401
|
Xu J, Andreassi M. Reversible histone methylation regulates brain gene expression and behavior. Horm Behav 2011; 59:383-92. [PMID: 20816965 PMCID: PMC3084016 DOI: 10.1016/j.yhbeh.2010.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/27/2022]
Abstract
Epigenetic chromatin remodeling, including reversible histone methylation, regulates gene transcription in brain development and synaptic plasticity. Aberrant chromatin modifications due to mutant chromatin enzymes or chemical exposures have been associated with neurological or psychiatric disorders such as mental retardation, schizophrenia, depression, and drug addiction. Some chromatin enzymes, such as histone demethylases JARID1C and UTX, are coded by X-linked genes which are not X-inactivated in females. The higher expression of JARID1C and UTX in females could contribute to sex differences in brain development and behavior.
Collapse
Affiliation(s)
- Jun Xu
- Tufts University, Department of Biomedical Sciences, North Grafton, MA 01536, USA.
| | | |
Collapse
|
402
|
Radioprotective effects of Bmi-1 involve epigenetic silencing of oxidase genes and enhanced DNA repair in normal human keratinocytes. J Invest Dermatol 2011; 131:1216-25. [PMID: 21307872 DOI: 10.1038/jid.2011.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Normal human keratinocytes (NHKs) undergo premature senescence following exposure to ionizing radiation (IR). This study investigates the effect of Bmi-1, a polycomb group protein, on radiation-induced senescence response. When exposed to IR, NHK transduced with Bmi-1 (NHK/Bmi-1) showed reduced senescent phenotype and enhanced proliferation compared with control cells (NHK/B0). To investigate the underlying mechanism, we determined the production of reactive oxygen species (ROS), expression of ROS-generating enzymes, and DNA repair activities in cells. ROS level was increased upon irradiation but notably reduced by Bmi-1 transduction. Irradiation led to strong induction of oxidase genes, e.g., Lpo (lactoperoxidase), p22-phox, p47-phox, and Gp91, in NHK/B0 but their expression was almost completely silenced in NHK/Bmi-1. Induction of oxidase genes upon irradiation was linked with loss of trimethylated histone 3 at lysine 27 (H3K27Me3), but NHK/Bmi-1 expressed a higher level of H3K27Me3 compared with NHK/B0. Bmi-1 transduction suppressed IR-associated induction of jumanji domain containing 3 while enhancing the expression of EZH2, thereby preventing the loss of H3K27Me3 in the irradiated cells. Furthermore, NHK/Bmi-1 demonstrated increased repair of IR-induced DNA damage compared with NHK/B0. These results indicate that Bmi-1 elicits radioprotective effects on NHK by mitigating the genotoxicity of IR through epigenetic mechanisms.
Collapse
|
403
|
Smith E, Shilatifard A. The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell 2011; 40:689-701. [PMID: 21145479 DOI: 10.1016/j.molcel.2010.11.031] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/10/2010] [Accepted: 10/07/2010] [Indexed: 12/14/2022]
Abstract
Posttranslational modifications of histones are coupled in the regulation of the cellular processes involving chromatin, such as transcription, replication, repair, and genome stability. Recent biochemical and genetic studies have clearly demonstrated that many aspects of chromatin, in addition to posttranslational modifications of histones, provide surfaces that can interact with effectors and the modifying machineries in a context-dependent manner, all as a part of the "chromatin signaling pathway." Here, we have reviewed recent findings on the molecular basis for the recruitment of the chromatin-modifying machineries and their diverse and varied biological outcomes.
Collapse
Affiliation(s)
- Edwin Smith
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
404
|
Voigt P, Reinberg D. Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 2011; 12:236-52. [PMID: 21243712 PMCID: PMC3760146 DOI: 10.1002/cbic.201000493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Indexed: 01/19/2023]
Abstract
Post-translational modifications (PTMs) on histone proteins have emerged as a central theme in the regulation of gene expression and other chromatin-associated processes. The discovery that certain protein domains can recognize acetylated and methylated lysine residues of histones has spurred efforts to uncover and characterize histone PTM-binding proteins. In this task, chromatin biology has strongly benefited from synthetic approaches stemming from chemical biology. Peptide-based techniques have been instrumental in identifying histone mark-binding proteins and analyzing their binding specificities. To explore how histone PTMs carry out their function in the context of chromatin, reconstituted systems based on recombinant histones carrying defined modifications are increasingly being used. They constitute promising tools to analyze mechanistic aspects of histone PTMs, including their role in transcription and their transmission in replication. In this review, we present strategies that have been used successfully to investigate the role of histone modifications, concepts that have emerged from their application, and their potential to contribute to current developments in the field.
Collapse
Affiliation(s)
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, Department of Biochemistry, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
405
|
Balakrishnan L, Milavetz B. Decoding the histone H4 lysine 20 methylation mark. Crit Rev Biochem Mol Biol 2011; 45:440-52. [PMID: 20735237 DOI: 10.3109/10409238.2010.504700] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular biology of histone H4 lysine 20 (H4K20) methylation, like many other post-translational modifications of histones, has been the subject of intensive interest in recent years. While there is an emerging consensus linking H4K20me1, H4K20me2, and H4K20me3 to transcription, repair, and constitutive heterochromatin, respectively, the specific details of these associations and the biological mechanisms by which the methylated histones are introduced and function are now the subject of active investigation. Although a large number of methylases capable of methylating H4K20 have been identified and characterized; there is no known demethylase of H4K20, though the search is ongoing. Additionally, many recent studies have been directed at understanding the role of methylated H4K20 and other histone modifications associated with different biological processes in the context of a combinatorial histone code. It seems likely that continued study of the methylation of H4K20 will yield extremely valuable insights concerning the regulation of histone modifications before and during cell division and the impact of these modifications on subsequent gene expression.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
406
|
Interaction of SET domains with histones and nucleic acid structures in active chromatin. Clin Epigenetics 2011; 2:17-25. [PMID: 22704267 PMCID: PMC3365373 DOI: 10.1007/s13148-010-0015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/16/2010] [Indexed: 12/28/2022] Open
Abstract
Changes in the normal program of gene expression are the basis for a number of human diseases. Epigenetic control of gene expression is programmed by chromatin modifications—the inheritable “histone code”—the major component of which is histone methylation. This chromatin methylation code of gene activity is created upon cell differentiation and is further controlled by the “SET” (methyltransferase) domain proteins which maintain this histone methylation pattern and preserve it through rounds of cell division. The molecular principles of epigenetic gene maintenance are essential for proper treatment and prevention of disorders and their complications. However, the principles of epigenetic gene programming are not resolved. Here we discuss some evidence of how the SET proteins determine the required states of target genes and maintain the required levels of their activity. We suggest that, along with other recognition pathways, SET domains can directly recognize the nucleosome and nucleic acids intermediates that are specific for active chromatin regions.
