chapin H, Baggs JE, Yu Z, Somlo S, Sun Z, Hogenesch JB, Caplan M. The γ-secretase cleavage product of polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism. Dev Cell 2012; 22:197-210. [PMID: 22178500 PMCID: PMC3264829 DOI: 10.1016/j.devcel.2011.10.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 08/01/2011] [Accepted: 10/26/2011] [Indexed: 12/28/2022]
Abstract
Mutations in Pkd1, encoding polycystin-1 (PC1), cause autosomal-dominant polycystic kidney disease (ADPKD). We show that the carboxy-terminal tail (CTT) of PC1 is released by γ-secretase-mediated cleavage and regulates the Wnt and CHOP pathways by binding the transcription factors TCF and CHOP, disrupting their interaction with the common transcriptional coactivator p300. Loss of PC1 causes increased proliferation and apoptosis, while reintroducing PC1-CTT into cultured Pkd1 null cells reestablishes normal growth rate, suppresses apoptosis, and prevents cyst formation. Inhibition of γ-secretase activity impairs the ability of PC1 to suppress growth and apoptosis and leads to cyst formation in cultured renal epithelial cells. Expression of the PC1-CTT is sufficient to rescue the dorsal body curvature phenotype in zebrafish embryos resulting from either γ-secretase inhibition or suppression of Pkd1 expression. Thus, γ-secretase-dependent release of the PC1-CTT creates a protein fragment whose expression is sufficient to suppress ADPKD-related phenotypes in vitro and in vivo.
Collapse
Affiliation(s)
- David Merrick
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Hannah Chapin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Julie E. Baggs
- Department of Pharmacology, Institute of Translational Medicine and Therapeutics, Penn Genome Frontiers Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Zhiheng Yu
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT
| | - Stefan Somlo
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - John B. Hogenesch
- Department of Pharmacology, Institute of Translational Medicine and Therapeutics, Penn Genome Frontiers Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michael Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
425
|
Harris PJ, Speranza G, Dansky Ullmann C. Targeting embryonic signaling pathways in cancer therapy. Expert Opin Ther Targets 2012; 16:131-45. [DOI: 10.1517/14728222.2011.645808] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
426
|
Notch signaling is antagonized by SAO-1, a novel GYF-domain protein that interacts with the E3 ubiquitin ligase SEL-10 in Caenorhabditis elegans. Genetics 2012; 190:1043-57. [PMID: 22209900 DOI: 10.1534/genetics.111.136804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Notch signaling pathways can be regulated through a variety of cellular mechanisms, and genetically compromised systems provide useful platforms from which to search for the responsible modulators. The Caenorhabditis elegans gene aph-1 encodes a component of γ-secretase, which is essential for Notch signaling events throughout development. By looking for suppressors of the incompletely penetrant aph-1(zu147) mutation, we identify a new gene, sao-1 (suppressor of aph-one), that negatively regulates aph-1(zu147) activity in the early embryo. The sao-1 gene encodes a novel protein that contains a GYF protein-protein interaction domain and interacts specifically with SEL-10, an Fbw7 component of SCF E3 ubiquitin ligases. We demonstrate that the embryonic lethality of aph-1(zu147) mutants can be suppressed by removing sao-1 activity or by mutations that disrupt the SAO-1-SEL-10 protein interaction. Decreased sao-1 activity also influences Notch signaling events when they are compromised at different molecular steps of the pathway, such as at the level of the Notch receptor GLP-1 or the downstream transcription factor LAG-1. Combined analysis of the SAO-1-SEL-10 protein interaction and comparisons of sao-1 and sel-10 genetic interactions suggest a possible role for SAO-1 as an accessory protein that participates with SEL-10 in downregulation of Notch signaling. This work provides the first mutant analysis of a GYF-domain protein in either C. elegans or Drosophila and introduces a new type of Fbw7-interacting protein that acts in a subset of Fbw7 functions.
