401
|
Aoyama T, Kanazawa A, Kohno Y, Watanabe S, Tomita K, Kaneko F. Influence of Visual Stimulation-Induced Passive Reproduction of Motor Images in the Brain on Motor Paralysis After Stroke. Front Hum Neurosci 2021; 15:674139. [PMID: 34239429 PMCID: PMC8258409 DOI: 10.3389/fnhum.2021.674139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Finger flexor spasticity, which is commonly observed among patients with stroke, disrupts finger extension movement, consequently influencing not only upper limb function in daily life but also the outcomes of upper limb therapeutic exercise. Kinesthetic illusion induced by visual stimulation (KINVIS) has been proposed as a potential treatment for spasticity in patients with stroke. However, it remains unclear whether KINVIS intervention alone could improve finger flexor spasticity and finger extension movements without other intervention modalities. Therefore, the current study investigated the effects of a single KINVIS session on finger flexor spasticity, including its underlying neurophysiological mechanisms, and finger extension movements. To this end, 14 patients who experienced their first episode of stroke participated in this study. A computer screen placed over the patient's forearm displayed a pre-recorded mirror image video of the patient's non-paretic hand performing flexion-extension movements during KINVIS. The position and size of the artificial hand were adjusted appropriately to create a perception that the artificial hand was the patient's own. Before and after the 20-min intervention, Modified Ashworth Scale (MAS) scores and active range of finger extension movements of the paretic hand were determined. Accordingly, MAS scores and active metacarpophalangeal joint extension range of motion improved significantly after the intervention. Moreover, additional experimentation was performed using F-waves on eight patients whose spasticity was reduced by KINVIS to determine whether the same intervention also decreased spinal excitability. Our results showed no change in F-wave amplitude and persistence after the intervention. These results demonstrate the potential clinical significance of KINVIS as a novel intervention for improving finger flexor spasticity and extension movements, one of the most significant impairments among patients with stroke. The decrease in finger flexor spasticity following KINVIS may be attributed to neurophysiological changes not detectable by the F-wave, such as changes in presynaptic inhibition of Ia afferents. Further studies are certainly needed to determine the long-term effects of KINVIS on finger spasticity, as well as the neurophysiological mechanisms explaining the reduction in spasticity.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Atsushi Kanazawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Shinya Watanabe
- Department of Occupational Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Kazuhide Tomita
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
402
|
Vázquez-Guimaraens M, Caamaño-Ponte JL, Seoane-Pillado T, Cudeiro J. Factors Related to Greater Functional Recovery after Suffering a Stroke. Brain Sci 2021; 11:802. [PMID: 34204420 PMCID: PMC8234682 DOI: 10.3390/brainsci11060802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In a stroke, the importance of initial functional status is fundamental for prognosis. The aim of the current study was to investigate functional status, assessed by the Functional Independence Measure (FIM) scale, and possible predictors of functional outcome at discharge from inpatient rehabilitation. METHODS This is a retrospective study that was carried out at the Physical Medicine and Rehabilitation Service in A Coruña (Spain). A total of 365 consecutive patients with primary diagnosis of stroke were enrolled. The functional assessments of all patients were performed through the FIM. A descriptive and a bivariate analysis of the variables included in the study was made and a succession of linear regression models was used to determine which variables were associated with the total FIM at discharge. RESULTS Prior to having the stroke, 76.7% were totally independent in activities of daily living. The FIM scale score was 52.5 ± 25.5 points at admission and 83.4 ± 26.3 at hospital discharge. The multivariate analysis showed that FIM scores on admission were the most important predictors of FIM outcomes. CONCLUSIONS Our study indicates that the degree of independence prior to admission after suffering a stroke is the factor that will determine the functionality of patients at hospital discharge.
Collapse
Affiliation(s)
| | - José L. Caamaño-Ponte
- CTX a Veiga (Láncara), 27360 Lugo, Spain;
- Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| | - Teresa Seoane-Pillado
- Área de Medicina Preventiva y Salud Pública, Departamento de Ciencias de la Salud, Universidad de A Coruña–INIBIC, 15403 A Coruña, Spain;
| | - Javier Cudeiro
- Neuroscience and Motor Control Group (NEUROcom)-Instituto Biomédico de A Coruña (INIBIC), Universidad de A Coruña, 15006 Oza, Spain;
- Centro de Estimulación Cerebral de Galicia, 15009 A Coruña, Spain
| |
Collapse
|
403
|
Lee M, Jeong JH, Kim YH, Lee SW. Decoding Finger Tapping With the Affected Hand in Chronic Stroke Patients During Motor Imagery and Execution. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1099-1109. [PMID: 34101595 DOI: 10.1109/tnsre.2021.3087506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In stroke rehabilitation, motor imagery based on a brain-computer interface is an extremely useful method to control an external device and utilize neurofeedback. Many studies have reported on the classification performance of motor imagery to decode individual fingers in stroke patients compared with healthy controls. However, classification performance for a given limb is still low because the differences between patients owing to brain reorganization after stroke are not considered. We used electroencephalography signals from eleven healthy controls and eleven stroke patients in this study. The subjects performed a finger tapping task during motor execution, and motor imagery was performed with the dominant and affected hands in the healthy controls and stroke patients, respectively. All fingers except for the thumb were classified using the proposed framework based on a voting module. The averaged four-class accuracies during motor execution and motor imagery were 53.16 ± 8.42% and 46.94 ± 5.99% for the healthy controls and 53.17 ± 14.09% and 66.00 ± 14.96% for the stroke patients, respectively. Importantly, the classification accuracies in the stroke patients were statistically higher than those in healthy controls during motor imagery. However, there was no significant difference between the accuracies of motor execution and motor imagery. These findings show the potential for high classification performance for a given limb during motor imagery in stroke patients. These results can also provide insights into controlling an external device on the basis of a brain-computer interface.
Collapse
|
404
|
Li M, Yan J, Zhao H, Ma G, Li Y. Mechanically Assisted Neurorehabilitation: A Novel Six-Bar Linkage Mechanism for Gait Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:985-992. [PMID: 34010135 DOI: 10.1109/tnsre.2021.3081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Repeated and intensive gait training can improve muscle strength and movement coordination of patients with neurological or orthopedic impairments. However, conventional physical therapy by a physiotherapist is laborious and expensive. Therefore, this therapy is not accessible for the majority of patients. This paper presents a six-bar linkage mechanism for human gait rehabilitation with a natural ankle trajectory. Firstly, a six-bar linkage mechanism is selected as the original mechanism to construct a gait rehabilitation device. Then the ankle trajectory is formulated as a function of the crank angle. And the rotation angle of the crank is set as a linear function of time. Therefore, constant speed motor is sufficient to control the mechanism. For the dimensional synthesis, the precise point distances of the gait trajectory and the coupler curve are set as objective functions, with the kinematic constraints including in the optimization procedure. To obtain the optimal structure design parameters, a cooperative dual particle swarm optimization algorithm is developed. The results show that the coupler curve matches well with the gait trajectory. The average distance between the 60 precision points is 3.5 mm.
Collapse
|
405
|
Huygelier H, Mattheus E, Abeele VV, van Ee R, Gillebert CR. The Use of the Term Virtual Reality in Post-Stroke Rehabilitation: A Scoping Review and Commentary. Psychol Belg 2021; 61:145-162. [PMID: 34131490 PMCID: PMC8176935 DOI: 10.5334/pb.1033] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Virtual reality (VR) offers many opportunities for post-stroke rehabilitation. However, "VR" can refer to several types of computer-based rehabilitation systems. Since these systems may impact the feasibility and the efficacy of VR interventions, consistent terminology is important. In this study, we aimed to optimize the terminology for VR-based post-stroke rehabilitation by assessing whether and how review papers on this topic defined VR and what types of mixed reality systems were discussed. In addition, this review can inspire the use of consistent terminology for other researchers working with VR. We assessed the use of the term VR in review papers on post-stroke rehabilitation extracted from Scopus, Web of Science and PubMed. We also developed a taxonomy distinguishing 16 mixed reality systems based on three factors: immersive versus semi-immersive displays, the way in which real and virtual information is mixed, and the main input device. 64% of the included review papers (N = 121) explicitly defined VR and 33% of them described different subtypes of VR, with immersive and non-immersive VR as the most common distinction. The most frequently discussed input devices were motion-capture cameras and handheld devices, while regular 2D monitors were the most frequently mentioned output devices. Our analysis revealed that reviews on post-stroke VR rehabilitation did not or only broadly defined "VR" and did not focus on a specific system. Since the efficacy and feasibility of rehabilitation may depend on the specific system, we propose a new data-driven taxonomy to distinguish different systems, which is expected to facilitate communication amongst researchers and clinicians working with virtual reality.
Collapse
Affiliation(s)
| | | | | | - Raymond van Ee
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
- Philips Research, High tech Campus, Eindhoven, The Netherlands
| | - Céline R. Gillebert
- Brain and Cognition, KU Leuven, Leuven, Belgium
- TRACE, Ziekenhuis Oost-Limburg, Genk, Belgium
| |
Collapse
|
406
|
Budhota A, Chua KSG, Hussain A, Kager S, Cherpin A, Contu S, Vishwanath D, Kuah CWK, Ng CY, Yam LHL, Loh YJ, Rajeswaran DK, Xiang L, Burdet E, Campolo D. Robotic Assisted Upper Limb Training Post Stroke: A Randomized Control Trial Using Combinatory Approach Toward Reducing Workforce Demands. Front Neurol 2021; 12:622014. [PMID: 34149587 PMCID: PMC8206540 DOI: 10.3389/fneur.2021.622014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/23/2021] [Indexed: 01/31/2023] Open
Abstract
Post stroke upper limb rehabilitation is a challenging problem with poor outcomes as 40% of survivors have functionally useless upper limbs. Robot-aided therapy (RAT) is a potential method to alleviate the effort of intensive, task-specific, repetitive upper limb exercises for both patients and therapists. The present study aims to investigate how a time matched combinatory training scheme that incorporates conventional and RAT, using H-Man, compares with conventional training toward reducing workforce demands. In a randomized control trial (NCT02188628, www.clinicaltrials.gov), 44 subacute to chronic stroke survivors with first-ever clinical stroke and predominant arm motor function deficits were recruited and randomized into two groups of 22 subjects: Robotic Therapy (RT) and Conventional Therapy (CT). Both groups received 18 sessions of 90 min; three sessions per week over 6 weeks. In each session, participants of the CT group received 90 min of 1:1 therapist-supervised conventional therapy while participants of the RT group underwent combinatory training which consisted of 60 min of minimally-supervised H-Man therapy followed by 30 min of conventional therapy. The clinical outcomes [Fugl-Meyer (FMA), Action Research Arm Test and, Grip Strength] and the quantitative measures (smoothness, time efficiency, and task error, derived from two robotic assessment tasks) were independently evaluated prior to therapy intervention (week 0), at mid-training (week 3), at the end of training (week 6), and post therapy (week 12 and 24). Significant differences within group were observed at the end of training for all clinical scales compared with baseline [mean and standard deviation of FMA score changes between baseline and week 6; RT: Δ4.41 (3.46) and CT: Δ3.0 (4.0); p < 0.01]. FMA gains were retained 18 weeks post-training [week 24; RT: Δ5.38 (4.67) and week 24 CT: Δ4.50 (5.35); p < 0.01]. The RT group clinical scores improved similarly when compared to CT group with no significant inter-group at all time points although the conventional therapy time was reduced to one third in RT group. There were no training-related adverse side effects. In conclusion, time matched combinatory training incorporating H-Man RAT produced similar outcomes compared to conventional therapy alone. Hence, this study supports a combinatory approach to improve motor function in post-stroke arm paresis. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02188628.
Collapse
Affiliation(s)
- Aamani Budhota
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.,Robotic Research Center, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Karen S G Chua
- Centre for Advanced Rehabilitation Therapeutics, Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Asif Hussain
- Robotic Research Center, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Simone Kager
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Adèle Cherpin
- Robotic Research Center, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sara Contu
- Robotic Research Center, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deshmukh Vishwanath
- Centre for Advanced Rehabilitation Therapeutics, Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Christopher W K Kuah
- Centre for Advanced Rehabilitation Therapeutics, Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Chwee Yin Ng
- Centre for Advanced Rehabilitation Therapeutics, Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Lester H L Yam
- Centre for Advanced Rehabilitation Therapeutics, Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Yong Joo Loh
- Centre for Advanced Rehabilitation Therapeutics, Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Deshan Kumar Rajeswaran
- Centre for Advanced Rehabilitation Therapeutics, Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Liming Xiang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - Domenico Campolo
- Robotic Research Center, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
407
|
Lee SI, Adans-Dester CP, OBrien AT, Vergara-Diaz GP, Black-Schaffer R, Zafonte R, Dy JG, Bonato P. Predicting and Monitoring Upper-Limb Rehabilitation Outcomes Using Clinical and Wearable Sensor Data in Brain Injury Survivors. IEEE Trans Biomed Eng 2021; 68:1871-1881. [PMID: 32997621 PMCID: PMC8723794 DOI: 10.1109/tbme.2020.3027853] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Rehabilitation specialists have shown considerable interest for the development of models, based on clinical data, to predict the response to rehabilitation interventions in stroke and traumatic brain injury survivors. However, accurate predictions are difficult to obtain due to the variability in patients' response to rehabilitation interventions. This study aimed to investigate the use of wearable technology in combination with clinical data to predict and monitor the recovery process and assess the responsiveness to treatment on an individual basis. METHODS Gaussian Process Regression-based algorithms were developed to estimate rehabilitation outcomes (i.e., Functional Ability Scale scores) using either clinical or wearable sensor data or a combination of the two. RESULTS The algorithm based on clinical data predicted rehabilitation outcomes with a Pearson's correlation of 0.79 compared to actual clinical scores provided by clinicians but failed to model the variability in responsiveness to the intervention observed across individuals. In contrast, the algorithm based on wearable sensor data generated rehabilitation outcome estimates with a Pearson's correlation of 0.91 and modeled the individual responses to rehabilitation more accurately. Furthermore, we developed a novel approach to combine estimates derived from the clinical data and the sensor data using a constrained linear model. This approach resulted in a Pearson's correlation of 0.94 between estimated and clinician-provided scores. CONCLUSION This algorithm could enable the design of patient-specific interventions based on predictions of rehabilitation outcomes relying on clinical and wearable sensor data. SIGNIFICANCE This is important in the context of developing precision rehabilitation interventions.
