401
|
Yu J, Qiu H, Yin S, Wang H, Li Y. Polymeric Drug Delivery System Based on Pluronics for Cancer Treatment. Molecules 2021; 26:3610. [PMID: 34204668 PMCID: PMC8231161 DOI: 10.3390/molecules26123610] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Jialin Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741099, China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| |
Collapse
|
402
|
Epigenetic Modulation of Radiation-Induced Diacylglycerol Kinase Alpha Expression Prevents Pro-Fibrotic Fibroblast Response. Cancers (Basel) 2021; 13:cancers13102455. [PMID: 34070078 PMCID: PMC8158145 DOI: 10.3390/cancers13102455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary To reduce long-term fibrosis risk after radiotherapy, we demonstrated with different experimental approaches that modulation of the epigenetic pattern at the DGKA enhancer can attenuate pro-fibrotic reactions in human fibroblasts. We used (epi)genomic editing of the DGKA enhancer and administration of various epigenetic drugs and were able to modulate radiation-induced expression of DGKA and pro-fibrotic collagens. Based on our results, clinical application of bromodomain inhibitors will open promising ways to epigenetically modulate DGKA expression and might provide novel therapeutic options to prevent or even reverse radiotherapy-induced fibrotic reactions. Abstract Radiotherapy, a common component in cancer treatment, can induce adverse effects including fibrosis in co-irradiated tissues. We previously showed that differential DNA methylation at an enhancer of diacylglycerol kinase alpha (DGKA) in normal dermal fibroblasts is associated with radiation-induced fibrosis. After irradiation, the transcription factor EGR1 is induced and binds to the hypomethylated enhancer, leading to increased DGKA and pro-fibrotic marker expression. We now modulated this DGKA induction by targeted epigenomic and genomic editing of the DGKA enhancer and administering epigenetic drugs. Targeted DNA demethylation of the DGKA enhancer in HEK293T cells resulted in enrichment of enhancer-related histone activation marks and radiation-induced DGKA expression. Mutations of the EGR1-binding motifs decreased radiation-induced DGKA expression in BJ fibroblasts and caused dysregulation of multiple fibrosis-related pathways. EZH2 inhibitors (GSK126, EPZ6438) did not change radiation-induced DGKA increase. Bromodomain inhibitors (CBP30, JQ1) suppressed radiation-induced DGKA and pro-fibrotic marker expression. Similar drug effects were observed in donor-derived fibroblasts with low DNA methylation. Overall, epigenomic manipulation of DGKA expression may offer novel options for a personalized treatment to prevent or attenuate radiotherapy-induced fibrosis.
Collapse
|
403
|
Paraboschi I, Turnock S, Kramer-Marek G, Musleh L, Barisa M, Anderson J, Giuliani S. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: Challenges and potentials for human applications. Crit Rev Oncol Hematol 2021; 161:103325. [PMID: 33836238 PMCID: PMC8177002 DOI: 10.1016/j.critrevonc.2021.103325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023] Open
Abstract
Near-InfraRed PhotoImmunoTherapy (NIR-PIT) is a novel cancer-targeted treatment effected by a chemical conjugation between a photosensitiser (e.g. the NIR phthalocyanine dye IRDye700DX) and a cancer-targeting moiety (e.g. a monoclonal antibody, moAb). Delivery of a conjugate in vivo leads to accumulation at the tumour cell surface by binding to cell surface receptors or antigens. Upon deployment of focal NIR-light, irradiation of the conjugate results in a rapid, targeted cell death. However, the mechanisms of action to produce the cytotoxic effects have yet to be fully understood. Herein, we bring together the current knowledge of NIR-PIT from preclinical and clinical studies in a variety of cancers highlighting the key unanswered research questions. Furthermore, we discuss how to enhance the local control of solid cancers using this novel treatment regimen.
Collapse
Affiliation(s)
- Irene Paraboschi
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK
| | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Layla Musleh
- Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, UK
| | - Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK; Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
404
|
|
405
|
Hu L, Chen Z, Su X, Liu Y, Guo T, Liu R, Tian B, Wang C, Ying L. Efficient near-infrared anionic conjugated polyelectrolyte for photothermal therapy. J Mater Chem B 2021; 8:10609-10615. [PMID: 33136104 DOI: 10.1039/d0tb02015j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, an anionic conjugated polyelectrolyte (PCP-SO3K), in which the backbone contains alternating 4,4-bis-alkyl-4H-cyclopenta-[2,1-b;3,4-b']-dithiophene and benzene structural units and the charges are provided by pendant sulfonate groups, was synthesized. The ionic nature of PCP-SO3K renders it soluble in water, and PCP-SO3K aqueous solution exhibits good photostability, with two main absorbance bands centered at 490 nm and 837 nm before and after laser irradiation. Its NIR absorption in water, negligible photoluminescence and insignificant intersystem crossing endow PCP-SO3K with efficient photothermal therapy performance, and an effective photothermal conversion efficiency of 56.7% was realized. Thus, PCP-SO3K aqueous solution can be used as an effective photothermal agent for in vivo applications as its photoactivity can be triggered by NIR light and can convert laser energy into thermal energy in a water environment. Of particular importance is the fact that complete tumor remission without recurrence in 4T1 tumor-bearing mice was realized after intravenous injection of PCP-SO3K aqueous solution and laser irradiation (2.0 W cm-2, 808 nm). The results indicate that the application of anionic conjugated polyelectrolytes as photothermal agents in photothermal therapy provides a new platform for the design of photothermal agents for clinical cancer treatment.
Collapse
Affiliation(s)
- Liwen Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Zikang Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China and School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhe Su
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yanshan Liu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Ting Guo
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Ruiyuan Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China and School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Bishan Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Chunxiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
406
|
Tao Y, Sun Y, Shi K, Pei P, Ge F, Yang K, Liu T. Versatile labeling of multiple radionuclides onto a nanoscale metal-organic framework for tumor imaging and radioisotope therapy. Biomater Sci 2021; 9:2947-2954. [PMID: 33625404 DOI: 10.1039/d0bm02225j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radionuclides for cancer theranostic have confronted problems such as limitation in real-time visualization and unsatisfactory therapeutic effect sacrificed by the nonspecific distribution. Nanoscale metal-organic frameworks (nMOFs) have been widely used in biomedical applications including cancer imaging and drug delivery. However, there have been rare reports utilizing nMOFs as a single nanoplatform to label various radionuclides for tumor imaging and radioisotope therapy (RIT). In this work, we developed polyethylene glycol (PEG) modified zirconium-based nMOFs (PCN-224) with favorable size, water solubility and biocompatibility. Interestingly, without the help of chelating agents, metal radionuclides (technetium-99 m/99mTc, lutetium-177/177Lu) could be efficiently labeled onto nMOFs via chelating with the porphyrin structure and iodine-125 (125I) via chemical substitution of hydrogen in the benzene ring. The radionuclide-labeled PCN-PEG nanoparticles all exhibit excellent radiolabeling stability in different solutions. In accordance with the fluorescence imaging of mice injected with PCN-PEG, SPECT/CT imaging illustrates strong tumor accumulation of 99mTc-PCN-PEG. Moreover, 177Lu-PCN-PEG significantly inhibited the growth of tumor without inducing any perceptible toxicity to the treated mice. Hence, the radionuclide-delivery nanoplatform based on nMOFs would provide more opportunities for precise tumor theranostics and expand the biomedical applications of MOF nanomaterials.
Collapse
Affiliation(s)
- Yugui Tao
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Yuanchen Sun
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Kexin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Fei Ge
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
407
|
Xie W, Guo Z, Zhao L, Wei Y. Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics 2021; 11:6407-6426. [PMID: 33995665 PMCID: PMC8120219 DOI: 10.7150/thno.58711] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, metal-phenolic networks (MPNs) have attracted increasing attention for the engineering of multi-functional platforms because of their easy fabrication processes, excellent physicochemical properties, outstanding biocompatibility, and promising theranostic applications. In this review, we summarize recent progress in the design, synthesis, shape-control, biocompatibility evaluation, and potential theranostic applications of MPNs, especially for cancer theranostics. First, we provide an overview of various MPN systems, relevant self-assembly procedures, and shape-controllable preparation. The in vitro and in vivo biocompatibility evaluation of MPNs is also discussed, including co-incubation viability, adhesion, bio-distribution, and inflammation. Finally, we highlight the significant achievements of various MPNs for cancer theranostics, such as tumor imaging, drug delivery, photothermal therapy, radiotherapy, and chemo- and photo-dynamic therapy. This review provides a comprehensive background on the design and controllable synthesis, in vitro and in vivo biocompatibility evaluation, applications of MPNs as cancer theranostic agents, and presents an overview of the most up-to-date achievements in this field.
