401
|
Linh NH, Thu TTM, Tu L, Hu CK, Li MS. Impact of Mutations at C-Terminus on Structures and Dynamics of Aβ40 and Aβ42: A Molecular Simulation Study. J Phys Chem B 2017; 121:4341-4354. [DOI: 10.1021/acs.jpcb.6b12888] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nguyen Hoang Linh
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - Tran Thi Minh Thu
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - LyAnh Tu
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - Chin-Kun Hu
- Institute
of Physics, Academia Sinica
, 128 Academia Road Section 2, Taipei
11529, Taiwan
- National
Center for Theoretical Sciences, National Tsing Hua University
, 101 Kuang-Fu Road Section 2, Hsinch
30013, Taiwan
- Business
School, University of Shanghai for Science and Technology
, 334 Jun
Gong Road, Shanghai
200093, China
| | - Mai Suan Li
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Institute of Physics Polish Academy of Sciences
, Al. Lotnikow 32/46, 02-668
Warsaw, Poland
| |
Collapse
|
402
|
Kargar F, Emadi S, Fazli H. The molecular behavior of a single β-amyloid inside a dipalmitoylphosphatidylcholine bilayer at three different temperatures: An atomistic simulation study: Aβ interaction with DPPC: Atomistic simulation. Proteins 2017; 85:1298-1310. [PMID: 28342211 DOI: 10.1002/prot.25290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/29/2023]
Abstract
The behavior of a single Aβ40 molecule within a dipalmitoylphosphatidylcholine (DPPC) bilayer was studied by all-atom molecular dynamics simulations. The effect of membrane structure was investigated on Aβ40 behavior, secondary structure, and insertion depth. Simulations were performed at three temperatures (323, 310, and 300 K) to probe three different bilayer fluidities. Results show that at all above temperatures, the peptide contains two short helices, coil, bend, and turn structures. At 300 K, the peptide contains a region with β structure in C-terminal region. Our results also show that Aβ decreases the bilayer thickness and the order of lipids in its vicinity which leads to water insertion into the bilayer and concomitant increase in the local fluidity. The peptide remains embedded in the bilayer at all temperatures, and become inserted into the bilayer up to several residues at 323 and 310 K. At 310 and 300 K, the dominant interaction energy between Aβ and bilayer changes from electrostatic to van der Waals. It can be proposed that at higher temperatures (e.g., 323 K), Lys28 and the C-terminal region of the peptide play the role of two anchors that keep Aβ inside the top leaflet. This study demonstrates that Aβ molecule can perturb the integrity of cellular membranes. Proteins 2017; 85:1298-1310. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Faezeh Kargar
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Saeed Emadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Hossein Fazli
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.,Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
403
|
Jameel E, Meena P, Maqbool M, Kumar J, Ahmed W, Mumtazuddin S, Tiwari M, Hoda N, Jayaram B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur J Med Chem 2017; 136:36-51. [PMID: 28478343 DOI: 10.1016/j.ejmech.2017.04.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/02/2017] [Accepted: 04/23/2017] [Indexed: 12/22/2022]
Abstract
In our endeavor towards the development of potent multitarget ligands for the treatment of Alzheimer's disease, a series of triazine-triazolopyrimidine hybrids were designed, synthesized and characterized by various spectral techniques. Docking and scoring techniques were used to design the inhibitors and to display their interaction with key residues of active site. Organic synthesis relied upon convergent synthetic routes were mono and di-substituted triazines were connected with triazolopyrimidine using piperazine as a linker. In total, seventeen compounds were synthesized in which the di-substituted triazine-triazolopyrimidine derivatives 9a-d showed better acetylcholinesterase (AChE) inhibitory activity than the corresponding tri-substituted triazine-triazolopyrimidine derivatives 10a-f. Out of the disubstituted triazine-triazolopyrimidine based compounds, 9a and 9b showed encouraging inhibitory activity on AChE with IC50 values 0.065 and 0.092 μM, respectively. Interestingly, 9a and 9b also demonstrated good inhibition selectivity towards AChE over BuChE by ∼28 folds. Furthermore, kinetic analysis and molecular modeling studies showed that 9a and 9b target both catalytic active site as well as peripheral anionic site of AChE. In addition, these derivatives effectively modulated Aβ self-aggregation as investigated through CD spectroscopy, ThT fluorescence assay and electron microscopy. Besides, these compounds exhibited potential antioxidants (2.15 and 2.91 trolox equivalent by ORAC assay) and metal chelating properties. In silico ADMET profiling highlighted that, these novel triazine derivatives have appropriate drug like properties and possess very low toxic effects in the primarily pharmacokinetic study. Overall, the multitarget profile exerted by these novel triazine molecules qualified them as potential anti-Alzheimer drug candidates in AD therapy.
Collapse
Affiliation(s)
- Ehtesham Jameel
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Poonam Meena
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Mudasir Maqbool
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Jitendra Kumar
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Waqar Ahmed
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Syed Mumtazuddin
- Department of Chemistry, B. R. Ambedkar Bihar University, Muzaffarpur 842001, Bihar, India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India.
| | - Nasimul Hoda
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India.
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India; Supercomputing Facility for Bioinformatics & Computational Biology, IIT Delhi, New Delhi 110016, India
| |
Collapse
|
404
|
Lu Y, Shi XF, Salsbury FR, Derreumaux P. Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42). J Chem Phys 2017; 146:145101. [DOI: 10.1063/1.4979866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Theorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Universite Paris Diderot, Sorbonne Paris Cite, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
405
|
Tran TT, Nguyen PH, Derreumaux P. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides. J Chem Phys 2017; 144:205103. [PMID: 27250331 DOI: 10.1063/1.4951739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Thanh Thuy Tran
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
406
|
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, Campiani G, Filipic S, Agbaba D, Esteban G, Unzeta M, Nikolic K, Butini S, Marco-Contelles J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Prog Neurobiol 2017; 151:4-34. [DOI: 10.1016/j.pneurobio.2015.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 01/16/2023]
|
407
|
Man VH, Nguyen PH, Derreumaux P. Conformational Ensembles of the Wild-Type and S8C Aβ1-42 Dimers. J Phys Chem B 2017; 121:2434-2442. [PMID: 28245647 PMCID: PMC5944329 DOI: 10.1021/acs.jpcb.7b00267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We characterized the dimer of the amyloid-β wild-type (WT) peptide, Aβ, of 42 residues and its disulfide-bond-locked double mutant (S8C) by replica exchange molecular dynamics simulations. Aβ dimers are known to be the smallest toxic species in Alzheimer's disease, and the S8C mutant has been shown experimentally to form an exclusive homogeneous and neurotoxic dimer. Our 50 μs all-atom simulations reveal similar secondary structures and collision cross-sections but very different intramolecular and intermolecular conformations upon double S8C mutation. Both dimers are very dynamic with hundreds of free-energy minima that differ from the U-shape and S-shape conformations of the peptides in the fibrils. The only common structural feature, shared by both species with a probability of 4% in WT and 12% in S8C-S8C, is a three-stranded β-sheet spanning the 17-23, 29-36, and 39-41 residues, which does not exist in the Aβ40 WT dimers.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
408
|
Watts CR, Gregory AJ, Frisbie CP, Lovas S. Structural properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations. Proteins 2017; 85:1024-1045. [PMID: 28241387 DOI: 10.1002/prot.25270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 02/12/2017] [Indexed: 12/17/2022]
Abstract
Replica exchange molecular dynamics simulations (300 ns) were used to study the dimerization of amyloid β(1-40) (Aβ(1-40)) polypeptide. Configurational entropy calculations revealed that at physiological temperature (310 K, 37°C) dynamic dimers are formed by randomly docked monomers. Free energy of binding of the two chains to each other was -93.56 ± 6.341 kJ mol-1 . Prevalence of random coil conformations was found for both chains with the exceptions of increased β-sheet content from residues 16-21 and 29-32 of chain A and residues 15-21 and 30-33 of chain B with β-turn/β-bend conformations in both chains from residues 1-16, 21-29 of chain A, 1-16, and 21-29 of chain B. There is a mixed β-turn/β-sheet region from residues 33-38 of both chains. Analysis of intra- and interchain residue distances shows that, although the individual chains are highly flexible, the dimer system stays in a loosely packed antiparallel β-sheet configuration with contacts between residues 17-21 of chain A with residues 17-21 and 31-36 of chain B as well as residues 31-36 of chain A with residues 17-21 and 31-36 of chain B. Based on dihedral principal component analysis, the antiparallel β-sheet-loop-β-sheet conformational motif is favored for many low energy sampled conformations. Our results show that Aβ(1-40) can form dynamic dimers in aqueous solution that have significant conformational flexibility and are stabilized by collapse of the central and C-terminal hydrophobic cores with the expected β-sheet-loop-β-sheet conformational motif. Proteins 2017; 85:1024-1045. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charles R Watts