Collapse
|
408
|
Effectiveness of matrix-rhythm therapy on increased muscle tone, balance and gait parameters in stroke survivors: a single-blinded, randomized, controlled clinical trial. Acta Neurol Belg 2021; 121:689-699. [PMID: 32537732 DOI: 10.1007/s13760-020-01391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
This study was conducted to investigate the effectiveness of Matrix rhythm therapy (MRT) on muscle tone, balance and gait parameters in stroke survivors. Thirty stroke individuals randomly assigned to study and control group received combining BT&MRT, and BT, respectively. This study was a single-blinded (assessor-blind), randomized controlled trial. A total of 30 stroke individuals with spastic hemiparesis (n = 30) aged between 20-65 years were included. The study group received combining BT and MRT on trunk and the affected lower limb. The control group received only BT. Participants in both groups were received therapy for 4 weeks, 3 days/week. The outcome measures were Modified Ashworth Scale (MAS), goniometric measurements (ROM), Single Leg Stance Test of the BESTest Balance Evaluation System, Timed "Get Up & Go" Test of the BESTest and BTS G-Walk Gait-Analysis System. Spasticity intensity, ROM, static/dynamic balance tests' scores, gait velocity, cadence, and pelvic movement symmetries improved in study group (p < 0.05).In the control group, only dynamic balance improved after the treatment program(p < 0.05). Significant improvements were found in terms of spasticity intensity, ROM of knee and ankle joints, static/dynamic balance, gait velocity and cadence in favor of the study group (p < 0.05). This study gives preliminary evidence that adding MRT to BT may be beneficial in improving balance and gait by regulating muscle tone in the affected lower limb of stroke patients with spastic hemiparesis. The study was retrospectively registered at Clinical Trials.gov (ID: NCT04213417; URL: www.clinicaltrials.gov ).
Collapse
|
409
|
Scobbie L, Brady MC, Duncan EAS, Wyke S. Goal attainment, adjustment and disengagement in the first year after stroke: A qualitative study. Neuropsychol Rehabil 2021; 31:691-709. [PMID: 32412863 DOI: 10.1080/09602011.2020.1724803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Understanding stroke survivor responses to attainable and unattainable goals is important so that rehabilitation staff can optimally support ongoing recovery and adaption. In this qualitative study, we aimed to investigate (i) stroke survivor's experiences of goal attainment, adjustment and disengagement in the first year after stroke and (ii) whether the Goal setting and Action Planning (G-AP) framework supported different pathways to goal attainment. In-depth interviews were conducted with eighteen stroke survivors' to explore their experiences and views. Interview data were transcribed verbatim and analysed using a Framework approach to examine themes within and between participants. Stroke survivors reported that attaining personal goals enabled them to resume important activities, reclaim a sense of self and enhance emotional wellbeing. Experiences of goal-related setbacks and failure facilitated understanding and acceptance of limitations and informed adjustment of, or disengagement from, unattainable goals. Use of the G-AP framework supported stroke survivors to (i) identify personal goals, (ii) initiate and sustain goal pursuit, (iii) gauge progress and (iv) make informed decisions about continued goal pursuit, adjustment or disengagement. Stroke survivor recovery involves attainment of original and adjusted or alternative goals. The G-AP framework can support these different pathways to goal attainment.
Collapse
Affiliation(s)
- L Scobbie
- Nursing, Midwifery and Allied Health Professions Research Unit, Glasgow Caledonian University, Glasgow, Scotland
| | - M C Brady
- Nursing, Midwifery and Allied Health Professions Research Unit, Glasgow Caledonian University, Glasgow, Scotland
| | - E A S Duncan
- Nursing, Midwifery and Allied Health Professions Research Unit, University of Stirling, Scotland
| | - S Wyke
- Institute of Health and Wellbeing, University of Glasgow, Scotland
| |
Collapse
|
410
|
Gregor S, Saumur TM, Crosby LD, Powers J, Patterson KK. Study Paradigms and Principles Investigated in Motor Learning Research After Stroke: A Scoping Review. Arch Rehabil Res Clin Transl 2021; 3:100111. [PMID: 34179749 PMCID: PMC8211998 DOI: 10.1016/j.arrct.2021.100111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To (1) characterize study paradigms used to investigate motor learning (ML) poststroke and (2) summarize the effects of different ML principles in promoting skill acquisition and retention. Our secondary objective is to evaluate the clinical utility of ML principles on stroke rehabilitation. DATA SOURCES Medline, Excerpta Medica Database, Allied and Complementary Medicine, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Central Register of Controlled Trials were searched from inception on October 24, 2018 and repeated on June 23, 2020. Scopus was searched on January 24, 2019 and July 22, 2020 to identify additional studies. STUDY SELECTION Our search included keywords and concepts to represent stroke and "motor learning. An iterative process was used to generate study selection criteria. Three authors independently completed title, abstract, and full-text screening. DATA EXTRACTION Three reviewers independently completed data extraction. DATA SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension guidelines for scoping reviews were used to guide our synthesis. Thirty-nine studies were included. Study designs were heterogeneous, including variability in tasks practiced, acquisition parameters, and retention intervals. ML principles investigated included practice complexity, feedback, motor imagery, mental practice, action observation, implicit and explicit information, aerobic exercise, and neurostimulation. An additional 2 patient-related factors that influence ML were included: stroke characteristics and sleep. Practice complexity, feedback, and mental practice/action observation most consistently promoted ML, while provision of explicit information and more severe strokes were detrimental to ML. Other factors (ie, sleep, practice structure, aerobic exercise, neurostimulation) had a less clear influence on learning. CONCLUSIONS Improved consistency of reporting in ML studies is needed to improve study comparability and facilitate meta-analyses to better understand the influence of ML principles on learning poststroke. Knowledge of ML principles and patient-related factors that influence ML, with clinical judgment can guide neurologic rehabilitation delivery to improve patient motor outcomes.
Collapse
Affiliation(s)
- Sarah Gregor
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Tyler M. Saumur
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Lucas D. Crosby
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Jessica Powers
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Kara K. Patterson
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
411
|
Influence of the Passive Stabilization of the Trunk and Upper Limb on Selected Parameters of the Hand Motor Coordination, Grip Strength and Muscle Tension, in Post-Stroke Patients. J Clin Med 2021; 10:jcm10112402. [PMID: 34072303 PMCID: PMC8197819 DOI: 10.3390/jcm10112402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022] Open
Abstract
Objective: Assessment of the influence of a stable trunk and the affected upper limb (dominant or non-dominant) on the parameters of the wrist and hand motor coordination, grip strength and muscle tension in patients in the subacute post-stroke stage compared to healthy subjects. Design: An observational study. Setting: Stroke Rehabilitation Department. Subjects: Thirty-four subjects after ischemic cerebral stroke and control group-32 subjects without neurological deficits, age and body mass/ height matched were included. Main measures: The tone of the multifidus, transverse abdominal and supraspinatus muscles were assessed by Luna EMG device. A HandTutor device were used to measure motor coordination parameters (e.g., range of movement, frequency of movement), and a manual dynamometer for measuring the strength of a hand grip. Subjects were examined in two positions: sitting without back support (non-stabilized) and lying with stabilization of the trunk and the upper limb. Results: Passive stabilization of the trunk and the upper extremity caused a significant improvement in motor coordination of the fingers (p ˂ 0.001) and the wrist (p < 0.001) in patients after stroke. Improved motor coordination of the upper extremity was associated with an increased tone of the supraspinatus muscle. Conclusions: Passive stabilization of the trunk and the upper limb improved the hand and wrist coordination in patients following a stroke. Placing patients in a supine position with the stability of the affected upper limb during rehabilitation exercises may help them to access latent movement patterns lost due to neurological impairment after a stroke.
Collapse
|
412
|
Fernandez-Garcia C, Ternent L, Homer TM, Rodgers H, Bosomworth H, Shaw L, Aird L, Andole S, Cohen D, Dawson J, Finch T, Ford G, Francis R, Hogg S, Hughes N, Krebs HI, Price C, Turner D, Van Wijck F, Wilkes S, Wilson N, Vale L. Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial. BMJ Open 2021; 11:e042081. [PMID: 34035087 PMCID: PMC8154983 DOI: 10.1136/bmjopen-2020-042081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To determine whether robot-assisted training is cost-effective compared with an enhanced upper limb therapy (EULT) programme or usual care. DESIGN Economic evaluation within a randomised controlled trial. SETTING Four National Health Service (NHS) centres in the UK: Queen's Hospital, Barking, Havering and Redbridge University Hospitals NHS Trust; Northwick Park Hospital, London Northwest Healthcare NHS Trust; Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde; and North Tyneside General Hospital, Northumbria Healthcare NHS Foundation Trust. PARTICIPANTS 770 participants aged 18 years or older with moderate or severe upper limb functional limitation from first-ever stroke. INTERVENTIONS Participants randomised to one of three programmes provided over a 12-week period: robot-assisted training plus usual care; the EULT programme plus usual care or usual care. MAIN ECONOMIC OUTCOME MEASURES Mean healthcare resource use; costs to the NHS and personal social services in 2018 pounds; utility scores based on EQ-5D-5L responses and quality-adjusted life years (QALYs). Cost-effectiveness reported as incremental cost per QALY and cost-effectiveness acceptability curves. RESULTS At 6 months, on average usual care was the least costly option (£3785) followed by EULT (£4451) with robot-assisted training being the most costly (£5387). The mean difference in total costs between the usual care and robot-assisted training groups (£1601) was statistically significant (p<0.001). Mean QALYs were highest for the EULT group (0.23) but no evidence of a difference (p=0.995) was observed between the robot-assisted training (0.21) and usual care groups (0.21). The incremental cost per QALY at 6 months for participants randomised to EULT compared with usual care was £74 100. Cost-effectiveness acceptability curves showed that robot-assisted training was unlikely to be cost-effective and that EULT had a 19% chance of being cost-effective at the £20 000 willingness to pay (WTP) threshold. Usual care was most likely to be cost-effective at all the WTP values considered in the analysis. CONCLUSIONS The cost-effectiveness analysis suggested that neither robot-assisted training nor EULT, as delivered in this trial, were likely to be cost-effective at any of the cost per QALY thresholds considered. TRIAL REGISTRATION NUMBER ISRCTN69371850.
Collapse
Affiliation(s)
- Cristina Fernandez-Garcia
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Laura Ternent
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Tara Marie Homer
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Helen Rodgers
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Helen Bosomworth
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Lisa Shaw
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Lydia Aird
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Sreeman Andole
- Stroke Medicine, Barking Havering and Redbridge Hospitals NHS Trust, Romford, UK
| | - David Cohen
- Northwick Park, London North West University Healthcare NHS Trust, Harrow, UK
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tracy Finch
- Nursing, Midwifery and Health, Northumbria University, Newcastle upon Tyne, UK
| | - Gary Ford
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Oxford Academic Health Science Network, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard Francis
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Steven Hogg
- (Lay Investigator) Contact Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Niall Hughes
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - H I Krebs
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher Price
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Duncan Turner
- School of Health Sport and Bioscience, University of East London, London, UK
| | - Frederike Van Wijck
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Scott Wilkes
- School of Pharmacy, University of Sunderland, Sunderland, UK
| | - Nina Wilson
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
413
|
Lackritz H, Parmet Y, Frenkel-Toledo S, Baniña MC, Soroker N, Solomon JM, Liebermann DG, Levin MF, Berman S. Effect of post-stroke spasticity on voluntary movement of the upper limb. J Neuroeng Rehabil 2021; 18:81. [PMID: 33985543 PMCID: PMC8117272 DOI: 10.1186/s12984-021-00876-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background Hemiparesis following stroke is often accompanied by spasticity. Spasticity is one factor among the multiple components of the upper motor neuron syndrome that contributes to movement impairment. However, the specific contribution of spasticity is difficult to isolate and quantify. We propose a new method of quantification and evaluation of the impact of spasticity on the quality of movement following stroke. Methods Spasticity was assessed using the Tonic Stretch Reflex Threshold (TSRT). TSRT was analyzed in relation to stochastic models of motion to quantify the deviation of the hemiparetic upper limb motion from the normal motion patterns during a reaching task. Specifically, we assessed the impact of spasticity in the elbow flexors on reaching motion patterns using two distinct measures of the ‘distance’ between pathological and normal movement, (a) the bidirectional Kullback–Liebler divergence (BKLD) and (b) Hellinger’s distance (HD). These measures differ in their sensitivity to different confounding variables. Motor impairment was assessed clinically by the Fugl-Meyer assessment scale for the upper extremity (FMA-UE). Forty-two first-event stroke patients in the subacute phase and 13 healthy controls of similar age participated in the study. Elbow motion was analyzed in the context of repeated reach-to-grasp movements towards four differently located targets. Log-BKLD and HD along with movement time, final elbow extension angle, mean elbow velocity, peak elbow velocity, and the number of velocity peaks of the elbow motion were computed. Results Upper limb kinematics in patients with lower FMA-UE scores (greater impairment) showed greater deviation from normality when the distance between impaired and normal elbow motion was analyzed either with the BKLD or HD measures. The severity of spasticity, reflected by the TSRT, was related to the distance between impaired and normal elbow motion analyzed with either distance measure. Mean elbow velocity differed between targets, however HD was not sensitive to target location. This may point at effects of spasticity on motion quality that go beyond effects on velocity. Conclusions The two methods for analyzing pathological movement post-stroke provide new options for studying the relationship between spasticity and movement quality under different spatiotemporal constraints.