Collapse
Affiliation(s)
- Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
408
|
Jia S, Ge S, Fan X, Leong KW, Ruan J. Promoting reactive oxygen species generation: a key strategy in nanosensitizer-mediated radiotherapy. Nanomedicine (Lond) 2021; 16:759-778. [PMID: 33856241 DOI: 10.2217/nnm-2020-0448] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The radiotherapy enhancement effect of numerous nanosensitizers is based on the excessive production of reactive oxygen species (ROS), and only a few systematic reviews have focused on the key strategy in nanosensitizer-mediated radiotherapy. To clarify the mechanism underlying this effect, it is necessary to understand the role of ROS in radiosensitization before clinical application. Thus, the source of ROS and their principle of tumor inhibition are first introduced. Then, nanomaterial-mediated ROS generation in radiotherapy is reviewed. The double-edged sword effect of ROS and the potential dangers they may pose to cancer patients are subsequently addressed. Finally, future perspectives regarding ROS-regulated nanosensitizer applications and development are discussed.
Collapse
Affiliation(s)
- Shichong Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China.,Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
409
|
Recent advances of redox-responsive nanoplatforms for tumor theranostics. J Control Release 2021; 332:269-284. [DOI: 10.1016/j.jconrel.2021.02.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023]
|
410
|
Zhang J, Yang Y, Shao K, Bai X, Fang M, Shan G, Chen M. Fully convolutional network-based multi-output model for automatic segmentation of organs at risk in thorax. Sci Prog 2021; 104:368504211020161. [PMID: 34053337 PMCID: PMC10454972 DOI: 10.1177/00368504211020161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To propose a multi-output fully convolutional network (MOFCN) to segment bilateral lung, heart and spinal cord in the planning thoracic computed tomography (CT) slices automatically and simultaneously. METHODS The MOFCN includes two components: one main backbone and three branches. The main backbone extracts the features about lung, heart and spinal cord. The extracted features are transferred to three branches which correspond to three organs respectively. The longest branch to segment spinal cord is nine layers, including input and output layers. The MOFCN was evaluated on 19,277 CT slices from 966 patients with cancer in the thorax. In these slices, the organs at risk (OARs) were delineated and validated by experienced radiation oncologists, and served as ground truth for training and evaluation. The data from 61 randomly chosen patients were used for training and validation. The remaining 905 patients' slices were used for testing. The metric used to evaluate the similarity between the auto-segmented organs and their ground truth was Dice. Besides, we compared the MOFCN with other published models. To assess the distinct output design and the impact of layer number and dilated convolution, we compared MOFCN with a multi-label learning model and its variants. By analyzing the not good performances, we suggested possible solutions. RESULTS MOFCN achieved Dice of 0.95 ± 0.02 for lung, 0.91 ± 0.03 for heart and 0.87 ± 0.06 for spinal cord. Compared to other models, MOFCN could achieve a comparable accuracy with the least time cost. CONCLUSION The results demonstrated the MOFCN's effectiveness. It uses less parameters to delineate three OARs simultaneously and automatically, and thus shows a relatively low requirement for hardware and has potential for broad application.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Cancer and Medicine, Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yiwei Yang
- Institute of Cancer and Medicine, Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| | - Kainan Shao
- Institute of Cancer and Medicine, Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xue Bai
- Institute of Cancer and Medicine, Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| | - Min Fang
- Institute of Cancer and Medicine, Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guoping Shan
- Institute of Cancer and Medicine, Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ming Chen
- Institute of Cancer and Medicine, Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
411
|
Qin H, Zhang H, Zhang X, Zhang S, Zhu S, Wang H. Resveratrol attenuates radiation enteritis through the SIRT1/FOXO3a and PI3K/AKT signaling pathways. Biochem Biophys Res Commun 2021; 554:199-205. [PMID: 33812084 DOI: 10.1016/j.bbrc.2021.03.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 01/05/2023]
Abstract
Radiation enteritis (RE) is the most common radiotherapy complication, and effective RE treatments are lacking. Resveratrol exerts beneficial effects on radiation injury. However, the effect of resveratrol in radiation-induced intestinal injury and the underlying mechanism remain unclear. Here, a C57BL/6 mouse model of RE was established and an intestinal epithelial cell line was used to evaluate the protective effects of resveratrol against radiation-induced intestinal injury and the underlying mechanisms. Resveratrol improved radiation-induced oxidative stress and cell apoptosis via upregulating antioxidant enzymes and downregulating p53 acetylation. In vivo, resveratrol-treated mice exhibited longer survival; longer villi; more intestinal crypt cells; upregulated expression of Ki67, catalase, and superoxide dismutase 2; and fewer inflammatory proteins and apoptotic cells. These protective effects were suppressed by inhibition of SIRT1. These results demonstrate that resveratrol can reduce radiation-induced intestinal injury by inhibiting oxidative stress and apoptosis via the SIRT1/FOXO3a and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Haoren Qin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Heng Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Siwei Zhu
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Hui Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| |
Collapse
|
412
|
Zeng L, Cao Y, He L, Ding S, Bian XW, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. J Mater Chem B 2021; 9:208-227. [PMID: 33215626 DOI: 10.1039/d0tb02294b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) plays a central role in curing malignant tumors. However, the treatment outcome is often impeded by low radiation absorption coefficients and radiation resistance of tumors along with normal tissue radio-toxicity. With the development of nanotechnology, nanomaterials in combination with RT offer the possibility to improve the therapeutic efficacy yet reduce side-effects. Metal-ligand coordination nanomaterials, including nanoscale metal-organic frameworks (NMOFs) and nanoscale coordination polymers (NCPs), formed by coordination interactions between inorganic metal ions/clusters with organic bridging ligands, have shown great potential in the field of radiation oncology in recent years in view of their unique advantages including the porous structure, high surface area, periodic frameworks, and diverse selections of both metal ions/clusters and organic ligands. In this review, we summarize the recent advances in NMOF/NCP-mediated synergistic RT in combination with hypoxia relief, chemotherapy, photodynamic therapy, photothermal therapy, chemodynamic therapy or immunotherapy, which emerged in the last 3 years, and describe cooperative enhancement interactions among these synergistic combinations. Moreover, the potential challenges and future prospects of this rapidly growing direction were also addressed.
Collapse
Affiliation(s)
- Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
413
|
Hoeller U, Borgmann K, Oertel M, Haverkamp U, Budach V, Eich HT. Late Sequelae of Radiotherapy—The Effect of Technical and Conceptual Innovations in Radiation Oncology. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:205-211. [PMID: 34024324 PMCID: PMC8278127 DOI: 10.3238/arztebl.m2021.0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/25/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Approximately half of all patients with tumors need radiotherapy. Long-term survivors may suffer from late sequelae of the treatment. The existing radiotherapeutic techniques are being refined so that radiation can be applied more precisely, with the goal of limiting the radiation exposure of normal tissue and reducing late sequelae. METHODS This review is based on the findings of a selective search in PubMed for publications on late sequelae of conventional percutaneous radiotherapy, January 2000 to May 2020. Late sequelae affecting the central nervous system, lungs, and heart and the development of second tumors are presented, and radiobiological mechanisms and the relevant technical and conceptual considerations are discussed. RESULTS The current standard of treatment involves the use of linear accelerators, intensity-modulated radiotherapy (IMRT), image-guided and respiratory-gated radiotherapy, and the integration of positron emission tomography combined with computed tomography (PET-CT) in radiation treatment planning. Cardiotoxicity has been reduced with regard to the risk of coronary heart disease after radiotherapy for Hodgkin's lymphoma (hazard ratio [HR] 0.44 [0.23; 0.85]). It was also found that the rate of radiation- induced pneumonitis dropped from 7.9% with conformal treatment to 3.5% with IMRT in a phase III lung cancer trial. It is hoped that neurocognitive functional impairment will be reduced by hippocampal avoidance in modern treatment planning: an initial phase III trial yielded a hazard ratio of 0.74 [0.58; 0.94]. It is estimated that 8% of second solid tumors in adults are induced by radiotherapy (3 additional tumors per 1000 patients at 10 years). CONCLUSION Special challenges for research in this field arise from the long latency of radiation sequelae and the need for largescale, well-documented patient collectives in order to discern dose-effect relationships, and take account of cofactors, when the overall number of events is small. It is hoped that further technical and conceptual advances will be made in the areas of adaptive radiotherapy, proton and heavy-ion therapy, and personalized therapy.
Collapse
|
414
|
Jiang W, Chen Y, Zhao L, Xu J, Zhao R, Serpe MJ, Hu L. Bioinspired tissue-compliant hydrogels with multifunctions for synergistic surgery-photothermal therapy. J Mater Chem B 2021; 8:10117-10125. [PMID: 33074273 DOI: 10.1039/d0tb01907k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Operation therapy is a common treatment for many cancers, but malignant tumors likely recur and metastasize after surgery, resulting in treatment failure. In this study, we aimed at synthesizing a multifunctional hydrogel patch that features multifunctions for synergistic surgery-photothermal therapy. Our polydopamine nanoparticle (PDA NP)-crosslinked poly(acrylamide-co-N-(3-aminopropyl)methacrylamide) hydrogels undergo several dynamic interactions (e.g., hydrogen bonds, π-π interactions, and imine bonds), which confer high stretchability (∼3430%) and adhesive strength to porcine skin (∼75 kPa) that mimics soft wound tissues. Furthermore, PDA NP incorporation into the hydrogel matrix endows it with photothermal responsivity under 808 nm irradiation. As a proof of concept, our hydrogel system was used to ablate residual tumors in 4T1 tumor-bearing mice models after surgery via photothermal therapy. We find that synergistic operation-photothermal therapy effectively eradicates solid tumors and prevents cancer recurrence in mice. We envision that our work provides an effective synergistic strategy for cancer treatment and offers great potential for clinical applications.