Collapse
|
407
|
Abstract
The generation of complex organisms requires that an initial population of cells with identical gene expression profiles can adopt different cell fates during development by progressively diverging transcriptional programs. These programs depend on the binding of transcritional regulators to specific genomic sites, which in turn is controlled by modifications of the chromatin. Chromatin modifications may occur directly upon DNA by methylation of specific nucleotides, or may involve post-translational modification of histones. Local regulation of histone post-translational modifications regionalizes the genome into euchromatic regions, which are more accessible to DNA-binding factors, and condensed heterochromatic regions, inhibiting the binding of such factors. In addition, these modifications may be required in a genome-wide fashion for processes such as DNA replication or chromosome condensation. From an embryologist's point of view chromatin modifications are intensively studied in the context of imprinting and have more recently received increasing attention in understanding the basis of pluripotency and cellular differentiation. Here, we describe recently uncovered roles of chromatin modifications in zebrafish development and regeneration, as well as available resources and commonly used techniques. We provide a general introduction into chromatin modifications and their respective functions with a focus on gene transcription, as well as key aspects of their roles in the early zebrafish embryo, neural development, formation of the digestive system and tissue regeneration.
Collapse
Affiliation(s)
- Jordi Cayuso Mas
- MRC National Institute for Medical Research, The Ridgeway, London, NW7 1AA, UK
| | | | | |
Collapse
|
408
|
Joo HY, Jones A, Yang C, Zhai L, Smith AD, Zhang Z, Chandrasekharan MB, Sun ZW, Renfrow MB, Wang Y, Chang C, Wang H. Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46. J Biol Chem 2010; 286:7190-201. [PMID: 21183687 DOI: 10.1074/jbc.m110.158311] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Post-translational histone modifications play important roles in regulating gene expression programs, which in turn determine cell fate and lineage commitment during development. One such modification is histone ubiquitination, which primarily targets histone H2A and H2B. Although ubiquitination of H2A and H2B has been generally linked to gene silencing and gene activation, respectively, the functions of histone ubiquitination during eukaryote development are not well understood. Here, we identified USP12 and USP46 as histone H2A and H2B deubiquitinases that regulate Xenopus development. USP12 and USP46 prefer nucleosomal substrates and deubiquitinate both histone H2A and H2B in vitro and in vivo. WDR48, a WD40 repeat-containing protein, interacts with USP12 and USP46 and is required for the histone deubiquitination activity. Overexpression of either gene leads to gastrulation defects without affecting mesodermal cell fate, whereas knockdown of USP12 in Xenopus embryos results in reduction of a subset of mesodermal genes at gastrula stages. Immunohistochemical staining and chromatin immunoprecipitation assays revealed that USP12 regulates histone deubiquitination in the mesoderm and at specific gene promoters during Xenopus development. Taken together, this study identifies USP12 and USP46 as histone deubiquitinases for H2A and H2B and reveals that USP12 regulates Xenopus development during gastrula stages.
Collapse
Affiliation(s)
- Heui-Yun Joo
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Surface LE, Thornton SR, Boyer LA. Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 2010; 7:288-98. [PMID: 20804966 DOI: 10.1016/j.stem.2010.08.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 12/15/2022]
Abstract
Precise control of gene expression patterns is critical for the specification of cellular diversity during metazoan development. Polycomb group (PcG) proteins comprise a class of transcriptional modifiers that have dynamic and essential roles in regulating a number of key processes including lineage commitment. How this is accomplished during mammalian development is incompletely understood. Here, we discuss recent studies in embryonic stem cells (ESCs) that provide critical new insights into how PcG proteins may be targeted to genomic sites as well as the mechanisms by which these regulators influence gene expression and multilineage differentiation in mammals.
Collapse
Affiliation(s)
- Lauren E Surface
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
410
|
Pashkova N, Gakhar L, Winistorfer SC, Yu L, Ramaswamy S, Piper RC. WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell 2010; 40:433-43. [PMID: 21070969 DOI: 10.1016/j.molcel.2010.10.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/01/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
WD40-repeat β-propellers are found in a wide range of proteins involved in distinct biological activities. We define a large subset of WD40 β-propellers as a class of ubiquitin-binding domains. Using the β-propeller from Doa1/Ufd3 as a paradigm, we find the conserved top surface of the Doa1 β-propeller binds the hydrophobic patch of ubiquitin centered on residues I44, L8, and V70. Mutations that disrupt ubiquitin binding abrogate Doa1 function, demonstrating the importance of this interaction. We further demonstrate that WD40 β-propellers from a functionally diverse set of proteins bind ubiquitin in a similar fashion. This set includes members of the F box family of SCF ubiquitin E3 ligase adaptors. Using mutants defective in binding, we find that ubiquitin interaction by the F box protein Cdc4 promotes its autoubiquitination and turnover. Collectively, our results reveal a molecular mechanism that may account for how ubiquitin controls a broad spectrum of cellular activities.
Collapse
Affiliation(s)
- Natasha Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
411
|
Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. Mol Cell Biol 2010; 31:818-31. [PMID: 21149579 DOI: 10.1128/mcb.00687-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Tra1 protein is a direct transcription activator target that is essential for coactivator function of both the SAGA and NuA4 histone acetyltransferase (HAT) complexes. The ∼400-kDa Saccharomyces cerevisiae Tra1 polypeptide and its human counterpart TRRAP contain 67 or 68 tandem α-helical HEAT and TPR protein repeats that extend from the N terminus to the conserved yet catalytically inactive phosphatidylinositol 3-kinase (PI3K) domain. We generated a series of mutations spanning the length of the protein and assayed for defects in transcription, coactivator recruitment, and histone acetylation at SAGA- and NuA4-dependent genes. Inviable TRA1 mutants all showed defects in SAGA and NuA4 complex stability, suggesting that similar surfaces of Tra1 mediate assembly of these two very different coactivator complexes. Nearly all of the viable Tra1 mutants showed transcription defects that fell into one of three classes: (i) defective recruitment to promoters, (ii) reduced stability of the SAGA and NuA4 HAT modules, or (iii) normal recruitment of Tra1-associated subunits but reduced HAT activity in vivo. Our results show that Tra1 recruitment at Gcn4-dependent and Rap1-dependent promoters requires the same regions of Tra1 and that separate regions of Tra1 contribute to the HAT activity and stability of the SAGA and NuA4 HAT modules.