Collapse
Affiliation(s)
- Hadar Lackritz
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yisrael Parmet
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Silvi Frenkel-Toledo
- Faculty of Health Sciences, Department of Physical Therapy, Ariel University, Ariel, Israel.,Department of Neurological Rehabilitation, Loewenstein Hospital, Ra'anana, Israel
| | - Melanie C Baniña
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, QC, Canada
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Hospital, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John M Solomon
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Centre for Comprehensive Stroke Rehabilitation and Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Dario G Liebermann
- Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mindy F Levin
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, QC, Canada
| | - Sigal Berman
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel. .,The Zlotowski Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
414
|
Conti S, Spalletti C, Pasquini M, Giordano N, Barsotti N, Mainardi M, Lai S, Giorgi A, Pasqualetti M, Micera S, Caleo M. Combining robotics with enhanced serotonin-driven cortical plasticity improves post-stroke motor recovery. Prog Neurobiol 2021; 203:102073. [PMID: 33984455 DOI: 10.1016/j.pneurobio.2021.102073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Despite recent progresses in robotic rehabilitation technologies, their efficacy for post-stroke motor recovery is still limited. Such limitations might stem from the insufficient enhancement of plasticity mechanisms, crucial for functional recovery. Here, we designed a clinically relevant strategy that combines robotic rehabilitation with chemogenetic stimulation of serotonin release to boost plasticity. These two approaches acted synergistically to enhance post-stroke motor performance. Indeed, mice treated with our combined therapy showed substantial functional gains that persisted beyond the treatment period and generalized to non-trained tasks. Motor recovery was associated with a reduction in electrophysiological and neuroanatomical markers of GABAergic neurotransmission, suggesting disinhibition in perilesional areas. To unveil the translational potentialities of our approach, we specifically targeted the serotonin 1A receptor by delivering Buspirone, a clinically approved drug, in stroke mice undergoing robotic rehabilitation. Administration of Buspirone restored motor impairments similarly to what observed with chemogenetic stimulation, showing the immediate translational potential of this combined approach to significantly improve motor recovery after stroke.
Collapse
Affiliation(s)
- S Conti
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - C Spalletti
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - M Pasquini
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - N Giordano
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - N Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy
| | - M Mainardi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - S Lai
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - A Giorgi
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy
| | - M Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy; Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - S Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Centre for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.
| | - M Caleo
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy; Department of Biomedical Sciences, University of Padova, Italy.
| |
Collapse
|
415
|
Cao Z, Zhu C, Zhou Y, Wang Y, Chen M, Ju Y, Zhao X. Risk factors related balance disorder for patients with dizziness/vertigo. BMC Neurol 2021; 21:186. [PMID: 33964889 PMCID: PMC8106193 DOI: 10.1186/s12883-021-02188-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When dizziness/vertigo patients presented with balance disorder, it will bring severe morbidity. There is currently lack of research to explore risk factor related balance disorder in dizziness patients, especially in those who walk independently. AIM To investigate risk factors related balance disorder in dizziness/vertigo patients who walk independently. METHODS Medical data of 1002 dizziness/vertigo patients registered in vertigo/balance disorder registration database were reviewed. The demographic data, medical history, and risk factors for atherosclerosis (AS) were collected. Enrolled dizziness/vertigo patients could walk independently, completed Romberg test, videonystagmography (VNG), and limits of stability (LOS). The subjective imbalance was patient complained of postural symptom when performing Romberg test. Multivariable logistic regression analyzed risk factors related balance disorder. The receiver operating characteristic (ROC) curve evaluated the utility of regression model. RESULTS Five hundred fifty-three dizziness/vertigo patients who walk independently were included in the final analysis. According to LOS, patients were divided into 334 (60%) normal balance and 219 (40%) balance disorder. Compared with normal balance, patients with balance disorder were older (P = 0.045) and had more risk factors for AS (P<0.0001). The regression showed that risk factors for AS (OR 1.494, 95% CI 1.198-1.863), subjective imbalance (OR 4.835, 95% CI 3.047-7.673), and abnormality of optokinetic nystagmus (OR 8.308, 95% CI 1.576-43.789) were related to balance disorder. The sensitivity and specificity of model were 71 and 63% (P<0.0001). The area under the curve (AUC) was 0.721. CONCLUSIONS Risk factors for AS, subjective imbalance, and abnormality of optokinetic nystagmus were predictors for balance disorder in patients with dizziness/vertigo who walk independently.
Collapse
Affiliation(s)
- Zhentang Cao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Clinical Center for Vertigo and Balance Disturbance, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cuiting Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Clinical Center for Vertigo and Balance Disturbance, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanan Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Clinical Center for Vertigo and Balance Disturbance, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Clinical Center for Vertigo and Balance Disturbance, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meimei Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Clinical Center for Vertigo and Balance Disturbance, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Ju
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Clinical Center for Vertigo and Balance Disturbance, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Clinical Center for Vertigo and Balance Disturbance, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
416
|
Peng QC, Yin L, Cao Y. Effectiveness of Virtual Reality in the Rehabilitation of Motor Function of Patients With Subacute Stroke: A Meta-Analysis. Front Neurol 2021; 12:639535. [PMID: 34025553 PMCID: PMC8131676 DOI: 10.3389/fneur.2021.639535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Stroke is a major cause of death and disability in adults. Conventional therapy (CT) has limited effectiveness, and therefore, various virtual reality (VR) rehabilitation programs have been designed. However, their efficacy in regaining motor function in patients with subacute stroke is questionable. Therefore, we conducted this meta-analysis to determine the efficacy of VR, compared to CT, in restoring motor function in this patient population. Up to October 10, 2020, nine electronic databases were searched for relevant articles reporting the effectiveness of VR in regaining motor function in patients with subacute stroke. This search was updated on March 7, 2021, with no additional added articles. The control group included CT, physical therapy, occupational therapy, or a combination of them. Effectiveness is defined as the positive change from baseline values to the last follow-up point. The Cochrane's revised risk-of-bias tool was used to determine the quality of included trials. A metaregression analysis was conducted to determine the effect of "time since last stroke" on reported outcomes. Publication bias and sensitivity analyses were also carried out. A total of 19 studies (17 randomized controlled trials, 1 cohort study, and 1 crossover trial) were included in the qualitative analysis, whereas 16 trials were meta-analyzed. A great improvement in motor function was noted in the VR group, when compared to preintervention values [standardized mean difference (SMD) = 1.14; 95% confidence interval (CI) = 0.77-1.52; I 2 = 82%; P < 0.001]. When compared to CT, VR resulted in mild improvement in motor function (SMD = 0.47; 95% CI = 0.22-0.72; I 2 = 75%; P < 0.001). However, upon trim-and-fill adjustment, this finding was deemed insignificant (SMD = 0.08; 95% CI = -0.16 to 0.33; I 2 = 82.6%; P < 0.001). Ten studies had low risk, five had some concerns, three had high risk, and one had a moderate risk of bias. VR programs can be used jointly with CT for the rehabilitation of the motor function of patients with subacute stroke. However, more studies are still warranted to determine the effectiveness of these interventions in retaining the cognitive function and physical performance of such patients.
Collapse
Affiliation(s)
- Quan-Cheng Peng
- Department of Rehabilitation Medicine, Hanchuan People's Hospital, Hanchuan, China
| | - Ling Yin
- Department of Pharmacy, Hanchuan People's Hospital, Hanchuan, China
| | - Yi Cao
- Department of Rehabilitation Medicine, Hanchuan People's Hospital, Hanchuan, China
| |
Collapse
|
417
|
Philip BA, McAvoy MP, Frey SH. Interhemispheric Parietal-Frontal Connectivity Predicts the Ability to Acquire a Nondominant Hand Skill. Brain Connect 2021; 11:308-318. [PMID: 33403906 PMCID: PMC8112712 DOI: 10.1089/brain.2020.0916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: After chronic impairment of the right dominant hand, some individuals are able to compensate with increased performance with the intact left nondominant hand. This process may depend on the nondominant (right) hemisphere's ability to access dominant (left) hemisphere mechanisms. To predict or modulate patients' ability to compensate with the left hand, we must understand the neural mechanisms and connections that underpin this process. Methods: We studied 17 right-handed healthy adults who underwent resting-state functional connectivity (FC) magnetic resonance imaging scans before 10 days of training on a left-hand precision drawing task. We sought to identify right-hemisphere areas where FC from left-hemisphere seeds (primary motor cortex, intraparietal sulcus [IPS], inferior parietal lobule) would predict left-hand skill learning or magnitude. Results: Left-hand skill learning was predicted by convergent FC from left primary motor cortex and left IPS onto the same small region (0.31 cm3) in the right superior parietal lobule (SPL). Discussion: For patients who must compensate with the left hand, the right SPL may play a key role in integrating left-hemisphere mechanisms that typically control the right hand. Our study provides the first model of how interhemispheric functional connections in the human brain may support compensation after chronic injury to the right hand.
Collapse
Affiliation(s)
- Benjamin A. Philip
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Mark P. McAvoy
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott H. Frey
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
418
|
Xin H, Liu Z, Buller B, Li Y, Golembieski W, Gan X, Wang F, Lu M, Ali MM, Zhang ZG, Chopp M. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke. J Cereb Blood Flow Metab 2021; 41:1131-1144. [PMID: 32811262 PMCID: PMC8054728 DOI: 10.1177/0271678x20950489] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MiR-17-92 cluster enriched exosomes derived from multipotent mesenchymal stromal cells (MSCs) increase functional recovery after stroke. Here, we investigate the mechanisms underlying this recovery. At 24 h (h) post transient middle cerebral artery occlusion, rats received control liposomes or exosomes derived from MSCs infected with pre-miR-17-92 expression lentivirus (Exo-miR-17-92+) or control lentivirus (Exo-Con) intravenously. Compared to the liposomes, exosomes significantly reduced the intracortical microstimulation threshold current of the contralateral cortex for evoking impaired forelimb movements (day 21), increased the neurite and myelin density in the ischemic boundary area, and contralesional axonal sprouting into the caudal forelimb area of ipsilateral side and in the denervated spinal cord (day 28), respectively. The Exo-miR-17-92+ further enhanced axon-myelin remodeling and electrophysiological recovery compared with the EXO-Con. Ex vivo cultured rat brain slice data showed that myelin and neuronal fiber density were significantly increased by Exo-miR-17-92+, while significantly inhibited by application of the PI3K/Akt/mTOR pathway inhibitors. Our studies suggest that the miR-17-92 cluster enriched MSC exosomes enhanced neuro-functional recovery of stroke may be attributed to an increase of axonal extension and myelination, and this enhanced axon-myelin remodeling may be mediated in part via the activation of the PI3K/Akt/mTOR pathway induced by the downregulation of PTEN.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Benjamin Buller
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Yanfeng Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Xinling Gan
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Fengjie Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Mei Lu
- Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Meser M Ali
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Zheng G Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.,Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
419
|
User-driven treadmill walking promotes healthy step width after stroke. Gait Posture 2021; 86:256-259. [PMID: 33812294 PMCID: PMC8085049 DOI: 10.1016/j.gaitpost.2021.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Walking with user-driven treadmill control is believed to be more like overground walking than fixed-speed treadmill walking. Walking speed and ground reaction forces differ between overground and fixed-speed treadmill walking, but not between overground and user-driven treadmill walking in healthy and post-stroke subjects. However, studies assessing spatiotemporal gait parameters during user-driven treadmill walking are limited. This information may help confirm that user-driven treadmill walking is more like overground walking than fixed-speed treadmill walking, as well as inform the development of post-stroke gait rehabilitation programs. RESEARCH QUESTION How do spatiotemporal gait parameters for individuals post-stroke differ between fixed-speed and user-driven treadmill walking? METHODS Eighteen subjects (10 M, 8 F; 62 ± 12 years; 1.73 ± 0.12 m; 84.9 ± 12.9 kg; 40 ± 30 months post-stroke) with chronic post-stroke hemiparesis participated in this study. Participants walked on an instrumented treadmill in its fixed-speed and user-driven modes at their self-selected and fastest comfortable walking speeds. Subjects wore retroreflective markers for motion capture. Shapiro-Wilk tests were used to assess for normality and one-way repeated measures ANOVAs were used to compare between conditions with α = 0.05. Bonferroni corrections were used for multiple comparisons. RESULTS Step width was significantly smaller with user-driven control (13.7 cm, 95 % CI: [0.131, 0.145]) than fixed-speed control (16.8 cm, 95 % CI:[0.160, 0.174]), while step length and step time did not differ across treadmill conditions. Step length and step time differed between self-selected and fast walking speeds, but not treadmill control conditions. SIGNIFICANCE The results of this study show that user-driven treadmill control encourages healthy gait biomechanics and a greater sense of stability in post-stroke subjects. Individuals post-stroke walked with smaller step width with user-driven treadmill control, which has been associated with increased balance. Post-stroke gait rehabilitation may benefit from programs with user-driven treadmill training paradigms to improve mobility following stroke.