Collapse
|
427
|
Giagtzoglou N, Yamamoto S, Zitserman D, Graves HK, Schulze KL, Wang H, Klein H, Roegiers F, Bellen HJ. dEHBP1 controls exocytosis and recycling of Delta during asymmetric divisions. ACTA ACUST UNITED AC 2012; 196:65-83. [PMID: 22213802 PMCID: PMC3255984 DOI: 10.1083/jcb.201106088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drosophila EHBP1 is a novel regulator of Notch signaling that may function as an adaptor protein during the exocytosis and recycling of the Notch ligand Delta. Notch signaling governs binary cell fate determination in asymmetrically dividing cells. Through a forward genetic screen we identified the fly homologue of Eps15 homology domain containing protein-binding protein 1 (dEHBP1) as a novel regulator of Notch signaling in asymmetrically dividing cells. dEHBP1 is enriched basally and at the actin-rich interface of pII cells of the external mechanosensory organs, where Notch signaling occurs. Loss of function of dEHBP1 leads to up-regulation of Sanpodo, a regulator of Notch signaling, and aberrant trafficking of the Notch ligand, Delta. Furthermore, Sec15 and Rab11, which have been previously shown to regulate the localization of Delta, physically interact with dEHBP1. We propose that dEHBP1 functions as an adaptor molecule for the exocytosis and recycling of Delta, thereby affecting cell fate decisions in asymmetrically dividing cells.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Abstract
Notch signaling is integral to a large number of developmental and homeostasis events, and either gain or loss of Notch signaling results in a wide range of defects. Notch must be processed by several proteases, including a member of the ADAM (a disintegrin and metalloprotease) family to mediate downstream signaling. Until recently, interactions of Notch with specific ADAMs in different contexts were unclear. ADAM10 is now known to be specifically essential for development and homeostasis of mouse epidermis and cardiovascular structures, and ADAM17 may not be able to fully replace ADAM10 in these contexts. However, Notch from T-cell acute lymphoblastic leukemia (T-ALL) patients can be cleaved by both ADAMs 10 and 17. Studies have revealed that ADAM10 is necessary for Notch processing when Notch is activated by a ligand, while ADAM17 is the major protease for processing Notch that is activated independently of ligand in both flies and mammals.
Collapse
Affiliation(s)
- Laura M Christian
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
429
|
Hahm ER, Chandra-Kuntal K, Desai D, Amin S, Singh SV. Notch activation is dispensable for D, L-sulforaphane-mediated inhibition of human prostate cancer cell migration. PLoS One 2012; 7:e44957. [PMID: 22970326 PMCID: PMC3436754 DOI: 10.1371/journal.pone.0044957] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/10/2012] [Indexed: 01/11/2023] Open
Abstract
D, L-Sulforaphane (SFN), a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G(2)/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B) to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation) of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell migration, which should be viewed as a therapeutic advantage as Notch activation is frequent in human prostate cancers.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kumar Chandra-Kuntal
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dhimant Desai
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Shantu Amin
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Shivendra V. Singh
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
430
|
Heck BW, Zhang B, Tong X, Pan Z, Deng WM, Tsai CC. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biol Open 2011; 1:182-96. [PMID: 23213409 PMCID: PMC3507286 DOI: 10.1242/bio.2012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr) mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H)], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H), and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.
Collapse
Affiliation(s)
- Bryan W Heck
- UMDNJ-Robert Wood Johnson Medical School, Department of Physiology and Biophysics , 683 Hoes Lane, Piscataway, NJ 08854 , USA
| | | | | | | | | | | |
Collapse
|
431
|
Mimae T, Okada M, Hagiyama M, Miyata Y, Tsutani Y, Inoue T, Murakami Y, Ito A. Upregulation of notch2 and six1 is associated with progression of early-stage lung adenocarcinoma and a more aggressive phenotype at advanced stages. Clin Cancer Res 2011; 18:945-55. [PMID: 22190591 DOI: 10.1158/1078-0432.ccr-11-1946] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lung adenocarcinoma often manifests as tumors with mainly lepidic growth. The size of invasive foci determines a diagnosis of in situ, minimally invasive adenocarcinoma, or invasive types and suggests that some adenocarcinomas undergo malignant progression in that order. This study investigates how transcriptional aberrations in adenocarcinoma cells at the early stage define the clinical phenotypes of adenocarcinoma tumors at the advanced stage. EXPERIMENTAL DESIGN We comprehensively searched for differentially expressed genes between preinvasive and invasive cancer cells in one minimally invasive adenocarcinoma using laser capture microdissection and DNA microarrays. We screened expression of candidate genes in 11 minimally invasive adenocarcinomas by reverse transcriptase PCR and examined their involvement in preinvasive-to-invasive progression by transfection studies. We then immunohistochemically investigated the presence of candidate molecules in 64 samples of advanced adenocarcinoma and statistically analyzed the findings, together with clinicopathologic variables. RESULTS The transcription factors Notch2 and Six1 were upregulated in invasive cancer cells in all 11 minimally invasive adenocarcinomas. Exogenous Notch2 transactivated Six1 followed by Smad3, Smad4, and vimentin, and enlarged the nuclei of NCI-H441 lung epithelial cells. Immunochemical staining for the transcription factors was double positive in the invasive, but not in the lepidic growth component of a third of advanced Ads, and the disease-free survival rates were lower in such tumors. CONCLUSIONS Paired upregulation of Notch2 and Six1 is a transcriptional aberration that contributes to preinvasive-to-invasive adenocarcinoma progression by inducing epithelial-mesenchymal transition and nuclear atypia. This aberration persisted in a considerable subset of advanced adenocarcinoma and conferred a more malignant phenotype on the subset.