Collapse
|
412
|
Arnesano F, Belviso BD, Caliandro R, Falini G, Fermani S, Natile G, Siliqi D. Crystallographic Analysis of Metal-Ion Binding to Human Ubiquitin. Chemistry 2010; 17:1569-78. [DOI: 10.1002/chem.201001617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Indexed: 01/24/2023]
|
413
|
Khoronenkova SV, Dianova II, Parsons JL, Dianov GL. USP7/HAUSP stimulates repair of oxidative DNA lesions. Nucleic Acids Res 2010; 39:2604-9. [PMID: 21138959 PMCID: PMC3074138 DOI: 10.1093/nar/gkq1210] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
USP7 is involved in the cellular stress response by regulating Mdm2 and p53 protein levels following severe DNA damage. In addition to this, USP7 may also play a role in chromatin remodelling by direct deubiquitylation of histones, as well as indirectly by regulating the cellular levels of E3 ubiquitin ligases involved in histone ubiquitylation. Here, we provide new evidence that USP7 modulated chromatin remodelling is important for base excision repair of oxidative lesions. We show that transient USP7 siRNA knockdown did not change the levels or activity of base excision repair enzymes, but significantly reduced chromatin DNA accessibility and consequently the rate of repair of oxidative lesions.
Collapse
Affiliation(s)
- Svetlana V Khoronenkova
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | | | | | | |
Collapse
|
414
|
Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 2010; 285:125-49. [PMID: 21136082 DOI: 10.1007/s00438-010-0592-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/20/2010] [Indexed: 12/13/2022]
Abstract
Inositol auxotrophy (Ino(-) phenotype) in budding yeast has classically been associated with misregulation of INO1 and other genes involved in lipid metabolism. To identify all non-essential yeast genes that are necessary for growth in the absence of inositol, we carried out a genome-wide phenotypic screening for deletion mutants exhibiting Ino(-) phenotypes under one or more growth conditions. We report the identification of 419 genes, including 385 genes not previously reported, which exhibit this phenotype when deleted. The identified genes are involved in a wide range of cellular processes, but are particularly enriched in those affecting transcription, protein modification, membrane trafficking, diverse stress responses, and lipid metabolism. Among the Ino(-) mutants involved in stress response, many exhibited phenotypes that are strengthened at elevated temperature and/or when choline is present in the medium. The role of inositol in regulation of lipid metabolism and stress response signaling is discussed.
Collapse
|
415
|
Abstract
Diabetes mellitus (type 1 and type 2) and the complications associated with this condition are an urgent public health problem, as the incidence of diabetes mellitus is steadily increasing. Environmental factors, such as diet and exposure to hyperglycemia, contribute to the etiology of diabetes mellitus and its associated microvascular and macrovascular complications. These vascular complications are the main cause of the morbidity and mortality burden of diabetes mellitus. The DCCT-EDIC and UKPDS epidemiological studies correlated poor glycemic control with the development of vascular complications in patients with type 1 or type 2 diabetes mellitus. The findings of these studies suggest that early exposure to hyperglycemia predisposes individuals to the development of diabetic complications, a phenomenon referred to as metabolic memory or the legacy effect. The first experimental evidence for metabolic memory was reported >20 years ago and the underlying molecular mechanisms are currently being characterized. Interestingly, transient exposure to hyperglycemia results in long-lasting epigenetic modifications that lead to changes in chromatin structure and gene expression, which mediate these persistent metabolic characteristics.
Collapse
Affiliation(s)
- Luciano Pirola
- Epigenetics in Human Health and Disease Laboratory, The Alfred Medical Research and Education Precinct, Baker IDI Heart and Diabetes Institute, 5th Floor, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | | | | | | |
Collapse
|
416
|
Loch CM, Cuccherini CL, Leach CA, Strickler JE. Deubiquitylase, deSUMOylase, and deISGylase activity microarrays for assay of substrate preference and functional modifiers. Mol Cell Proteomics 2010; 10:M110.002402. [PMID: 20956615 DOI: 10.1074/mcp.m110.002402] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microarray-based proteomics expanded the information potential of DNA arrays to the level of protein translation and interaction, but so far, not much beyond. Although enzymatic activity from immobilized proteins has been reliably studied using surface plasmon resonance, a microarray of catalytically competent enzymes would facilitate high throughput, parallel study of their function. The ability to localize activity from soluble substrates has frustrated development of such an array. Here, we report the novel use of previously developed, highly specific suicide substrates for three families of enzymes: deubiquitylases, deSUMOylases, and deISGylases. We show specificity of each family to its cognate substrate, and demonstrate utility of the array in a secondary screen of small molecule inhibitors.
Collapse
Affiliation(s)
- Christian M Loch
- Division of Research & Development, LifeSensors, Inc., 271 Great Valley Parkway, Malvern, PA 19355, USA.
| | | | | | | |
Collapse
|
417
|
Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1). Epigenetics Chromatin 2010; 3:16. [PMID: 20825659 PMCID: PMC2940767 DOI: 10.1186/1756-8935-3-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/08/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. RESULTS Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1). Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFN)γ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II) occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS)-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD) of Pol II are disrupted during gene activation as well. CONCLUSIONS H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.
Collapse
|
418
|
Regulation of the Polycomb protein RING1B ubiquitination by USP7. Biochem Biophys Res Commun 2010; 400:389-95. [DOI: 10.1016/j.bbrc.2010.08.082] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 11/21/2022]
|
419
|
Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. Cell Mol Life Sci 2010; 68:27-44. [PMID: 20799050 PMCID: PMC3015210 DOI: 10.1007/s00018-010-0505-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/19/2010] [Accepted: 08/09/2010] [Indexed: 12/30/2022]
Abstract
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle.