Collapse
Affiliation(s)
- Wenwen Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | |
Collapse
|
415
|
Radiobiological Studies of Microvascular Damage through In Vitro Models: A Methodological Perspective. Cancers (Basel) 2021; 13:cancers13051182. [PMID: 33803333 PMCID: PMC7967181 DOI: 10.3390/cancers13051182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation (IR) is used in radiotherapy as a treatment to destroy cancer. Such treatment also affects other tissues, resulting in the so-called normal tissue complications. Endothelial cells (ECs) composing the microvasculature have essential roles in the microenvironment's homeostasis (ME). Thus, detrimental effects induced by irradiation on ECs can influence both the tumor and healthy tissue. In-vitro models can be advantageous to study these phenomena. In this systematic review, we analyzed in-vitro models of ECs subjected to IR. We highlighted the critical issues involved in the production, irradiation, and analysis of such radiobiological in-vitro models to study microvascular endothelial cells damage. For each step, we analyzed common methodologies and critical points required to obtain a reliable model. We identified the generation of a 3D environment for model production and the inclusion of heterogeneous cell populations for a reliable ME recapitulation. Additionally, we highlighted how essential information on the irradiation scheme, crucial to correlate better observed in vitro effects to the clinical scenario, are often neglected in the analyzed studies, limiting the translation of achieved results.
Collapse
|
416
|
Soto LA, Casey KM, Wang J, Blaney A, Manjappa R, Breitkreutz D, Skinner L, Dutt S, Ko RB, Bush K, Yu AS, Melemenidis S, Strober S, Englemann E, Maxim PG, Graves EE, Loo BW. FLASH Irradiation Results in Reduced Severe Skin Toxicity Compared to Conventional-Dose-Rate Irradiation. Radiat Res 2021; 194:618-624. [PMID: 32853385 DOI: 10.1667/rade-20-00090] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Radiation therapy, along with surgery and chemotherapy, is one of the main treatments for cancer. While radiotherapy is highly effective in the treatment of localized tumors, its main limitation is its toxicity to normal tissue. Previous preclinical studies have reported that ultra-high dose-rate (FLASH) irradiation results in reduced toxicity to normal tissues while controlling tumor growth to a similar extent relative to conventional-dose-rate (CONV) irradiation. To our knowledge this is the first report of a dose-response study in mice comparing the effect of FLASH irradiation vs. CONV irradiation on skin toxicity. We found that FLASH irradiation results in both a lower incidence and lower severity of skin ulceration than CONV irradiation 8 weeks after single-fraction hemithoracic irradiation at high doses (30 and 40 Gy). Survival was also higher after FLASH hemithoracic irradiation (median survival >180 days at doses of 30 and 40 Gy) compared to CONV irradiation (median survival 100 and 52 days at 30 and 40 Gy, respectively). No ulceration was observed at doses 20 Gy or below in either FLASH or CONV. These results suggest a shifting of the dose-response curve for radiation-induced skin ulceration to the right for FLASH, compared to CONV irradiation, suggesting the potential for an enhanced therapeutic index for radiation therapy of cancer.
Collapse
Affiliation(s)
- Luis A Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Alexandra Blaney
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Dylan Breitkreutz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305
| | - Ryan B Ko
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Karl Bush
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Samuel Strober
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Edgar Englemann
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305.,Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Peter G Maxim
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305.,Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305.,Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
417
|
Targeting the Hypoxic and Acidic Tumor Microenvironment with pH-Sensitive Peptides. Cells 2021; 10:cells10030541. [PMID: 33806273 PMCID: PMC8000199 DOI: 10.3390/cells10030541] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The delivery of cancer therapeutics can be limited by pharmacological issues such as poor bioavailability and high toxicity to healthy tissue. pH-low insertion peptides (pHLIPs) represent a promising tool to overcome these limitations. pHLIPs allow for the selective delivery of agents to tumors on the basis of pH, taking advantage of the acidity of the hypoxic tumor microenvironment. This review article highlights the various applications in which pHLIPs have been utilized for targeting and treating diseases in hypoxic environments, including delivery of small molecule inhibitors, toxins, nucleic acid analogs, fluorescent dyes, and nanoparticles.
Collapse
|
418
|
Dasgupta A, Sahgal A, Warner E, Czarnota GJ. Safety of palbociclib concurrent with palliative pelvic radiotherapy: discussion of a case of increased toxicity and brief review of literature. J Med Radiat Sci 2021; 68:96-102. [PMID: 32985794 PMCID: PMC7890927 DOI: 10.1002/jmrs.435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Several cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are indicated in the treatment of metastatic hormone receptor-positive (HR)/ human epidermal growth factor receptor 2 (HER2) negative breast cancer which includes palbociclib, ribociclib and abemaciclib. Pelvic radiation therapy (RT) is often indicated for symptomatic or progressive bone metastasis. There are limited data on concurrent use of CDK4/6 inhibitors with pelvic RT with few retrospective studies in the literature involving a small number of patients. The major side effects of these agents include haematological toxicities, while non-haematological toxicities are less severe. There are concerns for an increased possibility of synergistic toxicity with concurrent use of CDK4/6 inhibitors with pelvic RT. Here we describe an instance of acute grade 3 gastrointestinal toxicity and discuss the relevant literature. A 77-year-old lady treated with palliative conventional RT 30 Gy/ 10 fractions concurrently with palbociclib to left hemipelvis and proximal femur, developed severe pancolitis starting 5 days from last RT. She needed inpatient care for 3 weeks and recovered with mesalamine and supportive care. We also postulate a few strategies that can be adopted in patients receiving palliative RT in such a scenario. The agents should be stopped 1 week before, during and for a time (1 week minimally) after RT. A shorter course of 5 fractions (and ablative RT as indicated) can be considered to minimise treatment gaps. Highly conformal techniques (intensity-modulated radiotherapy/ volumetric-modulated arc therapy) can significantly reduce bowel dose and should be considered in patients with pre-existing GI comorbidities or prior GI toxicity with these agents.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation OncologySunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of Radiation OncologyUniversity of TorontoTorontoOntarioCanada
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
| | - Arjun Sahgal
- Department of Radiation OncologySunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of Radiation OncologyUniversity of TorontoTorontoOntarioCanada
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
| | - Ellen Warner
- Department of Medical OncologySunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of MedicineUniversity of MedicineTorontoOntarioCanada
| | - Gregory J. Czarnota
- Department of Radiation OncologySunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of Radiation OncologyUniversity of TorontoTorontoOntarioCanada
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
419
|
Arthur-Baidoo E, Falkiewicz K, Chomicz-Mańka L, Czaja A, Demkowicz S, Biernacki K, Kozak W, Rak J, Denifl S. Electron-Induced Decomposition of Uracil-5-yl O-( N, N-dimethylsulfamate): Role of Methylation in Molecular Stability. Int J Mol Sci 2021; 22:2344. [PMID: 33652878 PMCID: PMC7956691 DOI: 10.3390/ijms22052344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 01/29/2023] Open
Abstract
The incorporation of modified uracil derivatives into DNA leads to the formation of radical species that induce DNA damage. Molecules of this class have been suggested as radiosensitizers and are still under investigation. In this study, we present the results of dissociative electron attachment to uracil-5-yl O-(N,N-dimethylsulfamate) in the gas phase. We observed the formation of 10 fragment anions in the studied range of electron energies from 0-12 eV. Most of the anions were predominantly formed at the electron energy of about 0 eV. The fragmentation paths were analogous to those observed in uracil-5-yl O-sulfamate, i.e., the methylation did not affect certain bond cleavages (O-C, S-O and S-N), although relative intensities differed. The experimental results are supported by quantum chemical calculations performed at the M06-2X/aug-cc-pVTZ level of theory. Furthermore, a resonance stabilization method was used to theoretically predict the resonance positions of the fragment anions O- and CH3-.
Collapse
Affiliation(s)
- Eugene Arthur-Baidoo
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria;
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| | - Karina Falkiewicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.F.); (L.C.-M.); (A.C.); (W.K.)
| | - Lidia Chomicz-Mańka
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.F.); (L.C.-M.); (A.C.); (W.K.)
| | - Anna Czaja
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.F.); (L.C.-M.); (A.C.); (W.K.)
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (S.D.); (K.B.)
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (S.D.); (K.B.)