Collapse
Affiliation(s)
- Takahiro Mimae
- Surgical Oncology, Division of Genome Radiobiology and Medicine, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Zhang X, Chen T, Zhang J, Mao Q, Li S, Xiong W, Qiu Y, Xie Q, Ge J. Notch1 promotes glioma cell migration and invasion by stimulating β-catenin and NF-κB signaling via AKT activation. Cancer Sci 2011; 103:181-90. [PMID: 22093097 DOI: 10.1111/j.1349-7006.2011.02154.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Notch signaling pathway has been implicated in both developmental processes and tumorigenesis. Aberrant Notch signaling has been repeatedly demonstrated to facilitate the proliferation and survival of glioma cells by regulating downstream effectors or other signaling pathways. In glioblastoma multiforme specimens from 59 patients, Notch1 was highly expressed in tumor tissues compared with normal brain tissues, and this expression was correlated with elevated AKT phosphorylation and Snail expression. Increased nuclear localization of β-catenin and p50 as well as enhanced IKKα/AKT interaction were also observed in glioma tissues. In U87MG cells, the activation of Notch1 by DLL4 stimulation or by the overexpression of Notch intracellular domain (NICD) resulted in AKT activation and thereby promoted β-catenin activity and NF-κB signaling. Inhibition of EGFR partially blocked the β-catenin and NF-κB signaling stimulated by Notch1 activation. Furthermore, NICD overexpression in U87MG cells led to the upregulated expression of several metastasis-associated molecules, which could be abrogated by the knockdown of either β-catenin or p50. In U87MG and U251 cells, DLL4-induced cellular migration and invasion could be inhibited by either β-catenin or a p50 inhibitor. Collectively, these results indicate that Notch activation could stimulate β-catenin and NF-κB signaling through AKT activation in glioma cells. Thus, Notch activation-stimulated β-catenin and NF-κB signaling synergistically promote the migratory and invasive properties of glioma cells.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
433
|
Danza G, Di Serio C, Rosati F, Lonetto G, Sturli N, Kacer D, Pennella A, Ventimiglia G, Barucci R, Piscazzi A, Prudovsky I, Landriscina M, Marchionni N, Tarantini F. Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol Cancer Res 2011; 10:230-8. [PMID: 22172337 DOI: 10.1158/1541-7786.mcr-11-0296] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UNLABELLED Prostate carcinoma is among the most common causes of cancer-related death in men, representing 15% of all male malignancies in developed countries. Neuroendocrine differentiation (NED) has been associated with tumor progression, poor prognosis, and with the androgen-independent status. Currently, no successful therapy exists for advanced, castration-resistant disease. Because hypoxia has been linked to prostate cancer progression and unfavorable outcome, we sought to determine whether hypoxia would impact the degree of neuroendocrine differentiation of prostate cancer cells in vitro. RESULTS Exposure of LNCaP cells to low oxygen tension induced a neuroendocrine phenotype, associated with an increased expression of the transcription factor neurogenin3 and neuroendocrine markers, such as neuron-specific enolase, chromogranin A, and β3-tubulin. Moreover, hypoxia triggered a significant decrease of Notch 1 and Notch 2 mRNA and protein expression, with subsequent downregulation of Notch-mediated signaling, as shown by reduced levels of the Notch target genes, Hes1 and Hey1. NED was promoted by attenuation of Hes1 transcription, as cells expressing a dominant-negative form of Hes1 displayed increased levels of neuroendocrine markers under normoxic conditions. Although hypoxia downregulated Notch 1 and Notch 2 mRNA transcription and receptor activation also in the androgen-independent cell lines, PC-3 and Du145, it did not change the extent of NED in these cultures, suggesting that androgen sensitivity may be required for transdifferentiation to occur. CONCLUSIONS Hypoxia induces NED of LNCaP cells in vitro, which seems to be driven by the inhibition of Notch signaling with subsequent downregulation of Hes1 transcription.
