401
|
Chen Y, Zhao Y, Dai CL, Liang Z, Run X, Iqbal K, Liu F, Gong CX. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Aβ level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol 2014; 261:610-9. [PMID: 24918340 DOI: 10.1016/j.expneurol.2014.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022]
Abstract
Decreased brain insulin signaling has been found recently in Alzheimer's disease (AD). Intranasal administration of insulin, which delivers the drug directly into the brain, improves memory and cognition in both animal studies and small clinical trials. However, the underlying mechanisms are unknown. Here, we treated 9-month-old 3xTg-AD mice, a commonly used mouse model of AD, with daily intranasal administration of insulin for seven days and then studied brain abnormalities of the mice biochemically and immunohistochemically. We found that intranasal insulin restored insulin signaling, increased the levels of synaptic proteins, and reduced Aβ40 level and microglia activation in the brains of 3xTg-AD mice. However, this treatment did not affect the levels of glucose transporters and O-GlcNAcylation or tau phosphorylation. Our findings provide a mechanistic insight into the beneficial effects of intranasal insulin treatment and support continuous clinical trials of intranasal insulin for the treatment of AD.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Zhao
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Department of Neurology, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin, China
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Zhihou Liang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Xiaoqin Run
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| |
Collapse
|
402
|
Sarkar G, Curran GL, Sarkaria JN, Lowe VJ, Jenkins RB. Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain. PLoS One 2014; 9:e97655. [PMID: 24847943 PMCID: PMC4029735 DOI: 10.1371/journal.pone.0097655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/22/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rapid pre-clinical evaluation of chemotherapeutic agents against brain cancers and other neurological disorders remains largely unattained due to the presence of the blood-brain barrier (BBB), which limits transport of most therapeutic compounds to the brain. A synthetic peptide carrier, K16ApoE, was previously developed that enabled transport of target proteins to the brain by mimicking a ligand-receptor system. The peptide carrier was found to generate transient BBB permeability, which was utilized for non-covalent delivery of cisplatin, methotrexate and other compounds to the brain. APPROACH Brain delivery of the chemotherapeutics and other agents was achieved either by injecting the carrier peptide and the drugs separately or as a mixture, to the femoral vein. A modification of the method comprised injection of K16ApoE pre-mixed with cetuximab, followed by injection of a 'small-molecule' drug. PRINCIPAL FINDINGS Seven-of-seven different small molecules were successfully delivered to the brain via K16ApoE. Depending on the method, brain uptake with K16ApoE was 0.72-1.1% for cisplatin and 0.58-0.92% for methotrexate (34-50-fold and 54-92 fold greater for cisplatin and methotrexate, respectively, with K16ApoE than without). Visually intense brain-uptake of Evans Blue, Light Green SF and Crocein scarlet was also achieved. Direct intracranial injection of EB show locally restricted distribution of the dye in the brain, whereas K16ApoE-mediated intravenous injection of EB resulted in the distribution of the dye throughout the brain. Experiments with insulin suggest that ligand-receptor signaling intrinsic to the BBB provides a natural means for passive transport of some molecules across the BBB. SIGNIFICANCE The results suggest that the carrier peptide can non-covalently transport various chemotherapeutic agents to the brain. Thus, the method offers an avenue for pre-clinical evaluation of various small and large therapeutic molecules against brain tumors and other neurological disorders.
Collapse
Affiliation(s)
- Gobinda Sarkar
- Department of Experimental Pathology, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
- * E-mail: (GS); (RJ)
| | - Geoffry L. Curran
- Department of Neurology, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
| | - Val J. Lowe
- Department of Nuclear Medicine, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
| | - Robert B. Jenkins
- Department of Experimental Pathology, Mayo Clinic and Foundation, Rochester, Minnesota, United States of America
- * E-mail: (GS); (RJ)
| |
Collapse
|
403
|
Gejl M, Rungby J, Brock B, Gjedde A. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose. Basic Clin Pharmacol Toxicol 2014; 115:162-71. [PMID: 24684709 DOI: 10.1111/bcpt.12240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/17/2014] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas.
Collapse
Affiliation(s)
- Michael Gejl
- Department of Biomedicine - Pharmacology, Aarhus University, Aarhus, Denmark; Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
404
|
Patrone C, Eriksson O, Lindholm D. Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol 2014; 2:256-62. [PMID: 24622756 DOI: 10.1016/s2213-8587(13)70125-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes is a metabolic disease characterised by insulin resistance with hyperglycaemia and dyslipidaemia. It is associated with increased risk of stroke and vascular dementia, and might contribute to the development of Alzheimer's disease. Recent studies have shown that several antidiabetic drugs can promote neuronal survival and lead to a significant clinical improvement of memory and cognition in different clinical settings. We discuss these emerging data, with a focus on metformin, thiazolidinediones, and the more recently developed compounds targeting the glucagon-like peptide-1 receptor. Data show that these antidiabetic drugs affect brain metabolism, neuroinflammation, and regeneration. Evidence thus far strongly indicates that these antidiabetic drugs could be developed as disease-modifying therapies for human brain diseases in patients with and without diabetes.