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.F.); (L.C.-M.); (A.C.); (W.K.)
| | - Janusz Rak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.F.); (L.C.-M.); (A.C.); (W.K.)
| | - Stephan Denifl
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria;
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| |
Collapse
|
420
|
Klaus R, Niyazi M, Lange-Sperandio B. Radiation-induced kidney toxicity: molecular and cellular pathogenesis. Radiat Oncol 2021; 16:43. [PMID: 33632272 PMCID: PMC7905925 DOI: 10.1186/s13014-021-01764-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Radiation nephropathy (RN) is a kidney injury induced by ionizing radiation. In a clinical setting, ionizing radiation is used in radiotherapy (RT). The use and the intensity of radiation therapy is limited by normal-tissue damage including kidney toxicity. Different thresholds for kidney toxicity exist for different entities of RT. Histopathologic features of RN include vascular, glomerular and tubulointerstitial damage. The different molecular and cellular pathomechanisms involved in RN are not fully understood. Ionizing radiation causes double-stranded breaks in the DNA, followed by cell death including apoptosis and necrosis of renal endothelial, tubular and glomerular cells. Especially in the latent phase of RN oxidative stress and inflammation have been proposed as putative pathomechanisms, but so far no clear evidence was found. Cellular senescence, activation of the renin–angiotensin–aldosterone-system and vascular dysfunction might contribute to RN, but only limited data is available. Several signalling pathways have been identified in animal models of RN and different approaches to mitigate RN have been investigated. Drugs that attenuate cell death and inflammation or reduce oxidative stress and renal fibrosis were tested. Renin–angiotensin–aldosterone-system blockade, anti-apoptotic drugs, statins, and antioxidants have been shown to reduce the severity of RN. These results provide a rationale for the development of new strategies to prevent or reduce radiation-induced kidney toxicity.
Collapse
Affiliation(s)
- Richard Klaus
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Bärbel Lange-Sperandio
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
421
|
Petroni G, Galluzzi L. Impact of treatment schedule on the efficacy of cytostatic and immunostimulatory agents. Oncoimmunology 2021; 10:1889101. [PMID: 33659100 PMCID: PMC7899633 DOI: 10.1080/2162402x.2021.1889101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Radiation therapy (RT) and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors mediate poorly overlapping cytostatic and immunostimulatory effects, suggesting that combinatorial regimens may enable supra-additive tumor control. Our preclinical findings demonstrate that administration schedule stands out as a major determinant of efficacy when RT and CDK4/6 inhibitors are combined for breast cancer therapy.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, USA.,Sandra and Edward Meyer Cancer Center, New York, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, USA.,Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.,Université de Paris, Paris, France
| |
Collapse
|
422
|
Xi D, Jiang W, Shao Y, Song X, Chen Y, Liu M, Gu W, Li Q. Retrospective analysis of the bleeding risk induced by oral antiplatelet drugs during radiotherapy. Medicine (Baltimore) 2021; 100:e24580. [PMID: 33578556 PMCID: PMC7886460 DOI: 10.1097/md.0000000000024580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
We conducted this retrospective analysis to assess whether oral antiplatelet drugs (APDs) during radiotherapy increase bleeding risk.Patients who underwent radiotherapy for esophageal cancer (EC) in the Third Affiliated Hospital of Soochow University from January 2015 to December 2019 were screened. After the differences in clinical parameters were eliminated by a propensity-score matched (PSM) analysis at a 1:1 ratio, the thrombocytopenia, consumption of platelet-increasing drugs, suspension of radiotherapy, and bleeding in patients taking APDs were compared with those in the control group.A total of 986 patients were included in the original dataset. Of these, 34 patients took APDs during radiotherapy. After matching, the APD and control groups each retained 31 patients. There was no significant difference in platelet concentrations between the two groups before radiotherapy (P = .524). The lowest platelet concentration during radiotherapy in the APD group was significantly lower (P = .033). The consumption of platelet-increasing drugs in the APD group was higher than that in the control group (P < .05). However, there was no significant difference in the average number of days of radiotherapy suspension because of thrombocytopenia (P = .933) and no significant difference in the incidence of bleeding between the two groups (P = .605).Oral APDs during radiotherapy lead to a further decrease in platelet concentration, but timely and adequate application of platelet-increasing drugs can avoid the increased risk of bleeding and the reduced efficacy of radiotherapy.
Collapse
|
423
|
Zhao R, Liu H, Li Y, Guo M, Zhang XD. Catalytic Nanozyme for Radiation Protection. Bioconjug Chem 2021; 32:411-429. [PMID: 33570917 DOI: 10.1021/acs.bioconjchem.0c00648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiotherapy has been widely used in clinical cancer treatment. However, the ionizing radiation required to kill the tumor will inevitably cause damage to the surrounding normal tissues. To minimize the radiation damage and side effects, small molecular radioprotective agents have been used as clinical adjuvants for radiation protection of healthy tissues. However, the shortcomings of small molecules such as short circulation time and rapid kidney clearance from the body greatly hinder their biomedical applications. In recent years, nanozymes have attracted much attention because of their potential to treat a variety of diseases. Nanozymes exhibit catalytic properties and antioxidant capabilities to provide a potential solution for the development of high-efficiency radioprotective agents in radiotherapy and nuclear radiation accidents. Therefore, in this review, we systematically summarize the catalytic nanozymes used for radiation protection of healthy tissues and discuss the challenges and future prospects of nanomaterials in the field of radiation protection.
Collapse
Affiliation(s)
- Ruiying Zhao
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Yongming Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
424
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
425
|
Clinical Progress in Proton Radiotherapy: Biological Unknowns. Cancers (Basel) 2021; 13:cancers13040604. [PMID: 33546432 PMCID: PMC7913745 DOI: 10.3390/cancers13040604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Proton radiation therapy is a more recent type of radiotherapy that uses proton beams instead of classical photon or X-rays beams. The clinical benefit of proton therapy is that it allows to treat tumors more precisely. As a result, proton radiotherapy induces less toxicity to healthy tissue near the tumor site. Despite the experience in the clinical use of protons, the response of cells to proton radiation, the radiobiology, is less understood. In this review, we describe the current knowledge about proton radiobiology. Abstract Clinical use of proton radiation has massively increased over the past years. The main reason for this is the beneficial depth-dose distribution of protons that allows to reduce toxicity to normal tissues surrounding the tumor. Despite the experience in the clinical use of protons, the radiobiology after proton irradiation compared to photon irradiation remains to be completely elucidated. Proton radiation may lead to differential damages and activation of biological processes. Here, we will review the current knowledge of proton radiobiology in terms of induction of reactive oxygen species, hypoxia, DNA damage response, as well as cell death after proton irradiation and radioresistance.
Collapse
|
426
|
Schumacher O, Galvão DA, Taaffe DR, Spry N, Joseph D, Tang C, Chee R, Newton RU. Effect of Exercise Adjunct to Radiation and Androgen Deprivation Therapy on Patient-Reported Treatment Toxicity in Men With Prostate Cancer: A Secondary Analysis of 2 Randomized Controlled Trials. Pract Radiat Oncol 2021; 11:215-225. [PMID: 33540038 DOI: 10.1016/j.prro.2021.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Physical inactivity, in addition to clinical factors, has been associated with higher levels of late pelvic symptoms in patients with prostate cancer (PCa) after radiation therapy. The aim of this study was to investigate the effect of a structured multicomponent exercise program comprised of aerobic and resistance training as well as impact loading on the prevalence and severity of symptoms commonly resulting from androgen deprivation therapy (ADT) and pelvic radiation therapy. METHODS AND MATERIALS We performed a secondary analysis of pooled data from 2 randomized controlled trials that investigated the role of exercise on treatment-related side effects in patients with PCa receiving ADT. Patients were included in the analysis if they had undergone radiation therapy during the intervention in addition to ADT. Patient-reported quality of life and functional and symptom scales were assessed using the European Organization for Research and Treatment of Cancer QLQ-C30 and PR25 before and after 6 months of exercise or usual care (UC). RESULTS One-hundred and fifteen patients with PCa receiving ADT, aged 47 to 84 years, who also underwent radiation therapy were included in the analysis (exercise, n = 72; UC, n = 43). There was a significant reduction in physical functioning (P = .019) and increased fatigue (P = .007) in the control group, with no change observed in the exercise group. Similarly, there was a trend toward reduced sexual activity in the control group (P = .064), with a mean adjusted change of -7.1 points. Furthermore, the prevalence of clinically important pain at 6 months was lower in the exercise group compared with UC (18.1 vs 37.2%, P = .022). No between-group differences were found for urinary (P = .473) or hormonal treatment-related symptoms (P = .552). CONCLUSIONS Exercise during concomitant hormone and radiation treatment for men with PCa may mitigate some adverse changes in patient-reported fatigue, physical functioning, and possibly sexual activity. The promotion and provision of exercise to counter a range of treatment-related adverse effects in patients with PCa undergoing radiation therapy and ADT should be actively encouraged.