- Department of Neurosurgery, Mayo Clinic, College of Medicine, Rochester, Minnesota, 55905.,Department of Neurosurgery, Mayo Clinic Health System, La Crosse, Wisconsin, 54601
| | - Andrew J Gregory
- Department of Neurosurgery, Mayo Clinic Health System, La Crosse, Wisconsin, 54601
| | - Cole P Frisbie
- Department of Neurosurgery, Mayo Clinic Health System, La Crosse, Wisconsin, 54601.,Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, 61718
| | - Sándor Lovas
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, 61718
| |
Collapse
|
409
|
Das P, Chacko AR, Belfort G. Alzheimer's Protective Cross-Interaction between Wild-Type and A2T Variants Alters Aβ 42 Dimer Structure. ACS Chem Neurosci 2017; 8:606-618. [PMID: 28292185 DOI: 10.1021/acschemneuro.6b00357] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Whole genome sequencing has recently revealed the protective effect of a single A2T mutation in heterozygous carriers against Alzheimer's disease (AD) and age-related cognitive decline. The impact of the protective cross-interaction between the wild-type (WT) and A2T variants on the dimer structure is therefore of high interest, as the Aβ dimers are the smallest known neurotoxic species. Toward this goal, extensive atomistic replica exchange molecular dynamics simulations of the solvated WT homo- and A2T hetero- Aβ1-42 dimers have been performed, resulting into a total of 51 μs of sampling for each system. Weakening of a set of transient, intrachain contacts formed between the central and C-terminal hydrophobic residues is observed in the heterodimeric system. The majority of the heterodimers with reduced interaction between central and C-terminal regions lack any significant secondary structure and display a weak interchain interface. Interestingly, the A2T N-terminus, particularly residue F4, is frequently engaged in tertiary and quaternary interactions with central and C-terminal hydrophobic residues in those distinct structures, leading to hydrophobic burial. This atypical involvement of the N-terminus within A2T heterodimer revealed in our simulations implies possible interference on Aβ42 aggregation and toxic oligomer formation, which is consistent with experiments. In conclusion, the present study provides detailed structural insights onto A2T Aβ42 heterodimer, which might provide molecular insights onto the AD protective effect of the A2T mutation in the heterozygous state.
Collapse
Affiliation(s)
- Payel Das
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Anita R. Chacko
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Georges Belfort
- Howard
P. Isermann Department of Chemical and Biological Engineering, and
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, United States
| |
Collapse
|
410
|
Chandra B, Korn A, Maity BK, Adler J, Rawat A, Krueger M, Huster D, Maiti S. Stereoisomers Probe Steric Zippers in Amyloid-β. J Phys Chem B 2017; 121:1835-1842. [PMID: 28140589 DOI: 10.1021/acs.jpcb.6b12332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shape complementarity between close-packed residues plays a critical role in the amyloid aggregation process. Here, we probe such "steric zipper" interactions in amyloid-β (Aβ40), whose aggregation is linked to Alzheimer's disease, by replacing natural residues by their stereoisomers. Such mutations are expected to specifically destabilize the shape sensitive "packing" interactions, which may potentially increase their solubility and change other properties. We study the stereomutants DF19 and DL34 and also the DA2/DF4/DH6/DS8 mutant of Aβ40. F19-L34 is a critical contact in a tightly packed region of Aβ, while residues 1-9 are known to be disordered. While both DF19 and DL34 slow down the kinetics of aggregation and form amyloid fibrils efficiently, only DL34 increases the final solubility. DF19 gives rise to additional off-pathway aggregation which results in large, kinetically stable aggregates, and has lower net solubility. DA2/DF4/DH6/DS8 does not have an effect on the kinetics or the solubility. Notably, both DF19 and DL34 oligomers have a significantly lower level of interactions with lipid vesicles and live cells. We conclude that stereoisomers can cause complex site dependent changes in amyloid properties, and provide an effective tool to determine the role of individual residues in shaping the packed interiors of amyloid aggregates.
Collapse
Affiliation(s)
- Bappaditya Chandra
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Alexander Korn
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Barun Kumar Maity
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Juliane Adler
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Anoop Rawat
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Martin Krueger
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany.,Institut für Anatomie, Universität Leipzig , Liebigstr. 13, D-04103 Leipzig, Germany
| | - Daniel Huster
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
411
|
Bellucci L, Bussi G, Di Felice R, Corni S. Fibrillation-prone conformations of the amyloid-β-42 peptide at the gold/water interface. NANOSCALE 2017; 9:2279-2290. [PMID: 28124697 DOI: 10.1039/c6nr06010b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins in the proximity of inorganic surfaces and nanoparticles may undergo profound adjustments that trigger biomedically relevant processes, such as protein fibrillation. The mechanisms that govern protein-surface interactions at the molecular level are still poorly understood. In this work, we investigate the adsorption onto a gold surface, in water, of an amyloid-β (Aβ) peptide, which is the amyloidogenic peptide involved in Alzheimer's disease. The entire adsorption process, from the peptide in bulk water to its conformational relaxation on the surface, is explored by large-scale atomistic molecular dynamics (MD) simulations. We start by providing a description of the conformational ensemble of Aβ in solution by a 22 μs temperature replica exchange MD simulation, which is consistent with previous results. Then, we obtain a statistical description of how the peptide approaches the gold surface by multiple MD simulations, identifying the preferential gold-binding sites and giving a kinetic picture of the association process. Finally, relaxation of the Aβ conformations at the gold/water interface is performed by a 19 μs Hamiltonian-temperature replica exchange MD simulation. We find that the conformational ensemble of Aβ is strongly perturbed by the presence of the surface. In particular, at the gold/water interface the population of the conformers akin to amyloid fibrils is significantly enriched, suggesting that this extended contact geometry may promote fibrillation.
Collapse
Affiliation(s)
- Luca Bellucci
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy.
| | - Giovanni Bussi
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Rosa Di Felice
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy. and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stefano Corni
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy.
| |
Collapse
|
412
|
Shuaib S, Saini RK, Goyal D, Goyal B. Insights into the Inhibitory Mechanism of Dicyanovinyl-Substituted J147 Derivative against Aβ42
Aggregation and Protofibril Destabilization: A Molecular Dynamics Simulation Study. ChemistrySelect 2017. [DOI: 10.1002/slct.201601970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Rajneet Kaur Saini
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Bhupesh Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| |
Collapse
|
413
|
Abstract
The investigation of intrinsically disordered proteins (IDPs) is a new frontier in structural and molecular biology that requires a new paradigm to connect structural disorder to function. Molecular dynamics simulations and statistical thermodynamics potentially offer ideal tools for atomic-level characterizations and thermodynamic descriptions of this fascinating class of proteins that will complement experimental studies. However, IDPs display sensitivity to inaccuracies in the underlying molecular mechanics force fields. Thus, achieving an accurate structural characterization of IDPs via simulations is a challenge. It is also daunting to perform a configuration-space integration over heterogeneous structural ensembles sampled by IDPs to extract, in particular, protein configurational entropy. In this review, we summarize recent efforts devoted to the development of force fields and the critical evaluations of their performance when applied to IDPs. We also survey recent advances in computational methods for protein configurational entropy that aim to provide a thermodynamic link between structural disorder and protein activity.