Collapse
|
420
|
Effect of Traditional plus Virtual Reality Rehabilitation on Prognosis of Stroke Survivors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am J Phys Med Rehabil 2021; 101:217-228. [PMID: 33929347 DOI: 10.1097/phm.0000000000001775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Virtual reality (VR) technology has begun to be gradually applied to clinical stroke rehabilitation. The study aims to evaluate the effect of traditional plus VR rehabilitation on motor function recovery, balance, and activities of daily living in stroke patients. METHOD Studies published in English prior to October 2020 were retrieved from PubMed, EMBASE, Web of Science, and the Cochrane Library. and used RevMan 5.3 software for meta-analysis. RESULT A total of 21 randomized controlled trials (RCTs) were included, which enrolled 619 patients. Traditional plus VR rehabilitation is better than traditional rehabilitation in upper limb motor function recovery measured by Fugl-Meyer Assessment-Upper Extremity (mean difference [MD] 3.49; 95% CI [1.24, 5.73]; P=.002) and manual dexterity assessed by Box & Block Test (MD 6.59; 95% CI [3.45, 9.74]; P<.0001); However, there is no significant difference from traditional rehabilitation in activities of daily living assessed by Functional Independence Measure (MD 0.38; 95% CI [-0.26, 1.02]; P=.25) and balance assessed by Berg Balance Scale (MD 2.18; 95% CI [-0.35, 4.71]; P=.09). CONCLUSION Traditional plus VR rehabilitation therapy is an effective method to improve the upper limb motor function and manual dexterity of patients with limb disorders after stroke, and immersive VR rehabilitation treatment may become a new option for rehabilitation after stroke.
Collapse
|
421
|
Winter C, Kern F, Gall D, Latoschik ME, Pauli P, Käthner I. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. J Neuroeng Rehabil 2021; 18:68. [PMID: 33888148 PMCID: PMC8061882 DOI: 10.1186/s12984-021-00848-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background The rehabilitation of gait disorders in patients with multiple sclerosis (MS) and stroke is often based on conventional treadmill training. Virtual reality (VR)-based treadmill training can increase motivation and improve therapy outcomes. The present study evaluated an immersive virtual reality application (using a head-mounted display, HMD) for gait rehabilitation with patients to (1) demonstrate its feasibility and acceptance and to (2) compare its short-term effects to a semi-immersive presentation (using a monitor) and a conventional treadmill training without VR to assess the usability of both systems and estimate the effects on walking speed and motivation. Methods In a within-subjects study design, 36 healthy participants and 14 persons with MS or stroke participated in each of the three experimental conditions (VR via HMD, VR via monitor, treadmill training without VR). Results For both groups, the walking speed in the HMD condition was higher than in treadmill training without VR and in the monitor condition. Healthy participants reported a higher motivation after the HMD condition as compared with the other conditions. Importantly, no side effects in the sense of simulator sickness occurred and usability ratings were high. No increases in heart rate were observed following the VR conditions. Presence ratings were higher for the HMD condition compared with the monitor condition for both user groups. Most of the healthy study participants (89%) and patients (71%) preferred the HMD-based training among the three conditions and most patients could imagine using it more frequently. Conclusions For the first time, the present study evaluated the usability of an immersive VR system for gait rehabilitation in a direct comparison with a semi-immersive system and a conventional training without VR with healthy participants and patients. The study demonstrated the feasibility of combining a treadmill training with immersive VR. Due to its high usability and low side effects, it might be particularly suited for patients to improve training motivation and training outcome e. g. the walking speed compared with treadmill training using no or only semi-immersive VR. Immersive VR systems still require specific technical setup procedures. This should be taken into account for specific clinical use-cases during a cost–benefit assessment. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00848-w.
Collapse
Affiliation(s)
- Carla Winter
- Department of Psychology I, Biological Psychology, Clinical Psychology And Psychotherapy, University of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Florian Kern
- Human-Computer Interaction, University of Würzburg, Würzburg, Germany
| | - Dominik Gall
- Department of Psychology I, Biological Psychology, Clinical Psychology And Psychotherapy, University of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.,Human-Computer Interaction, University of Würzburg, Würzburg, Germany
| | | | - Paul Pauli
- Department of Psychology I, Biological Psychology, Clinical Psychology And Psychotherapy, University of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.,Center of Mental Health, Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Ivo Käthner
- Department of Psychology I, Biological Psychology, Clinical Psychology And Psychotherapy, University of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany
| |
Collapse
|
422
|
Albanese GA, Holmes MWR, Marini F, Morasso P, Zenzeri J. Wrist Position Sense in Two Dimensions: Between-Hand Symmetry and Anisotropic Accuracy Across the Space. Front Hum Neurosci 2021; 15:662768. [PMID: 33967724 PMCID: PMC8100524 DOI: 10.3389/fnhum.2021.662768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 02/01/2023] Open
Abstract
A deep investigation of proprioceptive processes is necessary to understand the relationship between sensory afferent inputs and motor outcomes. In this work, we investigate whether and how perception of wrist position is influenced by the direction along which the movement occurs. Most previous studies have tested Joint Position Sense (JPS) through 1 degree of freedom (DoF) wrist movements, such as flexion/extension (FE) or radial/ulnar deviation (RUD). However, the wrist joint has 3-DoF and many activities of daily living produce combined movements, requiring at least 2-DoF wrist coordination. For this reason, in this study, target positions involved movement directions that combined wrist flexion or extension with radial or ulnar deviation. The chosen task was a robot-aided Joint Position Matching (JPM), in which blindfolded participants actively reproduced a previously passively assumed target joint configuration. The JPM performance of 20 healthy participants was quantified through measures of accuracy and precision, in terms of both perceived target direction and distance along each direction of movement. Twelve different directions of movement were selected and both hands tested. The left and right hand led to comparable results, both target extents and directions were differently perceived according to the target direction on the FE/RUD space. Moreover, during 2-DoF combined movements, subjects' perception of directions was impaired when compared to 1-DoF target movements. In summary, our results showed that human perception of wrist position on the FE/RUD space is symmetric between hands but not isotropic among movement directions.
Collapse
Affiliation(s)
- Giulia A Albanese
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Michael W R Holmes
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | | | - Pietro Morasso
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
423
|
Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors. J Stroke Cerebrovasc Dis 2021; 30:105812. [PMID: 33895427 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105812] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity. METHODS Sixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength. RESULTS For all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase. CONCLUSION EMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity.
Collapse
|
424
|
Norouzi-Gheidari N, Archambault PS, Monte-Silva K, Kairy D, Sveistrup H, Trivino M, Levin MF, Milot MH. Feasibility and preliminary efficacy of a combined virtual reality, robotics and electrical stimulation intervention in upper extremity stroke rehabilitation. J Neuroeng Rehabil 2021; 18:61. [PMID: 33853614 PMCID: PMC8045249 DOI: 10.1186/s12984-021-00851-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background Approximately 80% of individuals with chronic stroke present with long lasting upper extremity (UE) impairments. We designed the perSonalized UPper Extremity Rehabilitation (SUPER) intervention, which combines robotics, virtual reality activities, and neuromuscular electrical stimulation (NMES). The objectives of our study were to determine the feasibility and the preliminary efficacy of the SUPER intervention in individuals with moderate/severe stroke. Methods Stroke participants (n = 28) received a 4-week intervention (3 × per week), tailored to their functional level. The functional integrity of the corticospinal tract was assessed using the Predict Recovery Potential algorithm, involving measurements of motor evoked potentials and manual muscle testing. Those with low potential for hand recovery (shoulder group; n = 18) received a robotic-rehabilitation intervention focusing on elbow and shoulder movements only. Those with a good potential for hand recovery (hand group; n = 10) received EMG-triggered NMES, in addition to robot therapy. The primary outcomes were the Fugl-Meyer UE assessment and the ABILHAND assessment. Secondary outcomes included the Motor Activity Log and the Stroke Impact Scale. Results Eighteen participants (64%), in either the hand or the shoulder group, showed changes in the Fugl-Meyer UE or in the ABILHAND assessment superior to the minimal clinically important difference. Conclusions This indicates that our personalized approach is feasible and may be beneficial in improving UE function in individuals with moderate to severe impairments due to stroke. Trial registration ClinicalTrials.gov NCT03903770. Registered 4 April 2019. Registered retrospectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00851-1.
Collapse
Affiliation(s)
- Nahid Norouzi-Gheidari
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada.,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada
| | - Philippe S Archambault
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada. .,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.
| | - Katia Monte-Silva
- Physical Therapy Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Dahlia Kairy
- Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.,School of Rehabilitation, University of Montreal, Montreal, Canada
| | - Heidi Sveistrup
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Michael Trivino
- Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.,Centre Intégré de santé et services sociaux de Laval, Laval, Canada
| | - Mindy F Levin
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada.,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada
| | - Marie-Hélène Milot
- School of Rehabilitation, University of Sherbrooke, Sherbrooke, Canada.,Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Canada
| |
Collapse
|
425
|
Kim TL, Hwang SH, Lee WJ, Hwang JW, Cho I, Kim EH, Lee JA, Choi Y, Park JH, Shin JH. The Korean Version of the Fugl-Meyer Assessment: Reliability and Validity Evaluation. Ann Rehabil Med 2021; 45:83-98. [PMID: 33849084 PMCID: PMC8137384 DOI: 10.5535/arm.20225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Objective To systematically translate the Fugl-Meyer Assessment (FMA) into a Korean version of the FMA (K-FMA). Methods We translated the original FMA into the Korean version with three translators and a translation committee, which included physiatrists, physical therapists, and occupational therapists. Based on a test-retest method, each of 31 patients with stroke was assessed by two evaluators twice, once on recruitment, and again after a week. Analysis of intra- and inter-rater reliabilities was performed using the intra-class correlation coefficient, whereas validity was analysed using Pearson correlation test along with the Motricity Index (MI), Motor Assessment Scale (MAS), and Berg Balance Scale (BBS). Results The intra- and inter-rater reliabilities were significant for the total score, and good to excellent reliability was noted in all domains except for the joint range of motion of the lower extremity domain of the K-FMA. The MI and MAS scores were significantly correlated with all domains, all with p<0.01. The results for the MI ranged from r=0.639 to r=0.891 and those for the MAS from r=0.339 to r=0.555. However, the BBS was not significantly correlated with any domain, as the K-FMA lacks balance evaluation items. Conclusion The K-FMA was found to have high reliability and validity. Additionally, the newly developed manual for the K-FMA may help minimise errors that can occur during evaluation and improve the reliability of motor function evaluation.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Sung Hwan Hwang
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Wang Jae Lee
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Jae Woong Hwang
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Inyong Cho
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Eun-Hye Kim
- Department of Clinical Rehabilitation Research, Korea National Rehabilitation Research Institute, Seoul, Korea
| | - Jung Ah Lee
- Department of Clinical Rehabilitation Research, Korea National Rehabilitation Research Institute, Seoul, Korea
| | - Yujin Choi
- Department of Clinical Rehabilitation Research, Korea National Rehabilitation Research Institute, Seoul, Korea
| | - Jin Ho Park
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Joon-Ho Shin
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| |
Collapse
|
426
|
Chen ZJ, He C, Xia N, Gu MH, Li YA, Xiong CH, Xu J, Huang XL. Association Between Finger-to-Nose Kinematics and Upper Extremity Motor Function in Subacute Stroke: A Principal Component Analysis. Front Bioeng Biotechnol 2021; 9:660015. [PMID: 33912550 PMCID: PMC8072355 DOI: 10.3389/fbioe.2021.660015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Kinematic analysis facilitates interpreting the extent and mechanisms of motor restoration after stroke. This study was aimed to explore the kinematic components of finger-to-nose test obtained from principal component analysis (PCA) and the associations with upper extremity (UE) motor function in subacute stroke survivors. Methods Thirty-seven individuals with subacute stroke and twenty healthy adults participated in the study. Six kinematic metrics during finger-to-nose task (FNT) were utilized to perform PCA. Clinical assessments for stroke participants included the Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), and Modified Barthel Index (MBI). Results Three principal components (PC) accounting for 91.3% variance were included in multivariable regression models. PC1 (48.8%) was dominated by mean velocity, peak velocity, number of movement units (NMU) and normalized integrated jerk (NIJ). PC2 (31.1%) described percentage of time to peak velocity and movement time. PC3 (11.4%) profiled percentage of time to peak velocity. The variance explained by principal component regression in FMA-UE (R2 = 0.71) were higher than ARAT (R2 = 0.59) and MBI (R2 = 0.29) for stroke individuals. Conclusion Kinematic components during finger-to-nose test identified by PCA are associated with UE motor function in subacute stroke. PCA reveals the intrinsic association among kinematic metrics, which may add value to UE assessment and future intervention targeted for kinematic components for stroke individuals. Clinical Trial Registration Chinese Clinical Trial Registry (http://www.chictr.org.cn/) on 17 October 2019, identifier: ChiCTR1900026656.