Collapse
Affiliation(s)
- Oliver Schumacher
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Nigel Spry
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; Faculty of Medicine, University of Western Australia, Nedlands, WA, Australia; GenesisCare, Joondalup, WA, Australia
| | - David Joseph
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; Faculty of Medicine, University of Western Australia, Nedlands, WA, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Colin Tang
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Raphael Chee
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; GenesisCare, Joondalup, WA, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
427
|
Sang W, Xie L, Wang G, Li J, Zhang Z, Li B, Guo S, Deng C, Dai Y. Oxygen-Enriched Metal-Phenolic X-Ray Nanoprocessor for Cancer Radio-Radiodynamic Therapy in Combination with Checkpoint Blockade Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003338. [PMID: 33643804 PMCID: PMC7887592 DOI: 10.1002/advs.202003338] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Indexed: 05/05/2023]
Abstract
Radiotherapy (RT) based on DNA damage and reactive oxygen species (ROS) generation has been clinically validated in various types of cancer. However, high dose-dependent induced toxicity to tissues, non-selectivity, and radioresistance greatly limit the application of RT. Herein, an oxygen-enriched X-ray nanoprocessor Hb@Hf-Ce6 nanoparticle is developed for improving the therapeutic effect of RT-radiodynamic therapy (RDT), enhancing modulation of hypoxia tumor microenvironment (TME) and promoting antitumor immune response in combination with programmed cell death protein 1 (PD-1) immune checkpoint blockade. All functional molecules are integrated into the nanoparticle based on metal-phenolic coordination, wherein one high-Z radiosensitizer (hafnium, Hf) coordinated with chlorin e6 (Ce6) modified polyphenols and a promising oxygen carrier (hemoglobin, Hb) is encapsulated for modulation of oxygen balance in the hypoxia TME. Specifically, under single X-ray irradiation, radioluminescence excited by Hf can activate photosensitizer Ce6 for ROS generation by RDT. Therefore, this combinatory strategy induces comprehensive antitumor immune response for cancer eradication and metastasis inhibition. This work presents a multifunctional metal-phenolic nanoplatform for efficient X-ray mediated RT-RDT in combination with immunotherapy and may provide a new therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Wei Sang
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| | - Lisi Xie
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| | - Guohao Wang
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| | - Jie Li
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| | - Zhan Zhang
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| | - Bei Li
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| | - Sen Guo
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| | - Chu‐Xia Deng
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| | - Yunlu Dai
- Cancer CenterFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
- Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacauSAR, 999078China
| |
Collapse
|
428
|
Zhou Y, Yu F, Zhao Y, Zeng Y, Yang X, Chu L, Chu X, Li Y, Zou L, Guo T, Zhu Z, Ni J. A narrative review of evolving roles of radiotherapy in advanced non-small cell lung cancer: from palliative care to active player. Transl Lung Cancer Res 2021; 9:2479-2493. [PMID: 33489808 PMCID: PMC7815368 DOI: 10.21037/tlcr-20-1145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiotherapy, along with other loco-regional interventions, is conventionally utilized as a palliative approach to alleviate symptoms and mitigate oncological emergencies in advanced non-small cell lung cancer (NSCLC). Thanks to the ongoing improvement of medical treatments in the last decade, such as targeted therapy and immunotherapy, the survival of patients with advanced NSCLC has been considerably prolonged, making it feasible and clinically beneficial for radiotherapy to play a more active role in highly selected subpopulations. In this review, we will focus on the evolving roles of radiotherapy in advanced NSCLC. First of all, among patients who are initially unable to tolerate aggressive treatment due to severe symptoms caused by metastases and/or tumor emergencies, timely radiotherapy could significantly improve their performance status (PS) and general condition, thus giving them a chance for intensive treatment and prolonged survival. The efficacy, potential candidates, and optimal dose-fractionation regimens of radiotherapy in this clinical scenario will be discussed. Additionally, radiotherapy can play a curative role as a concurrent therapy, consolidation therapy, and salvage therapy for patients with oligo-metastatic, oligo-residual, and oligo-progressive disease, respectively. Accumulating evidence from recent clinical trials, basic research, and translational investigations regarding the potentially curative roles of radiotherapy in NSCLC patients with oligo-metastatic disease will be summarized. Moreover, with the advent of various small molecular tyrosine kinase inhibitors (TKIs), the treatment efficacy and overall survival of oncogene-addicted NSCLC with brain metastases have been significantly improved, and the clinical value and optimal timing of cranial radiotherapy have become topics of much debate. Finally, synergistic antitumor interactions between radiotherapy and immunotherapy have been repeatedly demonstrated. Thus, the immune sensitizing role of radiotherapy in advanced NSCLC is also highlighted in this review.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya Zeng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
429
|
He Z, Yan H, Zeng W, Yang K, Rong P. Tumor microenvironment-responsive multifunctional nanoplatform based on MnFe 2O 4-PEG for enhanced magnetic resonance imaging-guided hypoxic cancer radiotherapy. J Mater Chem B 2021; 9:1625-1637. [PMID: 33475658 DOI: 10.1039/d0tb02631j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy occupies an essential position in curing and palliating a wide range of solid tumors based on DNA damage responses to eradicate cancer cells. However, the tumor microenvironment generally exhibits the characteristics of hypoxia and glutathione overexpression, which play a critical role in radioresistance, to prevent irreparable breaks to DNA and necrocytosis of cancer cells. Herein, polyethylene glycol (PEG) functionalized manganese ferrite nanoparticles (MnFe2O4-PEG) are designed to enable self-sufficiency of oxygen by continuously catalyzing the decomposition of endogenous hydrogen peroxide. Simultaneously, the nano-platform can consume GSH to reduce the loss of reactive oxygen species in radiotherapy and achieve better therapeutic effects at the cellular and animal levels. In addition, the MnFe2O4-PEG could act as an optimal T1- and T2-weighted contrast medium for tumor-specific magnetic resonance imaging. This work proposes a systematically administered radiosensitizer that can selectively reside in tumor sites via the enhanced permeability and retention effect to relieve hypoxia and reduce GSH concentration, combined with dual-mode magnetic resonance imaging, achieving precise and effective image-guided tumor therapy.
Collapse
Affiliation(s)
- Zhenhu He
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China. and Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Haixiong Yan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China. and Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Kai Yang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China. and Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China and Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| |
Collapse
|
430
|
Voshart DC, Wiedemann J, van Luijk P, Barazzuol L. Regional Responses in Radiation-Induced Normal Tissue Damage. Cancers (Basel) 2021; 13:cancers13030367. [PMID: 33498403 PMCID: PMC7864176 DOI: 10.3390/cancers13030367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Normal tissue side effects remain a major concern in radiotherapy. The improved precision of radiation dose delivery of recent technological developments in radiotherapy has the potential to reduce the radiation dose to organ regions that contribute the most to the development of side effects. This review discusses the contribution of regional variation in radiation responses in several organs. In the brain, various regions were found to contribute to radiation-induced neurocognitive dysfunction. In the parotid gland, the region containing the major ducts was found to be critical in hyposalivation. The heart and lung were each found to exhibit regional responses while also mutually affecting each other's response to radiation. Sub-structures critical for the development of side effects were identified in the pancreas and bladder. The presence of these regional responses is based on a non-uniform distribution of target cells or sub-structures critical for organ function. These characteristics are common to most organs in the body and we therefore hypothesize that regional responses in radiation-induced normal tissue damage may be a shared occurrence. Further investigations will offer new opportunities to reduce normal tissue side effects of radiotherapy using modern and high-precision technologies.
Collapse
Affiliation(s)
- Daniëlle C. Voshart
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Julia Wiedemann
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| |
Collapse
|
431
|
Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. Innovation (N Y) 2021; 2:100082. [PMID: 34557737 PMCID: PMC8454557 DOI: 10.1016/j.xinn.2021.100082] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
Phototheranostics integrates deep-tissue imaging with phototherapy (containing photothermal therapy and photodynamic therapy), holding great promise in early diagnosis and precision treatment of cancers. Recently, second near-infrared (NIR-II) fluorescence imaging exhibits the merits of high accuracy and specificity, as well as real-time detection. Among the NIR-II fluorophores, organic small molecular fluorophores have shown superior properties in the biocompatibility, variable structure, and tunable emission wavelength than the inorganic NIR-II materials. What's more, some small molecular fluorophores also display excellent cytotoxicity when illuminated with the NIR laser. This review summarizes the progress of small molecular NIR-II fluorophores with different central cores for cancer phototheranostics in the past few years, focusing on the molecular structures and phototheranostic performances. Furthermore, challenges and prospects of future development toward clinical translation are discussed. Phototheranostics combines diagnostic imaging with phototherapy, showing broad applications in the early diagnosis and precise treatment of tumors Small molecular NIR-II fluorophores with good biocompatibility, tunable structure, high imaging quality, and excellent phototoxicity, have shown great potential for cancer phototheranostics Small molecular NIR-II fluorophores with different central cores for cancer phototheranostics are summarized, highlighting the design strategies and phototheranostic performances Challenges and prospects of future development toward clinical translation are discussed
Collapse
Affiliation(s)
- Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Qing Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Fan Gao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.,School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
432
|
Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. INNOVATION (NEW YORK, N.Y.) 2021. [PMID: 34557737 DOI: 10.1016/j.xinn.2021.100082,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phototheranostics integrates deep-tissue imaging with phototherapy (containing photothermal therapy and photodynamic therapy), holding great promise in early diagnosis and precision treatment of cancers. Recently, second near-infrared (NIR-II) fluorescence imaging exhibits the merits of high accuracy and specificity, as well as real-time detection. Among the NIR-II fluorophores, organic small molecular fluorophores have shown superior properties in the biocompatibility, variable structure, and tunable emission wavelength than the inorganic NIR-II materials. What's more, some small molecular fluorophores also display excellent cytotoxicity when illuminated with the NIR laser. This review summarizes the progress of small molecular NIR-II fluorophores with different central cores for cancer phototheranostics in the past few years, focusing on the molecular structures and phototheranostic performances. Furthermore, challenges and prospects of future development toward clinical translation are discussed.