Collapse
Affiliation(s)
- Song-Ho Chong
- Department of Chemistry, Sookmyung Women's University, Yongsan-Ku, Seoul 04310, Korea;
| | - Prathit Chatterjee
- Department of Chemistry, Sookmyung Women's University, Yongsan-Ku, Seoul 04310, Korea;
| | - Sihyun Ham
- Department of Chemistry, Sookmyung Women's University, Yongsan-Ku, Seoul 04310, Korea;
| |
Collapse
|
414
|
Chiricotto M, Melchionna S, Derreumaux P, Sterpone F. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation. J Chem Phys 2017; 145:035102. [PMID: 27448906 DOI: 10.1063/1.4958323] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ16-22 peptide system, the simulation of ∼300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.
Collapse
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Simone Melchionna
- CNR-ISC, Institute for Complex System, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
415
|
Chamachi NG, Chakrabarty S. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds. Biochemistry 2017; 56:833-844. [DOI: 10.1021/acs.biochem.6b01042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neharika G. Chamachi
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
416
|
Grisanti L, Pinotsi D, Gebauer R, Kaminski Schierle GS, Hassanali AA. A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils. Phys Chem Chem Phys 2017; 19:4030-4040. [PMID: 28111679 PMCID: PMC7612978 DOI: 10.1039/c6cp07564a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Amyloid fibrils have been shown to have peculiar optical properties since they can exhibit fluorescence in the absence of aromatic residues. In a recent study, we have shown that proton transfer (PT) events along hydrogen bonds (HBs) are coupled to absorption in the near UV range. Here, we gain more insights into the different types of hydrogen bonding interactions that occur in our model systems and the molecular factors that control the susceptibility of the protons to undergo PT and how this couples to the optical properties. In the case of the strong N-C termini interactions, a nearby methionine residue stabilizes the non-zwitterionic NH2-COOH pair, while zwitterionic NH3+-COO- is stabilized by the proximity of nearby crystallographic water molecules. Proton motion along the hydrogen bonds in the fibril is intimately coupled to the compression of the heavier atoms, similar to what is observed in bulk water. Small changes in the compression of the hydrogen bonds in the protein can lead to significant changes in both the ground and excited state potential energy surfaces associated with PT. Finally, we also reinforce the importance of nuclear quantum fluctuations of protons in the HBs of the amyloid proteins.
Collapse
Affiliation(s)
- Luca Grisanti
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| | - Dorothea Pinotsi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - Ralph Gebauer
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - Ali A Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| |
Collapse
|
417
|
Carballo‐Pacheco M, Strodel B. Comparison of force fields for Alzheimer's A β42: A case study for intrinsically disordered proteins. Protein Sci 2017; 26:174-185. [PMID: 27727496 PMCID: PMC5275744 DOI: 10.1002/pro.3064] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 01/06/2023]
Abstract
Intrinsically disordered proteins are essential for biological processes such as cell signalling, but are also associated to devastating diseases including Alzheimer's disease, Parkinson's disease or type II diabetes. Because of their lack of a stable three-dimensional structure, molecular dynamics simulations are often used to obtain atomistic details that cannot be observed experimentally. The applicability of molecular dynamics simulations depends on the accuracy of the force field chosen to represent the underlying free energy surface of the system. Here, we use replica exchange molecular dynamics simulations to test five modern force fields, OPLS, AMBER99SB, AMBER99SB*ILDN, AMBER99SBILDN-NMR and CHARMM22*, in their ability to model Aβ42 , an intrinsically disordered peptide associated with Alzheimer's disease, and compare our results to nuclear magnetic resonance (NMR) experimental data. We observe that all force fields except AMBER99SBILDN-NMR successfully reproduce local NMR observables, with CHARMM22* being slightly better than the other force fields.
Collapse
Affiliation(s)
- Martín Carballo‐Pacheco
- Institute of Complex Systems, Structural Biochemistry (ICS‐6), Forschungszentrum Jülich GmbHJülich52425Germany
- AICES Graduate School, RWTH Aachen UniversitySchinkelstraße 2Aachen52062Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS‐6), Forschungszentrum Jülich GmbHJülich52425Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University DüsseldorfUniversitätstraße 1Düsseldorf40225Germany
| |
Collapse
|
418
|
Goch W, Bal W. Numerical Simulations Reveal Randomness of Cu(II) Induced Aβ Peptide Dimerization under Conditions Present in Glutamatergic Synapses. PLoS One 2017; 12:e0170749. [PMID: 28125716 PMCID: PMC5268396 DOI: 10.1371/journal.pone.0170749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
The interactions between the Aβ1-40 molecules species and the copper ions (Cu(II)) were intensively investigated due to their potential role in the development of the Alzheimer Disease (AD). The rate and the mechanism of the Cu(II)-Aβ complexes formation determines the aggregation pathway of the Aβ species, starting from smaller but more cytotoxic oligomers and ending up in large Aβ plaques, being the main hallmark of the AD. In our study we exploit the existing knowledge on the Cu(II)-Aβ interactions and create the theoretical model of the initial phase of the copper- driven Aβ aggregation mechanism. The model is based on the direct solution of the Chemical Master Equations, which capture the inherent stochastics of the considered system. In our work we argue that due to a strong Cu(II) affinity to Aβ and temporal accessibility of the Cu(II) ions during normal synaptic activity the aggregation driven by Cu(II) dominates the pure Aβ aggregation. We also demonstrate the dependence of the formation of different Cu(II)-Aβ complexes on the concentrations of reagents and the synaptic activity. Our findings correspond to recent experimental results and give a sound hypothesis on the AD development mechanisms.
Collapse
Affiliation(s)
- Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
419
|
Kouza M, Banerji A, Kolinski A, Buhimschi IA, Kloczkowski A. Oligomerization of FVFLM peptides and their ability to inhibit beta amyloid peptides aggregation: consideration as a possible model. Phys Chem Chem Phys 2017; 19:2990-2999. [PMID: 28079198 PMCID: PMC5305032 DOI: 10.1039/c6cp07145g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Preeclampsia, a pregnancy-specific disorder, shares typical pathophysiological features with protein misfolding disorders including Alzheimer's disease. Characteristic for preeclampsia is the involvement of multiple proteins of which fragments of SERPINA1 and β-amyloid co-aggregate in urine and placenta of preeclamptic women. To explore the biophysical basis of this interaction, we investigated the multidimensional efficacy of the FVFLM sequence in SERPINA1, as a model inhibitory agent of β-amyloid aggregation. After studying the oligomerization of FVFLM peptides using all-atom molecular dynamics simulations with the GROMOS43a1 force field and explicit water, we report that FVFLM can aggregate and its aggregation is spontaneous with a remarkably faster rate than that recorded for KLVFF (aggregation "hot-spot" from β-amyloid). The fast kinetics of FVFLM aggregation was found to be driven primarily by core-like aromatic interactions originating from the anti-parallel orientation of complementarily uncharged strands. The conspicuously stable aggregation mechanism observed for FVFLM peptides is found not to conform to the popular 'dock-lock' scheme. We also found high propensity of FVFLM for KLVFF binding. When present, FVFLM disrupts the β-amyloid aggregation pathway and we propose that FVFLM-like peptides might be used to prevent the assembly of full-length Aβ or other pro-amyloidogenic peptides into amyloid fibrils.