Collapse
Affiliation(s)
- Giovanna Danza
- Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Bjerknes M, Khandanpour C, Möröy T, Fujiyama T, Hoshino M, Klisch TJ, Ding Q, Gan L, Wang J, Martín MG, Cheng H. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev Biol 2011; 362:194-218. [PMID: 22185794 DOI: 10.1016/j.ydbio.2011.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/16/2011] [Accepted: 12/02/2011] [Indexed: 12/25/2022]
Abstract
Mix progenitors are short-lived multipotential cells formed as intestinal epithelial stem cells initiate a differentiation program. Clone dynamics indicates that various epithelial cell lineages arise from Mix via a sequence of progressively restricted progenitor states. Lateral inhibitory Notch signaling between the daughters of Mix (DOM) is thought to break their initial symmetry, thereby determining whether a DOM invokes a columnar (absorptive) or granulocytic (secretory) cell lineage program. This is supported by the absence of granulocytes following enforced Notch signaling or Atoh1 deletion. Conversely, granulocytes increase in frequency following inhibition of Notch signaling or Hes1 deletion. Thus reciprocal repression between Hes1 and Atoh1 is thought to implement a Notch signaling-driven cell-fate-determining binary switch in DOM. The brush (tuft) cells, a poorly understood chemosensory cell type, are not incorporated into this model. We report that brush cell numbers increase dramatically following conditional Atoh1-deletion, demonstrating that brush cell production, determination, differentiation and survival are Atoh1-independent. We also report that brush cells are derived from Gfi1b-expressing progenitors. These and related results suggest a model in which initially equivalent DOM progenitors have three metastable states defined by the transcription factors Hes1, Atoh1, and Gfi1b. Lateral inhibitory Notch signaling normally ensures that Hes1 dominates in one of the two DOMs, invoking a columnar lineage program, while either Atoh1 or Gfi1b dominates in the other DOM, invoking a granulocytic or brush cell lineage program, respectively, and thus implementing a cell fate-determining ternary switch.
Collapse
Affiliation(s)
- Matthew Bjerknes
- Department of Medicine, Clinical Science Division, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
435
|
Pancewicz J, Nicot C. Current views on the role of Notch signaling and the pathogenesis of human leukemia. BMC Cancer 2011; 11:502. [PMID: 22128846 PMCID: PMC3262490 DOI: 10.1186/1471-2407-11-502] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 11/30/2011] [Indexed: 12/28/2022] Open
Abstract
The Notch signaling pathway is highly conserved from Drosophila to humans and plays an important role in the regulation of cellular proliferation, differentiation and apoptosis.Constitutive activation of Notch signaling has been shown to result in excessive cellular proliferation and a wide range of malignancies, including leukemia, glioblastoma and lung and breast cancers. Notch can also act as a tumor suppressor, and its inactivation has been associated with an increased risk of spontaneous squamous cell carcinoma. This minireview focuses on recent advances related to the mechanisms and roles of activated Notch1, Notch2, Notch3 and Notch4 signaling in human lymphocytic leukemia, myeloid leukemia and B cell lymphoma, as well as their significance, and recent advances in Notch-targeted therapies.
Collapse
Affiliation(s)
- Joanna Pancewicz
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
436
|
Saravanamuthu SS, Le TT, Gao CY, Cojocaru RI, Pandiyan P, Liu C, Zhang J, Zelenka PS, Brown NL. Conditional ablation of the Notch2 receptor in the ocular lens. Dev Biol 2011; 362:219-29. [PMID: 22173065 DOI: 10.1016/j.ydbio.2011.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 01/22/2023]
Abstract
Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors have not been investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, denucleation defects, and cataracts. Notch2 mutants also had persistent lens stalks as early as E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed that upon loss of Notch2, there were elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2), and Trp63 (p63) that negatively regulates Wnt signaling, plus down-regulation of Cdh1 (E-Cadherin). Removal of Notch2 also resulted in an increased proportion of fiber cells, as was found in Rbpj and Jag1 conditional mutant lenses. However, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. We found that Notch2 normally blocks lens progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.
Collapse
Affiliation(s)
- Senthil S Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Kacer D, McIntire C, Kirov A, Kany E, Roth J, Liaw L, Small D, Friesel R, Basilico C, Tarantini F, Verdi J, Prudovsky I. Regulation of non-classical FGF1 release and FGF-dependent cell transformation by CBF1-mediated notch signaling. J Cell Physiol 2011; 226:3064-75. [PMID: 21302306 DOI: 10.1002/jcp.22663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
FGF1, a widely expressed proangiogenic factor involved in tissue repair and carcinogenesis, is released from cells through a non-classical pathway independent of endoplasmic reticulum and Golgi. Although several proteins participating in FGF1 export were identified, genetic mechanisms regulating this process remained obscure. We found that FGF1 export and expression are regulated through Notch signaling mediated by transcription factor CBF1 and its partner MAML. The expression of a dominant negative (dn) form of CBF1 in 3T3 cells induces transcription of FGF1 and sphingosine kinase 1 (SphK1), which is a component of FGF1 export pathway. dnCBF1 expression stimulates the stress-independent release of transduced FGF1 from NIH 3T3 cells and endogenous FGF1 from A375 melanoma cells. NIH 3T3 cells transfected with dnCBF1 form colonies in soft agar and produce rapidly growing highly angiogenic tumors in nude mice. The transformed phenotype of dnCBF1 transfected cells is efficiently blocked by dn forms of FGF receptor 1 and S100A13, which is a component of FGF1 export pathway. FGF1 export and acceleration of cell growth induced by dnCBF1 depend on SphK1. Similar to dnCBF1, dnMAML transfection induces FGF1 expression and release, and accelerates cell proliferation. The latter effect is strongly decreased in FGF1 null cells. We suggest that the regulation of FGF1 expression and release by CBF1-mediated Notch signaling can play an important role in tumor formation.