Collapse
Affiliation(s)
- Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Qing Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Fan Gao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.,School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
433
|
Kura B, Kalocayova B, Szeiffova Bacova B, Fulop M, Sagatova A, Sykora M, Andelova K, Abuawad Z, Slezak J. The effect of selected drugs on the mitigation of myocardial injury caused by gamma radiation. Can J Physiol Pharmacol 2021; 99:80-88. [PMID: 33438486 DOI: 10.1139/cjpp-2020-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radiation damage of healthy tissues represents one of the complications of radiotherapy effectiveness. This study is focused on the screening of potentially effective drugs routinely used in medical practice and involved in the mechanism of radiation injury, namely for radiation-induced production of free radicals in the body. Experiments in rats revealed significant reduction of oxidative stress (malondialdehyde) and inflammatory marker (tumor necrosis factor α) in 10 Gy irradiated groups after administration of atorvastatin and a slight decrease after tadalafil administration, which indicates that one of the possible mechanisms for mitigation of radiation-induced cardiac damage could be the modulation of nitric oxide (NO) in endothelium and phosphodiesterase 5. In addition, miRNAs were analyzed as potential markers and therapeutically effective molecules. Expression of miRNA-21 and miRNA-15b showed the most significant changes after irradiation. Atorvastatin and tadalafil normalized changes of miRNA (miRNA-1, miRNA-15b, miRNA-21) expression levels in irradiated hearts. This screening study concludes that administration of specific drugs could mitigate the negative impact of radiation on the heart, but more detailed experiments oriented to other aspects of drug effectiveness and their exact mechanisms are still needed.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Marko Fulop
- Slovak Medical University, 831 01, Bratislava, Slovak Republic
| | - Andrea Sagatova
- Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, 812 19 Bratislava, Slovak Republic
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Ziad Abuawad
- Faculty of Public Health, Al-Quds University, Jerusalem, Palestine
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
434
|
Liao Y, Wang D, Gu Z. Research Progress of Nanomaterials for Radioprotection. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
435
|
Sun N, Li Y, Nie P. Standardized nursing and clinical efficacy of OxyContin in reducing oral mucosal pain in patients with nasopharyngeal carcinoma: A randomized, double-blind, placebo-controlled study protocol. Medicine (Baltimore) 2020; 99:e23205. [PMID: 33285695 PMCID: PMC7717733 DOI: 10.1097/md.0000000000023205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pain caused by oral mucositis (OM) is the main problem in the process of concurrent chemoradiotherapy for the nasopharyngeal carcinoma (NPC). This protocol aims to explore the standardized nursing and therapeutic effect of OxyContin on OM pain in the patients with NPC undergoing the concurrent chemoradiotherapy. METHODS The experiment is a randomized clinical research, which was granted through the Research Ethics Committee of Shandong Provincial Third Hospital (No.20200802097). In this research, 90 NPC patients with OM induced by chemotherapy are enrolled, and the score of visual analogue >5 and the grade of OM >1 are evaluated. Patients with known allergy to OxyContin, the opioid abuse history, or major organ dysfunction, for instance, hepatic insufficiency, renal failure, and respiratory and heart failure, as well as a series of severe mental illness are excluded from our research. Patients in study groups receive standardized nursing and oral OxyContin. Patients in control groups only receive oral OxyContin. The analgesic effect could be assessed with the comparison of the visual analogue scale after and before the treatment. Safety evaluations contain the assessment of the vital signs, laboratory tests, as well as adverse events. The Karnofsky performance status standards of the International Cancer Control Union is utilized to evaluate the quality of life. RESULTS The comparison of outcomes after taking OxyContin in both groups will be shown in .(Table is included in full-text article.) CONCLUSION:: The combination of OxyContin and standardized nursing care appears to improve the analgesic efficacy and life quality in NPC patients. TRIAL REGISTRATION We registered this protocol in Research Registry (researchregistry6098).
Collapse
Affiliation(s)
| | - Yunxia Li
- Cancer Centre, Shandong Provincial Third Hospital, Shandong, China
| | | |
Collapse
|
436
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
437
|
Li L, Dai K, Li J, Shi Y, Zhang Z, Liu T, Jun Xie, Ruiping Zhang, Liu Z. A Boron-10 nitride nanosheet for combinational boron neutron capture therapy and chemotherapy of tumor. Biomaterials 2020; 268:120587. [PMID: 33296793 DOI: 10.1016/j.biomaterials.2020.120587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Combination cancer therapy (e.g., radiochemotherapy) is widely used to enhance the therapeutic effects and prevent the recurrence of cancer. However, the side effects of monotherapy are also amplified when treating cancer with combination therapy. A locally activated drug delivery strategy that can release the payload in a tumor-selective manner is greatly needed to overcome the side effects of combination therapy. Here, we explore the potential of combining boron neutron capture therapy and chemotherapy as a new type of radiochemotherapy. Two-dimensional (2D) boron-10-rich nanosheets (BNNSs) were fabricated as a dual-functional delivery system: targeted boron-10 delivery systems for boron neutron capture therapy (BNCT) and drug delivery vehicles to load doxorubicin for chemotherapy. Irradiated by low-energy thermal neutron, BNNSs can produce high linear energy transfer (LET) particles to kill tumor cells, and the loaded doxorubicin can be released in situ at the same time. This neutron-triggered radiochemotherapy shows noteworthy efficacy in suppressing tumor growth in triple-negative breast cancer. To the best of our knowledge, this is the first report to combine BNCT with chemotherapy as a new type of radiochemotherapy. We hope this study could inspire additional BNCT-induced combination cancer therapies and provide insight for the further clinical translation of BNCT.
Collapse
Affiliation(s)
- Liping Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Kun Dai
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jiyuan Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yaxin Shi
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd., Beijing, 102413, China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd., Beijing, 102413, China
| | - Jun Xie
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.
| | - Zhibo Liu
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, 100871, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
438
|
Moura GAD, Monteiro PB. Cytotoxic Activity of Antineoplastic Agents on Fertility: A Systematic Review. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2020; 42:759-768. [PMID: 33254272 PMCID: PMC10309244 DOI: 10.1055/s-0040-1713911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To analyze the long-term effects of antineoplastic treatments on patient fertility. SELECTION OF STUDIES The studies were selected through the New PubMed, Scielo and Lilacs databases along with references used for the creation of the present work. For the selection of studies, articles published between the periods from January 1, 2015 to April 6, 2020 in the English, Portuguese and Spanish languages were used. As inclusion criteria: cohort studies and studies conducted in vitro. As exclusion criteria: review articles, reported cases, studies that do not address thematic reproduction, studies that do not address the cancer theme, articles that used animals, articles that address the preservation of fertility and articles in duplicate in the bases. DATA COLLECTION The collected data included: age of the patient at the beginning of treatment, type of neoplasm, type of antineoplastic treatment, chemotherapy used, radiotherapy dosage, radiotherapy site, effect of antineoplastic agents on fertility and number of patients in the study. DATA SYNTHESIS Thirty studies were evaluated, antineoplastic chemotherapy agents and radiotherapy modulate serum hormone levels, reduces germ cell quantities and correlated with an increase in sterility rates. The effects mentioned occur in patients in the prepubertal and postpubertal age. CONCLUSION Antineoplastic treatments have cytotoxic effects on the germ cells leading to hormonal modulation, and pubertal status does not interfere with the cytotoxic action of therapies.
Collapse
|
439
|
Wu W, Hu Z, Zhao Q, Zhang X, Zhang H, Wang H, Xue W, Yu L, Duan G. Down-Regulation of Hypoxia-Inducible Factor-1α and Downstream Glucose Transporter Protein-1 Gene by β-elemene Enhancing the Radiosensitivity of Lung Adenocarcinoma Transplanted Tumor. Onco Targets Ther 2020; 13:11627-11635. [PMID: 33223837 PMCID: PMC7671467 DOI: 10.2147/ott.s275956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To study the effect of β-elemene on the radiosensitivity of A549 cell xenograft tumor and potential mechanisms by which β-elemene regulates the expression of hypoxia-inducible factor-1α (HIF-1α) and glucose transporter protein-1 (GLUT-1). Methods Using an A549 cell transplantation tumor model with male nude mice, we studied the effect of β-elemene on the radiosensitivity of non-small cell lung cancer (NSCLC). The expression of HIF-1α and GLUT-1 was detected by real-time PCR, Western blotting and immunohistochemistry. The relationship between the radiosensitivity of β-elemene and the expression of HIF-1α and GLUT-1 was analyzed. Results β-elemene and radiotherapy intervened in the growth of transplanted tumors in varying degrees. The enhancement factor (EF=2.44>1) was calculated; β-elemene at 45 mg/kg had the most significant enhanced effect on radiosensitivity. When β-elemene was used in combination with radiation, the expression of HIF-1α and GLUT-1 was significantly decreased, and there was a positive correlation between the two genes. Conclusion β-elemene exhibits a radiosensitizing effect on A549 cell xenograft tumor. The underlying molecular mechanism is probably associated with the down-regulation of HIF-1α and GLUT-1 expression, suggesting that β-elemene may directly or indirectly inhibit the expression of HIF-1α and GLUT-1. There is a positive significant correlation between expression of HIF-1α and GLUT-1. HIF-1α and downstream GLUT-1 could be used as a new target for the radiosensitization of NSCLC.