Collapse
Affiliation(s)
- M Kouza
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. and Nationwide Children's Hospital, Battelle Center for Mathematical Medicine, Columbus, OH 43215, USA
| | - A Banerji
- Nationwide Children's Hospital, Battelle Center for Mathematical Medicine, Columbus, OH 43215, USA
| | - A Kolinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - I A Buhimschi
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - A Kloczkowski
- Nationwide Children's Hospital, Battelle Center for Mathematical Medicine, Columbus, OH 43215, USA and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| |
Collapse
|
420
|
Liao Q, Owen MC, Olubiyi OO, Barz B, Strodel B. Conformational Transitions of the Amyloid-β Peptide Upon Copper(II) Binding and pH Changes. Isr J Chem 2017. [DOI: 10.1002/ijch.201600108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qinghua Liao
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Michael C. Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Olujide O. Olubiyi
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences; Afe Babalola University; Nigeria
| | - Bogdan Barz
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| |
Collapse
|
421
|
Rojas A, Maisuradze N, Kachlishvili K, Scheraga HA, Maisuradze GG. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics. ACS Chem Neurosci 2017; 8:201-209. [PMID: 28095675 DOI: 10.1021/acschemneuro.6b00331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fibrils formed by the β-amyloid (Aβ) peptide play a central role in the development of Alzheimer's disease. In this study, the principles governing their growth and stability are investigated by analyzing canonical and replica-exchange molecular dynamics trajectories of Aβ(9-40) fibrils. In particular, an unstructured monomer was allowed to interact freely with an Aβ fibril template. Trajectories were generated with the coarse-grained united-residue force field, and one- and two-dimensional free-energy landscapes (FELs) along the backbone virtual-bond angle θ and backbone virtual-bond-dihedral angle γ of each residue and principal components, respectively, were analyzed. Also, thermal unbinding (unfolding) of an Aβ peptide from the fibril template was investigated. These analyses enable us to illustrate the entire process of Aβ fibril elongation and to elucidate the key residues involved in it. Several different pathways were identified during the search for the fibril conformation by the monomer, which finally follows a dock-lock mechanism with two distinct locking stages. However, it was found that the correct binding, with native hydrogen bonds, of the free monomer to the fibril template at both stages is crucial for fibril elongation. In other words, if the monomer is incorrectly bound (with nonnative hydrogen bonds) to the fibril template during the first "docking" stage, it can remain attached to it for a long time before it dissociates and either attempts a different binding or allows another monomer to bind. This finding is consistent with an experimentally observed "stop-and-go" mechanism of fibril growth.
Collapse
Affiliation(s)
- Ana Rojas
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Nika Maisuradze
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Khatuna Kachlishvili
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Harold A. Scheraga
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Gia G. Maisuradze
- Baker Laboratory
of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
422
|
Lei J, Qi R, Xie L, Xi W, Wei G. Inhibitory effect of hydrophobic fullerenes on the β-sheet-rich oligomers of a hydrophilic GNNQQNY peptide revealed by atomistic simulations. RSC Adv 2017. [DOI: 10.1039/c6ra27608c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fullerenes suppress fibril-like β-sheet oligomers by interacting strongly with the nonpolar aliphatic groups of polar residues of GNNQQNY peptide, thus inhibit peptide aggregation.
Collapse
Affiliation(s)
- Jiangtao Lei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Ruxi Qi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Luogang Xie
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Wenhui Xi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| |
Collapse
|
423
|
Ngo ST, Hung HM, Tran KN, Nguyen MT. Replica exchange molecular dynamics study of the amyloid beta (11–40) trimer penetrating a membrane. RSC Adv 2017. [DOI: 10.1039/c6ra26461a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transmembrane Aβ11–40 trimer is investigated for the first time using REMD and FEP.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | | | - Khoa Nhat Tran
- Department of Biological Sciences
- University of Maryland Baltimore County
- 21250 Baltimore
- USA
| | - Minh Tho Nguyen
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
424
|
Battisti A, Palumbo Piccionello A, Sgarbossa A, Vilasi S, Ricci C, Ghetti F, Spinozzi F, Marino Gammazza A, Giacalone V, Martorana A, Lauria A, Ferrero C, Bulone D, Mangione MR, San Biagio PL, Ortore MG. Curcumin-like compounds designed to modify amyloid beta peptide aggregation patterns. RSC Adv 2017. [DOI: 10.1039/c7ra05300b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study suggests new concepts and potential difficulties in the design of novel drugs against diverse amyloidoses, including Alzheimer’s disease.
Collapse
|
425
|
Peng XX, Feng KR, Ren YJ. Molecular modeling studies of quinazolinone derivatives as novel PI3Kδ selective inhibitors. RSC Adv 2017. [DOI: 10.1039/c7ra10870b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The main molecular modeling method, the docking results of newly designed compoundD04and the best pharmacophore model are reported herein.
Collapse
Affiliation(s)
- Xiu Xiu Peng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Kai Rui Feng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Yu Jie Ren
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| |
Collapse
|
426
|
Kouza M, Faraggi E, Kolinski A, Kloczkowski A. The GOR Method of Protein Secondary Structure Prediction and Its Application as a Protein Aggregation Prediction Tool. Methods Mol Biol 2017; 1484:7-24. [PMID: 27787816 DOI: 10.1007/978-1-4939-6406-2_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GOR method of protein secondary structure prediction is described. The original method was published by Garnier, Osguthorpe, and Robson in 1978 and was one of the first successful methods to predict protein secondary structure from amino acid sequence. The method is based on information theory, and an assumption that information function of a protein chain can be approximated by a sum of information from single residues and pairs of residues. The analysis of frequencies of occurrence of secondary structure for singlets and doublets of residues in a protein database enables prediction of secondary structure for new amino acid sequences. Because of these simple physical assumptions the GOR method has a conceptual advantage over other later developed methods such as PHD, PSIPRED, and others that are based on Machine Learning methods (like Neural Networks), give slightly better predictions, but have a "black box" nature. The GOR method has been continuously improved and modified for 30 years with the last GOR V version published in 2002, and the GOR V server developed in 2005. We discuss here the original GOR method and the GOR V program and the web server. Additionally we discuss new highly interesting and important applications of the GOR method to chameleon sequences in protein folding simulations, and for prediction of protein aggregation propensities. Our preliminary studies show that the GOR method is a promising and efficient alternative to other protein aggregation predicting tools. This shows that the GOR method despite being almost 40 years old is still important and has significant potential in application to new scientific problems.
Collapse
Affiliation(s)
- Maksim Kouza
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Eshel Faraggi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46032, USA.,Research and Information Systems, LLC, Indianapolis, Indiana, USA
| | - Andrzej Kolinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Andrzej Kloczkowski
- Battelle Center for MathematicalMedicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43215, USA. .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA.
| |
Collapse
|
427
|
Song L, Li X, Bai XX, Gao J, Wang CY. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Neural Regen Res 2017; 12:1870-1876. [PMID: 29239334 PMCID: PMC5745842 DOI: 10.4103/1673-5374.219049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phytoestrogen derived from radix astragali that binds to estrogen receptors to produce estrogen-like effects. Radix astragali Calycosin has been shown to relieve cognitive impairment induced by diabetes mellitus, suggesting calycosin may improve the cognitive function of Alzheimer's disease patients. The protein kinase C pathway is upstream of the mitogen-activated protein kinase pathway and exerts a neuroprotective effect by regulating Alzheimer's disease-related beta amyloid degradation. We hypothesized that calycosin improves the cognitive function of a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Various doses of calycosin (10, 20 and 40 mg/kg) were intraperitoneally injected into APP/PS1 transgenic mice that model Alzheimer's disease. Calycosin diminished hippocampal beta amyloid, Tau protein, interleukin-1beta, tumor necrosis factor-alpha, acetylcholinesterase and malondialdehyde levels in a dose-dependent manner, and increased acetylcholine and glutathione activities. The administration of a protein kinase C inhibitor, calphostin C, abolished the neuroprotective effects of calycosin including improving cognitive ability, and anti-oxidative and anti-inflammatory effects. Our data demonstrated that calycosin mitigated oxidative stress and inflammatory responses in the hippocampus of Alzheimer's disease model mice by activating the protein kinase C pathway, and thereby improving cognitive function.