Collapse
Affiliation(s)
- Ze-Jian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Chang He
- State Key Lab of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Ming-Hui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Yang-An Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Cai-Hua Xiong
- State Key Lab of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Xiao-Lin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| |
Collapse
|
427
|
Sajid N, Holmes E, Hope TM, Fountas Z, Price CJ, Friston KJ. Simulating lesion-dependent functional recovery mechanisms. Sci Rep 2021; 11:7475. [PMID: 33811259 PMCID: PMC8018968 DOI: 10.1038/s41598-021-87005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/22/2021] [Indexed: 01/13/2023] Open
Abstract
Functional recovery after brain damage varies widely and depends on many factors, including lesion site and extent. When a neuronal system is damaged, recovery may occur by engaging residual (e.g., perilesional) components. When damage is extensive, recovery depends on the availability of other intact neural structures that can reproduce the same functional output (i.e., degeneracy). A system's response to damage may occur rapidly, require learning or both. Here, we simulate functional recovery from four different types of lesions, using a generative model of word repetition that comprised a default premorbid system and a less used alternative system. The synthetic lesions (i) completely disengaged the premorbid system, leaving the alternative system intact, (ii) partially damaged both premorbid and alternative systems, and (iii) limited the experience-dependent plasticity of both. The results, across 1000 trials, demonstrate that (i) a complete disconnection of the premorbid system naturally invoked the engagement of the other, (ii) incomplete damage to both systems had a much more devastating long-term effect on model performance and (iii) the effect of reducing learning capacity within each system. These findings contribute to formal frameworks for interpreting the effect of different types of lesions.
Collapse
Affiliation(s)
- Noor Sajid
- Wellcome Centre for Human Neuroimaging, University College London, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK.
| | - Emma Holmes
- Wellcome Centre for Human Neuroimaging, University College London, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK
| | - Thomas M Hope
- Wellcome Centre for Human Neuroimaging, University College London, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK
| | - Zafeirios Fountas
- Wellcome Centre for Human Neuroimaging, University College London, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK
- Huawei 2012 Laboratories, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, University College London, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
428
|
Moslemi Haghighi F, Kordi Yoosefinejad A, Razeghi M, Shariat A, Bagheri Z, Rezaei K. The Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Functional Indices of Affected Upper Limb in Patients with Subacute Stroke. J Biomed Phys Eng 2021; 11:175-184. [PMID: 33937125 PMCID: PMC8064128 DOI: 10.31661/jbpe.v0i0.879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/28/2018] [Indexed: 01/23/2023]
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) is a novel technique that may improve recovery in patients with stoke, but the role of rTMS as an applied and practical treatment modality for stroke rehabilitation has not been established yet. Objective: This study was conducted to determine the effects of a rehabilitation program (RP) in conjunction with rTMS on functional indices of the paretic upper limb in the subacute phase of stroke. Material and Methods: In this experimental study, twenty patients in the subacute phase of stroke were randomly assigned into two groups: The high frequency rTMS (HF-rTMS) in conjunction with RP (experimental group), and the RP group (control group). The experimental group received 10 sessions of 20 Hz rTMS on the affected primary motor cortex and the other group received 10 sessions of RP. In experimental group, RP for the paretic hand was conducted following rTMS session. Box and block test (BBT), Fugl-Meyer Motor Assessment for upper limb (FMA-UL), grip strength and pinch strength were used to assess motor function before the first session and after the last session of treatment. Results: Significant improvement in BBT, FMA-UL, grip strength and pinch strength was observed in both groups. Improvement of BBT and grip strength was significantly greater in the experimental group rather than the control group (p<0.05). FMA-UL score and the pinch strength were greater in the experimental group, although the differences were not statistically significant. Conclusion: HF-rTMS in conjunction with RP is effective to improve the function of upper limb. It seems HF-rTMS is a novel feasible and safe technique for hemiparesis patients in the subacute phase of stroke.
Collapse
Affiliation(s)
- Farzaneh Moslemi Haghighi
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Student Research Committee, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Kordi Yoosefinejad
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Razeghi
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolhamid Shariat
- MD, Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- MD, Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Bagheri
- PhD, Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katayoon Rezaei
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Student Research Committee, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
429
|
James J, McGlinchey MP. How active are stroke patients in physiotherapy sessions and is this associated with stroke severity? Disabil Rehabil 2021; 44:4408-4414. [PMID: 33794718 DOI: 10.1080/09638288.2021.1907459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Exercise improves functional outcome post-stroke, but how long patients with differing severity spend undertaking active exercise within physiotherapy sessions is unknown. We aimed to investigate if stroke severity is associated with time undertaking active exercise in physiotherapy sessions, and if any differences between planned and actual physiotherapy session length existed. MATERIALS AND METHODS A prospective observational study of 107 stroke rehabilitation sessions in a UK acute stroke unit. Data recorded included patient demographics (age, gender, time post-stroke and Barthel Index score) and session attributes (planned and actual session length, time undertaking active exercise, grade of treating therapist). RESULTS There was a significant negative association between increasing stroke severity and percentage of time undertaking active exercise in physiotherapy sessions (p < 0.001). No other observed factors were associated with time undertaking active exercise. Mean session length across all levels of stroke severity was 32 min (SD 9.26) which was significantly less than planned (p < 0.05). There was no difference in mean session length or between planned and actual physiotherapy session length between patients of differing severity. CONCLUSIONS Patients with greater stroke severity participate in less active exercise in physiotherapy sessions than those with lesser stroke severity. Reasons for this disparity warrant further investigation.Implications for rehabilitationStroke patients with higher levels of severity engage in less active exercise during rehabilitation.A discrepancy exists between patients' planned physiotherapy session lengths and actual session lengths during stroke rehabilitation.Physiotherapists should be mindful in how to adapt their sessions (particularly with severe stroke patients) to maximise the amount of activity they undertake.Physiotherapists should be flexible in their delivery of rehabilitation to ensure that the length of patient sessions reflect patients' needs.
Collapse
Affiliation(s)
- Jimmy James
- Department of Physiotherapy, St. Thomas' Hospital, London, UK
| | | |
Collapse
|
430
|
Raglio A, Panigazzi M, Colombo R, Tramontano M, Iosa M, Mastrogiacomo S, Baiardi P, Molteni D, Baldissarro E, Imbriani C, Imarisio C, Eretti L, Hamedani M, Pistarini C, Imbriani M, Mancardi GL, Caltagirone C. Hand rehabilitation with sonification techniques in the subacute stage of stroke. Sci Rep 2021; 11:7237. [PMID: 33790343 PMCID: PMC8012636 DOI: 10.1038/s41598-021-86627-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 11/25/2022] Open
Abstract
After a stroke event, most survivors suffer from arm paresis, poor motor control and other disabilities that make activities of daily living difficult, severely affecting quality of life and personal independence. This randomized controlled trial aimed at evaluating the efficacy of a music-based sonification approach on upper limbs motor functions, quality of life and pain perceived during rehabilitation. The study involved 65 subacute stroke individuals during inpatient rehabilitation allocated into 2 groups which underwent usual care dayweek) respectively of standard upper extremity motor rehabilitation or upper extremity treatment with sonification techniques. The Fugl-Meyer Upper Extremity Scale, Box and Block Test and the Modified Ashworth Scale were used to perform motor assessment and the McGill Quality of Life-it and the Numerical Pain Rating Scale to assess quality of life and pain. The assessment was performed at baseline, after 2 weeks, at the end of treatment and at follow-up (1 month after the end of treatment). Total scores of the Fugl-Meyer Upper Extremity Scale (primary outcome measure) and hand and wrist sub scores, manual dexterity scores of the affected and unaffected limb in the Box and Block Test, pain scores of the Numerical Pain Rating Scale (secondary outcomes measures) significantly improved in the sonification group compared to the standard of care group (time*group interaction < 0.05). Our findings suggest that music-based sonification sessions can be considered an effective standardized intervention for the upper limb in subacute stroke rehabilitation.
Collapse
Affiliation(s)
- Alfredo Raglio
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Istituti Clinici Scientifici Maugeri, Music Therapy Research Laboratory, Scientific Institute of Pavia , Via Maugeri 10, 27100, Pavia, Italy.
| | - Monica Panigazzi
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Istituti Clinici Scientifici Maugeri, Music Therapy Research Laboratory, Scientific Institute of Pavia , Via Maugeri 10, 27100, Pavia, Italy
| | - Roberto Colombo
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Istituti Clinici Scientifici Maugeri, Music Therapy Research Laboratory, Scientific Institute of Pavia , Via Maugeri 10, 27100, Pavia, Italy
| | | | - Marco Iosa
- Fondazione S. Lucia, I.R.C.C.S., Rome, Italy
| | | | - Paola Baiardi
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Istituti Clinici Scientifici Maugeri, Music Therapy Research Laboratory, Scientific Institute of Pavia , Via Maugeri 10, 27100, Pavia, Italy
| | - Daniele Molteni
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Istituti Clinici Scientifici Maugeri, Music Therapy Research Laboratory, Scientific Institute of Pavia , Via Maugeri 10, 27100, Pavia, Italy
| | | | - Chiara Imbriani
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Istituti Clinici Scientifici Maugeri, Music Therapy Research Laboratory, Scientific Institute of Pavia , Via Maugeri 10, 27100, Pavia, Italy
| | - Chiara Imarisio
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Istituti Clinici Scientifici Maugeri, Music Therapy Research Laboratory, Scientific Institute of Pavia , Via Maugeri 10, 27100, Pavia, Italy
| | - Laura Eretti
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S, Montescano, PV, Italy
| | - Mehrnaz Hamedani
- Neurological Clinic, S. Martino Hospital, University of Genoa, Genoa, Italy
| | - Caterina Pistarini
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Nervi (GE), Pavia, Italy
| | - Marcello Imbriani
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Istituti Clinici Scientifici Maugeri, Music Therapy Research Laboratory, Scientific Institute of Pavia , Via Maugeri 10, 27100, Pavia, Italy
| | | | | |
Collapse
|
431
|
Spencer J, Wolf SL, Kesar TM. Biofeedback for Post-stroke Gait Retraining: A Review of Current Evidence and Future Research Directions in the Context of Emerging Technologies. Front Neurol 2021; 12:637199. [PMID: 33859607 PMCID: PMC8042129 DOI: 10.3389/fneur.2021.637199] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Real-time gait biofeedback is a promising rehabilitation strategy for improving biomechanical deficits in walking patterns of post-stroke individuals. Because wearable sensor technologies are creating avenues for novel applications of gait biofeedback, including use in tele-health, there is a need to evaluate the state of the current evidence regarding the effectiveness of biofeedback for post-stroke gait training. The objectives of this review are to: (1) evaluate the current state of biofeedback literature pertaining to post-stroke gait training; and (2) determine future research directions related to gait biofeedback in context of evolving technologies. Our overall goal was to determine whether gait biofeedback is effective at improving stroke gait deficits while also probing why and for whom gait biofeedback may be an efficacious treatment modality. Our literature review showed that the effects of gait biofeedback on post-stroke walking dysfunction are promising but are inconsistent in methodology and therefore results. We summarize sources of methodological heterogeneity in previous literature, such as inconsistencies in feedback target, feedback mode, dosage, practice structure, feedback structure, and patient characteristics. There is a need for larger-sample studies that directly compare different feedback parameters, employ more uniform experimental designs, and evaluate characteristics of potential responders. However, as these uncertainties in existing literature are resolved, the application of gait biofeedback has potential to extend neurorehabilitation clinicians' cues to individuals with post-stroke gait deficits during ambulation in clinical, home, and community settings, thereby increasing the quantity and quality of skilled repetitions during task-oriented stepping training. In addition to identifying gaps in previous research, we posit that future research directions should comprise an amalgam of mechanism-focused and clinical research studies, to develop evidence-informed decision-making guidelines for gait biofeedback strategies that are tailored to individual-specific gait and sensorimotor impairments. Wearable sensor technologies have the potential to transform gait biofeedback and provide greater access and wider array of options for clinicians while lowering rehabilitation costs. Novel sensing technologies will be particularly valuable for telehealth and home-based stepping exercise programs. In summary, gait biofeedback is a promising intervention strategy that can enhance efficacy of post-stroke gait rehabilitation in both clinical and tele-rehabilitation settings and warrants more in-depth research.
Collapse
Affiliation(s)
- Jacob Spencer
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Steven L. Wolf
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Trisha M. Kesar
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
432
|
Shoulder function after constraint-induced movement therapy assessed with 3D kinematics and clinical and patient reported outcomes: A prospective cohort study. J Electromyogr Kinesiol 2021; 58:102547. [PMID: 33862406 DOI: 10.1016/j.jelekin.2021.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION We hypothesised that reduced shoulder function post stroke improves during constraint-induced movement therapy and that improvement in scapula upward rotation measured with three-dimensional kinematics is associated with improvements in clinical and patient reported outcomes. METHODS Thirty-seven patients were tested pre and post constraint-induced movement therapy and again at three-month follow-up. Kinematic outcome measures - with scapula upward rotation as the primary outcome - during tasks 5 (ReachLow) and 6 (ReachHigh) from the Wolf Motor Function Test were included together with clinical and patient reported outcomes. Changes in outcome measures were analysed with linear mixed models and logistic regression analysis. FINDINGS Scapula upward rotation was reduced from 16.2° pre intervention through 15.9° post intervention to 15.6° at three-month follow-up during ReachHigh. Statistically significant reductions of <2° were also found for shoulder flexion during ReachLow and trunk lateral flexion during ReachHigh. The clinical and patient reported outcomes showed improvements post constraint-induced movement therapy, and at follow-up, the outcomes resembled post values. INTERPRETATION The minimal improvements in selected 3D kinematic measures of upper extremity movements did not reflect any clinically meaningful changes. Therefore, the clinical and patient reported improvements could not be related to restitution of shoulder function.