Collapse
Affiliation(s)
- Doreen Kacer
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc Natl Acad Sci U S A 2011; 108:18814-9. [PMID: 22065781 DOI: 10.1073/pnas.1104943108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A switch from oxidative phosphorylation to glycolysis is frequently observed in cancer cells and is linked to tumor growth and invasion, but the underpinning molecular mechanisms controlling the switch are poorly understood. In this report we show that Notch signaling is a key regulator of cellular metabolism. Both hyper- and hypoactivated Notch induce a glycolytic phenotype in breast tumor cells, although by distinct mechanisms: hyperactivated Notch signaling leads to increased glycolysis through activation of the phosphatidylinositol 3-kinase/AKT serine/threonine kinase pathway, whereas hypoactivated Notch signaling attenuates mitochondrial activity and induces glycolysis in a p53-dependent manner. Despite the fact that cells with both hyper- and hypoactivated Notch signaling showed enhanced glycolysis, only cells with hyperactivated Notch promoted aggressive tumor growth in a xenograft mouse model. This phenomenon may be explained by that only Notch-hyperactivated, but not -hypoactivated, cells retained the capacity to switch back to oxidative phosphorylation. In conclusion, our data reveal a role for Notch in cellular energy homeostasis, and show that Notch signaling is required for metabolic flexibility.
Collapse
|
439
|
Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular Aβ metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:227-35. [PMID: 22036964 DOI: 10.1016/j.bbamcr.2011.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 12/22/2022]
Abstract
Cerebral amyloid β (Aβ) accumulation is pathogenically associated with sporadic Alzheimer's disease (SAD). BACE-1 is involved in Aβ generation while insulin-degrading enzyme (IDE) partakes in Aβ proteolytic clearance. Vulnerable regions in AD brains show increased BACE-1 protein levels and enzymatic activity while the opposite occurs with IDE. Another common feature in SAD brains is Notch1 overexpression. Here we demonstrate an increase in mRNA levels of Hey-1, a Notch target gene, and a decrease of IDE transcripts in the hippocampus of SAD brains as compared to controls. Transient transfection of Notch intracellular domain (NICD) in N2aSW cells, mouse neuroblastoma cells (N2a) stably expressing human amyloid precursor protein (APP) Swedish mutation, reduce IDE mRNA levels, promoting extracellular Aβ accumulation. Also, NICD, HES-1 and Hey-1 overexpression result in decreased IDE proximal promoter activity. This effect was mediated by 2 functional sites located at -379/-372 and -310-303 from the first translation start site in the -575/-19 (556 bp) fragment of IDE proximal promoter. By site-directed mutagenesis of the IDE promoter region we reverted the inhibitory effect mediated by NICD transfection suggesting that these sites are indeed responsible for the Notch-mediated inhibition of the IDE gene expression. Intracranial injection of the Notch ligand JAG-1 in Tg2576 mice, expressing the Swedish mutation in human APP, induced overexpression of HES-1 and Hey-1 and reduction of IDE mRNA levels, respectively. Our results support our theory that a Notch-dependent IDE transcriptional modulation may impact on Aβ metabolism providing a functional link between Notch signaling and the amyloidogenic pathway in SAD.