Collapse
Affiliation(s)
- Lei Song
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaoping Li
- Department of Pediatrics, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Xue Bai
- Cadre's Ward, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jian Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chun-Yan Wang
- Cadre's Ward, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
428
|
Brown AM, Bevan DR. Influence of sequence and lipid type on membrane perturbation by human and rat amyloid β-peptide (1–42). Arch Biochem Biophys 2017; 614:1-13. [DOI: 10.1016/j.abb.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 12/20/2022]
|
429
|
Ngo ST, Hung HM, Truong DT, Nguyen MT. Replica exchange molecular dynamics study of the truncated amyloid beta (11–40) trimer in solution. Phys Chem Chem Phys 2017; 19:1909-1919. [DOI: 10.1039/c6cp05511g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the 3Aβ11–40 oligomer is determined for the first time using T-REMD simulations.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | | | - Duc Toan Truong
- Department of Theoretical Physics
- Ho Chi Minh City University of Science
- Ho Chi Minh City
- Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
430
|
Bouzakraoui S, Mousseau N. Structural and thermodynamical properties of early human amylin oligomers using replica exchange molecular dynamics: mutation effect of three key residues F15, H18 and F23. Phys Chem Chem Phys 2017; 19:31290-31299. [DOI: 10.1039/c7cp06463b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A schematic representation of a possible oligomerization mechanism of hIAPP. β-Hairpins are proposed to self-assemble into early ordered oligomers by side-to-side association.
Collapse
Affiliation(s)
- S. Bouzakraoui
- Laboratoire d'ingénierie des Matériaux et d'Environnement: Modélisation et Application
- Faculté des Sciences
- Université Ibn Tofail
- Kénitra
- Morocco
| | - N. Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM)
- Université de Montréal
- Montréal
- Canada
| |
Collapse
|
431
|
Wang Y, Wang H, Chen HZ. AChE Inhibition-based Multi-target-directed Ligands, a Novel Pharmacological Approach for the Symptomatic and Disease-modifying Therapy of Alzheimer's Disease. Curr Neuropharmacol 2016; 14:364-75. [PMID: 26786145 PMCID: PMC4876592 DOI: 10.2174/1570159x14666160119094820] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/31/2015] [Accepted: 11/12/2015] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elder people, characterised by a progressive decline in memory as a result of an impairment of cholinergic neurotransmission. To date acetylcholinesterase inhibitors (AChEIs) have become the most prescribed drugs for the symptomatic treatment of mild to moderate AD. However, the traditional “one molecule-one target” paradigm is not sufficient and appropriate to yield the desired therapeutic efficacy since multiple factors, such as amyloid-β (Aβ) deposits, neuroinflammation, oxidative stress, and decreased levels of acetylcholine (ACh) have been thought to play significant roles in the AD pathogenesis. New generation of multi-target drugs is earnestly demanded not only for ameliorating symptoms but also for modifying the disease. Herein, we delineated the catalytic and non-catalytic functions of AChE, and summarized the works of our group and others in research and development of novel AChEI-based multi-target-directed ligands (MTDLs), such as dual binding site AChEIs and multi-target AChEIs inhibiting Aβ aggregation, regulating Aβ procession, antagonizing platelet-activating factor (PAF) receptor, scavenging oxygen radical, chelating metal ions, inhibiting monoamine oxidase B (MAO-B), blocking N-methyl-D-aspartic acid (NMDA) receptor and others.
Collapse
Affiliation(s)
| | - Hao Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| | - Hong-zhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| |
Collapse
|
432
|
Wallin C, Kulkarni YS, Abelein A, Jarvet J, Liao Q, Strodel B, Olsson L, Luo J, Abrahams JP, Sholts SB, Roos PM, Kamerlin SCL, Gräslund A, Wärmländer SKTS. Characterization of Mn(II) ion binding to the amyloid-β peptide in Alzheimer's disease. J Trace Elem Med Biol 2016; 38:183-193. [PMID: 27085215 DOI: 10.1016/j.jtemb.2016.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/17/2016] [Indexed: 12/28/2022]
Abstract
Growing evidence links neurodegenerative diseases to metal exposure. Aberrant metal ion concentrations have been noted in Alzheimer's disease (AD) brains, yet the role of metals in AD pathogenesis remains unresolved. A major factor in AD pathogenesis is considered to be aggregation of and amyloid formation by amyloid-β (Aβ) peptides. Previous studies have shown that Aβ displays specific binding to Cu(II) and Zn(II) ions, and such binding has been shown to modulate Aβ aggregation. Here, we use nuclear magnetic resonance (NMR) spectroscopy to show that Mn(II) ions also bind to the N-terminal part of the Aβ(1-40) peptide, with a weak binding affinity in the milli- to micromolar range. Circular dichroism (CD) spectroscopy, solid state atomic force microscopy (AFM), fluorescence spectroscopy, and molecular modeling suggest that the weak binding of Mn(II) to Aβ may not have a large effect on the peptide's aggregation into amyloid fibrils. However, identification of an additional metal ion displaying Aβ binding reveals more complex AD metal chemistry than has been previously considered in the literature.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Yashraj S Kulkarni
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Axel Abelein
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society (NVS), H1, Division of Neurogeriatrics, Karolinska Institutet, Novum Pl 5 14157 Huddinge, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden; The National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Qinghua Liao
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, Jülich, 52425, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lisa Olsson
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jinghui Luo
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden; Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jan Pieter Abrahams
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Laboratory of Biomolecular Research, Paul Scherrer Institute, Department of Biology and Chemistry, OFLC/102CH-5232 Villigen PSI, Switzerland
| | - Sabrina B Sholts
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden; Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC 20013, USA
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden; Department of Clinical Physiology, Capio St.Göran Hospital, St.Göransplan 1, 112 19 Stockholm, Sweden
| | - Shina C L Kamerlin
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden.
| |
Collapse
|
433
|
Cheon M, Kang M, Chang I. Polymorphism of fibrillar structures depending on the size of assembled Aβ 17-42 peptides. Sci Rep 2016; 6:38196. [PMID: 27901087 PMCID: PMC5128875 DOI: 10.1038/srep38196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/04/2016] [Indexed: 01/16/2023] Open
Abstract
The size of assembled Aβ17-42 peptides can determine polymorphism during oligomerization and fibrillization, but the mechanism of this effect is unknown. Starting from separate random monomers, various fibrillar oligomers with distinct structural characteristics were identified using discontinuous molecular dynamics simulations based on a coarse-grained protein model. From the structures observed in the simulations, two characteristic oligomer sizes emerged, trimer and paranuclei, which generated distinct structural patterns during fibrillization. A majority of the simulations for trimers and tetramers formed non-fibrillar oligomers, which primarily progress to off-pathway oligomers. Pentamers and hexamers were significantly converted into U-shape fibrillar structures, meaning that these oligomers, called paranuclei, might be potent on-pathway intermediates in fibril formation. Fibrillar oligomers larger than hexamers generated substantial polymorphism in which hybrid structures were readily formed and homogeneous fibrillar structures appeared infrequently.