Collapse
|
433
|
Lansberg MG, Legault C, MacLellan A, Parikh A, Muccini J, Mlynash M, Kemp S, Buckwalter MS, Flavin K. Home-based virtual reality therapy for hand recovery after stroke. PM R 2021; 14:320-328. [PMID: 33773059 DOI: 10.1002/pmrj.12598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Many stroke survivors experience arm and hand weakness, but there are only limited efficacious options for arm therapy available. OBJECTIVE To assess the feasibility of unsupervised home-based use of a virtual reality device (Smart Glove) for hand rehabilitation post stroke. DESIGN Prospective single-arm study consisting of a 2-week run-in phase with no device use followed by an 8-week intervention period. SETTING Participants were recruited at the Stanford Neuroscience Outpatient Clinic. PARTICIPANTS Twenty chronic stroke patients with upper extremity impairment. INTERVENTIONS Participants were instructed to use the Smart Glove 50 minutes per day, 5 days per week for 8 weeks. MAIN OUTCOME MEASURES The following outcomes were measured: (1) compliance, (2) patients' impression of the intervention, and (3) efficacy using the upper extremity Fugl-Meyer (UE-FM), the Jebsen-Taylor hand function test (JTHFT), and the Stroke Impact Scale (SIS). RESULTS Of 20 participants, seven (35%) met target compliance of 40 days use, and six (30%) used the device for 20-39 days. Eighty-five percent of participants were satisfied with the therapy, with 80% reporting improvement in hand function. During the run-in phase there were no improvements in hand function. During the intervention, patients improved by a mean of 26.6 ± 48.8 seconds on the JTHFT (P = .03), by 16.1 ± 15.3 points on the hand-domain of the SIS (P < .01) and there was a trend toward improvement on the UE-FM (2.2 ± 5.5 points, P = .10). CONCLUSIONS Unsupervised use of the Smart Glove in the home environment may improve hand/arm function in subacute/chronic stroke patients. A randomized controlled trial is needed to confirm these results.
Collapse
Affiliation(s)
- Maarten G Lansberg
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA
| | - Catherine Legault
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA
| | - Adam MacLellan
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA
| | - Alay Parikh
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA
| | - Julie Muccini
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA.,Outpatient Neurologic Rehabilitation Program, Stanford Health Care, Stanford, California, USA
| | - Michael Mlynash
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA
| | - Stephanie Kemp
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA
| | - Marion S Buckwalter
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA
| | - Kara Flavin
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, California, USA.,Outpatient Neurologic Rehabilitation Program, Stanford Health Care, Stanford, California, USA.,Department of Physical Medicine and Rehabilitation, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
434
|
Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke. ACTA ACUST UNITED AC 2021; 2. [PMID: 34396094 PMCID: PMC8360352 DOI: 10.1017/wtc.2020.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hemiparetic walking after stroke is typically slow, asymmetric, and inefficient, significantly impacting activities of daily living. Extensive research shows that functional, intensive, and task-specific gait training is instrumental for effective gait rehabilitation, characteristics that our group aims to encourage with soft robotic exosuits. However, standard clinical assessments may lack the precision and frequency to detect subtle changes in intervention efficacy during both conventional and exosuit-assisted gait training, potentially impeding targeted therapy regimes. In this paper, we use exosuit-integrated inertial sensors to reconstruct three clinically meaningful gait metrics related to circumduction, foot clearance, and stride length. Our method corrects sensor drift using instantaneous information from both sides of the body. This approach makes our method robust to irregular walking conditions poststroke as well as usable in real-time applications, such as real-time movement monitoring, exosuit assistance control, and biofeedback. We validate our algorithm in eight people poststroke in comparison to lab-based optical motion capture. Mean errors were below 0.2 cm (9.9%) for circumduction, −0.6 cm (−3.5%) for foot clearance, and 3.8 cm (3.6%) for stride length. A single-participant case study shows our technique’s promise in daily-living environments by detecting exosuit-induced changes in gait while walking in a busy outdoor plaza.
Collapse
|
435
|
Zheng X, Peng Y, Zhong C, Xie X, Wang A, Zhu Z, Xu T, Peng H, Xu T, Wang D, Ju Z, Geng D, Chen J, Liu L, He J, Zhang Y. Systolic Blood Pressure Trajectories After Discharge and Long-Term Clinical Outcomes of Ischemic Stroke. Hypertension 2021; 77:1694-1702. [PMID: 33745302 DOI: 10.1161/hypertensionaha.120.16881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (X.Z., C.Z., A.W., Z.Z., T.X., H.P., T.X., Y.Z.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (X.Z., J.C., J.H.)
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Tangshan (Y.P., D.W.)
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (X.Z., C.Z., A.W., Z.Z., T.X., H.P., T.X., Y.Z.)
| | - Xuewei Xie
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (X.X., L.L.)
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (X.Z., C.Z., A.W., Z.Z., T.X., H.P., T.X., Y.Z.)
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (X.Z., C.Z., A.W., Z.Z., T.X., H.P., T.X., Y.Z.)
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (X.Z., C.Z., A.W., Z.Z., T.X., H.P., T.X., Y.Z.).,Department of Neurology, Affiliated Hospital of Nantong University, China (T.X.)
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (X.Z., C.Z., A.W., Z.Z., T.X., H.P., T.X., Y.Z.)
| | - Tian Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (X.Z., C.Z., A.W., Z.Z., T.X., H.P., T.X., Y.Z.).,Department of Neurology, Affiliated Hospital of Nantong University, China (T.X.)
| | - Dali Wang
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Tangshan (Y.P., D.W.)
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, China (Z.J.)
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China (D.G.)
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (X.Z., J.C., J.H.).,Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (X.X., L.L.)
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (X.Z., J.C., J.H.).,Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (X.Z., C.Z., A.W., Z.Z., T.X., H.P., T.X., Y.Z.)
| |
Collapse
|
436
|
Chen Z, Xia N, He C, Gu M, Xu J, Han X, Huang X. Action observation treatment-based exoskeleton (AOT-EXO) for upper extremity after stroke: study protocol for a randomized controlled trial. Trials 2021; 22:222. [PMID: 33743788 PMCID: PMC7981809 DOI: 10.1186/s13063-021-05176-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Stroke produces multiple symptoms, including sensory, motor, cognitive and psychological dysfunctions, among which motor deficit is the most common and is widely recognized as a major contributor to long-term functional disability. Robot-assisted training is effective in promoting upper extremity muscle strength and motor impairment recovery after stroke. Additionally, action observation treatment can enhance the effects of physical and occupational therapy by increasing neural activation. The AOT-EXO trial aims to investigate whether action observation treatment coupled with robot-assisted training could enhance motor circuit activation and improve upper extremity motor outcomes. Methods The AOT-EXO trial is a multicentre, prospective, three-group randomized controlled trial (RCT). We will screen and enrol 132 eligible patients in the trial implemented in the Department of Rehabilitation Medicine of Tongji Hospital, Optical Valley Branch of Tongji Hospital and Hubei Province Hospital of Integrated Chinese & Western Medicine in Wuhan, China. Prior to study participation, written informed consent will be obtained from eligible patients in accordance with the Declaration of Helsinki. The enrolled stroke patients will be randomized to three groups: the CT group (conventional therapy); EXO group (exoskeleton therapy) and AOT-EXO group (action observation treatment-based exoskeleton therapy). The patients will undergo blinded assessments at baseline, post-intervention (after 4 weeks) and follow-up (after 12 weeks). The primary outcome will be the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Secondary outcomes will include the Action Research Arm Test (ARAT), modified Barthel Index (MBI), kinematic metrics assessed by inertial measurement unit (IMU), resting motor threshold (rMT), motor evoked potentials (MEP), functional magnetic resonance imaging (fMRI) and safety outcomes. Discussion This trial will provide evidence regarding the feasibility and efficacy of the action observation treatment-based exoskeleton (AOT-EXO) for post-stroke upper extremity rehabilitation and elucidate the potential underlying kinematic and neurological mechanisms. Trial registration Chinese Clinical Trial Registry ChiCTR1900026656. Registered on 17 October 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05176-x.
Collapse
Affiliation(s)
- Zejian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Chang He
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China.
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,World Health Organization Cooperative Training and Research Center in Rehabilitation, Wuhan, China.
| |
Collapse
|
437
|
Wang L, Xu X, Kai Lau K, Li LSW, Kwun Wong Y, Yau C, Mak HKF, Hui ES. Relation between rich-club organization versus brain functions and functional recovery after acute ischemic stroke. Brain Res 2021; 1763:147441. [PMID: 33753065 DOI: 10.1016/j.brainres.2021.147441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 02/04/2023]
Abstract
Studies have shown the brain's rich-club organization may underpin brain function and be associated with various brain disorders. In this study, we aimed to investigate the relation between poststroke brain functions and functional recovery versus the rich-club organization of the structural brain network of patients after first-time acute ischemic stroke. A cohort of 16 acute ischemic stroke patients (11 males) was recruited. Structural brain networks were measured using diffusion tensor imaging within 1 week and at 1, 3 and 6 months after stroke. Motor impairment was assessed using the Upper-Extremity Fugl-Meyer motor scale and activities of daily living using the Barthel Index at the same time points as MRI. The rich-club regions that were stable over the course of stroke recovery included the bilateral dorsolateral superior frontal gyri, right supplementary motor area, and left median cingulate and paracingulate gyri. The network properties that correlated with poststroke brain functions were mainly the ratio between communication cost ratio and density ratio of rich-club, feeder and local connections. The recovery of both motor functions and activities of daily living were correlated with higher normalized rich club coefficients and a shorter length of local connections within a week after stroke. The communication cost ratio of feeder connections, the length of rich-club and local connections, and normalized rich club coefficients were found to be potential prognostic indicators of stroke recovery. Our results provide additional support to the notion that different types of network connections play different roles in brain functions as well as functional recovery.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostic Radiology, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xiaopei Xu
- Department of Radiology, Second Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Kui Kai Lau
- Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Leonard S W Li
- Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yuen Kwun Wong
- Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Christina Yau
- Department of Occupational Therapy, Tung Wah Hospital, Hong Kong Special Administrative Region
| | - Henry K F Mak
- Department of Diagnostic Radiology, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Edward S Hui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region.
| |
Collapse
|
438
|
Regterschot GRH, Bussmann JBJ, Fanchamps MHJ, Meskers CGM, Ribbers GM, Selles RW. Objectively measured arm use in daily life improves during the first 6 months poststroke: a longitudinal observational cohort study. J Neuroeng Rehabil 2021; 18:51. [PMID: 33741017 PMCID: PMC7980644 DOI: 10.1186/s12984-021-00847-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background It is unclear how arm use in daily life changes after stroke since studies investigating the change in arm use poststroke are scarce. The aim of this study was to investigate the change in arm use during the first six months poststroke. Secondary aim was to compare arm use changes between arm recovery clusters. Methods Arm use was measured during week 3, 12, and 26 poststroke with accelerometers on the wrists and the nonaffected leg. Outcomes were the amount of affected and nonaffected arm use during sitting and standing per day and per sit/stand hour, and the daily ratio between arms. Arm function was measured with the Fugl-Meyer Upper Extremity Scale to identify recovery clusters (poor/moderate/excellent). Generalized estimating equations compared arm use outcomes between time points and between recovery clusters. Results Thirty-three stroke patients participated. Affected arm use per day increased between week 3 and 12 (30 %; p = 0.04) and it increased per sit/stand hour between week 3–12 (31 %; p < 0.001) and between week 3 and 26 (48 %; p = 0.02). Nonaffected arm use per day decreased between week 3 and 12 (13 %; p < 0.001) and between week 3 and 26 (22 %; p < 0.001) and it decreased per sit/stand hour between week 3 and 26 (18 %; p = 0.003). The daily ratio increased between week 3 and 12 (43 %; p < 0.001) and between week 3 and 26 (95 %; p < 0.001). Changes in arm use did not differ significantly between recovery clusters (p = 0.11–0.62). Affected arm use was higher in the excellent recovery cluster (p < 0.001). Conclusions Affected arm use and the ratio between arms increase during the first 26 weeks poststroke especially in patients with excellent arm recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00847-x.