Collapse
|
440
|
Cross-talk between endothelial cells and tumor via delta-like ligand 4/Notch/PTEN signaling inhibits lung cancer growth. Oncogene 2011; 31:2899-906. [PMID: 22002304 DOI: 10.1038/onc.2011.467] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is a leading cause of cancer death in many countries. Notch signaling has been demonstrated to frequently participate in the process of lung carcinogenesis. Delta-like ligand 4 (Dll4) is a vascular-specific ligand of Notch, and has a critical role in the angiogenesis of numerous cancers. However, the role of Dll4 in the cross-talk between endothelial cells (ECs) and tumor cells remains obscure. Herein, our study revealed that Dll4-expressing ECs (EC-Dll4) significantly suppressed the proliferation of neighboring non-small cell lung cancer (NSCLC) cells and attenuated the growth of NSCLC xenograft in nude mice. On the contrary, silencing endothelial Dll4 by its specific interference RNA reversed these effects of Dll4 on NSCLC cell proliferation and tumor formation. Furthermore, activation of Notch1, but not Notch2 or Notch3, was enhanced in NSCLC cells cultured with EC-Dll4, as well as in xenografts induced by a mixture of NSCLC cells and EC-Dll4. Interference of Notch1 significantly attenuated Dll4-mediated suppression of NSCLC cell proliferations, indicating that Dll4/Notch1 signaling negatively modulates the NSCLC growth. Moreover, PTEN expression in NSCLC cells was increased by EC-Dll4 or rhDll4 (recombinant human-Dll4 protein), and the induction was impaired by Notch1 interference suggesting that Dll4 could upregulate PTEN expression by Notch1. Taken together, we conclude that the cross-talk between ECs and NSCLC cells by Dll4/Notch1/PTEN signaling pathway inhibits the growth of NSCLC.
Collapse
|
441
|
Grainger S, Lam J, Savory JGA, Mears AJ, Rijli FM, Lohnes D. Cdx regulates Dll1 in multiple lineages. Dev Biol 2011; 361:1-11. [PMID: 22015720 DOI: 10.1016/j.ydbio.2011.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 02/07/2023]
Abstract
Vertebrate Cdx genes encode homeodomain transcription factors related to caudal in Drosophila. The murine Cdx homologues Cdx1, Cdx2 and Cdx4 play important roles in anterior-posterior patterning of the embryonic axis and the intestine, as well as axial elongation. While our understanding of the ontogenic programs requiring Cdx function has advanced considerably, the molecular bases underlying these functions are less well understood. In this regard, Cdx1-Cdx2 conditional mutants exhibit abnormal somite formation, while loss of Cdx1-Cdx2 in the intestinal epithelium results in a shift in differentiation toward the Goblet cell lineage. The aim of the present study was to identify the Cdx-dependent mechanisms impacting on these events. Consistent with prior work implicating Notch signaling in these pathways, we found that expression of the Notch ligand Dll1 was reduced in Cdx mutants in both the intestinal epithelium and paraxial mesoderm. Cdx members occupied the Dll1 promoter both in vivo and in vitro, while genetic analysis indicated interaction between Cdx and Dll1 pathways in both somitogenesis and Goblet cell differentiation. These findings suggest that Cdx members operate upstream of Dll1 to convey different functions in two distinct lineages.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
442
|
Abstract
In the first volume of Developmental Cell, it was reported that the classic Drosophila neurogenic gene neuralized encodes a ubiquitin ligase that monoubiquitylates the Notch ligand Delta, thus promoting Delta endocytosis. A requirement for ligand internalization by the signal-sending cell, although counterintuitive, remains to date a feature unique to Notch signaling. Ten years and many ubiquitin ligases later, we discuss sequels to these three papers with an eye toward reviewing the development of ideas for how ligand ubiquitylation and endocytosis propel Notch signaling.
Collapse
|
443
|
Takeuchi H, Fernández-Valdivia RC, Caswell DS, Nita-Lazar A, Rana NA, Garner TP, Weldeghiorghis TK, Macnaughtan MA, Jafar-Nejad H, Haltiwanger RS. Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase. Proc Natl Acad Sci U S A 2011; 108:16600-5. [PMID: 21949356 PMCID: PMC3189016 DOI: 10.1073/pnas.1109696108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in rumi result in a temperature-sensitive loss of Notch signaling in Drosophila. Drosophila Rumi is a soluble, endoplasmic reticulum-retained protein with a CAP10 domain that functions as a protein O-glucosyltransferase. In human and mouse genomes, three potential Rumi homologues exist: one with a high degree of identity to Drosophila Rumi (52%), and two others with lower degrees of identity but including a CAP10 domain (KDELC1 and KDELC2). Here we show that both mouse and human Rumi, but not KDELC1 or KDELC2, catalyze transfer of glucose from UDP-glucose to an EGF repeat from human factor VII. Similarly, human Rumi, but not KDELC1 or KDELC2, rescues the Notch phenotypes in Drosophila rumi clones. During characterization of the Rumi enzymes, we noted that, in addition to protein O-glucosyltransferase activity, both mammalian and Drosophila Rumi also showed significant protein O-xylosyltransferase activity. Rumi transfers Xyl or glucose to serine 52 in the O-glucose consensus sequence ( ) of factor VII EGF repeat. Surprisingly, the second serine (S53) facilitates transfer of Xyl, but not glucose, to the EGF repeat by Rumi. EGF16 of mouse Notch2, which has a diserine motif in the consensus sequence ( ), is also modified with either O-Xyl or O-glucose glycans in cells. Mutation of the second serine (S590A) causes a loss of O-Xyl but not O-glucose at this site. Altogether, our data establish dual substrate specificity for the glycosyltransferase Rumi and provide evidence that amino acid sequences of the recipient EGF repeat significantly influence which donor substrate (UDP-glucose or UDP-Xyl) is used.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Biochemistry and Cell Biology, Institute of Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| | - Rodrigo C. Fernández-Valdivia