Collapse
|
420
|
Faucher D, Wellinger RJ. Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet 2010; 6:e1001082. [PMID: 20865123 PMCID: PMC2928815 DOI: 10.1371/journal.pgen.1001082] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/22/2010] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic genomes are associated with a number of proteins such as histones that constitute chromatin. Post-translational histone modifications are associated with regulatory aspects executed by chromatin and all transactions on genomic DNA are dependent on them. Thus, it will be relevant to understand how histone modifications affect genome functions. Here we show that the mono ubiquitylation of histone H2B and the tri-methylation of histone H3 on lysine 4 (H3K4me3), both known for their involvement in transcription, are also important for a proper response of budding yeast cells to DNA damaging agents and the passage through S-phase. Cells that cannot methylate H3K4 display a defect in double-strand break (DSB) repair by non-homologous end joining. Furthermore, if such cells incur DNA damage or encounter a stress during replication, they very rapidly lose viability, underscoring the functional importance of the modification. Remarkably, the Set1p methyltransferase as well as the H3K4me3 mark become detectable on a newly created DSB. This recruitment of Set1p to the DSB is dependent on the presence of the RSC complex, arguing for a contribution in the ensuing DNA damage repair process. Taken together, our results demonstrate that Set1p and its substrate H3K4me3, which has been reported to be important for the transcription of active genes, also plays an important role in genome stability of yeast cells. Given the high degree of conservation for the methyltransferase and the histone mark in a broad variety of organisms, these results could have similar implications for genome stability mechanisms in vertebrate and mammalian cells.
Collapse
Affiliation(s)
- David Faucher
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
421
|
Bhaumik SR. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:97-108. [PMID: 20800707 DOI: 10.1016/j.bbagrm.2010.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illnois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
422
|
Chandrasekharan MB, Huang F, Sun ZW. Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics 2010; 5:460-8. [PMID: 20523115 DOI: 10.4161/epi.5.6.12314] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Regulation of Set1-COMPASS-mediated H3K4 methylation and Dot1-mediated H3K79 methylation by H2BK123 ubiquitination (H2Bub1) is an evolutionarily conserved trans-histone crosstalk mechanism. How H2Bub1 impacts chromatin structure and affects Set1-COMPASS/Dot1 functions has not been fully defined. Ubiquitin was proposed to bind proteins to physically bridge H2Bub1 with Set1-COMPASS/Dot1. Alternatively, the bulky ubiquitin was thought to be a "wedge" that loosens the nucleosome for factor access. Contrary to the latter possibility, recent discoveries provide evidence for nucleosome stabilization by H2Bub1 via preventing the constant H2A-H2B eviction. Recent data has also uncovered a "docking-site" on H2B for Set1-COMPASS. Collectively, these findings invoke a model, where ubiquitin acts as a "glue" to bind the nucleosome together for supporting Set1-COMPASS/Dot1 functions. This review provides an overview of these novel findings. Additionally, how H2Bub1 and its deubiquitination might alter the chromatin dynamics during transcription is discussed. Possible models for nucleosome stabilization by ubiquitin are also provided.
Collapse
Affiliation(s)
- Mahesh B Chandrasekharan
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
423
|
Sompallae R, Callegari S, Kamranvar SA, Masucci MG. Transcription profiling of Epstein-Barr virus nuclear antigen (EBNA)-1 expressing cells suggests targeting of chromatin remodeling complexes. PLoS One 2010; 5:e12052. [PMID: 20706582 PMCID: PMC2919392 DOI: 10.1371/journal.pone.0012052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/13/2010] [Indexed: 12/15/2022] Open
Abstract
The Epstein-Barr virus (EBV) encoded nuclear antigen (EBNA)-1 regulates virus replication and transcription, and participates in the remodeling of the cellular environment that accompanies EBV induced B-cell immortalization and malignant transformation. The putative cellular targets of these effects of EBNA-1 are largely unknown. To address this issue we have profiled the transcriptional changes induced by short- and long-term expression of EBNA-1 in the EBV negative B-cell lymphoma BJAB. Three hundred and nineteen cellular genes were regulated in a conditional transfectant shortly after EBNA-1 induction while a ten fold higher number of genes was regulated upon continuous EBNA-1 expression. Promoter analysis of the differentially regulated genes demonstrated a significant enrichment of putative EBNA-1 binding sites suggesting that EBNA-1 may directly influence the transcription of a subset of genes. Gene ontology analysis of forty seven genes that were consistently regulated independently on the time of EBNA-1 expression revealed an unexpected enrichment of genes involved in the maintenance of chromatin architecture. The interaction network of the affected gene products suggests that EBNA-1 may promote a broad rearrangement of the cellular transcription landscape by altering the expression of key components of chromatin remodeling complexes.
Collapse
Affiliation(s)
| | - Simone Callegari
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
424
|
Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K, Peters G. Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J 2010; 29:2553-65. [PMID: 20601937 PMCID: PMC2928679 DOI: 10.1038/emboj.2010.129] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 05/19/2010] [Indexed: 12/12/2022] Open
Abstract
An important facet of transcriptional repression by Polycomb repressive complex 1 (PRC1) is the mono-ubiquitination of histone H2A by the combined action of the Posterior sex combs (Psc) and Sex combs extra (Sce) proteins. Here, we report that two ubiquitin-specific proteases, USP7 and USP11, co-purify with human PRC1-type complexes through direct interactions with the Psc orthologues MEL18 and BMI1, and with other PRC1 components. Ablation of either USP7 or USP11 in primary human fibroblasts results in de-repression of the INK4a tumour suppressor accompanied by loss of PRC1 binding at the locus and a senescence-like proliferative arrest. Mechanistically, USP7 and USP11 regulate the ubiquitination status of the Psc and Sce proteins themselves, thereby affecting their turnover and abundance. Our results point to a novel function for USPs in the regulation and function of Polycomb complexes.
