401
|
Abstract
Cell metabolism is closely related to the host immunity in many respects. We herein briefly summarized the recent progress on the roles of cellular metabolism in T-cell development, homeostasis, differentiation and functions. Relatively quiescent naïve T cells only require energy for survival and migration, and they mainly metabolize glucose to carbon dioxide through oxidative phosphorylation. However, activated T cells engage in robust cell proliferation, produce of a range of effector molecules and migrate through peripheral tissues, so they utilizes glycolysis to convert glucose to lactate (termed aerobic glycolysis) to meet the significantly increased metabolic demands. Importantly, the differentiation of T-cell subsets and memory T cells (Tm) was also significantly shaped by distinct cellular metabolic pathways including glucose, amino acids (AA), fatty acids (FA), and others. Understanding the regulatory metabolic networks on immunity may offer new insights into the immune-related disorders and open novel potential therapies to prevent and treat immune diseases.
Collapse
Affiliation(s)
- Hui Chen
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
404
|
Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M, Stoddard J, Ouyang W, Frucht DM, Rao VK, Atkinson TP, Agharahimi A, Hussey AA, Folio LR, Olivier KN, Fleisher TA, Pittaluga S, Holland SM, Cohen JI, Oliveira JB, Tangye SG, Schwartzberg PL, Lenardo MJ, Uzel G. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 2014; 15:88-97. [PMID: 24165795 PMCID: PMC4209962 DOI: 10.1038/ni.2771] [Citation(s) in RCA: 504] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/21/2013] [Indexed: 12/15/2022]
Abstract
The p110δ subunit of phosphatidylinositol-3-OH kinase (PI(3)K) is selectively expressed in leukocytes and is critical for lymphocyte biology. Here we report fourteen patients from seven families who were heterozygous for three different germline, gain-of-function mutations in PIK3CD (which encodes p110δ). These patients presented with sinopulmonary infections, lymphadenopathy, nodular lymphoid hyperplasia and viremia due to cytomegalovirus (CMV) and/or Epstein-Barr virus (EBV). Strikingly, they had a substantial deficiency in naive T cells but an over-representation of senescent effector T cells. In vitro, T cells from patients exhibited increased phosphorylation of the kinase Akt and hyperactivation of the metabolic checkpoint kinase mTOR, enhanced glucose uptake and terminal effector differentiation. Notably, treatment with rapamycin to inhibit mTOR activity in vivo partially restored the abundance of naive T cells, largely 'rescued' the in vitro T cell defects and improved the clinical course.
Collapse
Affiliation(s)
- Carrie L Lucas
- 1] Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2]
| | - Hye Sun Kuehn
- 1] Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA. [2]
| | - Fang Zhao
- 1] Cell Signaling Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA. [2] Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA. [3]
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elissa K Deenick
- 1] Immunology and Immunodeficiency Group, Immunology Program, Garvan Institute of Medical Research, Sydney, Australia. [2] St. Vincent's Clinical School Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Umaimainthan Palendira
- 1] Immunology and Immunodeficiency Group, Immunology Program, Garvan Institute of Medical Research, Sydney, Australia. [2] St. Vincent's Clinical School Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Danielle T Avery
- Immunology and Immunodeficiency Group, Immunology Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Leen Moens
- Immunology and Immunodeficiency Group, Immunology Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Jennifer L Cannons
- Cell Signaling Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew Biancalana
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Weiming Ouyang
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland, USA
| | - David M Frucht
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland, USA
| | - V Koneti Rao
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - T Prescott Atkinson
- Division of Allergy and Immunology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anahita Agharahimi
- 1] Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] Laboratory of Clinical Infectious Diseases, Clinical Research Directorate-Clinical Monitoring Research Program, Science Applications International Corporation-Frederick, Frederick National Laboratory for Clinical Research, Frederick, Maryland, USA
| | - Ashleigh A Hussey
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Les R Folio
- Radiology and Imaging and Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth N Olivier
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas A Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joao B Oliveira
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife-Pernambuco, Brazil
| | - Stuart G Tangye
- 1] Immunology and Immunodeficiency Group, Immunology Program, Garvan Institute of Medical Research, Sydney, Australia. [2] St. Vincent's Clinical School Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Pamela L Schwartzberg
- Cell Signaling Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|