Collapse
Affiliation(s)
- Mookyung Cheon
- Center for Proteome Biophysics, Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Department of Neural Development and Disease, Korea Brain Research Institute, Daegu 41068, Korea
| | - Mooseok Kang
- Center for Proteome Biophysics, Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Iksoo Chang
- Center for Proteome Biophysics, Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
434
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|
435
|
Nguyen PH, Sterpone F, Pouplana R, Derreumaux P, Campanera JM. Dimerization Mechanism of Alzheimer Aβ 40 Peptides: The High Content of Intrapeptide-Stabilized Conformations in A2V and A2T Heterozygous Dimers Retards Amyloid Fibril Formation. J Phys Chem B 2016; 120:12111-12126. [PMID: 27933940 DOI: 10.1021/acs.jpcb.6b10722] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amyloid beta (Aβ) oligomerization is associated with the origin and progression of Alzheimer's disease (AD). While the A2V mutation enhances aggregation kinetics and toxicity, mixtures of wild-type (WT) and A2V, and also WT and A2T, peptides retard fibril formation and protect against AD. In this study, we simulate the equilibrium ensemble of WT:A2T Aβ40 dimer by means of extensive atomistic replica exchange molecular dynamics and compare our results with previous equivalent simulations of A2V:A2V, WT:WT, and WT:A2V Aβ40 dimers for a total time scale of nearly 0.1 ms. Qualitative comparison of the resulting thermodynamic properties, such as the relative binding free energies, with the reported experimental kinetic and thermodynamic data affords us important insight into the conversion from slow-pathway to fast-pathway dimer conformations. The crucial reaction coordinate or driving force of such transformation turns out to be related to hydrophobic interpeptide interactions. Analysis of the equilibrium ensembles shows that the fast-pathway conformations contain interpeptide out-of-register antiparallel β-sheet structures at short interpeptide distances. In contrast, the slow-pathway conformations are formed by the association of peptides at large interpeptide distances and high intrapeptide compactness, such as conformations containing intramolecular three-stranded β-sheets which sharply distinguish fast (A2V:A2V and WT:WT) and slow (WT:A2T and WT:A2V) amyloid-forming sequences. Also, this analysis leads us to predict that a molecule stabilizing the intramolecular three-stranded β-sheet or inhibiting the formation of an interpeptide β-sheet spanning residues 17-20 and 31-37 would further reduce fibril formation and probably the cytotoxicity of Aβ species.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ramon Pouplana
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Catalonia, Spain
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France.,IUF (Institut Universitaire de France) , 103 Boulevard Michel, 75005 Paris, France
| | - Josep M Campanera
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
436
|
Chiricotto M, Sterpone F, Derreumaux P, Melchionna S. Multiscale simulation of molecular processes in cellular environments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20160225. [PMID: 27698046 PMCID: PMC5052736 DOI: 10.1098/rsta.2016.0225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 05/27/2023]
Abstract
We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Simone Melchionna
- Istituto Sistemi Complessi-ISC, Consiglio Nazionale delle Ricerche, P.za A. Moro 2, 00185 Rome, Italy
| |
Collapse
|
437
|
Hoang Viet M, Derreumaux P, Nguyen PH. Nonequilibrium all-atom molecular dynamics simulation of the bubble cavitation and application to dissociate amyloid fibrils. J Chem Phys 2016; 145:174113. [PMID: 27825231 PMCID: PMC5106436 DOI: 10.1063/1.4966263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/05/2016] [Indexed: 11/14/2022] Open
Abstract
The cavitation of gas bubbles in liquids has been applied to different disciplines in life and natural sciences, and in technologies. To obtain an appropriate theoretical description of effects induced by the bubble cavitation, we develop an all-atom nonequilibrium molecular-dynamics simulation method to simulate bubbles undergoing harmonic oscillation in size. This allows us to understand the mechanism of the bubble cavitation-induced liquid shear stress on surrounding objects. The method is then employed to simulate an Aβ fibril model in the presence of bubbles, and the results show that the bubble expansion and contraction exert water pressure on the fibril. This yields to the deceleration and acceleration of the fibril kinetic energy, facilitating the conformational transition between local free energy minima, and leading to the dissociation of the fibril. Our work, which is a proof-of-concept, may open a new, efficient way to dissociate amyloid fibrils using the bubble cavitation technique, and new venues to investigate the complex phenomena associated with amyloidogenesis.
Collapse
Affiliation(s)
- Man Hoang Viet
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
438
|
Recent progress in repositioning Alzheimer's disease drugs based on a multitarget strategy. Future Med Chem 2016; 8:2113-2142. [PMID: 27774814 DOI: 10.4155/fmc-2016-0103] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a serious progressive neurological disorder, characterized by impaired cognition and profound irreversible memory loss. The multifactorial nature of AD and the absence of a cure so far have stimulated medicinal chemists worldwide to follow multitarget drug-design strategies based on repositioning approved drugs. This review describes a summary of recently published works focused on tailoring new derivatives of US FDA-approved acetylcholinesterase inhibitors, in addition to huperzine (a drug approved in China), either by hybridization with other pharmacophore elements (to hit more AD targets), or by combination of two FDA-approved drugs. Besides the capacity for improving the cholinergic activity, these polyfunctional derivatives are also able to tackle other important neuroprotective properties, such as anti-β-amyloid aggregation, scavenging of radical oxygen species, modulation of redox-active metals or inhibition of monoamine oxidase, thereby resulting in potentially novel and more effective therapeutics for the treatment of AD.
Collapse
|
439
|
Musiani F, Giorgetti A. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:49-77. [PMID: 28109331 DOI: 10.1016/bs.ircmb.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment.
Collapse
Affiliation(s)
- F Musiani
- Laboratory of Bioinorganic Chemistry, University of Bologna, Bologna, Italy.
| | - A Giorgetti
- Applied Bioinformatics Group, University of Verona, Verona, Italy.
| |
Collapse
|
440
|
Huy PDQ, Vuong QV, La Penna G, Faller P, Li MS. Impact of Cu(II) Binding on Structures and Dynamics of Aβ 42 Monomer and Dimer: Molecular Dynamics Study. ACS Chem Neurosci 2016; 7:1348-1363. [PMID: 27454036 DOI: 10.1021/acschemneuro.6b00109] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The classical force field, which is compatible with the Amber force field 99SB, has been obtained for the interaction of Cu(II) with monomer and dimers of amyloid-β peptides using the coordination where Cu(II) is bound to His6, His13 (or His14), and Asp1 with distorted planar geometry. The newly developed force field and molecular dynamics simulation were employed to study the impact of Cu(II) binding on structures and dynamics of Aβ42 monomer and dimers. It was shown that in the presence of Cu(II) the β content of monomer is reduced substantially compared with the wild-type Aβ42 suggesting that, in accord with experiments, metal ions facilitate formation of amorphous aggregates rather than amyloid fibrils with cross-β structures. In addition, one possible mechanism for amorphous assembly is that the Asp23-Lys28 salt bridge, which plays a crucial role in β sheet formation, becomes more flexible upon copper ion binding to the Aβ N-terminus. The simulation of dimers was conducted with the Cu(II)/Aβ stoichiometric ratios of 1:1 and 1:2. For the 1:1 ratio Cu(II) delays the Aβ dimerization process as observed in a number of experiments. The mechanism underlying this phenomenon is associated with slow formation of interchain salt bridges in dimer as well as with decreased hydrophobicity of monomer upon Cu-binding.