Collapse
Affiliation(s)
| | | | | | - Kevin Hiom
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Gordon Peters
- Cancer Research UK, London Research Institute, London, UK
| |
Collapse
|
425
|
Borchert GM, Holton NW, Edwards KA, Vogel LA, Larson ED. Histone H2A and H2B are monoubiquitinated at AID-targeted loci. PLoS One 2010; 5:e11641. [PMID: 20661291 PMCID: PMC2905439 DOI: 10.1371/journal.pone.0011641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 06/18/2010] [Indexed: 11/24/2022] Open
Abstract
Background Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig) variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID) protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil by mismatch repair and base excision repair factors contributes to mutagenesis. While selective for certain genomic targets, the chromatin modifications which distinguish hypermutating from non-hypermutating loci are not defined. Methodology/Principal Findings Here, we show that AID-targeted loci in mammalian B cells contain ubiquitinated chromatin. Chromatin immunoprecipitation (ChIP) analysis of a constitutively hypermutating Burkitt's B cell line, Ramos, revealed the presence of monoubiquitinated forms of both histone H2A and H2B at two AID-associated loci, but not at control loci which are expressed but not hypermutated. Similar analysis using LPS activated primary murine splenocytes showed enrichment of the expressed VH and Sγ3 switch regions upon ChIP with antibody specific to AID and to monoubiquitinated H2A and H2B. In the mechanism of mammalian hypermutation, AID may interact with ubiquitinated chromatin because confocal immunofluorescence microscopy visualized AID colocalized with monoubiquitinated H2B within discrete nuclear foci. Conclusions/Significance Our results indicate that monoubiquitinated histones accompany active somatic hypermutation, revealing part of the histone code marking AID-targeted loci. This expands the current view of the chromatin state during hypermutation by identifying a specific nucleosome architecture associated with somatic hypermutation.
Collapse
Affiliation(s)
- Glen M. Borchert
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Nathaniel W. Holton
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Kevin A. Edwards
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Laura A. Vogel
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Erik D. Larson
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
- * E-mail:
| |
Collapse
|
426
|
Prohaska SJ, Stadler PF, Krakauer DC. Innovation in gene regulation: The case of chromatin computation. J Theor Biol 2010; 265:27-44. [DOI: 10.1016/j.jtbi.2010.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/06/2010] [Indexed: 11/17/2022]
|
427
|
Luo C, Lam E. ANCORP: a high-resolution approach that generates distinct chromatin state models from multiple genome-wide datasets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:339-351. [PMID: 20444227 DOI: 10.1111/j.1365-313x.2010.04236.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chromatin components can be extensively modified and dynamically regulated by a plethora of catalytic complexes. The numerous modifications may form a type of molecular pattern that defines particular local and global 'chromatin states' through extensive cross-talk. Analyses that can integrate multiple genome-wide datasets are essential to determine the interactions and biological function of chromatin modifications in various contexts. Through a combination of hierarchical clustering and pattern visualization, we categorized all annotated Arabidopsis genes into 16 chromatin state clusters using combinations of four chromatin marks (H3K4me3, H3K36me2, H3K27me3 and cytosine methylation) using publicly available data. Our results suggest that gene length may be an important factor in shaping chromatin states across transcription units. By analysis of two rare chromatin states, we found that the enrichment of H3K36me2 around the transcription start site is negatively correlated with transcriptional activities. High-resolution association analyses in the context of chromatin states have identified inter-correlations between chromatin modifications. H3K4me3 were found to be under-represented in actively transcribed regions that are modified by DNA methylation and the H3K36me2 mark, concomitant with increased nucleosome occupancy in these regions. Lastly, quantitative data from transcriptome analyses and gene ontology partitioning were integrated to determine the possible functional relevance of the corresponding chromatin states. We show that modelling the plant epigenome in terms of chromatin states and combining correlative visualization methods can be a productive approach to unravel complex relationships between epigenomic features and the functional output of the genome.
Collapse
Affiliation(s)
- Chongyuan Luo
- Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
- Graduate Program of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Eric Lam
- Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
- Graduate Program of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
428
|
Abstract
The ATM kinase orchestrates diverse responses to DNA damage. By simultaneously monitoring transcription and DNA-damage responses in single cells, Shanbhag et al. (2010) now uncover a role of ATM in preventing transcription near DNA double-strand breaks.
Collapse
Affiliation(s)
- Michael S Y Huen
- Genome Stability Research Laboratory, The University of Hong Kong, L1, Laboratory Block, 21 Sassoon Road, Hong Kong S.A.R
| | | |
Collapse
|
429
|
Abstract
Regulation of eukaryotic gene expression is far more complex than one might have imagined 30 years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: (1) a well-defined organization of nucleosomes and modification states at most genes; (2) regulatory networks of sequence-specific transcription factors; (3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II; and (4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
430
|
Köhler A, Zimmerman E, Schneider M, Hurt E, Zheng N. Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 2010; 141:606-17. [PMID: 20434206 PMCID: PMC2901531 DOI: 10.1016/j.cell.2010.04.026] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/22/2010] [Accepted: 04/16/2010] [Indexed: 01/07/2023]
Abstract
Deubiquitinating enzymes (DUBs) regulate diverse cellular functions by cleaving ubiquitin from specific protein substrates. How their activities are modulated in various cellular contexts remains poorly understood. The yeast deubiquitinase Ubp8 protein is recruited and activated by the SAGA complex and, together with Sgf11, Sus1, and Sgf73, forms a DUB module responsible for deubiquitinating histone H2B during gene expression. Here, we report the crystal structure of the complete SAGA DUB module, which features two functional lobes structurally coupled by Sgf73. In the "assembly lobe," a long Sgf11 N-terminal helix is clamped onto the Ubp8 ZnF-UBP domain by Sus1. In the "catalytic lobe," an Sgf11 C-terminal zinc-finger domain binds to the Ubp8 catalytic domain next to its active site. Our structural and functional analyses reveal a central role of Sgf11 and Sgf73 in activating Ubp8 for deubiquitinating histone H2B and demonstrate how a DUB can be allosterically regulated by its nonsubstrate partners.
Collapse
Affiliation(s)
- Alwin Köhler
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany,Correspondence: ;
| | - Erik Zimmerman
- Howard Hughes Medical Institute & Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195
| | - Maren Schneider
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Ning Zheng
- Howard Hughes Medical Institute & Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195,Correspondence: ;
| |
Collapse
|
431
|
Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. EUKARYOTIC CELL 2010; 9:1138-49. [PMID: 20453074 DOI: 10.1128/ec.00036-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malaria is a major public health problem in many developing countries, with the malignant tertian parasite Plasmodium falciparum causing the most malaria-associated mortality. Extensive research, especially with the advancement of genomics and transfection tools, has highlighted the fundamental importance of chromatin-mediated gene regulation in the developmental program of this early-branching eukaryote. The Plasmodium parasite genomes reveal the existence of both canonical and variant histones that make up the nucleosomes, as well as a full collection of conserved enzymes for chromatin remodeling and histone posttranslational modifications (PTMs). Recent studies have identified a wide array of both conserved and novel histone PTMs in P. falciparum, indicating the presence of a complex and divergent "histone code." Genome-wide analysis has begun to decipher the nucleosome landscape and histone modifications associated with the dynamic organization of chromatin structures during the parasite's life cycle. Focused studies on malaria-specific phenomena such as antigenic variation and red cell invasion pathways shed further light on the involvement of epigenetic mechanisms in these processes. Here we review our current understanding of chromatin-mediated gene regulation in malaria parasites, with specific reference to exemplar studies on antigenic variation and host cell invasion.