- The Brown Foundation Institute of Molecular Medicine , Center for Metabolic and Degenerative Diseases, Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030; and
| | - Devin S. Caswell
- Department of Biochemistry and Cell Biology, Institute of Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| | - Aleksandra Nita-Lazar
- Department of Biochemistry and Cell Biology, Institute of Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| | - Nadia A. Rana
- Department of Biochemistry and Cell Biology, Institute of Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| | - Thomas P. Garner
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | | | | | - Hamed Jafar-Nejad
- The Brown Foundation Institute of Molecular Medicine , Center for Metabolic and Degenerative Diseases, Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030; and
| | - Robert S. Haltiwanger
- Department of Biochemistry and Cell Biology, Institute of Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
444
|
Brandt S, Raffetseder U, Djudjaj S, Schreiter A, Kadereit B, Michele M, Pabst M, Zhu C, Mertens PR. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur J Cell Biol 2011; 91:464-71. [PMID: 21962637 DOI: 10.1016/j.ejcb.2011.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 02/07/2023] Open
Abstract
The cold shock protein Y-box (YB) binding-1 is an example of a highly regulated protein with pleiotropic functions. Besides activities as a transcription factor in the nucleus or regulator of translation in the cytoplasm, recent findings indicate extracellular effects and secretion via a non-classical secretion pathway. This review summarizes regulatory pathways in which YB-1 participates, all iterating auto-regulatory loops. Schematics are developed that elucidate the cold shock protein activities in (i) fine-tuning its own expression level following platelet-derived growth factor-B-, thrombin- or interferon-γ-dependent signaling, (ii) as a component of the messenger ribonucleoprotein (mRNP) complex for interleukin-2 synthesis in T-cell commitment/activation, (iii) pro-fibrogenic cell phenotypic changes mediated by transforming growth factor-β, and (iv) receptor Notch-3 cleavage and signal transduction. Emphasis is put forward on subcellular protein translocation mechanisms and underlying signaling pathways. These have mostly been analysed in cell culture systems and rarely in experimental models. In sum, YB-1 seems to fulfill a pacemaker role in diverse diseases, both inflammatory/pro-fibrogenic as well as tumorigenic. A clue towards potential intervention strategies may reside in the understanding of the outlined auto-regulatory loops and means to interfere with cycling pathways.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Robust selection of sensory organ precursors by the Notch-Delta pathway. Curr Opin Cell Biol 2011; 23:663-7. [PMID: 21963301 DOI: 10.1016/j.ceb.2011.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/10/2011] [Accepted: 09/09/2011] [Indexed: 11/23/2022]
Abstract
The patterning of multicellular organisms is robust to environmental, genetic, or stochastic fluctuations. Mathematical modeling is instrumental in identifying mechanisms supporting this robustness. The principle of lateral inhibition, whereby a differentiating cell inhibits its neighbors from adopting the same fate, is frequently used for selecting a single cell out of a cluster of equipotent cells. For example, Sensory Organ Precursors (SOP) in the fruit-fly Drosophila implement lateral inhibition by activating the Notch-Delta pathway. We discuss parameters affecting the rate of errors in this process, and the mechanism (inhibitory cis interaction between Notch and Delta) predicted to reduce this error.
Collapse
|
446
|
Rana NA, Haltiwanger RS. Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr Opin Struct Biol 2011; 21:583-9. [PMID: 21924891 DOI: 10.1016/j.sbi.2011.08.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/08/2011] [Accepted: 08/23/2011] [Indexed: 01/22/2023]
Abstract
The Notch family of receptors plays essential roles in many phases of development, and dysregulation of Notch activity is increasingly recognized as a player in many diseases. O-Glycosylation of the Notch extracellular domain is essential for Notch activity, and tissue-specific alterations in the glycan structures are known to regulate activity. Here we review recent advances in identification and characterization of the enzymes responsible for glycosylating Notch and molecular mechanisms for how these O-glycans affect Notch activity.