Collapse
Affiliation(s)
- Cesare Patrone
- Internal Medicine, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Ove Eriksson
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum, Finland
| | - Dan Lindholm
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum, Finland; Minerva Medical Research Institute, Helsinki, Finland.
| |
Collapse
|
405
|
Palta P, Schneider AL, Biessels GJ, Touradji P, Hill-Briggs F. Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J Int Neuropsychol Soc 2014; 20:278-291. [PMID: 24555960 PMCID: PMC4132660 DOI: 10.1017/s1355617713001483] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The objectives were to conduct a meta-analysis in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards to determine effect sizes (Cohen's d) for cognitive dysfunction in adults with type 2 diabetes, relative to nondiabetic controls, and to obtain effect sizes for the most commonly reported neuropsychological tests within domains. Twenty-four studies, totaling 26,137 patients (n = 3351 with diabetes), met study inclusion criteria. Small to moderate effect sizes were obtained for five of six domains: motor function (3 studies, n = 2374; d = -0.36), executive function (12 studies, n = 1784; d = -0.33), processing speed (16 studies, n = 3076; d = -0.33), verbal memory (15 studies, n = 4,608; d = -0.28), and visual memory (6 studies, n = 1754; d = -0.26). Effect size was smallest for attention/concentration (14 studies, n = 23,143; d = -0.19). The following tests demonstrated the most notable performance decrements in diabetes samples: Grooved Pegboard (dominant hand) (d = -0.60), Rey Auditory Verbal Learning Test (immediate) (d = -0.40), Trails B (d = -0.39), Rey-Osterreith Complex Figure (delayed) (d = -0.38), Trails A (d = -0.34), and Stroop Part I (d = -0.28). This study provides effect sizes to power future epidemiological and clinical diabetes research studies examining cognitive function and to help inform the selection of neuropsychological tests.
Collapse
Affiliation(s)
- Priya Palta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland
| | - Andrea L.C. Schneider
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland
| | - Geert Jan Biessels
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
| | - Pegah Touradji
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Felicia Hill-Briggs
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
406
|
Biessels GJ, Strachan MWJ, Visseren FLJ, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol 2014; 2:246-55. [PMID: 24622755 DOI: 10.1016/s2213-8587(13)70088-3] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Type 2 diabetes is associated with dementia, and also with more slight cognitive decrements. In this Review we discuss trajectories from normal cognition to dementia in people with type 2 diabetes, and explore opportunities for treatment. Slight diabetes-associated cognitive decrements and dementia affect different age groups and show a different evolution. These cognitive entities should therefore not be regarded as a continuum, although their effects might be additive. Vascular damage is a key underlying process in both entities. Glucose-mediated processes and other metabolic disturbances might also have a role. No treatment has been established, but management of vascular risk factors and optimisation of glycaemic control could have therapeutic benefit. We identify possible opportunities for intervention to improve cognitive outcomes in people with type 2 diabetes, and suggest how treatment can be tailored to individual risk profiles and comorbidities.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
407
|
Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 2014; 118:1-18. [PMID: 24582776 DOI: 10.1016/j.pneurobio.2014.02.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/09/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Insulin and Insulin Growth Factor-1 (IGF-1) play a major role in body homeostasis and glucose regulation. They also have paracrine/autocrine functions in the brain. The Insulin/IGF-1 signaling pathway contributes to the control of neuronal excitability, nerve cell metabolism and cell survival. Glucagon like peptide-1 (GLP-1), known as an insulinotropic hormone has similar functions and growth like properties as insulin/IGF-1. Growing evidence suggests that dysfunction of these pathways contribute to the progressive loss of neurons in Alzheimer's disease (AD) and Parkinson's disease (PD), the two most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting insulin/IGF-1 and GLP-1 signaling with currently available anti-diabetics. These studies have shown that administration of insulin, IGF-1 and GLP-1 agonists reverses signaling abnormalities and has positive effects on surrogate markers of neurodegeneration and behavioral outcomes. Several proof-of-concept studies are underway that attempt to translate the encouraging preclinical results to patients suffering from AD and PD. In the first part of this review, we discuss physiological functions of insulin/IGF-1 and GLP-1 signaling pathways including downstream targets and receptors distribution within the brain. In the second part, we undertake a comprehensive overview of preclinical studies targeting insulin/IGF-1 or GLP-1 signaling for treating AD and PD. We then detail the design of clinical trials that have used anti-diabetics for treating AD and PD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into treatments for patients with AD and PD.