Collapse
Affiliation(s)
- Pham Dinh Quoc Huy
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute
for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi
Minh City, Vietnam
| | - Quan Van Vuong
- Institute
for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi
Minh City, Vietnam
- Department
of Chemistry, Nagoya University, Nagoya 464-8602, Japan
| | - Giovanni La Penna
- National Research Council of Italy CNR, Institute
for Chemistry of Organometallic Compounds ICCOM, 50019 Florence, Italy
- Italian Institute for Nuclear Physics INFN, Section
of Roma-Tor Vergata, 50019 Florence, Italy
| | - Peter Faller
- Biometals
and Biological Chemistry, Institute of Chemistry, University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
441
|
Mazzitelli S, Filipello F, Rasile M, Lauranzano E, Starvaggi-Cucuzza C, Tamborini M, Pozzi D, Barajon I, Giorgino T, Natalello A, Matteoli M. Amyloid-β 1-24 C-terminal truncated fragment promotes amyloid-β 1-42 aggregate formation in the healthy brain. Acta Neuropathol Commun 2016; 4:110. [PMID: 27724899 PMCID: PMC5057504 DOI: 10.1186/s40478-016-0381-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/21/2023] Open
Abstract
Substantial data indicate that amyloid-β (Aβ), the major component of senile plaques, plays a central role in Alzheimer’s Disease and indeed the assembly of naturally occurring amyloid peptides into cytotoxic aggregates is linked to the disease pathogenesis. Although Aβ42 is a highly aggregating form of Aβ, the co-occurrence of shorter Aβ peptides might affect the aggregation potential of the Aβ pool. In this study we aimed to assess whether the structural behavior of human Aβ42 peptide inside the brain is influenced by the concomitant presence of N-terminal fragments produced by the proteolytic activity of glial cells. We show that the occurrence of the human C-terminal truncated 1–24 Aβ fragment impairs Aβ42 clearance through blood brain barrier and promotes the formation of Aβ42 aggregates even in the healthy brain. By showing that Aβ1-24 has seeding properties for aggregate formation in intracranially injected wild type mice, our study provide the proof-of-concept that peptides produced upon Aβ42 cleavage by activated glial cells may cause phenotypic defects even in the absence of genetic mutations associated with Alzheimer’s Disease, possibly contributing to the development of the sporadic form of the pathology.
Collapse
|
442
|
Sánchez-López C, Cortés-Mejía R, Miotto MC, Binolfi A, Fernández CO, Del Campo JM, Quintanar L. Copper Coordination Features of Human Islet Amyloid Polypeptide: The Type 2 Diabetes Peptide. Inorg Chem 2016; 55:10727-10740. [PMID: 27704849 DOI: 10.1021/acs.inorgchem.6b01963] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits found in pancreatic β-cells of patients with type 2 diabetes (T2D). Copper ions have an inhibitory effect on the amyloid aggregation of hIAPP, and they may play a role in the etiology of T2D. However, deeper knowledge of the structural details of the copper-hIAPP interaction is required to understand the molecular mechanisms involved. Here, we performed a spectroscopic study of Cu(II) binding to hIAPP and several variants, using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electronic absorption, and circular dichroism (CD) in the UV-vis region in combination with Born-Oppenheimer molecular dynamics (BOMD) and density functional theory geometry optimizations. We find that Cu(II) binds to the imidazole N1 of His18, the deprotonated amides of Ser19 and Ser20, and an oxygen-based ligand provided by Ser20, either via its hydroxyl group or its backbone carbonyl, while Asn22 might also play a role as an axial ligand. Ser20 plays a crucial role in stabilizing Cu(II) coordination toward the C-terminal, providing a potential link between the S20G mutation associated with early onset of T2D, its impact in Cu binding properties, and hIAPP amyloid aggregation. Our study defines the nature of the coordination environment in the Cu(II)-hIAPP complex, revealing that the amino acid residues involved in metal ion binding are also key residues for the formation of β-sheet structures and amyloid fibrils. Cu(II) binding to hIAPP may lead to the coexistence of more than one coordination mode, which in turn could favor different sets of Cu-induced conformational ensembles. Cu-induced hIAPP conformers would display a higher energetic barrier to form amyloid fibrils, hence explaining the inhibitory effect of Cu ions in hIAPP aggregation. Overall, this study provides further structural insights into the bioinorganic chemistry of T2D.
Collapse
Affiliation(s)
- Carolina Sánchez-López
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City, Mexico
| | - Rodrigo Cortés-Mejía
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM) , Mexico City, Mexico
| | - Marco C Miotto
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario , Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Andres Binolfi
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario , Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario , Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Jorge M Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM) , Mexico City, Mexico
| | - Liliana Quintanar
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City, Mexico
| |
Collapse
|
443
|
Exploring the aggregation free energy landscape of the amyloid-β protein (1-40). Proc Natl Acad Sci U S A 2016; 113:11835-11840. [PMID: 27698130 DOI: 10.1073/pnas.1612362113] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A predictive coarse-grained protein force field [associative memory, water-mediated, structure, and energy model for molecular dynamics (AWSEM)-MD] is used to study the energy landscapes and relative stabilities of amyloid-β protein (1-40) in the monomer and all of its oligomeric forms up to an octamer. We find that an isolated monomer is mainly disordered with a short α-helix formed at the central hydrophobic core region (L17-D23). A less stable hairpin structure, however, becomes increasingly more stable in oligomers, where hydrogen bonds can form between neighboring monomers. We explore the structure and stability of both prefibrillar oligomers that consist of mainly antiparallel β-sheets and fibrillar oligomers with only parallel β-sheets. Prefibrillar oligomers are polymorphic but typically take on a cylindrin-like shape composed of mostly antiparallel β-strands. At the concentration of the simulation, the aggregation free energy landscape is nearly downhill. We use umbrella sampling along a structural progress coordinate for interconversion between prefibrillar and fibrillar forms to identify a conversion pathway between these forms. The fibrillar oligomer only becomes favored over its prefibrillar counterpart in the pentamer where an interconversion bottleneck appears. The structural characterization of the pathway along with statistical mechanical perturbation theory allow us to evaluate the effects of concentration on the free energy landscape of aggregation as well as the effects of the Dutch and Arctic mutations associated with early onset of Alzheimer's disease.
Collapse
|
444
|
Bhavaraju M, Phillips M, Bowman D, Aceves-Hernandez JM, Hansmann UHE. Binding of ACE-inhibitors to in vitro and patient-derived amyloid-β fibril models. J Chem Phys 2016; 144:015101. [PMID: 26747819 DOI: 10.1063/1.4938261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Currently, no drugs exist that can prevent or reverse Alzheimer's disease, a neurodegenerative disease associated with the presence, in the brain, of plaques that are composed of β-amyloid (Aβ) peptides. Recent studies suggest that angiotensin-converting enzyme (ACE) inhibitors, a set of drugs used to treat hypertension, may inhibit amyloid formation in vitro. In the present study, we investigate through computer simulations the binding of ACE inhibitors to patient-derived Aβ fibrils and contrast it with that of ACE inhibitors binding to in vitro generated fibrils. The binding affinities of the ACE inhibitors are compared with that of Congo red, a dye that is used to identify amyloid structures and that is known to be a weak inhibitor of Aβ aggregation. We find that ACE inhibitors have a lower binding affinity to the patient-derived fibrils than to in vitro generated ones. For patient-derived fibrils, their binding affinities are even lower than that of Congo red. Our observations raise doubts on the hypothesis that these drugs inhibit fibril formation in Alzheimer patients by interacting directly with the amyloids.
Collapse
Affiliation(s)
- Manikanthan Bhavaraju
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Malachi Phillips
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Deborah Bowman
- Department of Biology, Langston University, Langston, Oklahoma 73050, USA
| | - Juan M Aceves-Hernandez
- Department of Chemistry, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autonoma de Mexico, Cuautitlán Izcalli, Estado de Mexico, 15740, Mexico
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
445
|
Li KS, Rempel DL, Gross ML. Conformational-Sensitive Fast Photochemical Oxidation of Proteins and Mass Spectrometry Characterize Amyloid Beta 1-42 Aggregation. J Am Chem Soc 2016; 138:12090-8. [PMID: 27568528 PMCID: PMC5221481 DOI: 10.1021/jacs.6b07543] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preventing and treating Alzheimer's disease require understanding the aggregation of amyloid beta 1-42 (Aβ1-42) to give oligomers, protofibrils, and fibrils. Here we describe footprinting of Aβ1-42 by hydroxyl radical-based fast photochemical oxidation of proteins (FPOP) and mass spectrometry (MS) to monitor the time-course of Aβ1-42 aggregation. We resolved five distinct stages characterized by two sigmoidal behaviors, showing the time-dependent transitions of monomers-paranuclei-protofibrils-fibrillar aggregates. Kinetic modeling allows deciphering the amounts and interconversion of the dominant Aβ1-42 species. Moreover, the irreversible footprinting probe provides insights into the kinetics of oligomerization and subsequent fibrillar growth by allowing the conformational changes of Aβ1-42 at subregional and even amino-acid-residue levels to be revealed. The middle domain of Aβ1-42 plays a major role in aggregation, whereas the N-terminus retains most of its solvent-accessibility during aggregation, and the hydrophobic C-terminus is involved to an intermediate extent. This approach affords an in situ, real-time monitoring of the solvent accessibility of Aβ1-42 at various stages of oligomerization, and provides new insights on site-specific aggregation of Aβ1-42 for a sample state beyond the capabilities of most other biophysical methods.