Collapse
Affiliation(s)
- Wenbo Wu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China.,Graduate School of Hebei North University, Zhangjiakou, People's Republic of China
| | - Zhonghui Hu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China.,Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Qingtao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Hua Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Huien Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Lei Yu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Guochen Duan
- Department of Thoracic Surgery, Hebei Children's Hospital, Shijiazhuang, People's Republic of China
| |
Collapse
|
440
|
Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Lett 2020; 499:73-84. [PMID: 33160002 DOI: 10.1016/j.canlet.2020.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Localized cranial radiotherapy is a dominant treatment for brain cancers. After being subjected to radiation, the central nervous system (CNS) exhibits targeted effects as well as non-targeted radiation bystander effects (RIBE) and abscopal effects (RIAE). Radiation-induced targeted effects in the CNS include autophagy and various changes in tumor cells due to radiation sensitivity, which can be regulated by microRNAs. Non-targeted radiation effects are mainly induced by gap junctional communication between cells, exosomes containing microRNAs can be transduced by intracellular endocytosis to regulate RIBE and RIAE. In this review, we discuss the involvement of microRNAs in radiation-induced targeted effects, as well as exosomes and/or exosomal microRNAs in non-targeted radiation effects in the CNS. As a target pathway, we also discuss the Akt pathway which is regulated by microRNAs, exosomes, and/or exosomal microRNAs in radiation-induced targeted effects and RIBE in CNS tumor cells. As the CNS-derived exosomes can cross the blood-brain-barrier (BBB) into the bloodstream and be isolated from peripheral blood, exosomes and exosomal microRNAs can emerge as promising minimally invasive biomarkers and therapeutic targets for radiation-induced targeted and non-targeted effects in the CNS.
Collapse
|
441
|
Erpel F, Mateos R, Pérez-Jiménez J, Pérez-Correa JR. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int 2020; 137:109589. [PMID: 33233195 DOI: 10.1016/j.foodres.2020.109589] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Phlorotannins are phenolic characteristic compounds of brown seaweeds that are only constituted by phloroglucinol (1,3,5-trihydroxybenzene). They are chain- and net-like structures of diverse molecular weights and have been widely identified in Ecklonia, Eisenia, and Ishige species. Since the time they were discovered in the '70 s, phlorotannins have been suggested as a main factor responsible for the antimicrobial activities attributed to algae extracts. Currently, cumulative in vitro and in vivo research evidence the diverse bioactivities of phlorotannin extracts -such as antidiabetic, anticancer, and antibacterial- pointing out their potential pharmacological and food applications. However, metabolomic studies and clinical trials are scarce, and thus many phlorotannins health-beneficial effects in humans are not yet confirmed. This article reviews recent studies assessing the antidiabetic and anticancer activities of phlorotannins. Particularly, their potential to prevent and control the progression of these non-communicable diseases is discussed, considering in vitro and animal studies, as well as clinical interventions. In contrast to other approaches, we only included investigations with isolated phlorotannins or phlorotannin-rich extracts. Thus, phlorotannin extraction, purification and characterization procedures are briefly addressed. Overall, although considerable research showing the antidiabetic and anticancer potential of phlorotannins is now available, further clinical trials are still necessary to conclusively demonstrate the efficacy of these compounds as adjuvants for diabetes and cancer prevention or treatment.
Collapse
Affiliation(s)
- Fernanda Erpel
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| |
Collapse
|
442
|
Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020; 12:E1028. [PMID: 33126622 PMCID: PMC7692572 DOI: 10.3390/pharmaceutics12111028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, the field of cancer therapy has seen a significant change in the way in which formulations are designed and developed, resulting in more efficient products that allow us to ultimately achieve improved drug bioavailability, efficacy, and safety. However, although many formulations have entered the market, many others have fallen by the wayside leaving the scientific community with several lessons to learn. The successes (and failures) achieved with formulations that have been approved in Europe and/or by the FDA for the three major types of cancer therapy (peptide-based therapy, chemotherapy, and radiotherapy) are reviewed herein, covering the period from the approval of the first prolonged-release system for hormonal therapy to the appearance of the first biodegradable microspheres intended for chemoembolization in 2020. In addition, those products that have entered phase III clinical trials that have been active over the last five years are summarized in order to outline future research trends and possibilities that lie ahead to develop clinically translatable formulations for cancer treatment.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
443
|
Yu JH, Lee YJ, Kim JY, Lee WY, Lim YH. Treatment of radiation-induced vulvar pain via pudendal nerve block under fluoroscopic guidance. Urol Case Rep 2020; 33:101282. [PMID: 33101993 PMCID: PMC7573758 DOI: 10.1016/j.eucr.2020.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Vulvar pain is a common complaint in women during reproductive and post-reproductive years. A 70-year-old woman experienced severe intractable vulvar pain after bladder cancer surgery and adjuvant radiation therapy. We performed five fluoroscopy-guided pudendal nerve blocks. Her numeric rating scale decreased from 10 to 3, and after 5 months, her pain was controlled only with oral medication. Pudendal nerve block might stop ongoing sensitization which lead acute nociceptive vulvar pain into chronic neuropathic vulvodynia by attenuating nociceptive stimulation and inflammation.
Collapse
Affiliation(s)
- Ji Hyeong Yu
- Department of Urology, Sanggye Paik Hospital, Inje University College of Medicine, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, South Korea
| | - Ye Ji Lee
- Department of Anesthesia and Pain Medicine, Sanggye Paik Hospital, Inje University College of Medicine, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, South Korea
| | - Jae Yoon Kim
- Department of Urology, Sanggye Paik Hospital, Inje University College of Medicine, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, South Korea
| | - Woo Yong Lee
- Department of Anesthesia and Pain Medicine, Sanggye Paik Hospital, Inje University College of Medicine, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, South Korea
| | - Yun Hee Lim
- Department of Anesthesia and Pain Medicine, Sanggye Paik Hospital, Inje University College of Medicine, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, South Korea
| |
Collapse
|
444
|
Simões FV, Santos VO, Silva RND, Silva RCD. Effectiveness of skin protectors and calendula officinalis for prevention and treatment of radiodermatitis: an integrative review. Rev Bras Enferm 2020; 73:e20190815. [PMID: 33084806 DOI: 10.1590/0034-7167-2019-0815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE to analyze the effectiveness of skin protectors and Calendula officinalis for prevention and treatment of radiodermatitis. METHOD an integrative review conducted at CINAHL, Cochrane Library, Embase, MEDLINE/PubMed, IBECS, LILACS, and Web of Science. The final sample consisted of five studies, four clinical studies and one preclinical. Critical appreciation and narrative synthesis of the findings were carried out. RESULTS the Cavilon™ skin protector was more effective than Sorbolene (cream with 10% glycerin) and less effective than Mometasone Furoate cream. Calendula officinalis was more effective than Trolamine and essential fatty acids and less effective than Ching Wan Hung® for prevention and treatment of radiodermatitis. CONCLUSION data confirm the potential of Calendula officinalis for prevention and treatment of radiodermatitis and point to promising results regarding skin protector use; however, there is a need for further testing as to the effectiveness of such products.
Collapse
Affiliation(s)
| | - Valdete Oliveira Santos
- Instituto Nacional de Câncer José Alencar Gomes da Silva. Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
445
|
Zhao W, Patil I, Han B, Yang Y, Xing L, Schüler E. Beam data modeling of linear accelerators (linacs) through machine learning and its potential applications in fast and robust linac commissioning and quality assurance. Radiother Oncol 2020; 153:122-129. [PMID: 33039427 DOI: 10.1016/j.radonc.2020.09.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE To propose a novel machine learning-based method for reliable and accurate modeling of linac beam data applicable to the processes of linac commissioning and QA. MATERIALS AND METHODS We hypothesize that the beam data is a function of inherent linac features and percentage depth doses (PDDs) and profiles of different field sizes are correlated with each other. The correlation is formulated as a multivariable regression problem using a machine learning framework. Varian TrueBeam beam data sets (n = 43) acquired from multiple institutions were used to evaluate the framework. The data sets included PDDs and profiles across different energies and field sizes. A multivariate regression model was trained for prediction of beam specific PDDs and profiles of different field sizes using a 10 × 10 cm2 field as input. RESULTS Predictions of PDDs were achieved with a mean absolute percent relative error (%RE) of 0.19-0.35% across the different beam energies investigated. The maximum mean absolute %RE was 0.93%. For profile prediction, the mean absolute %RE was 0.66-0.93% with a maximum absolute %RE of 3.76%. The largest uncertainties in the PDD and profile predictions were found at the build-up region and at the field penumbra, respectively. The prediction accuracy increased with the number of training sets up to around 20 training sets. CONCLUSIONS Through this novel machine learning-based method we have shown accurate and reproducible generation of beam data for linac commissioning for routine radiation therapy. This method has the potential to simplify the linac commissioning procedure, save time and manpower while increasing the accuracy of the commissioning process.