Collapse
|
408
|
Talbot K, Wang HY. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer's disease. Alzheimers Dement 2014; 10:S12-25. [PMID: 24529520 PMCID: PMC4018451 DOI: 10.1016/j.jalz.2013.12.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease leading over the course of decades to the most common form of dementia. Many of its pathologic features and cognitive deficits may be due in part to brain insulin resistance recently demonstrated in the insulin receptor→insulin receptor substrate-1 (IRS-1) signaling pathway. The proximal cause of such resistance in AD dementia and amnestic mild cognitive impairment (aMCI) appears to be serine inhibition of IRS-1, a phenomenon likely due to microglial release of inflammatory cytokines triggered by oligomeric Aβ. Studies on animal models of AD and on human brain tissue from MCI cases at high risk of AD dementia have shown that brain insulin resistance and many other pathologic features and symptoms of AD may be greatly reduced or even reversed by treatment with FDA-approved glucagon-like peptide-1 (GLP-1) analogs such as liraglutide (Victoza). These findings call attention to the need for further basic, translational, and clinical studies on GLP-1 analogs as promising AD therapeutics.
Collapse
Affiliation(s)
- Konrad Talbot
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, USA
| |
Collapse
|
409
|
Philippou E, Constantinou M. The influence of glycemic index on cognitive functioning: a systematic review of the evidence. Adv Nutr 2014; 5:119-30. [PMID: 24618754 PMCID: PMC3951795 DOI: 10.3945/an.113.004960] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The impact of the rate of carbohydrate absorption, as measured by the carbohydrate's glycemic index (GI) on cognitive performance, is not clear. The aim of this review was to systematically assess the relevant research studies. A systematic review of English-language articles using Medline, Cochrane Central Register of Controlled Trials, EMBASE, PsycINFO, and PsycARTICLES (up to July 2012) using the search terms "glyc(a)emic index" or "glycaemic load" combined with "cognitive function" or "cognition" or "memory" was carried out. Inclusion and exclusion criteria were prespecified. Eligibility of the identified studies was assessed independently by the 2 reviewers. Independent extraction of data was carried out by the 2 authors using predefined data fields. The primary outcome measure was the effect on cognitive function (CF) after the consumption of meals varying in GI. Eleven eligible studies were identified. The age range of the participants varied from 6 to 82 y old. Overall, the findings were inconsistent, with some studies showing benefits toward either the high-GI or the low-GI meal, others not finding any differences between the 2 meals, and other studies showing a positive or negative effect on performance on only some cognitive domain or domains after consumption of 1 of the 2 meals. A number of methodologic and confounding factors were identified that could explain these inconsistencies. These include the study design, the selected sample (size, age, blood glucose regulation), the timing of testing, the cognitive domain being examined, the number and type of cognitive tests used, the meals provided (composition, size), the timing of blood samples collected, as well as the possibility of bias because participants and investigators were not blinded to randomization. A low-GI meal may favor CF in adults, but the findings at present are inconclusive. On the basis of this review, it is suggested that future studies address the identified methodologic issues and some recommendations are proposed to this effect.
Collapse
Affiliation(s)
- Elena Philippou
- Department of Life and Health Sciences, School of Sciences and Engineering, and,To whom correspondence should be addressed. E-mail:
| | - Marios Constantinou
- Department of Social Sciences, Psychology Program, School of Humanities, Social Sciences, and Law, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
410
|
Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
411
|
Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview. ACTA ACUST UNITED AC 2014; 2:125. [PMID: 25632404 DOI: 10.4172/2329-6887.1000125] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A host of diabetes-related insults to the central nervous system (CNS) have been clearly documented in type-1 and -2 diabetic patients as well as experimental animal models. These host of neurological disorders encompass hemodynamic impairments (e.g., stroke), vascular dementia, cognitive deficits (mild to moderate), as well as a number of neurochemical, electrophysiological and behavioral alterations. The underlying causes of diabetes-induced CNS complications are multifactorial and are relatively little understood although it is now evident that blood-brain barrier (BBB) damage plays a significant role in diabetes-dependent CNS disorders. Changes in plasma glucose levels (hyper- or hypoglycemia) have been associated with altered BBB transport functions (e.g., glucose, insulin, choline, amino acids, etc.), integrity (tight junction disruption), and oxidative stress in the CNS microcapillaries. Last two implicating a potential causal role for upregulation and activation of the receptor for advanced glycation end products (RAGE). This type I membrane-protein also transports amyloid-beta (Aβ) from the blood into the brain across the BBB thus, establishing a link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD, also referred to as "type 3 diabetes"). Hyperglycemia has been associated with progression of cerebral ischemia and the consequent enhancement of secondary brain injury. Difficulty in detecting vascular impairments in the large, heterogeneous brain microvascular bed and dissecting out the impact of hyper- and hypoglycemia in vivo has led to controversial results especially with regard to the effects of diabetes on BBB. In this article, we review the major findings and current knowledge with regard to the impact of diabetes on BBB integrity and function as well as specific brain microvascular effects of hyper- and hypoglycemia.