Collapse
|
432
|
Histone H2B C-terminal helix mediates trans-histone H3K4 methylation independent of H2B ubiquitination. Mol Cell Biol 2010; 30:3216-32. [PMID: 20439497 DOI: 10.1128/mcb.01008-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The trans-histone regulatory cross talk between H2BK123 ubiquitination (H2Bub1) and H3K4 and H3K79 methylation is not fully understood. In this study, we report that the residues arginine 119 and threonine 122 in the H2B C-terminal helix are important for transcription and cell growth and play a direct role in controlling H2Bub1 and H3K4 methylation. These residues modulate H2Bub1 levels by controlling the chromatin binding and activities of the deubiquitinases. Furthermore, we find an uncoupling of the H2Bub1-mediated coregulation of both H3K4 and -K79 methylation, as these H2B C-terminal helix residues are part of a distinct surface that affects only Set1-COMPASS (complex proteins associated with Set1)-mediated H3K4 methylation without affecting the functions of Dot1. Importantly, we also find that these residues interact with Spp1 and control the chromatin association, integrity, and overall stability of Set1-COMPASS independent of H2Bub1. Therefore, we have uncovered a novel role for the H2B C-terminal helix in the trans-histone cross talk as a binding surface for Set1-COMPASS. We provide further insight into the trans-histone cross talk and propose that H2Bub1 stabilizes the nucleosome by preventing H2A-H2B eviction and, thereby, retains the "docking site" for Set1-COMPASS on chromatin to maintain its stable chromatin association, complex stability, and processive methylation.
Collapse
|
433
|
Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Müller J. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 2010; 465:243-7. [PMID: 20436459 DOI: 10.1038/nature08966] [Citation(s) in RCA: 613] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 02/25/2010] [Indexed: 12/23/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that control processes ranging from the maintenance of cell fate decisions and stem cell pluripotency in animals to the control of flowering time in plants. In Drosophila, genetic studies identified more than 15 different PcG proteins that are required to repress homeotic (HOX) and other developmental regulator genes in cells where they must stay inactive. Biochemical analyses established that these PcG proteins exist in distinct multiprotein complexes that bind to and modify chromatin of target genes. Among those, Polycomb repressive complex 1 (PRC1) and the related dRing-associated factors (dRAF) complex contain an E3 ligase activity for monoubiquitination of histone H2A (refs 1-4). Here we show that the uncharacterized Drosophila PcG gene calypso encodes the ubiquitin carboxy-terminal hydrolase BAP1. Biochemically purified Calypso exists in a complex with the PcG protein ASX, and this complex, named Polycomb repressive deubiquitinase (PR-DUB), is bound at PcG target genes in Drosophila. Reconstituted recombinant Drosophila and human PR-DUB complexes remove monoubiquitin from H2A but not from H2B in nucleosomes. Drosophila mutants lacking PR-DUB show a strong increase in the levels of monoubiquitinated H2A. A mutation that disrupts the catalytic activity of Calypso, or absence of the ASX subunit abolishes H2A deubiquitination in vitro and HOX gene repression in vivo. Polycomb gene silencing may thus entail a dynamic balance between H2A ubiquitination by PRC1 and dRAF, and H2A deubiquitination by PR-DUB.
Collapse
|
434
|
Abstract
The rapid activation of gene expression in response to stimuli occurs largely through the regulation of RNA polymerase II-dependent transcription. In this Review, we discuss events that occur during the transcription cycle in eukaryotes that are important for the rapid and specific activation of gene expression in response to external stimuli. In addition to regulated recruitment of the transcription machinery to the promoter, it has now been shown that control steps can include chromatin remodelling and the release of paused polymerase. Recent work suggests that some components of signal transduction cascades also play an integral part in activating transcription at target genes.
Collapse
|
435
|
Koutelou E, Hirsch CL, Dent SYR. Multiple faces of the SAGA complex. Curr Opin Cell Biol 2010; 22:374-82. [PMID: 20363118 DOI: 10.1016/j.ceb.2010.03.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/26/2010] [Accepted: 03/03/2010] [Indexed: 02/07/2023]
Abstract
The SAGA complex provides a paradigm for multisubunit histone modifying complexes. Although first characterized as a histone acetyltransferase, because of the Gcn5 subunit, SAGA is now known to contain a second activity, a histone deubiquitinase, as well as subunits important for interactions with transcriptional activators and the general transcription machinery. The functions of SAGA in transcriptional activation are well-established in Saccharomyces cerevisiae. Recent studies in S. pombe, Drosophila, and mammalian systems reveal that SAGA also has important roles in transcript elongation, the regulation of protein stability, and telomere maintenance. These functions are essential for normal embryo development in flies and mice, and mutations or altered expression of SAGA subunits correlate with neurological disease and aggressive cancers in humans.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
436
|
Abstract
Epigenetic silencing of tumor suppressor genes is a salient feature of tumor cells. Re-expression of epigenetically silenced genes is a feasible and achievable strategy for cancer treatment. DNA methylation is the most characterized epigenetic silencing mechanism and the reversal of DNA methylation, genetically or pharmacologically, induces gene re-expression and proliferation arrest in tumor cells. Other epigenetic targets, such as histone acetylation and methylation, are also rational drug targets, and several small-molecule modulators of histone acetylation and methylation are currently under development or already in clinical trials. Epigenetic deregulation of miRNAs induces aberrant expression of miRNAs, which have been associated with the development and progression of cancer. The reversal of DNA methylation can induce the re-expression of miRNAs, and oligonucleotides can silence aberrantly expressed miRNAs. Evaluating the combination of different epigenetic modifiers and ensuring their optimization are the next challenges towards the establishment of epigenetic therapy.