Collapse
Affiliation(s)
- Wei Zhao
- Stanford University, Department of Radiation Oncology, Stanford, CA 94305, USA.
| | - Ishan Patil
- Stanford University, Department of Radiation Oncology, Stanford, CA 94305, USA
| | - Bin Han
- Stanford University, Department of Radiation Oncology, Stanford, CA 94305, USA.
| | - Yong Yang
- Stanford University, Department of Radiation Oncology, Stanford, CA 94305, USA.
| | - Lei Xing
- Stanford University, Department of Radiation Oncology, Stanford, CA 94305, USA.
| | - Emil Schüler
- Stanford University, Department of Radiation Oncology, Stanford, CA 94305, USA; The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, Houston, TX 77030, USA.
| |
Collapse
|
446
|
Pathak GA, Polimanti R, Silzer TK, Wendt FR, Chakraborty R, Phillips NR. Genetically-regulated transcriptomics & copy number variation of proctitis points to altered mitochondrial and DNA repair mechanisms in individuals of European ancestry. BMC Cancer 2020; 20:954. [PMID: 33008348 PMCID: PMC7530964 DOI: 10.1186/s12885-020-07457-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Proctitis is an inflammation of the rectum and may be induced by radiation treatment for cancer. The genetic heritability of developing radiotoxicity and prior role of genetic variants as being associated with side-effects of radiotherapy necessitates further investigation for underlying molecular mechanisms. In this study, we investigated gene expression regulated by genetic variants, and copy number variation in prostate cancer survivors with radiotoxicity. Methods We investigated proctitis as a radiotoxic endpoint in prostate cancer patients who received radiotherapy (n = 222). We analyzed the copy number variation and genetically regulated gene expression profiles of whole-blood and prostate tissue associated with proctitis. The SNP and copy number data were genotyped on Affymetrix® Genome-wide Human SNP Array 6.0. Following QC measures, the genotypes were used to obtain gene expression by leveraging GTEx, a reference dataset for gene expression association based on genotype and RNA-seq information for prostate (n = 132) and whole-blood tissue (n = 369). Results In prostate tissue, 62 genes were significantly associated with proctitis, and 98 genes in whole-blood tissue. Six genes - CABLES2, ATP6AP1L, IFIT5, ATRIP, TELO2, and PARD6G were common to both tissues. The copy number analysis identified seven regions associated with proctitis, one of which (ALG1L2) was also associated with proctitis based on transcriptomic profiles in the whole-blood tissue. The genes identified via transcriptomics and copy number variation association were further investigated for enriched pathways and gene ontology. Some of the enriched processes were DNA repair, mitochondrial apoptosis regulation, cell-to-cell signaling interaction processes for renal and urological system, and organismal injury. Conclusions We report gene expression changes based on genetic polymorphisms. Integrating gene-network information identified these genes to relate to canonical DNA repair genes and processes. This investigation highlights genes involved in DNA repair processes and mitochondrial malfunction possibly via inflammation. Therefore, it is suggested that larger studies will provide more power to infer the extent of underlying genetic contribution for an individual’s susceptibility to developing radiotoxicity.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA.,Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Talisa K Silzer
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA.,Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Ranajit Chakraborty
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
447
|
Kim AS, Melemenidis S, Gustavsson AK, Abid D, Wu Y, Liu F, Hristov D, Schüler E. Increased local tumor control through nanoparticle-mediated, radiation-triggered release of nitrite, an important precursor for reactive nitrogen species. Phys Med Biol 2020; 65:195003. [PMID: 32721936 DOI: 10.1088/1361-6560/abaa27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The efficacy of dose-enhancing gold nanoparticles (AuNPs) is negatively impacted by low tumor uptake, low cell membrane penetration, limited diffusion distance, and short lifetime of radiation-induced secondary particles. To overcome these limitations, we have developed a novel AuNP system capable of radiation-triggered release of nitrite, a precursor of reactive nitrogen species, and report here on the in vivo characterization of this system. AuNPs were functionalized through PEGylation, cell-penetrating peptides (CPP; AuNP@CPP), and nitroimidazole (nIm; AuNP@nIm-CPP). Mice with subcutaneous 4T1 tumors received either AuNP@nIm-CPP or AuNP@CPP intraperitoneally. Tumor and normal tissue uptake were evaluated 24 h post AuNP administration. A separate cohort of mice was injected and irradiated to a single-fraction dose of 18 Gy in a 225 kVp small animal irradiator 24 h post NP administration. The mice were followed for two weeks to evaluate tumor response. The mean physical and hydrodynamic size of both NP systems were 5 and 13 nm, respectively. NP nIm-loading of 1 wt% was determined. Tumor accumulation of AuNP@nIm-CPP was significantly lower than that of AuNP@CPP (0.2% vs 1.2%, respectively). In contrast, AuNP@nIm-CPP showed higher accumulation compared to AuNP@CPP in liver (16.5% vs 6.6%, respectively) and spleen (10.8% vs 3.1%, respectively). With respect to tumor response, no differential response was found between non-irradiated mice receiving either saline or AuNP@nIm-CPP alone. The combination of AuNP@CPP+ radiation showed no differential response from radiation alone. In contrast, a significant delay in tumor regrowth was observed in mice receiving AuNP@nIm-CPP+ radiation compared to radiation alone. AuNP functionalized with both CPP and nIm exhibited an order of magnitude less tumor accumulation compared to the NP system without nIm yet resulted in a significantly higher therapeutic response. Our data suggest that by improving the biokinetics of AuNP@nIm-CPP, this novel NP system could be a promising radiosensitizer for enhanced therapeutic response following radiation therapy.
Collapse
Affiliation(s)
- Anna S Kim
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
448
|
Yuan R, Sun Z, Cai J, Yang X, Zhang W, Wu C, Shen Y, Yin A, Wang X, Cai X, Fu X, Shen L, He B. A Novel Anticancer Therapeutic Strategy to Target Autophagy Accelerates Radiation-Associated Atherosclerosis. Int J Radiat Oncol Biol Phys 2020; 109:540-552. [PMID: 32942003 DOI: 10.1016/j.ijrobp.2020.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/13/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Autophagy inhibition is a novel therapeutic strategy suggested for patients with advanced cancer, especially those who have undergone radiation therapy. In the present study, we investigated whether autophagy inhibitors accelerate the progression of radiation-associated atherosclerosis (RAA). METHODS AND MATERIALS Eight-week-old apolipoprotein (ApoE-/-) mice were fed a Western diet, and their left common carotid arteries were partially ligated to induce atherogenesis. Four weeks later, local ionizing radiation (IR) at a dose of 5 or 10 Gy was used to induce RAA in the left common carotid artery. After another 4 weeks, severe plaque burden associated with increased macrophage infiltration and lipid deposition, reduced smooth muscle cells, and decreased collagen expression was observed. In addition, these changes occurred in a dose-dependent manner. Improved autophagic flux caused by IR was observed in both macrophages of the atherosclerotic plaque and peritoneal macrophages in vitro. The inhibition of autophagic flux by chloroquine (50 mg/kg/d) further accelerated the progression of RAA in the left common carotid arteries of ApoE-/- mice. Furthermore, chloroquine treatment exacerbated IR-induced p65 nuclear translocation, IκBα degradation, and transcription of nuclear factor-κB (NF-κB) target genes in peritoneal macrophages. CONCLUSIONS IR promotes atherogenesis and increases autophagic flux. In addition, autophagy inhibition by chloroquine accelerates the progression of RAA lesions by stimulating NF-κB-mediated inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Ruosen Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiali Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Caizhe Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yejiao Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuwei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
449
|
Li L, Nie X, Yi M, Qin W, Li F, Wu B, Yuan X. Aerosolized Thyroid Hormone Prevents Radiation Induced Lung Fibrosis. Front Oncol 2020; 10:528686. [PMID: 33042829 PMCID: PMC7523090 DOI: 10.3389/fonc.2020.528686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/09/2022] Open
|
450
|
Käsmann L, Dietrich A, Staab-Weijnitz CA, Manapov F, Behr J, Rimner A, Jeremic B, Senan S, De Ruysscher D, Lauber K, Belka C. Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol 2020; 15:214. [PMID: 32912295 PMCID: PMC7488099 DOI: 10.1186/s13014-020-01654-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Lung, breast, and esophageal cancer represent three common malignancies with high incidence and mortality worldwide. The management of these tumors critically relies on radiotherapy as a major part of multi-modality care, and treatment-related toxicities, such as radiation-induced pneumonitis and/or lung fibrosis, are important dose limiting factors with direct impact on patient outcomes and quality of life. In this review, we summarize the current understanding of radiation-induced pneumonitis and pulmonary fibrosis, present predictive factors as well as recent diagnostic and therapeutic advances. Novel candidates for molecularly targeted approaches to prevent and/or treat radiation-induced pneumonitis and pulmonary fibrosis are discussed.
Collapse
Affiliation(s)
- Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Claudia A. Staab-Weijnitz
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jürgen Behr
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Department of Internal Medicine V, LMU Munich, Munich, Germany
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| |
Collapse
|