Collapse
Affiliation(s)
- Shikha Prasad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Ravi K Sajja
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Pooja Naik
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA ; Vascular Drug research Center, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
412
|
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front Endocrinol (Lausanne) 2014; 5:161. [PMID: 25346723 PMCID: PMC4191295 DOI: 10.3389/fendo.2014.00161] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022] Open
Abstract
Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the central nervous system, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition, and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name "type 3 diabetes" for this association. There are links between AD and T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein O-GlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of these disorders, mainly those focused on reducing brain insulin resistance, which is seems to be a common ground for both pathological entities.
Collapse
Affiliation(s)
- Enrique Blázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
- *Correspondence: Enrique Blázquez, Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid 28040, Spain e-mail:
| | - Esther Velázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Verónica Hurtado-Carneiro
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| |
Collapse
|
413
|
Neuroendocrine link between stress, depression and diabetes. Pharmacol Rep 2013; 65:1591-600. [DOI: 10.1016/s1734-1140(13)71520-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/15/2013] [Indexed: 12/13/2022]
|
414
|
Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 2013; 33:1500-13. [PMID: 23921899 PMCID: PMC3790938 DOI: 10.1038/jcbfm.2013.135] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimer's disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology.
Collapse
Affiliation(s)
- Michelle A Erickson
- 1] GRECC, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA [2] Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington, USA [3] Department of Pathology, School of Dental Medicine, University of Pennsylvania, Seattle, Washington, USA
| | | |
Collapse
|
415
|
Kravitz E, Schmeidler J, Beeri MS. Type 2 diabetes and cognitive compromise: potential roles of diabetes-related therapies. Endocrinol Metab Clin North Am 2013; 42:489-501. [PMID: 24011882 PMCID: PMC3767929 DOI: 10.1016/j.ecl.2013.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes, like dementia, disproportionately affects the elderly. Diabetes has consistently been associated with risk of dementia, mild cognitive impairment, and cognitive decline suggesting that cognitive compromise is a deleterious manifestation of diabetes. This review summarizes observational studies and clinical trials of diabetes medications and their respective associations and effects on cognitive outcomes. Despite biological plausibility, results from most human clinical trials have failed to show any efficacy in treating Alzheimer disease symptomatology and pathology. Clinical trials targeting vascular-related outcomes, diabetic patients, or cognitively normal elderly at risk for dementia, may provide greater cognitive benefits.
Collapse
Affiliation(s)
- Efrat Kravitz
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - James Schmeidler
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
416
|
Sweet memories: 20 years of progress in research on cognitive functioning in diabetes. Eur J Pharmacol 2013; 719:153-160. [PMID: 23872409 DOI: 10.1016/j.ejphar.2013.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 01/27/2023]
Abstract
This paper appears in a special issue of the European Journal of Pharmacology that commemorates the retirement of Professor Willem Hendrik Gispen as distinguished professor of Utrecht University and as editor of the European Journal of Pharmacology. The paper provides an overview of a research line on the impact of diabetes on cognition that we started together 20 years ago, and that continues to this day. I will report how we more or less stumbled upon this topic, that was understudied, but proved to be of definite clinical relevance. I will discuss how we tried to establish animal models, how developments from clinical and experimental studies from around the world led us to reconsider our concepts, and how findings from research on diabetic neuropathy, insulin signaling in the brain, Alzheimer's disease and dementia, and vascular disease and stroke converged and helped to create new ideas and refute others. This voyage has not ended yet, because the ultimate goal is to offer patients with diabetes treatment that can protect them against accelerated cognitive decline. Although this could take another 20 years, the research from Willem Hendrik and his group brought us an important step in the right direction.
Collapse
|
417
|
Innate Immunity in the CNS: Redefining the Relationship between the CNS and Its Environment. Neuron 2013; 78:214-32. [DOI: 10.1016/j.neuron.2013.04.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
|