Collapse
Affiliation(s)
| | - Steven D Gore
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans St, Cancer Research Building 1, Room 288, Baltimore, MD 21231, USA
| |
Collapse
|
437
|
Chatterjee C, McGinty RK, Fierz B, Muir TW. Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 2010; 6:267-9. [PMID: 20208522 DOI: 10.1038/nchembio.315] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/15/2009] [Indexed: 11/09/2022]
Abstract
We have developed a readily accessible disulfide-directed methodology for the site-specific modification of histones by ubiquitin and ubiquitin-like proteins. The disulfide-linked analog of mono-ubiquitylated H2B stimulated the H3K79 methyltransferase activity of hDot1L to a similar extent as the native isopeptide linkage. This permitted structure-activity studies of ubiquitylated mononucleosomes that revealed plasticity in the mechanism of hDot1L stimulation and identified surfaces of ubiquitin important for activation.
Collapse
Affiliation(s)
- Champak Chatterjee
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York, USA
| | | | | | | |
Collapse
|
438
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
439
|
Malik S, Bhaumik SR. Mixed lineage leukemia: histone H3 lysine 4 methyltransferases from yeast to human. FEBS J 2010; 277:1805-21. [PMID: 20236312 DOI: 10.1111/j.1742-4658.2010.07607.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fourth lysine of histone H3 is post-translationally modified by a methyl group via the action of histone methyltransferase, and such a covalent modification is associated with transcriptionally active and/or repressed chromatin states. Thus, histone H3 lysine 4 methylation has a crucial role in maintaining normal cellular functions. In fact, misregulation of this covalent modification has been implicated in various types of cancer and other diseases. Therefore, a large number of studies over recent years have been directed towards histone H3 lysine 4 methylation and the enzymes involved in this covalent modification in eukaryotes ranging from yeast to human. These studies revealed a set of histone H3 lysine 4 methyltransferases with important cellular functions in different eukaryotes, as discussed here.
Collapse
Affiliation(s)
- Shivani Malik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | | |
Collapse
|
440
|
Perissi V, Jepsen K, Glass CK, Rosenfeld MG. Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 2010; 11:109-23. [PMID: 20084085 DOI: 10.1038/nrg2736] [Citation(s) in RCA: 414] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A crucial aspect of development, homeostasis and prevention of disease is the strict maintenance of patterns of gene repression. Gene repression is largely achieved by the combinatorial action of various enzymatic complexes - known as co-repressor complexes - that are recruited to DNA by transcription factors and often act through enzymatic modification of histone protein tails. Our understanding of how co-repressors act has begun to change over recent years owing to the increased availability of genome-scale data. Here, we consider specific strategies that underlie repression events - for example, those mediated by the nuclear receptor co-repressor (NCoR, also known as NCOR1) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT, also known as NCOR2) co-repressor complexes - and discuss emerging themes in gene repression.
Collapse
Affiliation(s)
- Valentina Perissi
- Department of Medicine, Howard Hughes Medical Institute, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
441
|
Thakar A, Parvin JD, Zlatanova J. BRCA1/BARD1 E3 ubiquitin ligase can modify histones H2A and H2B in the nucleosome particle. J Biomol Struct Dyn 2010; 27:399-406. [PMID: 19916563 DOI: 10.1080/07391102.2010.10507326] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BRCA1, the protein product of the Breast Cancer Susceptibility Gene (BRCA1) has been implicated in multiple pathways that preserve genome stability, including cell cycle control, DNA repair, transcription, and chromatin remodeling. BRCA1, in complex with another RING-domain protein BARD1, possesses ubiquitin-ligase activity. Only a few targets for this activity have been identified in vivo. Nucleosomal histones may also be targets in vivo since they can be modified by the BRCA1/BARD1 complex in vitro. Here we demonstrate that the BRCA1/BARD1 complex can ubiquitylate both free H2A and H2B histones and histones in the context of nucleosomal particles. These results raise the possibility that BRCA1/BARD1 can directly affect nucleosomal structure, dynamics, and function through its ability to modify nucleosomal histones.
Collapse
Affiliation(s)
- Amit Thakar
- Dept of Molecular Biology University of Wyoming, Laramie, WY 82071, USA
| | | | | |
Collapse
|
442
|
Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 2010; 18:371-84. [PMID: 20153262 DOI: 10.1016/j.devcel.2010.01.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/25/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at postmeiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI) but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal.
Collapse
Affiliation(s)
- Lin-Yu Lu
- Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 1520, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
443
|
Abstract
Histones form the protein core around which genomic DNA is wrapped in eukaryotic chromatin. Numerous genetic studies have established that the structure and transcriptional state of chromatin are closely related to histone post-translational modifications. Further elucidation of the precise mechanistic roles for individual histone modifications requires the ability to isolate and study homogeneously modified histones. However, the highly heterogeneous nature of histone modifications in vivo poses a significant challenge for such studies. Chemical tools that have enabled biochemical and biophysical studies of site-specifically modified histones are the focus of this minireview.
Collapse
Affiliation(s)
- Champak Chatterjee
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
444
|
|
445
|
Evertts AG, Zee BM, Garcia BA. Modern approaches for investigating epigenetic signaling pathways. J Appl Physiol (1985) 2010; 109:927-33. [PMID: 20110548 DOI: 10.1152/japplphysiol.00007.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epigenetics is increasingly being recognized as a central component of physiological processes as diverse as obesity and circadian rhythms. Primarily acting through DNA methylation and histone posttranslational modifications, epigenetic pathways enable both short- and long-term transcriptional activation and silencing, independently of the underlying genetic sequence. To more quantitatively study the molecular basis of epigenetic regulation in physiological processes, the present review informs the latest techniques to identify and compare novel DNA methylation marks and combinatorial histone modifications across different experimental conditions, and to localize both DNA methylation and histone modifications over specific genomic regions.