Collapse
Affiliation(s)
- G R H Regterschot
- Department of Rehabilitation Medicine, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - J B J Bussmann
- Department of Rehabilitation Medicine, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Malou H J Fanchamps
- Department of Rehabilitation Medicine, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, VU University Medical Center, De Boelelaan, 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gerard M Ribbers
- Department of Rehabilitation Medicine, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Rijndam Rehabilitation, Westersingel 300, 3015 LJ, Rotterdam, The Netherlands
| | - Ruud W Selles
- Department of Rehabilitation Medicine, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Plastic and Reconstructive Surgery, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
439
|
Cortés-Pérez I, Zagalaz-Anula N, Montoro-Cárdenas D, Lomas-Vega R, Obrero-Gaitán E, Osuna-Pérez MC. Leap Motion Controller Video Game-Based Therapy for Upper Extremity Motor Recovery in Patients with Central Nervous System Diseases. A Systematic Review with Meta-Analysis. SENSORS (BASEL, SWITZERLAND) 2021; 21:2065. [PMID: 33804247 PMCID: PMC7999275 DOI: 10.3390/s21062065] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Leap Motion Controller (LMC) is a virtual reality device that can be used in the rehabilitation of central nervous system disease (CNSD) motor impairments. This review aimed to evaluate the effect of video game-based therapy with LMC on the recovery of upper extremity (UE) motor function in patients with CNSD. A systematic review with meta-analysis was performed in PubMed Medline, Web of Science, Scopus, CINAHL, and PEDro. We included five randomized controlled trials (RCTs) of patients with CNSD in which LMC was used as experimental therapy compared to conventional therapy (CT) to restore UE motor function. Pooled effects were estimated with Cohen's standardized mean difference (SMD) and its 95% confidence interval (95% CI). At first, in patients with stroke, LMC showed low-quality evidence of a large effect on UE mobility (SMD = 0.96; 95% CI = 0.47, 1.45). In combination with CT, LMC showed very low-quality evidence of a large effect on UE mobility (SMD = 1.34; 95% CI = 0.49, 2.19) and the UE mobility-oriented task (SMD = 1.26; 95% CI = 0.42, 2.10). Second, in patients with non-acute CNSD (cerebral palsy, multiple sclerosis, and Parkinson's disease), LMC showed low-quality evidence of a medium effect on grip strength (GS) (SMD = 0.47; 95% CI = 0.03, 0.90) and on gross motor dexterity (GMD) (SMD = 0.73; 95% CI = 0.28, 1.17) in the most affected UE. In combination with CT, LMC showed very low-quality evidence of a high effect in the most affected UE on GMD (SMD = 0.80; 95% CI = 0.06, 1.15) and fine motor dexterity (FMD) (SMD = 0.82; 95% CI = 0.07, 1.57). In stroke, LMC improved UE mobility and UE mobility-oriented tasks, and in non-acute CNSD, LMC improved the GS and GMD of the most affected UE and FMD when it was used with CT.
Collapse
Affiliation(s)
- Irene Cortés-Pérez
- Centro Médico “Avenida II”, C/Julio Burell 18, 23700 Linares, Spain;
- Department of Health Sciences, University of Jaén, Paraje Las Lagunillas s/n, 23071 Jaén, Spain; (N.Z.-A.); (D.M.-C.); (R.L.-V.); (M.C.O.-P.)
| | - Noelia Zagalaz-Anula
- Department of Health Sciences, University of Jaén, Paraje Las Lagunillas s/n, 23071 Jaén, Spain; (N.Z.-A.); (D.M.-C.); (R.L.-V.); (M.C.O.-P.)
| | - Desirée Montoro-Cárdenas
- Department of Health Sciences, University of Jaén, Paraje Las Lagunillas s/n, 23071 Jaén, Spain; (N.Z.-A.); (D.M.-C.); (R.L.-V.); (M.C.O.-P.)
| | - Rafael Lomas-Vega
- Department of Health Sciences, University of Jaén, Paraje Las Lagunillas s/n, 23071 Jaén, Spain; (N.Z.-A.); (D.M.-C.); (R.L.-V.); (M.C.O.-P.)
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaén, Paraje Las Lagunillas s/n, 23071 Jaén, Spain; (N.Z.-A.); (D.M.-C.); (R.L.-V.); (M.C.O.-P.)
| | - María Catalina Osuna-Pérez
- Department of Health Sciences, University of Jaén, Paraje Las Lagunillas s/n, 23071 Jaén, Spain; (N.Z.-A.); (D.M.-C.); (R.L.-V.); (M.C.O.-P.)
| |
Collapse
|
440
|
Three-Dimensional Assessment of Upper Limb Proprioception via a Wearable Exoskeleton. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Proprioception—the sense of body segment’s position and movement—plays a crucial role in human motor control, integrating the sensory information necessary for the correct execution of daily life activities. Despite scientific evidence recognizes that several neurological diseases hamper proprioceptive encoding with consequent inability to correctly perform movements, proprioceptive assessment in clinical settings is still limited to standard scales. Literature on physiology of upper limb’s proprioception is mainly focused on experimental approaches involving planar setups, while the present work provides a novel paradigm for assessing proprioception during single—and multi-joint matching tasks in a three-dimensional workspace. To such extent, a six-degrees of freedom exoskeleton, ALEx-RS (Arm Light Exoskeleton Rehab Station), was used to evaluate 18 healthy subjects’ abilities in matching proprioceptive targets during combined single and multi-joint arm’s movements: shoulder abduction/adduction, shoulder flexion/extension, and elbow flexion/extension. Results provided evidence that proprioceptive abilities depend on the number of joints simultaneously involved in the task and on their anatomical location, since muscle spindles work along their preferred direction, modulating the streaming of sensory information accordingly. These findings suggest solutions for clinical sensorimotor evaluation after neurological disease, where assessing proprioceptive deficits can improve the recovery path and complement the rehabilitation outcomes.
Collapse
|
441
|
Xu MS, Yin LM, Cheng AF, Zhang YJ, Zhang D, Tao MM, Deng YY, Ge LB, Shan CL. Cerebral Ischemia-Reperfusion Is Associated With Upregulation of Cofilin-1 in the Motor Cortex. Front Cell Dev Biol 2021; 9:634347. [PMID: 33777942 PMCID: PMC7991082 DOI: 10.3389/fcell.2021.634347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death. Reperfusion is a critical stage after thrombolysis or thrombectomy, accompanied by oxidative stress, excitotoxicity, neuroinflammation, and defects in synapse structure. The process is closely related to the dephosphorylation of actin-binding proteins (e.g., cofilin-1) by specific phosphatases. Although studies of the molecular mechanisms of the actin cytoskeleton have been ongoing for decades, limited studies have directly investigated reperfusion-induced reorganization of actin-binding protein, and little is known about the gene expression of actin-binding proteins. The exact mechanism is still uncertain. The motor cortex is very important to save nerve function; therefore, we chose the penumbra to study the relationship between cerebral ischemia-reperfusion and actin-binding protein. After transient middle cerebral artery occlusion (MCAO) and reperfusion, we confirmed reperfusion and motor function deficit by cerebral blood flow and gait analysis. PCR was used to screen the high expression mRNAs in penumbra of the motor cortex. The high expression of cofilin in this region was confirmed by immunohistochemistry (IHC) and Western blot (WB). The change in cofilin-1 expression appears at the same time as gait imbalance, especially maximum variation and left front swing. It is suggested that cofilin-1 may partially affect motor cortex function. This result provides a potential mechanism for understanding cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Ming-Shu Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei-Miao Yin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ai-Fang Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Jie Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao-Miao Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Yi Deng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Bao Ge
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
442
|
Valdés Hernández MDC, Grimsley-Moore T, Sakka E, Thrippleton MJ, Chappell FM, Armitage PA, Makin S, Wardlaw JM. Lacunar Stroke Lesion Extent and Location and White Matter Hyperintensities Evolution 1 Year Post-lacunar Stroke. Front Neurol 2021; 12:640498. [PMID: 33746892 PMCID: PMC7976454 DOI: 10.3389/fneur.2021.640498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Lacunar strokes are a common type of ischemic stroke. They are associated with long-term disability, but the factors affecting the dynamic of the infarcted lesion and the brain imaging features associated with them, reflective of small vessel disease (SVD) severity, are still largely unknown. We investigated whether the distribution, volume and 1-year evolution of white matter hyperintensities (WMH), one of these SVD features, relate to the extent and location of these infarcts, accounting for vascular risk factors. We used imaging and clinical data from all patients [n = 118, mean age 64.9 (SD 11.75) years old] who presented to a regional hospital with a lacunar stroke syndrome within the years 2010 and 2013 and consented to participate in a study of stroke mechanisms. All patients had a brain MRI scan at presentation, and 88 had another scan 12 months after. Acute lesions (i.e., recent small subcortical infarcts, RSSI) were identified in 79 patients and lacunes in 77. Number of lacunes was associated with baseline WMH volume (B = 0.370, SE = 0.0939, P = 0.000174). RSSI volume was not associated with baseline WMH volume (B = 3.250, SE = 2.117, P = 0.129), but predicted WMH volume change (B = 2.944, SE = 0.913, P = 0.00184). RSSI location was associated with the spatial distribution of WMH and the pattern of 1-year WMH evolution. Patients with the RSSI in the centrum semiovale (n = 33) had significantly higher baseline volumes of WMH, recent and old infarcts, than patients with the RSSI located elsewhere [median 33.69, IQR (14.37 50.87) ml, 0.001 ≤ P ≤ 0.044]. But patients with the RSSI in the internal/external capsule/lentiform nucleus experienced higher increase of WMH volume after a year [n = 21, median (IQR) from 18 (11.70 31.54) ml to 27.41 (15.84 40.45) ml]. Voxel-wise analyses of WMH distribution in patients grouped per RSSI location revealed group differences increased in the presence of vascular risk factors, especially hypertension and recent or current smoking habit. In our sample of patients presenting to the clinic with lacunar strokes, lacunar strokes extent influenced WMH volume fate; and RSSI location and WMH spatial distribution and dynamics were intertwined, with differential patterns emerging in the presence of vascular risk factors. These results, if confirmed in wider samples, open potential avenues in stroke rehabilitation to be explored further.
Collapse
Affiliation(s)
| | - Tara Grimsley-Moore
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Francesca M. Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul A. Armitage
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Stephen Makin
- Centre for Rural Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
443
|
Ambrosini E, Gasperini G, Zajc J, Immick N, Augsten A, Rossini M, Ballarati R, Russold M, Ferrante S, Ferrigno G, Bulgheroni M, Baccinelli W, Schauer T, Wiesener C, Gfoehler M, Puchinger M, Weber M, Weber S, Pedrocchi A, Molteni F, Krakow K. A Robotic System with EMG-Triggered Functional Eletrical Stimulation for Restoring Arm Functions in Stroke Survivors. Neurorehabil Neural Repair 2021; 35:334-345. [PMID: 33655789 DOI: 10.1177/1545968321997769] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Robotic systems combined with Functional Electrical Stimulation (FES) showed promising results on upper-limb motor recovery after stroke, but adequately-sized randomized controlled trials (RCTs) are still missing. OBJECTIVE To evaluate whether arm training supported by RETRAINER, a passive exoskeleton integrated with electromyograph-triggered functional electrical stimulation, is superior to advanced conventional therapy (ACT) of equal intensity in the recovery of arm functions, dexterity, strength, activities of daily living, and quality of life after stroke. METHODS A single-blind RCT recruiting 72 patients was conducted. Patients, randomly allocated to 2 groups, were trained for 9 weeks, 3 times per week: the experimental group performed task-oriented exercises assisted by RETRAINER for 30 minutes plus ACT (60 minutes), whereas the control group performed only ACT (90 minutes). Patients were assessed before, soon after, and 1 month after the end of the intervention. Outcome measures were as follows: Action Research Arm Test (ARAT), Motricity Index, Motor Activity Log, Box and Blocks Test (BBT), Stroke Specific Quality of Life Scale (SSQoL), and Muscle Research Council. RESULTS All outcomes but SSQoL significantly improved over time in both groups (P < .001); a significant interaction effect in favor of the experimental group was found for ARAT and BBT. ARAT showed a between-group change of 11.5 points (P = .010) at the end of the intervention, which increased to 13.6 points 1 month after. Patients considered RETRAINER moderately usable (System Usability Score of 61.5 ± 22.8). CONCLUSIONS Hybrid robotic systems, allowing to perform personalized, intensive, and task-oriented training, with an enriched sensory feedback, was superior to ACT in improving arm functions and dexterity after stroke.
Collapse
Affiliation(s)
| | | | | | - Nancy Immick
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Andreas Augsten
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Mauro Rossini
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | - Karsten Krakow
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| |
Collapse
|
444
|
Martins-Silva C, de Souza Pinho N, Ferreira GG, Aguiar RM, Ferreira TA, Pires RGW, Tizziani T, Pizzolatti MG, Santos ARS. Polygala sabulosa A.W. Bennett extract mitigates motor and cognitive deficits in a mouse model of acute ischemia. Metab Brain Dis 2021; 36:453-462. [PMID: 33394286 DOI: 10.1007/s11011-020-00660-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Stroke is considered one of the leading causes of death worldwide. The treatment is limited; however, the Brazilian flora has a great source of natural products with therapeutic potentials. Studies with the medicinal plant Polygala sabulosa W. Bennett provided evidence for its use as an anti-inflammatory and neuroprotective drug. In the case of ischemic stroke due to lack of oxygen, both acute and chronic inflammatory processes are activated. Thus, we hypothesized that P. sabulosa (HEPs) has the potential to treat the motor and cognitive deficits generated by ischemic stroke. Male mice were subjected to global ischemia for 60 min, followed by reperfusion and orally treated with HEPs (100 mg/kg in saline + 3% tween 20) twice a day (12 h apart) for 48 h starting 3 h after surgery. Motor skills were assessed using grip force and open field tasks. Hippocampi were then collected for mRNA quantification of the cytokines IL-1-β and TNF-α levels. After 48 h of acute treatment, spatial reference memory was evaluated in a Morris water maze test for another group of animals. We show that HEPs treatment significantly prevented motor weakness induced by ischemia. Brain infarct area was reduced by 22.25% with downregulation of the levels of IL-1β and TNF-α mRNA. Learning performance and memory ability on Morris water maze task were similar to the sham group. Our data demonstrates the neuroprotective properties of HEPs through its anti-inflammatory activities, which prevent motor and cognitive impairments, suggesting that HEPs may be an effective therapy for ischemic stroke.