Collapse
Affiliation(s)
- Ke Sherry Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Don L. Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| |
Collapse
|
446
|
Matthes D, Gapsys V, Brennecke JT, de Groot BL. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase. Sci Rep 2016; 6:33156. [PMID: 27616019 PMCID: PMC5018807 DOI: 10.1038/srep33156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
The formation of well-defined filamentous amyloid structures involves a polydisperse collection of oligomeric states for which relatively little is known in terms of structural organization. Here we use extensive, unbiased explicit solvent molecular dynamics (MD) simulations to investigate the structural and dynamical features of oligomeric aggregates formed by a number of highly amyloidogenic peptides at atomistic resolution on the μs time scale. A consensus approach has been adopted to analyse the simulations in multiple force fields, yielding an in-depth characterization of pre-fibrillar oligomers and their global and local structure properties. A collision cross section analysis revealed structurally heterogeneous aggregate ensembles for the individual oligomeric states that lack a single defined quaternary structure during the pre-nucleation phase. To gain insight into the conformational space sampled in early aggregates, we probed their substructure and found emerging β-sheet subunit layers and a multitude of ordered intermolecular β-structure motifs with growing aggregate size. Among those, anti-parallel out-of-register β-strands compatible with toxic β-barrel oligomers were particularly prevalent already in smaller aggregates and formed prior to ordered fibrillar structure elements. Notably, also distinct fibril-like conformations emerged in the oligomeric state and underscore the notion that pre-nucleated oligomers serve as a critical intermediate step on-pathway to fibrils.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Julian T Brennecke
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
447
|
Hoang Viet M, Derreumaux P, Li MS, Roland C, Sagui C, Nguyen PH. Picosecond dissociation of amyloid fibrils with infrared laser: A nonequilibrium simulation study. J Chem Phys 2016; 143:155101. [PMID: 26493925 DOI: 10.1063/1.4933207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, mid-infrared free-electron laser technology has been developed to dissociate amyloid fibrils. Here, we present a theoretical framework for this type of experiment based on laser-induced nonequilibrium all-atom molecular dynamics simulations. We show that the fibril is destroyed due to the strong resonance between its amide I vibrational modes and the laser field. The effects of laser irradiation are determined by a balance between fibril formation and dissociation. While the overall rearrangements of the fibril finish over short time scales, the interaction between the peptides and the solvent continues over much longer times indicating that the waters play an important role in the dissociation process. Our results thus provide new insights into amyloid fibril dissociation by laser techniques and open up new venues to investigate the complex phenomena associated with amyloidogenesis.
Collapse
Affiliation(s)
- Man Hoang Viet
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
448
|
Thai NQ, Tseng NH, Vu MT, Nguyen TT, Linh HQ, Hu CK, Chen YR, Li MS. Discovery of DNA dyes Hoechst 34580 and 33342 as good candidates for inhibiting amyloid beta formation: in silico and in vitro study. J Comput Aided Mol Des 2016; 30:639-50. [PMID: 27511370 PMCID: PMC5021751 DOI: 10.1007/s10822-016-9932-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/27/2016] [Indexed: 01/14/2023]
Abstract
Combining Lipinski's rule with the docking and steered molecular dynamics simulations and using the PubChem data base of about 1.4 million compounds, we have obtained DNA dyes Hoechst 34580 and Hoechst 33342 as top-leads for the Alzheimer's disease. The binding properties of these ligands to amyloid beta (Aβ) fibril were thoroughly studied by in silico and in vitro experiments. Hoechst 34580 and Hoechst 33342 prefer to locate near hydrophobic regions with binding affinity mainly governed by the van der Waals interaction. By the Thioflavin T assay, it was found that the inhibition constant IC50 ≈ 0.86 and 0.68 μM for Hoechst 34580 and Hoechst 33342, respectively. This result qualitatively agrees with the binding free energy estimated using the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulations with the AMBER-f99SB-ILDN force field and water model TIP3P. In addition, DNA dyes have the high capability to cross the blood brain barrier. Thus, both in silico and in vitro experiments have shown that Hoechst 34580 and 33342 are good candidates for treating the Alzheimer's disease by inhibiting Aβ formation.
Collapse
Affiliation(s)
- Nguyen Quoc Thai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
- Division of Theoretical Physics, Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap Vietnam
| | - Ning-Hsuan Tseng
- Genomics Research Center, Academia Sinica, Academia Rd., Sec. 2, Nankang Dist., Taipei 115, Taiwan
| | - Mui Thi Vu
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Tin Trung Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, 128 Academia Road Section 2, Taipei, 11529 Taiwan
- National Center for Theoretical Sciences, National Tsing Hua University, 101 Kuang-Fu Road Section 2, Hsinch, 30013 Taiwan
- Business School, University of Shanghai for Science and Technology, 334 Jun Gong Road, Shanghai, 200093 China
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Academia Rd., Sec. 2, Nankang Dist., Taipei 115, Taiwan
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
449
|
Chiricotto M, Tran TT, Nguyen PH, Melchionna S, Sterpone F, Derreumaux P. Coarse-grained and All-atom Simulations towards the Early and Late Steps of Amyloid Fibril Formation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Thanh Thuy Tran
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Simone Melchionna
- Istituto Sistemi Complessi; Consiglio Nazionale delle Ricerche; P. le A. Moro 2 00185 Rome Italy
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
450
|
Paul TJ, Hoffmann Z, Wang C, Shanmugasundaram M, DeJoannis J, Shekhtman A, Lednev IK, Yadavalli VK, Prabhakar R. Structural and Mechanical Properties of Amyloid Beta Fibrils: A Combined Experimental and Theoretical Approach. J Phys Chem Lett 2016; 7:2758-64. [PMID: 27387853 PMCID: PMC5956519 DOI: 10.1021/acs.jpclett.6b01066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this combined experimental (deep ultraviolet resonance Raman (DUVRR) spectroscopy and atomic force microscopy (AFM)) and theoretical (molecular dynamics (MD) simulations and stress-strain (SS)) study, the structural and mechanical properties of amyloid beta (Aβ40) fibrils have been investigated. The DUVRR spectroscopy and AFM experiments confirmed the formation of linear, unbranched and β-sheet rich fibrils. The fibrils (Aβ40)n, formed using n monomers, were equilibrated using all-atom MD simulations. The structural properties such as β-sheet character, twist, interstrand distance, and periodicity of these fibrils were found to be in agreement with experimental measurements. Furthermore, Young's modulus (Y) = 4.2 GPa computed using SS calculations was supported by measured values of 1.79 ± 0.41 and 3.2 ± 0.8 GPa provided by two separate AFM experiments. These results revealed size dependence of structural and material properties of amyloid fibrils and show the utility of such combined experimental and theoretical studies in the design of precisely engineered biomaterials.
Collapse
Affiliation(s)
- Thomas J. Paul
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Zachary Hoffmann
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Maruda Shanmugasundaram
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jason DeJoannis
- Dassault Systèmes BIOVIA, San Deigo, California 92121, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Igor K. Lednev
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Vamsi K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|