Collapse
Affiliation(s)
- Adam G Evertts
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
446
|
Wang S, Hu C, Zhu J. Distinct and temporal roles of nucleosomal remodeling and histone deacetylation in the repression of the hTERT gene. Mol Biol Cell 2010; 21:821-32. [PMID: 20053684 PMCID: PMC2828968 DOI: 10.1091/mbc.e09-06-0456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transcriptional silencing of the hTERT gene during HL60 cell differentiation was a biphasic process. The initial repression was accompanied by the loss of c-Myc binding and disappearance of a nucleosome-free region at the core promoter. The subsequent nucleosomal remodeling and histone modifications at the promoter stabilized this repression. hTERT, the human telomerase reverse transcriptase, is highly expressed in stem cells and embryonic tissues but undetectable in most adult somatic cells. To understand its repression mechanisms in somatic cells, we investigated the endogenous hTERT gene regulation during differentiation of human leukemic HL60 cells. Our study revealed that silencing of the hTERT promoter was a biphasic process. Within 24 h after initiation of differentiation, hTERT mRNA expression decreased dramatically, accompanied by increased expression of Mad1 gene and disappearance of a nucleosome-free region at the hTERT core promoter. Subsequent to this early repression, nucleosomal remodeling continued at the promoter and downstream region for several days, as demonstrated by micrococcal nuclease and restriction enzyme accessibility assays. This later nucleosomal remodeling correlated with stable silencing of the hTERT promoter. Progressive changes of core histone modifications occurred throughout the entire differentiation process. Surprisingly, inhibition of histone deacetylation at the hTERT promoter did not prevent hTERT repression or nucleosomal deposition, indicating that nucleosomal deposition at the core promoter, but not histone deacetylation, was the cause of transcriptional repression. Our data also suggested that succeeding nucleosomal remodeling and histone deacetylation worked in parallel to establish the stable repressive status of hTERT gene in human somatic cells.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
447
|
Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting. Methods Cell Biol 2010; 98:35-56. [PMID: 20816229 DOI: 10.1016/s0091-679x(10)98002-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Histones are one of the most abundant and highly conserved proteins in eukaryotes. Apart from serving as structural entities for orderly compaction of genomes, they play an instrumental role in the regulation of many important biological processes involving DNA such as transcription, DNA repair, and the cell cycle. Histone modifications have been implicated in maintaining the transcriptionally poised state of important genesin embryonic stem cells. Histone modifications are believed to be responsible for compartmentalization of chromatin into active and inactive domains. Hence, the tools and techniques required for studying these proteins are of utmost importance to biologists. This chapter provides a brief review of the posttranslational modifications of the N-terminal tails of histones and their biological roles, followed by step-by-step protocols for the most common techniques employed to study them. Here, we describe chromatin immunoprecipitation (ChIP) for studying the genomic functions of the most widely studied histone modifications, namely, histone H3 lysine 9 acetylation and histone H3 lysine 9 trimethylation that are typically associated with transcriptional activation and repression, respectively. Special emphasis has been given on the method of preparation of sonicated chromatin prior to immunoprecipitation since this single step affects the success of ChIP greatly and is often poorly described in published protocols. Protocol for histone isolation by acid-extraction and detection by Coomassie staining has also been described. We also describe the protocol for immunoblot analysis of histones using antibodies against key histone modifications. This chapter will serve as a useful resource in the study of histones and their posttranslational modifications.
Collapse
|
448
|
McCullough SD, Grant PA. Histone acetylation, acetyltransferases, and ataxia--alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 79:165-203. [PMID: 20621284 DOI: 10.1016/s1876-1623(10)79005-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic chromosomal DNA is packaged into nucleosomes to form a dynamic structure known as chromatin. The compaction of DNA within chromatin poses a unique hindrance with regards to the accessibility of the DNA to enzymes involved in replication, transcriptional regulation, and repair. The physical structure and physiological activity of chromatin are regulated through a diverse set of posttranslational modifications, histone exchange, and structural remodeling. Of the covalent chromatin modifications, the acetylation of lysine residues within histone proteins by acetyltransferase enzymes, such as GCN5, is one of the most prevalent and important steps in the regulation of chromatin function. Alteration of histone acetyltransferase activity can easily result in the dysregulation of gene transcription and ultimately the onset of a disease state. Many transcription factors contain polyglutamine regions within their primary sequence. Mutations resulting in the elongation of these polyglutamine tracts are associated with a disease family known as the polyglutamine expansion disorders. Spinocerebellar ataxia type 7 (SCA7) is one of the nine diseases that are grouped in this family and is caused by polyglutamine expansion of the ataxin-7 protein, which is a component of the GCN5-containing human SAGA histone acetyltransferase complex. Mutation of ataxin-7 in this manner has been shown to disrupt the structural integrity of the SAGA complex and result in aberrant chromatin acetylation patterns at the promoters of genes involved in the normal function of tissues that are affected by the disease. The specific aspects of molecular pathology are not currently understood; however, studies carried out in laboratory systems ranging from the budding yeast Saccharomyces cerevisiae to transgenic mouse models and cultured human cells are poised to allow for the elucidation of disease mechanisms and subsequent therapeutic approaches.
Collapse
Affiliation(s)
- Shaun D McCullough
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
449
|
Abstract
Until recently, it was generally assumed that essentially all regulation of transcription takes place via regions adjacent to the coding region of a gene--namely promoters and enhancers--and that, after recruitment to the promoter, the polymerase simply behaves like a machine, quickly "reading the gene." However, over the past decade a revolution in this thinking has occurred, culminating in the idea that transcript elongation is extremely complex and highly regulated and, moreover, that this process significantly affects both the organization and integrity of the genome. This review addresses basic aspects of transcript elongation by RNA polymerase II (RNAPII) and how it relates to other DNA-related processes.
Collapse
Affiliation(s)
- Luke A Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
450
|
Brès V, Yoshida T, Pickle L, Jones KA. SKIP interacts with c-Myc and Menin to promote HIV-1 Tat transactivation. Mol Cell 2009; 36:75-87. [PMID: 19818711 DOI: 10.1016/j.molcel.2009.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/11/2009] [Accepted: 08/06/2009] [Indexed: 12/16/2022]
Abstract
The Ski-interacting protein SKIP/SNW1 associates with the P-TEFb/CDK9 elongation factor and coactivates inducible genes, including HIV-1. We show here that SKIP also associates with c-Myc and Menin, a subunit of the MLL1 histone methyltransferase (H3K4me3) complex and that HIV-1 Tat transactivation requires c-Myc and Menin, but not MLL1 or H3K4me3. RNAi-ChIP experiments reveal that SKIP acts downstream of Tat:P-TEFb to recruit c-Myc and its partner TRRAP, a scaffold for histone acetyltransferases, to the HIV-1 promoter. By contrast, SKIP is recruited by the RNF20 H2B ubiquitin ligase to the basal HIV-1 promoter in a step that is bypassed by Tat and downregulated by c-Myc. Of interest, we find that SKIP and P-TEFb are dispensable for UV stress-induced HIV-1 transcription, which is strongly upregulated by treating cells with the CDK9 inhibitor flavopiridol. Thus, SKIP acts with c-Myc and Menin to promote HIV-1 Tat:P-TEFb transcription at an elongation step that is bypassed under stress.
Collapse
Affiliation(s)
- Vanessa Brès
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA
| | | | | | | |
Collapse
|