Collapse
Affiliation(s)
- Nadia A Rana
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
447
|
Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system. PLoS One 2011; 6:e24484. [PMID: 21915337 PMCID: PMC3168508 DOI: 10.1371/journal.pone.0024484] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/11/2011] [Indexed: 12/11/2022] Open
Abstract
The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells - mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3 – a marker of enteroendocrine fate – or Gfi1 – a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation.
Collapse
|
448
|
Acosta H, López SL, Revinski DR, Carrasco AE. Notch destabilises maternal beta-catenin and restricts dorsal-anterior development in Xenopus. Development 2011; 138:2567-79. [PMID: 21610033 DOI: 10.1242/dev.061143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The blastula chordin- and noggin-expressing centre (BCNE) is the predecessor of the Spemann-Mangold's organiser and also contains the precursors of the brain. This signalling centre comprises animal-dorsal and marginal-dorsal cells and appears as a consequence of the nuclear accumulation of β-catenin on the dorsal side. Here, we propose a role for Notch that was not previously explored during early development in vertebrates. Notch initially destabilises β-catenin in a process that does not depend on its phosphorylation by GSK3. This is important to restrict the BCNE to its normal extent and to control the size of the brain.
Collapse
Affiliation(s)
- Helena Acosta
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 3, 1121 Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
449
|
Steg AD, Katre AA, Goodman B, Han HD, Nick AM, Stone RL, Coleman RL, Alvarez RD, Lopez-Berestein G, Sood AK, Landen CN. Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer. Clin Cancer Res 2011; 17:5674-85. [PMID: 21753153 PMCID: PMC3166981 DOI: 10.1158/1078-0432.ccr-11-0432] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Jagged1, a Notch ligand, is expressed on both tumor epithelial and endothelial cells and therefore may be amenable to dual targeting of the tumor stroma and malignant cell compartments of the tumor microenvironment. EXPERIMENTAL DESIGN We describe in vitro effects of targeting of Jagged1 on ovarian cancer cells and in vivo effects of independent targeting of stromal and malignant cell Jagged1 using species-specific human or murine siRNA constructs incorporated into chitosan nanoparticles and delivered intravenously in an orthotopic mouse model. RESULTS Jagged1 expression was prominent in SKOV3ip1 and IGROV-AF1, and significantly overexpressed in SKOV3TRip2, a taxane-resistant SKOV3 subclone. Jagged1 silencing with siRNA decreased cell viability and reversed taxane chemoresistance. In two different orthotopic ovarian cancer models, treatment with anti-human Jagged1 siRNA-CH reduced growth by 54.4% to 58.3% and with anti-murine Jagged1 siRNA-CH reduced growth by 41.7% to 48.8%. The combination of both species-specific constructs reduced tumor weight by 87.5% to 93.1% and sensitized SKOV3TRip2 tumors to docetaxel in vivo. Tumors showed reduced microvessel density with anti-murine Jagged1 constructs and decreased proliferation with anti-human Jagged1 siRNAs-CH. In addition, we show that Jagged1 downregulation does not sensitize cells to taxanes through a reduction in MDR1 expression, but at least in part by cross-talk with the GLI2 mediator of the Hedgehog pathway. CONCLUSIONS Jagged1 plays dual roles in cancer progression through an angiogenic function in tumor endothelial cells and through proliferation and chemoresistance in tumor cells. Dual inhibition represents an attractive therapeutic strategy for ovarian and potentially other malignancies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Bridged-Ring Compounds/pharmacology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Docetaxel
- Drug Resistance, Neoplasm
- Endothelial Cells/metabolism
- Epithelial Cells/metabolism
- Female
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Jagged-1 Protein
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Molecular Targeted Therapy
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Ovarian Neoplasms/blood supply
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- RNA Interference
- RNA, Small Interfering
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Serrate-Jagged Proteins
- Stromal Cells
- Taxoids/pharmacology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Zinc Finger Protein GLI1
- Zinc Finger Protein Gli2
Collapse
Affiliation(s)
- Adam D. Steg
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ashwini A. Katre
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Blake Goodman
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030
| | - Hee-Dong Han
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030
- Center for RNA Interference and Non-Coding RNA, U.T.M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Alpa M. Nick
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030
| | - Rebecca L. Stone
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030
| | - Robert L. Coleman
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030
| | - Ronald D. Alvarez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, U.T.M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030
- Center for RNA Interference and Non-Coding RNA, U.T.M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030
- Department of Cancer Biology, U.T.M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030
- Center for RNA Interference and Non-Coding RNA, U.T.M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Charles N. Landen
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
450
|
The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 2011; 286:189-213. [PMID: 21877135 DOI: 10.1007/s00438-011-0643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
Collapse
|