Collapse
Affiliation(s)
- Cristina Martins-Silva
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, ES, Brazil.
- Laboratory of Neurochemistry and Behaviour (LabNeC), Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043910, Brazil.
- Graduate Program in Biochemistry and Pharmacology, UFES, Vitoria, ES, Brazil.
| | - Natalie de Souza Pinho
- Laboratory of Neurochemistry and Behaviour (LabNeC), Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043910, Brazil
| | - Glenda G Ferreira
- Laboratory of Neurochemistry and Behaviour (LabNeC), Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043910, Brazil
- Graduate Program in Biochemistry and Pharmacology, UFES, Vitoria, ES, Brazil
| | - Rafael Moraes Aguiar
- Laboratory of Neurochemistry and Behaviour (LabNeC), Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043910, Brazil
- Graduate Program in Biochemistry and Pharmacology, UFES, Vitoria, ES, Brazil
| | - Tamara Alarcon Ferreira
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, ES, Brazil
| | - Rita G W Pires
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, ES, Brazil
- Graduate Program in Biochemistry and Pharmacology, UFES, Vitoria, ES, Brazil
| | - Tiago Tizziani
- Department of Chemistry, Physical and Mathematical Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Moacir G Pizzolatti
- Department of Chemistry, Physical and Mathematical Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
445
|
Valdés Hernández MDC, Grimsley-Moore T, Chappell FM, Thrippleton MJ, Armitage PA, Sakka E, Makin S, Wardlaw JM. Post-stroke Cognition at 1 and 3 Years Is Influenced by the Location of White Matter Hyperintensities in Patients With Lacunar Stroke. Front Neurol 2021; 12:634460. [PMID: 33732208 PMCID: PMC7956970 DOI: 10.3389/fneur.2021.634460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
Lacunar strokes are a common type of ischemic stroke. They are known to have long-term cognitive deficits, but the influencing factors are still largely unknown. We investigated if the location of the index lacunar stroke or regional WMH and their change at 1 year could predict the cognitive performance at 1 and 3 years post-stroke in lacunar stroke patients. We used lacunar lesion location and WMH-segmented data from 118 patients, mean age 64.9 who had a brain MRI scan soon after presenting with symptoms, of which 88 had a repeated scan 12 months later. Premorbid intelligence (National Adult Reading Test) and current intelligence [Addenbrooke's Cognitive Exam-Revised (ACE-R)] were measured at 1, 12, and 36 months after the stroke. ANCOVA analyses adjusting for baseline cognition/premorbid intelligence, vascular risk factors, age, sex and total baseline WMH volume found that the recent small subcortical infarcts (RSSI) in the internal/external capsule/lentiform nucleus and centrum semiovale did not predict cognitive scores at 12 and 36 months. However, RSSI location moderated voxel-based associations of WMH change from baseline to 1 year with cognitive scores at 1 and 3 years. WMH increase in the external capsule, intersection between the anterior limb of the internal and external capsules, and optical radiation, was associated with worsening of ACE-R scores 1 and 3 years post-stroke after accounting for the location of the index infarct, age and baseline cognition.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Tara Grimsley-Moore
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Paul A Armitage
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Eleni Sakka
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Makin
- Centre for Rural Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
446
|
Ferrari F, Shell CE, Thumser ZC, Clemente F, Plow EB, Cipriani C, Marasco PD. Proprioceptive Augmentation With Illusory Kinaesthetic Sensation in Stroke Patients Improves Movement Quality in an Active Upper Limb Reach-and-Point Task. Front Neurorobot 2021; 15:610673. [PMID: 33732129 PMCID: PMC7956990 DOI: 10.3389/fnbot.2021.610673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke patients often have difficulty completing motor tasks even after substantive rehabilitation. Poor recovery of motor function can often be linked to stroke-induced damage to motor pathways. However, stroke damage in pathways that impact effective integration of sensory feedback with motor control may represent an unappreciated obstacle to smooth motor coordination. In this study we investigated the effects of augmenting movement proprioception during a reaching task in six stroke patients as a proof of concept. We used a wearable neurorobotic proprioceptive feedback system to induce illusory kinaesthetic sensation by vibrating participants' upper arm muscles over active limb movements. Participants were instructed to extend their elbow to reach-and-point to targets of differing sizes at various distances, while illusion-inducing vibration (90 Hz), sham vibration (25 Hz), or no vibration was applied to the distal tendons of either their biceps brachii or their triceps brachii. To assess the impact of augmented kinaesthetic feedback on motor function we compared the results of vibrating the biceps or triceps during arm extension in the affected arm of stroke patients and able-bodied participants. We quantified performance across conditions and participants by tracking limb/hand kinematics with motion capture, and through Fitts' law analysis of reaching target acquisition. Kinematic analyses revealed that injecting 90 Hz illusory kinaesthetic sensation into the actively contracting (agonist) triceps muscle during reaching increased movement smoothness, movement directness, and elbow extension. Conversely, injecting 90 Hz illusory kinaesthetic sensation into the antagonistic biceps during reaching negatively impacted those same parameters. The Fitts' law analyses reflected similar effects with a trend toward increased throughput with triceps vibration during reaching. Across all analyses, able-bodied participants were largely unresponsive to illusory vibrational augmentation. These findings provide evidence that vibration-induced movement illusions delivered to the primary agonist muscle involved in active movement may be integrated into rehabilitative approaches to help promote functional motor recovery in stroke patients.
Collapse
Affiliation(s)
- Francesca Ferrari
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Courtney E Shell
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Zachary C Thumser
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Francesco Clemente
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Christian Cipriani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
447
|
Prathum T, Piriyaprasarth P, Aneksan B, Hiengkaew V, Pankhaew T, Vachalathiti R, Klomjai W. Effects of home-based dual-hemispheric transcranial direct current stimulation combined with exercise on upper and lower limb motor performance in patients with chronic stroke. Disabil Rehabil 2021; 44:3868-3879. [PMID: 33645368 DOI: 10.1080/09638288.2021.1891464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This study aimed to determine the effects of home-based dual-hemispheric transcranial direct current stimulation (dual-tDCS) combined with exercise on motor performance in patients with chronic stroke. MATERIALS AND METHODS We allocated 24 participants to the active or sham group. They completed 1-h home-based exercise after 20-min dual-tDCS at 2-mA, thrice a week for 4 weeks. The patients were assessed using the Fugl-Meyer Assessment (FMA), Wolf Motor Function Test, Timed Up and Go test, Five Times Sit-to-Stand Test, Six-meter Walk Test, and muscle strength assessment. RESULTS Compared with the sham group, the active group showed improved FMA scores, which were sustained for at least 1 month. There was no between-group difference in the outcomes of the functional tasks. CONCLUSION Home-based dual-tDCS could facilitate motor recovery in patients with chronic stroke with its effect lasting for at least 1 month. However, its effects on functional tasks remain unclear. tDCS is safe and easy for home-based self-administration for patients who can use their paretic arms. This could benefit patients without access to health care centres or in situations requiring physical distancing. This home-based tDCS combined with exercise has the potential to be incorporated into telemedicine in stroke rehabilitation.IMPLICATIONS FOR REHABILITATIONTwelve sessions of home-based dual-tDCS combined with exercises (3 days/week for 4 weeks) facilitated upper and lower limb motor recovery in patients with chronic stroke compared with exercise alone, with a post-effect for at least 1 month.Home-based tDCS could be safe and easily self-administrable by patients who can use their paretic arms.This intervention could be beneficial for patients living in the community without easy access to a health care centre or in situations where physical distancing is required.
Collapse
Affiliation(s)
- Thatchaya Prathum
- Faculty of Physical Therapy, Neuro Electrical Stimulation laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand.,Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Pagamas Piriyaprasarth
- Faculty of Physical Therapy, Neuro Electrical Stimulation laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand.,Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Benchaporn Aneksan
- Faculty of Physical Therapy, Neuro Electrical Stimulation laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand.,Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Vimonwan Hiengkaew
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | | | | | - Wanalee Klomjai
- Faculty of Physical Therapy, Neuro Electrical Stimulation laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand.,Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
448
|
Compensatory Trunk Movements in Naturalistic Reaching and Manipulation Tasks in Chronic Stroke Survivors. J Appl Biomech 2021; 37:215-223. [PMID: 33631718 DOI: 10.1123/jab.2020-0090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022]
Abstract
Impairment of arm movements poststroke often results in the use of compensatory trunk movements to complete motor tasks. These compensatory movements have been mostly observed in tightly controlled conditions, with very few studies examining them in more naturalistic settings. In this study, the authors quantified the presence of compensatory movements during a set of continuous reaching and manipulation tasks performed with both the paretic and nonparetic arm (in 9 chronic stroke survivors) or the dominant arm (in 20 neurologically unimpaired control participants). Kinematic data were collected using motion capture to assess trunk and elbow movement. The authors found that trunk displacement and rotation were significantly higher when using the paretic versus nonparetic arm (P = .03). In contrast, elbow angular displacement was significantly lower in the paretic versus nonparetic arm (P = .01). The reaching tasks required significantly higher trunk compensation and elbow movement than the manipulation tasks. These results reflect increased reliance on compensatory trunk movements poststroke, even in everyday functional tasks, which may be a target for home rehabilitation programs. This study provides a novel contribution to the rehabilitation literature by examining the presence of compensatory movements in naturalistic reaching and manipulation tasks.
Collapse
|
449
|
Decoding of Ankle Joint Movements in Stroke Patients Using Surface Electromyography. SENSORS 2021; 21:s21051575. [PMID: 33668229 PMCID: PMC7956677 DOI: 10.3390/s21051575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/29/2023]
Abstract
Stroke is a cerebrovascular disease (CVD), which results in hemiplegia, paralysis, or death. Conventionally, a stroke patient requires prolonged sessions with physical therapists for the recovery of motor function. Various home-based rehabilitative devices are also available for upper limbs and require minimal or no assistance from a physiotherapist. However, there is no clinically proven device available for functional recovery of a lower limb. In this study, we explored the potential use of surface electromyography (sEMG) as a controlling mechanism for the development of a home-based lower limb rehabilitative device for stroke patients. In this experiment, three channels of sEMG were used to record data from 11 stroke patients while performing ankle joint movements. The movements were then decoded from the sEMG data and their correlation with the level of motor impairment was investigated. The impairment level was quantified using the Fugl-Meyer Assessment (FMA) scale. During the analysis, Hudgins time-domain features were extracted and classified using linear discriminant analysis (LDA) and artificial neural network (ANN). On average, 63.86% ± 4.3% and 67.1% ± 7.9% of the movements were accurately classified in an offline analysis by LDA and ANN, respectively. We found that in both classifiers, some motions outperformed others (p < 0.001 for LDA and p = 0.014 for ANN). The Spearman correlation (ρ) was calculated between the FMA scores and classification accuracies. The results indicate that there is a moderately positive correlation (ρ = 0.75 for LDA and ρ = 0.55 for ANN) between the two of them. The findings of this study suggest that a home-based EMG system can be developed to provide customized therapy for the improvement of functional lower limb motion in stroke patients.
Collapse
|
450
|
Effect of Short-Term Exposure to Supplemental Vibrotactile Kinesthetic Feedback on Goal-Directed Movements after Stroke: A Proof of Concept Case Series. SENSORS 2021; 21:s21041519. [PMID: 33671643 PMCID: PMC7926783 DOI: 10.3390/s21041519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/01/2023]
Abstract
Many survivors of stroke have persistent somatosensory deficits on the contralesional side of their body. Non-invasive supplemental feedback of limb movement could enhance the accuracy and efficiency of actions involving the upper extremity, potentially improving quality of life after stroke. In this proof-of-concept study, we evaluated the feasibility and the immediate effects of providing supplemental kinesthetic feedback to stroke survivors, performing goal-directed actions with the contralesional arm. Three survivors of stroke in the chronic stage of recovery participated in experimental sessions wherein they performed reaching and stabilization tasks with the contralesional arm under different combinations of visual and vibrotactile feedback, which was induced on the ipsilesional arm. Movement kinematics were encoded by a vibrotactile feedback interface in two ways: state feedback—an optimal combination of hand position and velocity; and error feedback—the difference between the actual hand position and its instantaneous target. In each session we evaluated the feedback encoding scheme’s immediate objective utility for improving motor performance as well as its perceived usefulness. All three participants improved their stabilization performance using at least one of the feedback encoding schemes within just one experimental session. Two of the participants also improved reaching performance with one or the other of the encoding schemes. Although the observed beneficial effects were modest in each participant, these preliminary findings show that supplemental vibrotactile kinesthetic feedback can be readily interpreted and exploited to improve reaching and object stabilizing actions performed with the contralesional arm after stroke. These short-term training results motivate a longer multisession training study using personalized vibrotactile feedback as a means to improve the accuracy and efficacy of contralesional arm actions after stroke.
Collapse
|